高中文科数学里面关于对数函数的公式有哪些?*^_^*
ZgjfcbjNerveM 2023-05-20 17:38:034
求高中数列的全部解题方法,公式
你可以在百度上搜或买本书一般回答的都是从网页上粘贴下来的gitcloud2023-05-20 17:38:005
三角恒等变换公式是什么?
三角恒等变换公式如下:cos(α+β)=cosα·cosβ-sinα·sinβ。cos(α-β)=cosα·cosβ+sinα·sinβ。sin(α+β)=sinα·cosβ+cosα·sinβ。sin(α-β)=sinα·cosβ-cosα·sinβ。tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)。tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)。定号法则将α看做锐角(注意是“看做”),按所得的角的来象垍限头樤,取三角函数的符号。也就是“象限定号,符号看象限”(或为“奇变偶不变,符号看象限”)。在Kπ/2中如果K为偶数时函数名不变,若为奇数时函数名变为相反的函数名。正负号看原函数中α所在象限的正负号。关于正负号有个口诀;一全正,二正弦,三两切,四余弦,即第一象限全部为正,第二象限角,正弦为正,第三象限,正切和余切为正,第四象限,余弦为正。或简写为“ASTC”,即“all”“sin”“tan+cot”“cos”依次为正。还可简记为:sin上cos右tan/cot对角,即sin的正值都在x轴上方,cos的正值都在y轴右方,tan/cot 的正值斜着。比如:90°+α。定名:90°是90°的奇数倍,所以应取余函数;定号:将α看做锐角,那么90°+α是第二象限角,第二象限角的正弦为正,余弦为负。所以sin(90°+α)=cosα , cos(90°+α)=-sinα 这个非常神奇,屡试不爽~还有一个口诀“纵变横不变,符号看象限”,例如:sin(90°+α),90°的终边在纵轴上,所以函数名变为相反的函数名,即cos,所以sin(90°+α)=cosα。肖振2023-05-20 17:37:591
在使用牛顿莱布尼兹公式的时候,怎样来恒等变形能使展开项计算量最小
A选项,分母是x²+1,不可能为0,所以是连续函数。B选项,在x=1和x=-1的时候,分母为0,被积函数无意义。C选项,在x=3次方根号下25的时候,分母为0,被积函数无意义,而3次方根号下25在0到4的区间内。D选项,x=1的时候,lnx=0,分母为0,被积函数无意义Jm-R2023-05-20 17:37:591
logab换底公式
logab换底公式是logab=logca/logcb。对数换底公式简称换底公式,是对数的一种恒等变形,指更换底数时同一真数的两个对数间的关系式。在数学中,对数是对求幂的逆运算,正如除法是乘法的倒数,反之亦然。这意味着一个数字的对数是必须产生另一个固定数字(基数)的指数。在简单的情况下,是乘数中的对数计数因子。无尘剑 2023-05-20 17:37:591
求高一所有三角函数公式
正弦函数 sinθ=y/r 余弦函数 cosθ=x/r 正切函数 tanθ=y/x 余切函数 cotθ=x/y 正割函数 secθ=r/x 余割函数 cscθ=r/y 以及两个不常用,已趋于被淘汰的函数: 正矢函数 versinθ =1-cosθ 余矢函数 vercosθ =1-sinθ 同角三角函数间的基本关系式: ·平方关系: sin^2(α)+cos^2(α)=1 tan^2(α)+1=sec^2(α) cot^2(α)+1=csc^2(α) ·积的关系: sinα=tanα*cosα cosα=cotα*sinα tanα=sinα*secα cotα=cosα*cscα secα=tanα*cscα cscα=secα*cotα ·倒数关系: tanα·cotα=1 sinα·cscα=1 cosα·secα=1 三角函数恒等变形公式 ·两角和与差的三角函数: cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ sin(α±β)=sinα·cosβ±cosα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) ·辅助角公式: Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中 sint=B/(A^2+B^2)^(1/2) cost=A/(A^2+B^2)^(1/2) ·倍角公式: sin(2α)=2sinα·cosα=2/(tanα+cotα) cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α) tan(2α)=2tanα/[1-tan^2(α)] ·三倍角公式: sin3α=3sinα-4sin^3(α) cos3α=4cos^3(α)-3cosα ·半角公式: sin(α/2)=正负√((1-cosα)/2) cos(α/2)=正负√((1+cosα)/2) tan(α/2)=正负√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα ·降幂公式 sin^2(α)=(1-cos(2α))/2 cos^2(α)=(1+cos(2α))/2 tan^2(α)=(1-cos(2α))/(1+cos(2α)) ·万能公式: sinα=2tan(α/2)/[1+tan^2(α/2)] cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] tanα=2tan(α/2)/[1-tan^2(α/2)] ·积化和差公式: sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)] cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)] cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)] sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)] ·和差化积公式: sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2] cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2] cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2] ·其他: sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0 cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及 sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2 tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0真颛2023-05-20 17:37:592
一元二次方程配方法推导公式
ax^2+bx+c=0=>x^2+a/bx+c/a= 0=>(x+a/2b)^2-a^2/4b^2+c/a=0tt白2023-05-20 17:37:595
为什么可以变成e,指数与对数的恒等变形公式是什么
见图Jm-R2023-05-20 17:37:581
三角恒等变换所有公式。
两角和与差的三角函数: cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ sin(α+β)=sinα·cosβ+cosα·sinβ sin(α-β)=sinα·cosβ-cosα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)二倍角公式: sin(2α)=2sinα·cosα cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α) tan(2α)=2tanα/[1-tan^2(α)]三倍角公式: sin3α=3sinα-4sin^3(α) cos3α=4cos^3(α)-3cosα半角公式: sin^2(α/2)=(1-cosα)/2 cos^2(α/2)=(1+cosα)/2 tan^2(α/2)=(1-cosα)/(1+cosα) tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα万能公式: 半角的正弦、余弦和正切公式(降幂扩角公式) sinα=2tan(α/2)/[1+tan^2(α/2)] cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] tanα=2tan(α/2)/[1-tan^2(α/2)]积化和差公式: sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)] cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)] cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)] sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]和差化积公式: sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2] cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2] cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]再也不做站长了2023-05-20 17:37:585
三角恒等变形的倍角公式
sin2α = 2cosαsinα = 2tanα / (1 + tan²α)cos2α = cos²α-sin²α=1-2sin²α=2cos²α-1tan2α = 2tanα/[1 - (tanα)²] sin2α = sin^2(α + π/4) - cos^2(α + π/4) = 2sin^2(a + π/4) - 1 = 1 - 2cos^2(α + π/4);cos2α = 2sin(α + π/4)cos(α + π/4) sin3α=3sinα-4sin³αcos3α=4cos³α-3cosαtan3α=(3tanα-tan³α)/(1-3tan²α)sin3α=4sinα×sin(π/3-α)sin(π/3+α)cos3α=4cosα×cos(π/3-α)cos(π/3+α)tan3α=tanα×tan(π/3-α)tan(π/3+α) 根据欧拉公式(cos θ+i·sin θ)^n=cos nθ+i·sin nθ (注:sin θ前的 i 是虚数单位,即-1开方)将左边用二项式定理展开分别整理实部和虚部可以得到下面两组公式sin(nα)=ncos^(n-1)α·sinα-C(n,3)cos^(n-3)α·sin^3α+C(n,5)cos^(n-5)α·sin^5α-…cos(nα)=cos^nα-C(n,2)cos^(n-2)α·sin^2α+C(n,4)cos^(n-4)α·sin^4α Asinα+Bcosα=√(A^2+B^2)sin[α+arctan(B/A)]Asinα+Bcosα=√(A^2+B^2)cos[α-arctan(A/B)] sin(α/2)=±√[(1-cosα)/2]cos(α/2)=±√[(1+cosα)/2]tan(α/2)=±√[(1-sinα)/(1+sinα)]=sinα/(1+cosα)=(1-cosα)/sinα=cscα-cotαcot(α/2)=±√[(1+cosα)/(1-cosα)]=(1+cosα)/sinα=sinα/(1-cosα)=cscα+cotαsec(α/2)=±√[(2secα/(secα+1)]csc(α/2)=±√[(2secα/(secα-1)] sin²(α/2)=(1-cosα)/2cos²(α/2)=(1+cosα)/2tan²(α/2)=(1-cosα)/(1+cosα)tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα sin²(α/2)=(1-cosα)/2sin(a/2)=√[(1-cosα)/2] ( a/2在一、二象限)或=-√[(1-cosα)/2] (a/2在三、四象限)cos²(α/2)=(1+cosα)/2cos(a/2)=√[(1+cosα)/2] ( a/2在一、四象限)或=-√[(1+cosα)/2] (a/2在二、三象限)tan²(α/2)=(1-cosα)/(1+cosα)tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα=√[(1-cosα)/(1+cosα)] ( a/2在一、三象限)或=-√[(1-cosα)/(1+cosα)] ( a/2在二、四象限)真颛2023-05-20 17:37:571
三角函数恒等变形公式是什么?
三角恒等变换公式如下:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α+β)=sinα·cosβ+cosα·sinβsin(α-β)=sinα·cosβ-cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)诱导公式sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotαsin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotαsin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα人类地板流精华2023-05-20 17:37:571
三角函数的公式是什么?
·平方关系:sin^2(α)+cos^2(α)=1tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α)·商的关系:tanα=sinα/cosαcotα=cosα/sinα·倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1三角函数恒等变形公式:·两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)·倍角公式:sin(2α)=2sinα·cosαcos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)tan(2α)=2tanα/[1-tan^2(α)]·三倍角公式:sin3α=3sinα-4sin^3(α)cos3α=4cos^3(α)-3cosα·半角公式:sin^2(α/2)=(1-cosα)/2cos^2(α/2)=(1+cosα)/2tan^2(α/2)=(1-cosα)/(1+cosα)tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]·和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]北营2023-05-20 17:37:573
三角函数恒等变形公式
这个需要编辑公式,楼上的给我个邮件,我发给你哦bikbok2023-05-20 17:37:563
三角恒等变形公式推导
通过万能公式 sin(α+β)=sinαcosβ+cosαsinβ sin(α-β)=sinαcosβ-cosαsinβ cos(α+β)=cosαcosβ-sinαsinβ cos(α-β)=cosαcosβ+sinαsinβ 得到 sin2α=2sinαcosα cos2α=cos^2 α-sin^2 α=2cos2α-1=1-2sin2α 2tanα tan2α=————— 1-tan2α sin^2(α/2)=(1-cosα)/2 cos^2(α/2)=(1+cosα)/2 tan^2(α/2)=(1-cosα)/(1+cosα) sin(α/2)=正负[(1-cosα)/2]开二次方(正负由α/2所在象限决定) cos(α/2)=正负[(1+cosα)/2]开二次方(正负由α/2所在象限决定) tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα=+或-[(1-cosα)/(1+cosα)]开二次方mlhxueli 2023-05-20 17:37:561
三角恒等变形的内角公式
设A,B,C是三角形的三个内角sinA+sinB+sinC=4cos(A/2)cos(B/2)cos(C/2)cosA+cosB+cosC=1+4sin(A/2)sin(B/2)sin(C/2)tanA+tanB+tanC=tanAtanBtanCcot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)tan(A/2)tan(B/2)+tan(B/2)tan(C/2)+tan(C/2)tan(A/2)=1cotAcotB+cotBcotC+cotCcotA=1(cosA)^2+(cosB)^2+(cosC)^2+2cosAcosBcosC=1sin2A+sin2B+sin2C=4sinAsinBsinC小菜G的建站之路2023-05-20 17:37:561
三角恒等式的所有变形公式
两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA)倍角公式 tan2A=2tanA/[1-(tanA)^2] cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2sin2A=2sinA*cosA三倍角公式sin3a=3sina-4(sina)^3cos3a=4(cosa)^3-3cosatan3a=tana*tan(π/3+a)*tan(π/3-a) 半角公式 sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2) cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2) tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA)) cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA)) tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA)和差化积 sin(a)+sin(b)=2sin((a+b)/2)cos((a-b)/2) sin(a)−sin(b)=2cos((a+b)/2)sin((a-b)/2) cos(a)+cos(b)=2cos((a+b)/2)cos((a-b)/2) cos(a)-cos(b)=-2sin((a+b)/2)sin((a-b)/2)tanA+tanB=sin(A+B)/cosAcosB积化和差公式sin(a)sin(b)=-1/2*[cos(a+b)-cos(a-b)] cos(a)cos(b)=1/2*[cos(a+b)+cos(a-b)] sin(a)cos(b)=1/2*[sin(a+b)+sin(a-b)]诱导公式sin(-a)=-sin(a) cos(-a)=cos(a) sin(pi/2-a)=cos(a) cos(pi/2-a)=sin(a) sin(pi/2+a)=cos(a) cos(pi/2+a)=-sin(a) sin(pi-a)=sin(a) cos(pi-a)=-cos(a) sin(pi+a)=-sin(a) cos(pi+a)=-cos(a) tgA=tanA=sinA/cosA万能公式sin(a)= (2tan(a/2))/(1+tan^2(a/2)) cos(a)= (1-tan^2(a/2))/(1+tan^2(a/2)) tan(a)= (2tan(a/2))/(1-tan^2(a/2))其它公式a*sin(a)+b*cos(a)=sqrt(a^2+b^2)sin(a+c) [其中,tan(c)=b/a] a*sin(a)-b*cos(a)=sqrt(a^2+b^2)cos(a-c) [其中,tan(c)=a/b] 1+sin(a)=(sin(a/2)+cos(a/2))^2 1-sin(a)=(sin(a/2)-cos(a/2))^2其他非重点三角函数csc(a)=1/sin(a) sec(a)=1/cos(a)双曲函数sinh(a)=(e^a-e^(-a))/2 cosh(a)=(e^a+e^(-a))/2 tgh(a)=sinh(a)/cosh(a)公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 公式三: 任意角α与 -α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系: sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα 公式六: π/2±α及3π/2±α与α的三角函数值之间的关系: sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα (以上k∈Z)瑞瑞爱吃桃2023-05-20 17:37:561
极限常用的恒等变形公式
极限常用的恒等变形公式:1、e^x-1~x (x→0) 2、 e^(x^2)-1~x^2 (x→0)3、1-cosx~1/2x^2 (x→0)4、1-cos(x^2)~1/2x^4 (x→0)5、sinx~x (x→0)6、tanx~x (x→0)7、arcsinx~x (x→0)8、arctanx~x (x→0)二倍角sin2α=2cosαsinα=sin²(α+π/4)-cos²(α+π/4)=2sin²(a+π/4)-1=1-2cos²(α+π/4)cos2α=cos²α-sin²α=1-2sin²α=2cos²α-1=2sin(α+π/4)·cos(α+π/4)tan2α=2tanα/[1-(tanα)²]gitcloud2023-05-20 17:37:551
三角形恒等变形的所有公式是什么?
三角恒等变形公式推导:通过万能公式:sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβ得到:sin2α=2sinαcosαcos2α=cos^2 α-sin^2 α=2cos2α-1=1-2sin2α三角形恒等变形解题技巧:(1)准确记忆相关公式:如两角和的正弦公式,等号右边是正余余正,中间+号连接;两角和的余弦公式,等号左边是余余正正,特别要注意的是中间—连接,千万不能搞混淆了。(2)如果遇到题目给出的角度较大时,先用诱导公式将角度变换在0~90度的范围内再进行计算。(3)注意寻找角之间的关系。北境漫步2023-05-20 17:37:551
三角函数恒等变形公式是什么?
三角函数恒等变形公式是cos(α +β )=cosα ·cosβ 。三角函数是数学中属于初等函数中的超越函数的函数。它们的本质是任何角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的。推导方法:90°的奇数倍+α的三角函数,其绝对值与α三角函数的绝对值互为余函数。90°的偶数倍+α的三角函数与α的三角函数绝对值相同。也就是“奇余偶同,奇变偶不变”。将α看做锐角(注意是“看做”),按所得的角的象限,取三角函数的符号。也就是“象限定号,符号看象限”(或为“奇变偶不变,符号看象限”)。西柚不是西游2023-05-20 17:37:551
三角函数恒等变形公式是什么?
cos(α +β )=cosα ·cosβ 三角函数是数学中属于初等函数中的超越函数的函数。它们的本质是任何角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的。其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。三角函数公式看似很多、很复杂,但只要掌握了三角函数的本质及内部规律,就会发现三角函数各个公式之间有强大的联系。而掌握三角函数的内部规律及本质也是学好三角函数的关键所在。北营2023-05-20 17:37:551
三角函数恒等变形公式
只用熟记两角和差公式(这个推导麻烦),其他的都可以用它推导。1.万能公式令tan(a/2)=tsina=2t/(1+t^2)cosa=(1-t^2)/(1+t^2)tana=2t/(1-t^2)2.辅助角公式asint+bcost=(a^2+b^2)^(1/2)sin(t+r)cosr=a/[(a^2+b^2)^(1/2)]sinr=b/[(a^2+b^2)^(1/2)]tanr=b/a3.三倍角公式sin(3a)=3sina-4(sina)^3cos(3a)=4(cosa)^3-3cosatan(3a)=[3tana-(tana)^3]/[1-3(tana^2)]4.积化和差sina*cosb=[sin(a+b)+sin(a-b)]/2cosa*sinb=[sin(a+b)-sin(a-b)]/2cosa*cosb=[cos(a+b)+cos(a-b)]/2sina*sinb=-[cos(a+b)-cos(a-b)]/25.积化和差sina+sinb=2sin[(a+b)/2]cos[(a-b)/2]sina-sinb=2sin[(a-b)/2]cos[(a+b)/2]cosa+cosb=2cos[(a+b)/2]cos[(a-b)/2]cosa-cosb=-2sin[(a+b)/2]sin[(a-b)/2]大鱼炖火锅2023-05-20 17:37:551
参数方程与普通方程的互化有哪些公式
参数是参变数的简称。它是研究运动等一类问题中产生的。质点运动时,它的位置必然与时间有关系,也就是说,质的坐标x,y与时间t之间有函数关系x=f(t),y=g(t),这两个函数式中的变量t,相对于表示质点的几何位置的变量x,y来说,就是一个“参与的变量”。这类实际问题中的参变量,被抽象到数学中,就成了参数。我们所学的参数方程中的参数,其任务在于沟通变量x,y及一些常量之间的联系,为研究曲线的形状和性质提供方便。用参数方程描述运动规律时,常常比用普通方程更为直接简便。对于解决求最大射程、最大高度、飞行时间或轨迹等一系列问题都比较理想。有些重要但较复杂的曲线(例如圆的渐开线),建立它们的普通方程比较困难,甚至不可能,列出的方程既复杂又不易理解。根据方程画出曲线十分费时;而利用参数方程把两个变量x,y间接地联系起来,常常比较容易,方程简单明确,且画图也不太困难。北营2023-05-20 17:37:547
参数方程的主要公式及运用
在给定的平面直角坐标系中,如果曲线上任意一点的坐标(x,y)都是某个变数t的函数x=f(t),y=φ(t)且对于t的每一个允许值,由方程组⑴所确定的点m(x,y)都在这条曲线上,那么方程组⑴称为这条曲线的参数方程,联系x、y之间关系的变数称为参变数,简称参数.类似地,也有曲线的极坐标参数方程ρ=f(t),θ=g(t) 圆的参数方程 x=a+r cosθ y=b+r sinθ(θ∈ [0,2π) ) (a,b) 为圆心坐标,r 为圆半径,θ 为参数,(x,y) 为经过点的坐标 椭圆的参数方程 x=a cosθ y=b sinθ(θ∈[0,2π)) a为长半轴长 b为短半轴长 θ为参数 椭圆 双曲线的参数方程 x=a secθ (正割) y=b tanθ a为实半轴长 b为虚半轴长 θ为参数 抛物线的参数方程 x=2pt^2 y=2pt p表示焦点到准线的距离 t为参数 直线的参数方程 x=x"+tcosa y=y"+tsina,x",y"和a表示直线经过(x",y"),且倾斜角为a,t为参数. 或者x=x"+ut, y=y"+vt (t∈R)x",y"直线经过定点(x",y"),u,v表示直线的方向向量d=(u,v) 圆的渐开线x=r(cosφ+φsinφ) y=r(sinφ-φcosφ)(φ∈[0,2π)) r为基圆的半径 φ为参数善士六合2023-05-20 17:37:541
参数方程的主要公式及运用是怎样的?
在给定的平面直角坐标系中,如果曲线上任意一点的坐标(x,y)都是某个变数t的函数x=f(t),y=φ(t)且对于t的每一个允许值,由方程组⑴所确定的点m(x,y)都在这条曲线上,那么方程组⑴称为这条曲线的参数方程,联系x、y之间关系的变数称为参变数,简称参数。类似地,也有曲线的极坐标参数方程ρ=f(t),θ=g(t)圆的参数方程x=a+rcosθy=b+rsinθ(θ∈[0,2π))(a,b)为圆心坐标,r为圆半径,θ为参数,(x,y)为经过点的坐标椭圆的参数方程x=acosθ y=bsinθ(θ∈[0,2π))a为长半轴长b为短半轴长θ为参数椭圆双曲线的参数方程x=asecθ(正割)y=btanθa为实半轴长b为虚半轴长θ为参数抛物线的参数方程x=2pt^2y=2ptp表示焦点到准线的距离t为参数直线的参数方程x=x"+tcosay=y"+tsina,x",y"和a表示直线经过(x",y"),且倾斜角为a,t为参数.或者x=x"+ut, y=y"+vt(t∈R)x",y"直线经过定点(x",y"),u,v表示直线的方向向量d=(u,v)圆的渐开线x=r(cosφ+φsinφ)y=r(sinφ-φcosφ)(φ∈[0,2π))r为基圆的半径φ为参数mlhxueli 2023-05-20 14:31:361
参数方程定理公式是什么?
椭圆x2/a2+y2/b2=1(a>b>0)的参数方程是x=acosφ,y=bsinφ(φ是参数)双曲线x2/a2-y2/b2=1(a>0,b>0)的参数方程是x=asecφ,y=btgφ(φ是参数)抛物线y2=2px的参数方程是x=2pt2,y=2pt(t是参数)曲线的极坐标参数方程ρ=f(t),θ=g(t)。圆的参数方程 x=a+r cosθ y=b+r sinθ(θ∈ [0,2π) ) (a,b) 为圆心坐标,r 为圆半径,θ 为参数,(x,y) 为经过点的坐标扩展资料参数方程和函数很相似:它们都是由一些在指定的集的数,称为参数或自变量,以决定因变量的结果。例如在运动学,参数通常是“时间”,而方程的结果是速度、位置等。一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x、y都是某个变数t的函数: 并且对于t的每一个允许的取值,由方程组确定的点(x, y)都在这条曲线上,那么这个方程就叫做曲线的参数方程,联系变数x、y的变数t叫做参变数,简称参数。相对而言,直接给出点坐标间关系的方程叫普通方程。参考资料百度百科-参数方程大鱼炖火锅2023-05-20 14:31:351
参数方程公式高中
椭圆x2/a2+y2/b2=1(a>b>0)的参数方程是x=acosφ,y=bsinφ(φ是参数)。双曲线x2/a2-y2/b2=1(a>0,b>0)的参数方程是x=asecφ,y=btgφ(φ是参数)。抛物线y2=2px的参数方程是x=2pt2,y=2pt(t是参数)。曲线的极坐标参数方程ρ=f(t),θ=g(t)。圆的参数方程 x=a+r cosθ y=b+r sinθ(θ∈ [0,2π) ) (a,b) 为圆心坐标,r 为圆半径,θ 为参数,(x,y) 为经过点的坐标。参数方程,为数学术语,其和函数很相似:它们都是由一些在指定的集的数,称为参数或自变量,以决定因变量的结果。例如在运动学,参数通常是“时间”,而方程的结果是速度、位置等。wpBeta2023-05-20 14:31:351
定积分问题 当图形边界曲线为参数方程时,求其面积的定积分公式是什么啊?求教!
面积公式是∫(α→β) (1/2)r²(θ) dθ无尘剑 2023-05-20 14:31:345
参数方程公式
参数方程公式如下:一、圆的参数方程x=a+rcosθ,y=b+rsinθ(θ∈[0,2π)),(a,b)为圆心坐标,r为圆半径,θ为参数,(x,y)为经过点的坐标。二、椭圆的参数方程x=acosθ,y=bsinθ(θ∈[0,2π))a为长半轴长b为短半轴长θ为参数。三、双曲线的参数方程x=asecθ(正割),y=btanθa为实半轴长b为虚半轴长θ为参数。四、抛物线的参数方程x=2pt^2,y=2ptp表示焦点到准线的距离t为参数。五、直线的参数方程x=x"+tcosa,y=y"+tsina,x",y"和a表示直线经过(x",y"),且倾斜角为a,t为参数。六、或者x=x"+ut,y=y"+vt(t∈R)x",y"直线经过定点(x",y"),u,v表示直线的方向向量d=(u,v)。七、圆的渐开线x=r(cosφ+φsinφ)y=r(sinφ-φcosφ)(φ∈[0,2π))r为基圆的半径φ为参数。此后故乡只2023-05-20 14:31:331
参数方程有哪些公式?
参数方程与普通方程的互化最基本的有以下四个公式:1.cos²θ+sin²θ=12.ρ=x²+y²3.ρcosθ=x4.ρsinθ=y其他公式:曲线的极坐标参数方程ρ=f(t),θ=g(t)。圆的参数方程 x=a+r cosθ y=b+r sinθ(θ∈ [0,2π) ) (a,b) 为圆心坐标,r 为圆半径,θ 为参数,(x,y) 为经过点的坐标椭圆的参数方程 x=a cosθ y=b sinθ(θ∈[0,2π)) a为长半轴长 b为短半轴长 θ为参数 [2] 双曲线的参数方程 x=a secθ (正割) y=b tanθ a为实半轴长 b为虚半轴长 θ为参数抛物线的参数方程 x=2pt^2 y=2pt p表示焦点到准线的距离 t为参数直线的参数方程 x=x"+tcosa y=y"+tsina,x",y"和a表示直线经过(x",y"),且倾斜角为a,t为参数或者x=x"+ut, y=y"+vt (t∈R)x",y"直线经过定点(x",y"),u,v表示直线的方向向量d=(u,v)圆的渐开线x=r(cosφ+φsinφ) y=r(sinφ-φcosφ)(φ∈[0,2π)) r为基圆的半径 φ为参数。扩展资料参数是参变数的简称。它是研究运动等一类问题中产生的。质点运动时,它的位置必然与时间有关系,也就是说,质的坐标x,y与时间t之间有函数关系x=f(t),y=g(t),这两个函数式中的变量t,相对于表示质点的几何位置的变量x,y来说,就是一个“参与的变量”。这类实际问题中的参变量,被抽象到数学中,就成了参数。我们所学的参数方程中的参数,其任务在于沟通变量x,y及一些常量之间的联系,为研究曲线的形状和性质提供方便。用参数方程描述运动规律时,常常比用普通方程更为直接简便。对于解决求最大射程、最大高度、飞行时间或轨迹等一系列问题都比较理想。有些重要但较复杂的曲线(例如圆的渐开线),建立它们的普通方程比较困难,甚至不可能,列出的方程既复杂又不易理解。根据方程画出曲线十分费时;而利用参数方程把两个变量x,y间接地联系起来,常常比较容易,方程简单明确,且画图也不太困难。参考资料:百度百科参数方程善士六合2023-05-20 14:31:331
数学的参数方程公式有哪些
直线参数方程是高中数学在解析几何这一模块中非常重要的知识点,也是整个高中数学的一大难题,接下来我为你整理了数学参数方程公式,一起来看看吧。 数学参数方程公式 数学参数方程概念 一般在平面直角坐标系中,如果曲线上任意一点的坐标x,y都是某个变数t的函数:x=f(t),y=g(t),并且对于t的每一个允许的取值,由方程组确定的点(x,y)都在这条曲线上,那么这个方程就叫做曲线的参数方程,联系变数x, y的变数t叫做参变数,简称参数。 圆的参数方程 x=a+r cosθ y=b+r sinθ (a,b)为圆心坐标 r为圆半径 θ为参数 椭圆的参数方程 x=a cosθ y=b sinθ a为长半轴 长 b为短半轴长 θ为参数 双曲线的参数方程 x=a secθ (正割) y=b tanθ a为实半轴长 b为虚半轴长 θ为参数 抛物线的参数方程 x=2pt^2 y=2pt p表示焦点到准线的距离 t为参数 直线的参数方程 x=x"+tcosa y=y"+tsina , x", y"和a表示直线经过(x",y"),且倾斜角为a,t为参数. 数学学习技巧 一、课内重视听讲,课后及时复习。 新知识的接受,数学能力的培养主要在课堂上进行,所以要特别重视课内的学习效率,寻求正确的 学习 方法 。上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。 首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,尽量回忆而不采用“不清楚立即翻书”之举。认真独立完成作业,勤于思考,对于有些题目,由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。 在每个阶段的学习中要进行整理和归纳 总结 ,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。 二、适当多做题,养成良好的解题习惯。 要想学好数学,多做题目是必须的,熟悉掌握各种题型的解题思路。刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。 对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程。两者一起比较找出自己的错误所在,以便及时更正。在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。 实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。 三、调整心态,正确对待考试。 首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。 调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能打垮我的自豪感。 在考试前要做好准备,练练常规题,把自己的思路展开,在保证正确率的前提下提高解题速度。对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要尽量拿分,考试中要使自己的水平正常甚至超常发挥。 由此可见,要把数学学好就得找到适合自己的学习方法,了解数学学科的特点,使自己进入数学的广阔天地中去。tt白2023-05-20 14:31:331
如何使用IF、IMSUB函数将EXCEL中单元格变量输出不同的公式计算相应值?
=if(a2="上升",c2-b2,b2-c2)或=if(a2="下降",b2-c2,c2-b2)bikbok2023-05-20 14:31:252
为什么用泰勒公式算出结果是1就是错的
相比于洛必达法则,泰勒公式可以说是更加精细,下面来了解一下泰勒公式,泰勒公式的使用条件是极限必须都是存在的。在数学中,泰勒级数是用无限项连加式,也就是级数来表示一个函数,这些相加的项由函数在某一点的导数求得。泰勒公式在结果是1的情况不能用,泰勒公式的使用条件:实际应用中,泰勒公式需要截断,只取有限项,一个函数的有限项的泰勒级数叫做泰勒展开式。泰勒定理开创了有限差分理论,使任何单变量函数都可展成幂级数。泰勒以微积分学中将函数展开成无穷级数的定理著称于世。这条定理大致可以叙述为:函数在一个点的邻域内的值可以用函数在该点的值及各阶导数值组成的无穷级数表示出来。今天学习的泰勒公式对于我们做极限有很大的帮助,会用之后对我们解题是有好处的FinCloud2023-05-20 14:31:242
等轴双曲线的标准方程公式
x²-y²=m 过(3,1) 9-1=m 所以是x²/8-y²/8=1肖振2023-05-20 14:31:181
仿射变换公式推导
title: 仿射变换 date: 2020/03/23 周一 11:58:40.00 tags: affine transformation categories: GIS Algorithm author:Tamkery (1-1)式 输入至少4个点在两个不同坐标下的坐标,计算6个变换参数(A~F)。 比如一个点P在 坐标框架下的位置信息为 (x,y);在另一个 坐标框架下的位置信息为 (X,Y)。 那么同一个点在两个不同坐标框架下就可得两套位置信息的坐标: (x,y)和 (X,Y)。 图出自《GPS卫星导航基础:让-马利-佐格》 利用仿射变换公式: 可将点 (x,y)转换到 (X,Y)。 那么关于六参数矩阵的算法 1-1式 如何推导呢? 输入至少4个点在两个不同坐标下的坐标,计算6个变换参数(A~F)。 在这个条件下,n的最小值为4,那么就以4个控制点为基础开始公式的构建: 当n=4,即输入为4个控制点时候,有16个数据项。 把点数从4个推广到很多个,n个方程相加可得 1-2式 。 注意: 在1-2式中【x,y,X,Y】是点的坐标位置,也就是已经数据。公式中的未知变量其实是A到F六个字母。 六个未知数,两个方程,这种情况是求不出未知数的。所以至少再需要4个方程。 同理,又可得: (这个不想敲Latex了) 于是得到: 1.《地理信息系统导论》【美】kang-tsung Chang 第八版 2.《GPS卫星导航基础》【瑞士】让-马利-佐格左迁2023-05-20 08:58:001
仿射变换的基本公式及参数估算方法
我们考虑二维平面的仿射变换;缩放,旋转,平移变换;假设两个点P1(x1,y1),p2(x2,y2) 经过仿射变换后变为 P1"(x1",y1"),P2"(x2",y2") 如果两张图之间只有仿射变换,那么在通过特征点匹配算法得到两张图之间的匹配关系后;我们如何进行仿射变换参数的估量? 一种通用方法是将变换整体考虑,例如计算单应矩阵,然后根据单应矩阵推算仿射变换参数 但是在一些场景下,例如我们需要一些快速算法,或者一些可解释性的场景,我们可以利用仿射变换的性质分别进行缩放/旋转/平移参数的估算 缩放和旋转参数需要首先进行估算;其一,缩放参数不受旋转和平移参数的影响,其次,缩放参数会影响旋转和平移参数的估算; 旋转参数的估算类似缩放参数的估算,旋转参数的估算可以在缩放参数估算前或者之后; 基本思路类似类似缩放参数,以一个匹配点作为参考点,计算其他匹配点的向量旋转角度 参考资料: 为什么坐标变换的顺序必须是: 缩放->旋转->平移小白2023-05-20 08:58:001
橡皮页变换 仿射变换 相似变换数学原理和公式是什么?
①橡皮页变换用于纠正几何变形②仿射变换和相似变换都属于空间校正变换,用于坐标系内移动、平移数据或者转换单位仿射变换主要包括平移变换、旋转变换、尺度变换、倾斜变换(也叫错切变换、剪切变换、偏移变换)、翻转变换,一共有六个自由度(平移包括x方向平移和y方向平移,算两个自由度)。各变换的矩阵的形式:仿射变换主要包括平移变换、旋转变换、尺度变换、倾斜变换(也叫错切变换、剪切变换、偏移变换)、翻转变换,一共有六个自由度(平移包括x方向平移和y方向平移,算两个自由度)。各变换的矩阵的形式: 1> 平移变换请点击输入图片描述 2> 旋转变换 3> 尺度变换 4> 错切变换仿射变换保持二维图形的平直性和平行性,但是角度会改变,仿射变换的6个自由度中旋转占4个,另外两个是平移。它能保持平行性,但是不能保持垂直性(因为存在倾斜变换)。 1> 平直性:变换后直线还是直线、圆弧依旧是圆弧; 2> 平行性:平行线依旧平行,直线上点的位置顺序不变。相似变换相当于等距变换和均匀缩放的一个复合,即为:左上角2*2矩阵为旋转部分,右上角为平移因子。它有四个自由度,即旋转、x方向平移、y方向平移和缩放因子s。相似变换后长度比、夹角保持不变,其与相似三角形类似。因为相似变换中不存在倾斜变换(也叫错切变换、剪切变换、偏移变换)、翻转变换,而仿射变换中存在。虽然相似变换和仿射变换的变换矩阵一样,但是其定义不一样。肖振2023-05-20 08:58:001
应力张量不变量的三个公式
应力张量[σij]展开后可得到应力方程σ^3+i1*σ^2+i2*σ+i3=0; i1、i2、i3为应力张量的3个不变量;应力状态[σij]可分解为两个部分,即[σij]=[σm*δij]+[sij], [σm]=([σ1]+[σ2]+[σ3])/3,[sij]为[σij]在pi平面上的投影,称为偏应力张量;偏应力张量[sij]展开后同样可得偏应力方程s^3+j1*s^2+j2*s+j3=0, j1、j2、j3为偏应力的3个不变量。应力物体由于外因(受力、湿度、温度场变化等)而变形时,在物体内各部分之间产生相互作用的内力,以抵抗这种外因的作用,并试图使物体从变形后的位置恢复到变形前的位置。在所考察的截面某一点单位面积上的内力称为应力。同截面垂直的称为正应力或法向应力,同截面相切的称为剪应力或切应力。应力状态物体由于外因(受力、湿度、温度场变化等)而变形时,在物体内各部分之间产生相互作用的内力,单位面积上的内力称为应力。应力是一个矢量,沿截面法向的分量称为正应力,沿切向的分量称为切应力物体中一点在所有可能方向上的应力称为该点的应力状态。但过一点可作无数个平面,是否要用无数个平面上的应力才能描述点的应力状态呢?只需用过一点的任意一组相互垂直的三个平面上的应力就可代表点的应力状态,而其它截面上的应力都可用这组应力及其与需考察的截面的方位关系来表示。正应力与剪应力同截面垂直的称为正应力或法向应力,同截面相切的称为剪应力或切应力。应力会随着外力的增加而增长,对于某一种材料,应力的增长是有限度的,超过这一限度,材料就要破坏。对某种材料来说,应力可能达到的这个限度称为该种材料的极限应力。极限应力值要通过材料的力学试验来测定。将测定的极限应力作适当降低,规定出材料能安全工作的应力最大值,这就是许用应力。材料要想安全使用,在使用时期内的应力应低于它的极限应力,否则材料就会在使用时发生破坏。tt白2023-05-20 08:57:491
用复数公式求三角形abc的面积复数平面有3个点,A,B,C。所表示的复数为a,b,c?
首先,根据题意可以得到三角形的三个顶点A、B、C所对应的复数分别为a、b、c。其次,由于三角形面积的公式为S=1/2*|AB||AC|*sin∠BAC,我们需要求出三角形任意一个角的正弦值。再次,根据题目中已知的条件,我们可以列出以下方程组:(c-a)²+(c-a)(b-a)+(b+a)²=0 |b-2a+c|=3从第一个方程中可以解得:|b+c-2a|^2 = (|c-a|^2 + |b-a|^2 + |b+c|^2)/2其中,|z|表示复数z的模。将第二个方程代入上式得到:|4a-2b-2c|^2 = (|c-a|^2 + |b-a|^2 + |b+c|^2)/2 = 2^2 = 4即:|2a-b-c|^2 = 1因此,可以得到:sin∠BAC = |2a-b-c|/2 = 1/2最后,代入三角形面积公式中,得到三角形ABC的面积为:S = 1/2*|AB||AC|*sin∠BAC= 1/2*|b-a||c-a|*(1/2)= 1/4*|b-a||c-a|= 1/4*|b-a||c-a||b-c|/|b-c|= 1/4*|sin∠BAC||sin∠ABC||sin∠ACB|*|b-c|^2= 3/8综上,三角形ABC的面积为3/8。bikbok2023-05-20 08:57:341
求利润算法,比如我成本是4元想有百分之30的利润我售价应该是多少,求计算公式
4×1.3=5.2(元)hi投2023-05-20 08:57:1610
映射中满射个数和单射个数问题的公式
【满射】 对于集合A与B,在映射f下,B中的每一个元素都至少是A中某一个元素的象,则称f是从A到B的满射。 例如,A={1,2,3,4,5,6,7,8,} B={0,1} 映射f:A中的奇数对应B中的0;A中的偶数对应B中的1(如图)。这样,B中的每一个元素都是A中元素的象,因此,f是A到B的满射。【单射】设集合A与B。在映射(即单值对应)f下,对于A中的不同元素,在集合B中有不同的象,那么称映射f为从A到B的单射。 例如,A={1,2},B={2,4,6,},f:a→2a,则f是从A到B的单射。这是因为:(1)f是从A到B的单值对应;(2)A中不同的元素,在对应法则f下,B中有不同的象。Ntou1232023-05-20 08:57:053
如何推导这个两个向量点乘的梯度的场论公式?
用分部积分的形式带入。这个理论在数学上合理,但形式很复杂,并会导出很难求解的高阶场方程。理论中关键的数学要素,包括拉格朗日量和曲率张量,被外尔和其同事解出。其后外尔向爱因斯坦等其他物理学家广泛讨论了这个理论在物理上的正确性,但最终这个理论被证明是在物理上不合理的。尽管如此,外尔所用到的规范不变性原理,在其形式被修正后应用到了量子场论中。为了能够将电磁理论纳入广义相对论的几何学中,赫尔曼·外尔对广义相对论所依赖的黎曼几何进行了推广:他建立了一种更广义的无穷小几何。他注意到在一个流形上的连接两个点的路径上除了度规场外还可以存在额外的自由度。他通过用规范场的语言引入一种能够比较这类路径上局部尺度的基本方法,试图籍此来推广黎曼几何。这种几何学作为黎曼几何的推广,还在度规场的基础上引入了一个矢量场,两者结合可以生成电磁场和引力场。善士六合2023-05-20 08:56:481
拉格朗日公式是什么?
拉格朗日公式:拉格朗日方程:对于完整系统用广义坐标表示的动力方程,通常系指第二类拉格朗日方程,是法国数学家J.-L.拉格朗日首先导出的。通常可写成:式中T为系统用各广义坐标qj和各广义速度q"j所表示的动能;Qj为对应于qj的广义力;N(=3n-k)为这完整系统的自由度;n为系统的质点数;k为完整约束方程个数。插值公式:线性插值也叫两点插值,已知函数y = f(x)在给定互异点x0, x1上的值为y0= f(x0),y1= f(x1)线性插值就是构造一个一次多项式。约瑟夫·拉格朗日简介:约瑟夫·拉格朗日(Joseph Louis Lagrange),法国数学家、物理学家。他在数学、力学和天文学三个学科领域中都有历史性的贡献,其中尤以数学方面的成就最为突出。拉格朗日公式(lagrange formula)包括拉格朗日方程、拉格朗日插值公式、拉格朗日中值定理等。善士六合2023-05-20 08:56:471
拉格朗日中值定理公式是什么?
拉格朗日定理公式f(ζ)=(M-m)/(b-a)。约瑟夫·拉格朗日是法国数学家、物理学家。他在数学、力学和天文学三个学科领域中都有历史性的贡献,其中尤以数学方面的成就最为突出。微积分中的拉格朗日定理即(拉格朗日中值定理):设函数f(x)满足条件:(1)在闭区间[a,b]上连续。(2)在开区间(a,b)可导。则至少存在一点ε∈(a,b),使得f(b) - f(a)=f"(ε)(b-a)或者f(b)=f(a) + f "(ε)(b - a)。[证明:把定理里面的c换成x在不定积分得原函数f(x)={[f(b)-f(a)]/(b-a)}x。做辅助函数G(x)=f(x)-{f(b)-f (a)]/(b-a)}x易证明此函数在该区间满足条件:G(a)=G(b);G(x)在[a,b]连续;G(x)在(a,b)可导。此即罗尔定理条件,由罗尔定理条件即证]。康康map2023-05-20 08:56:471
拉格朗日公式是什么?
拉格朗日方程是:对于完整系统用广义坐标表示的动力方程,通常系指第二类拉格朗日方程,是法国数学家J. -L.拉格朗日首先导出的。通常可写成:式中T为系统用各广义坐标qj和各广义速度q" j所表示的动能; Qj为 对应于qj的广义力;N(=3n-k)为这完整系统的自由度; n为系统的质点数; k为完整约束方程个数。用拉格朗日方程解题的优点是:1.广义坐标个数通常比x坐标少,即N<3n,故拉氏方程个数比直角坐标的牛顿方程个数少,即运动微分方程组的阶数较低,问题易于求解。2.广义坐标可根据约束条件作适当的选择,使力学问题的运算简化,并且不必考虑约束力。3.T和L都是标量,比力的矢量关系式更易表达,因此较易列出动力方程。阿啵呲嘚2023-05-20 08:56:471
拉格朗日定理公式是什么?
拉格朗日中值定理又称拉氏定理,是微分学中的基本定理之一,它反映了可导函数在闭区间上的整体的平均变化率与区间内某点的局部变化率的关系。拉格朗日中值定理是罗尔中值定理的推广,同时也是柯西中值定理的特殊情形,是泰勒公式的弱形式(一阶展开)。拉格朗日中值定理解析:该定理给出了导函数连续的一个充分条件。(注意:必要性不成立,即函数在某点可导,不能推出导函数在该点连续,因为该点还可能是导函数的振荡间断点。)我们知道,函数在某一点的极限不一定等于该点处的函数值。但如果这个函数是某个函数的导函数,则只要这个函数在某点有极限,那么这个极限就等于函数在该点的取值。以上内容参考:百度百科——拉格朗日中值定理韦斯特兰2023-05-20 08:56:461
拉格朗日朗公式
f(b)-f(a)=f"(ξ)(b-a)NerveM 2023-05-20 08:56:463
拉格朗日公式是什么?
拉格朗日公式是:拉格朗日定理存在于多个学科领域中,分别为:微积分中的拉格朗日中值定理;数论中的四平方和定理;群论中的拉格朗日定理(群论)。流体力学中的拉格朗日定理(Lagrange theorem)由开尔文定理可直接推论得到拉格朗日定理(Lagrange theorem),即漩涡不生不灭定理。正压理想流体在质量力有势的情况下,如果初始时刻某部分流体内无涡,则在此之前或以后的任何时刻中这部分流体皆为无涡。反之,若初始时刻该部分流体有涡,则在此之前或以后的任何时刻中这部分流体皆为有涡。描述流体运动的两种方法之一:拉格朗日法。拉格朗日法是以研究单个流体质点运动过程作为基础,综合所有质点的运动,构成整个流体的运动。以某一起始时刻每个质点的坐标位置(a、b、c),作为该质点的标志。任何时刻任意质点在空间的位置(x、y、z)都可以看成是(a、b、c)和t的函数。西柚不是西游2023-05-20 08:56:461
什么是拉格朗日中值定理公式?
拉格朗日中值定理公式是f(b)-f(a)=f"(ξ)(b-a)(a<ξ<b)。如果函数y=f(x)在闭区间a≤x≤b上连续且在开区间a≤x≤b上可微,那么在此区间内部至少存在一个中间值u,使得F(b)-f(a)/b-a=f(u).其中a<u<b2、多元函数中值定理不成立。但存在拟微分平均值定理设D是一凸域,多元函数f(D)=Y。拉格朗日中值定理的几何意义拉格朗日中值定理是微分中值定理的核心,其他中值定理是拉格朗日中值定理的特殊情况和推广,它是微分学应用的桥梁,在理论和实际中具有极高的研究价值。其几何意义是若连续曲线在两点间的每一点处都有不垂直于x轴的切线,则曲线在A,B间至少存在1点,使得该曲线在P点的切线与割线AB平行。LuckySXyd2023-05-20 08:56:451
拉格朗日定理公式是什么?
拉格朗日定理公式f(ζ)=(M-m)/(b-a)。约瑟夫·拉格朗日是法国数学家、物理学家。他在数学、力学和天文学三个学科领域中都有历史性的贡献,其中尤以数学方面的成就最为突出。微积分中的拉格朗日定理即(拉格朗日中值定理):设函数f(x)满足条件:(1)在闭区间[a,b]上连续。(2)在开区间(a,b)可导。则至少存在一点ε∈(a,b),使得f(b) - f(a)=f"(ε)(b-a)或者f(b)=f(a) + f "(ε)(b - a)。[证明:把定理里面的c换成x在不定积分得原函数f(x)={[f(b)-f(a)]/(b-a)}x。做辅助函数G(x)=f(x)-{f(b)-f (a)]/(b-a)}x易证明此函数在该区间满足条件:G(a)=G(b);G(x)在[a,b]连续;G(x)在(a,b)可导。此即罗尔定理条件,由罗尔定理条件即证]。北有云溪2023-05-20 08:56:451
拉格朗日公式是什么?
拉格朗日公式是:拉格朗日定理存在于多个学科领域中,分别为:微积分中的拉格朗日中值定理;数论中的四平方和定理;群论中的拉格朗日定理(群论)。流体力学中的拉格朗日定理(Lagrange theorem)由开尔文定理可直接推论得到拉格朗日定理(Lagrange theorem),即漩涡不生不灭定理。正压理想流体在质量力有势的情况下,如果初始时刻某部分流体内无涡,则在此之前或以后的任何时刻中这部分流体皆为无涡。反之,若初始时刻该部分流体有涡,则在此之前或以后的任何时刻中这部分流体皆为有涡。描述流体运动的两种方法之一:拉格朗日法。拉格朗日法是以研究单个流体质点运动过程作为基础,综合所有质点的运动,构成整个流体的运动。以某一起始时刻每个质点的坐标位置(a、b、c),作为该质点的标志。任何时刻任意质点在空间的位置(x、y、z)都可以看成是(a、b、c)和t的函数。拉格朗日法基本特点:追踪流体质点的运动,优点:可直接运用固体力学中质点动力学进行分析。黑桃花2023-05-20 08:56:451
拉格朗日定理公式是什么?
拉格朗日定理公式f(ζ)=(M-m)/(b-a)。约瑟夫·拉格朗日是法国数学家、物理学家。他在数学、力学和天文学三个学科领域中都有历史性的贡献,其中尤以数学方面的成就最为突出。微积分中的拉格朗日定理即(拉格朗日中值定理):设函数f(x)满足条件:(1)在闭区间[a,b]上连续。(2)在开区间(a,b)可导。则至少存在一点ε∈(a,b),使得f(b) - f(a)=f"(ε)(b-a)或者f(b)=f(a) + f "(ε)(b - a)。[证明:把定理里面的c换成x在不定积分得原函数f(x)={[f(b)-f(a)]/(b-a)}x。做辅助函数G(x)=f(x)-{f(b)-f (a)]/(b-a)}x易证明此函数在该区间满足条件:G(a)=G(b);G(x)在[a,b]连续;G(x)在(a,b)可导。此即罗尔定理条件,由罗尔定理条件即证]。北有云溪2023-05-20 08:56:451
高数求拉格朗日公式!
原函数F(x)=f(x)-f(a)-((f(b)-f(a))/(b-a))(x-a),满足罗尔定理.导数值有0,求导后就是拉格朗日.追问:不太明白啊 说的详细一点追答:设原函数F(x)=f(x)-f(a)-((f(b)-f(a))/(b-a))x,满足罗尔定理。导数值有0,求导后就是拉格朗日。追答:我把函数改了一下。追答:还是第一次的对。有点晕了。你把我最先回答你的那个函数抄下来,把x分别用a和b代入,发现F(x)值相同所以用罗尔定理,对F(x)求导,就是拉格朗日的表达式了。我因为在外面,没法写字给你真颛2023-05-20 08:56:431
拉格朗日定理公式是什么
约瑟夫·拉格朗日,法国数学家、物理学家。他在数学、力学和天文学三个学科领域中都有历史性的贡献,其中尤以数学方面的成就最为突出。拉格朗日公式包括拉格朗日方程、拉格朗日插值公式、拉格朗日中值定理等。 拉格朗日公式 拉格朗日方程 对于完整系统用广义坐标表示的动力方程,通常系指第二类拉格朗日方程,是法国数学家J.-L.拉格朗日首先导出的。通常可写成: 式中T为系统用各广义坐标qj和各广义速度q"j所表示的动能;Qj为对应于qj的广义力;N(=3n-k)为这完整系统的自由度;n为系统的质点数;k为完整约束方程个数。 插值公式 线性插值也叫两点插值,已知函数y = f(x)在给定互异点x0, x1上的值为y0= f(x0),y1= f(x1)线性插值就是构造一个一次多项式 P1(x) = ax + b 使它满足条件 P1(x0) = y0P1(x1) = y1 其几何解释就是一条直线,通过已知点A (x0, y0),B(x1, y1)。 中值定理 定理表述 如果函数f(x)满足: (1)在闭区间[a,b]上连续; (2)在开区间(a,b)内可导; 上式称为有限增量公式。 拉格朗日定理 在微积分中,拉格朗日中值定理是罗尔中值定理的推广,同时也是柯西中值定理的特殊情形。 四平方和定理说明每个正整数均可表示为4个整数的平方和。它是费马多边形数定理和华林问题的特例。注意有些整数不可表示为3个整数的平方和,例如7。 拉格朗日定理是群论的定理,利用陪集证明了子群的阶一定是有限群的阶的约数值。人类地板流精华2023-05-20 08:56:431
拉格朗日插值公式
拉格朗日插值公式如下:拉格朗日插值公式线性插值也叫两点插值,已知函数y = f (x)在给定互异点x0, x1上的值为y0= f (x0),y1=f (x1)线性插值就是构造一个一次多项式P1(x) = ax + b使它满足条件P1 (x0) = y0 P1 (x1) = y1其几何解释就是一条直线,通过已知点A (x0, y0),B(x1, y1)。拉格朗日插值证明过程:证明:先用归纳法证明存在性,再证明唯一性。当n=1n=1时,常函数(0次)P1(x)=y1P1(x)=y1即符合要求。假设当n−1n−1时存在一个次数≤n−2≤n−2的多项式Pn−1Pn−1,使得Pn−1(xi)=yi,i=1,2,...,n−1.Pn−1(xi)=yi,i=1,2,...,n−1。则令Pn(x)=Pn−1(x)+c(x−x1)(x−x2)...(x−xn−1)(x−xn)Pn(x)=Pn−1(x)+c(x−x1)(x−x2)...(x−xn−1)(x−xn),其中cc为待定系数,利用Pn(xn)=ynPn(xn)=yn即可求出待定系数cc。此时,Pn(xi)=yi,i=1,2,...,n,Pn(xi)=yi,i=1,2,...,n,且Pn(x)Pn(x)的次数≤n−1≤n−1.这样就证明了存在性。其次证明唯一性。假设存在两个这样的多项式,设为P(x)P(x)和Q(x)Q(x),它们次数≤n−1≤n−1且都插值经过nn个点,即P(xi)=Q(xi)=yi,i=1,2,...,n.P(xi)=Q(xi)=yi,i=1,2,...,n。令H(x)=P(x)−Q(x)H(x)=P(x)−Q(x),HH的次数也≤n−1≤n−1,且有nn个不同的根x1,x2,...,xnx1,x2,...,xn。因此,由多项式基本定理可知,H(x)H(x)为0多项式,即恒等于0,故有P(x)=Q(x)P(x)=Q(x).这样就证明了存在性。插值余项:在离散数据的基础上补插连续函数,使得这条连续曲线通过全部给定的离散数据点。插值是离散函数逼近的重要方法,利用它可通过函数在有限个点处的取值状况,估算出函数在其他点处的近似值。插值:用来填充图像变换时像素之间的空隙。韦斯特兰2023-05-20 08:56:421
拉格朗日定理公式?
拉格朗日定理公式:若函数f(x)在区间[a,b]满足以下条件:(1)在[a,b]连续。(2)在(a,b)可导。则在(a,b)中至少存在一点f"(c)=[f(b)-f(a)]/(b-a)a<c<b,使或f(b)-f(a)=f"(c)(b-a)成立,其中a<c<b。拉格朗日定理存在于多个学科领域中,分别为:微积分中的拉格朗日中值定理;数论中的四平方和定理;群论中的拉格朗日定理 (群论)。主要贡献:拉格朗日在数学、力学和天文学三个学科中都有重大历史性贡献,但他主要是数学家,研究力学和天文学的目的是表明数学分析的威力。全部著作、论文、学术报告记录、学术通讯超过500篇。拉格朗日的学术生涯主要在18世纪后半期。当对数学、物理学和天文学是自然科学主体。数学的主流是由微积分发展起来的数学分析,以欧洲大陆为中心;物理学的主流是力学;天文学的主流是天体力学。左迁2023-05-20 08:56:411
初中数学根式运算法则公式
很多同学都学习了根式,我整理了一些根式运算法则,大家一起来看看吧。 根式运算法 根式开方法则是根式的运算法则之一,算术根开n次方,把根指数扩大n倍,被开方数不变。非算术根的开方不总是可能的,负数的奇次方根开奇次方时,一般先将给定根式化为算术根后再按法则开方 1.根号2乘以2,把2变成根号4再乘,就是根号4乘根号2,再根号下的2乘以zhi4的积,就是根号8,也可化简写成2倍根号2. 如题:√dao2*2=2√2=√2*√4=√(2*4)=√(2^2*4)=√8 2.根号3乘以根号6就是根号下6乘以3的积,就是根号18,再把18变成9乘以2,因为9可以开根,所以最后化简得出3倍根号2. 如题:√3*√6=√(3*6)=√18=√(9*2)=√3^2*2)=3√2 3.根号32乘以根号25,得出根号800,根号800再化简得根号下的400乘以2的积,400又等于20乘以20,就是20的平方,最后化简得出20倍根号2. 如题:√32*√25=√(32*25)=√800=√(400*2)=√(20^2*2)=20√2 根式高频考点 ①根据字母的取值范围化简二次根式; ②根据二次根式的化简结果确定字母的取值范围; ③利用二次根式的性质求字母(或代数式)的最小(大)值; ④利用平方差公式进行分母有理化的计算求值;再者就是相关最简二次根式、同类二次根式等相关的基础知识考察, 根式性质 在实数范围内: (1)偶次根号下不能为负数,其运算结果也不为负。 (2)奇次根号下可以为负数。 不限于实数,即考虑虚数时,偶次根号下可以为负数,利用【i=√-1】即可。 以上就是一些数学根式的相关信息,希望对大家有所帮助。LuckySXyd2023-05-20 08:56:271
一般的一元五次方程为什么无公式法求解?
自己察!西柚不是西游2023-05-20 08:56:262
为什么五次以上的方程没有求根公式?我知道有证明,可以写出来吗
从方程的根式解法发展过程来看,早在古巴比伦数学和印度数学的记载中,他们就能够用根式求解一元二次方程ax2+bx+c=0,给出的解相当于+,这是对系数函数求平方根.接着古希腊人和古东方人又解决了某些特殊的三次数字方程,但没有得到三次方程的一般解法.这个问题直到文艺复兴的极盛期(即16世纪初)才由意大利人解决.他们对一般的三次方程x3+ax2+bx+c=0,由卡丹公式解出根 x= + ,其中p = ba2,q = a3,显然它是由系数的函数开三次方所得.同一时期,意大利人费尔拉里又求解出一般四次方程x4+ax3+bx2+cx+d=0的根是由系数的函数开四次方所得.用根式求解四次或四次以下方程的问题在16世纪已获得圆满解决,但是在以后的几个世纪里,探寻五次和五次以上方程的一般公式解法却一直没有得到结果.1770年前后,法国数学家拉格朗日转变代数的思维方法,提出方程根的排列与置换理论是解代数方程的关键所在,并利用拉格朗日预解式方法,即利用1的任意n次单位根 ( n =1)引进了预解式x1+ x2+ 2x3+…+ n-1xn,详细分析了二、三、四次方程的根式解法.他的工作有力地促进了代数方程论的进步.但是他的这种方法却不能对一般五次方程作根式解,于是他怀疑五次方程无根式解.并且他在寻求一般n次方程的代数解法时也遭失败,从而认识到一般的四次以上代数方程不可能有根式解.他的这种思维方法和研究根的置换方法给后人以启示.1799年,鲁菲尼证明了五次以上方程的预解式不可能是四次以下的,从而转证五次以上方程是不可用根式求解的,但他的证明不完善.同年,德国数学家高斯开辟了一个新方法,在证明代数基本理论时,他不去计算一个根,而是证明它的存在.随后,他又着手探讨高次方程的具体解法.在1801年,他解决了分圆方程xp-1=0(p为质数)可用根式求解,这表明并非所有高次方程不能用根式求解.因此,可用根式求解的是所有高次方程还是部分高次方程的问题需进一步查明.随后,挪威数学家阿贝尔开始解决这个问题.1824年到1826年,阿贝尔着手考察可用根式求解的方程的根具有什么性质,于是他修正了鲁菲尼证明中的缺陷,严格证明:如果一个方程可以根式求解,则出现在根的表达式中的每个根式都可表示成方程的根和某些单位根的有理数.并且利用这个定理又证明出了阿贝尔定理:一般高于四次的方程不可能代数地求解.接着他进一步思考哪些特殊的高次方程才可用根式解的问题.在高斯分圆方程可解性理论的基础上,他解决了任意次的一类特殊方程的可解性问题,发现这类特殊方程的特点是一个方程的全部根都是其中一个根(假设为x)的有理函数,并且任意两个根q1(x)与q2(x)满足q1q2(x)=q2q1(x),q1,q2为有理函数.现在称这种方程为阿贝尔方程.其实在对阿贝尔方程的研究中已经涉及到了群的一些思想和特殊结果,只是阿贝尔没能意识到,也没有明确地构造方程根的置换集合(因为若方程所有的根都用根x1来表示成有理函数qj(x1),j=1,2,3,…,n,当用另一个根xi代替x1时,其中1〈i≤n ,那么qj(xi)是以不同顺序排列的原方程的根,j=1,2,…,n.实际上应说根xi=q1(xi),q2(xi),…,qn(xi)是根x1,x2,…,xn的一个置换),而仅仅考虑可交换性q1q2(x)=q2q1(x)来证明方程只要满足这种性质,便可简化为低次的辅助方程,辅助方程可依次用根式求解.阿贝尔解决了构造任意次数的代数可解的方程的问题,却没能解决判定已知方程是否可用根式求解的问题.法国数学家伽罗瓦正是处在这样的背景下,开始接手阿贝尔未竞的事业.伽罗瓦在证明不存在一个五次或高于五次的方程的一般根式解法时,与拉格朗日相同,也从方程根的置换入手.当他系统地研究了方程根的排列置换性质后,提出了一些确定的准则以判定一个已知方程的解是否能通过根式找到,然而这些方法恰好导致他去考虑一种称之为“群”的元素集合的抽象代数理论.在1831年的论文中,伽罗瓦首次提出了“群”这一术语,把具有封闭性的置换的集合称为群,首次定义了置换群的概念.他认为了解置换群是解决方程理论的关键,方程是一个其对称性可用群的性质描述的系统.他从此开始把方程论问题转化为群论的问题来解决,直接研究群论.他引入了不少有关群论的新概念,从而也产生了他自己的伽罗瓦群论,因此后人都称他为群论的创始人.对有理系数的n次方程 x+axn-1+a2xn-2+…+an-1x+an=0 (1) 假设它的n个根x1,x2,…,xn的每一个变换叫做一个置换,n个根共有n!个可能的置换,它们的集合关于置换的乘法构成一个群,是根的置换群.方程的可解性可以在根的置换群的某些性质中有所反映,于是伽罗瓦把代数方程可解性问题转化为与相关的置换群及其子群性质的分析问题.现在把与方程联系起的置换群(它表现了方程的对称性质)称为伽罗瓦群,它是在某方程系数域中的群.一个方程的伽罗瓦群是对于每一个其函数值为有理数的关于根的多项式函数都满足这个要求的最大置换群,也可以说成对于任一个取有理数值的关于根的多项式函数,伽罗瓦群中的每个置换都使这函数的值不变.伽罗瓦创立群论是为了应用于方程论,但他并不局限于此,而是把群论进行了推广,作用于其他研究领域.可惜的是,伽罗瓦群论的理论毕竟太深奥,对十九世纪初的人们来说是很难理解的,连当时的数学大师都不能理解他的数学思想和他的工作的实质,以至他的论文得不到发表.更不幸的是伽罗瓦在二十一岁时便因一场愚蠢的决斗而早逝,我们不得不为这位天才感到惋惜.到十九世纪六十年代,他的理论才终于为人们所理解和接受.伽罗瓦群理论被公认为十九世纪最杰出的数学成就之一.他给方程可解性问题提供了全面而透彻的解答,解决了困扰数学家们长达数百年之久的问题.伽罗瓦群论还给出了判断几何图形能否用直尺和圆规作图的一般判别法,圆满解决了三等分任意角或倍立方体的问题都是不可解的.最重要的是,群论开辟了全新的研究领域,以结构研究代替计算,把从偏重计算研究的思维方式转变为用结构观念研究的思维方式,并把数学运算归类,使群论迅速发展成为一门崭新的数学分支,对近世代数的形成和发展产生了巨大影响.同时这种理论对于物理学、化学的发展,甚至对于二十世纪结构主义哲学的产生和发展都发生了巨大的影凡尘2023-05-20 08:56:261
为什么五次以上的方程没有求根公式? 我知道有证明,可以写出来吗?
从方程的根式解法发展过程来看,早在古巴比伦数学和印度数学的记载中,他们就能够用根式求解一元二次方程ax2+bx+c=0,给出的解相当于+,这是对系数函数求平方根.接着古希腊人和古东方人又解决了某些特殊的三次数字方程,但没有得到三次方程的一般解法.这个问题直到文艺复兴的极盛期(即16世纪初)才由意大利人解决.他们对一般的三次方程x3+ax2+bx+c=0,由卡丹公式解出根 x= + ,其中p = ba2,q = a3,显然它是由系数的函数开三次方所得.同一时期,意大利人费尔拉里又求解出一般四次方程x4+ax3+bx2+cx+d=0的根是由系数的函数开四次方所得. 用根式求解四次或四次以下方程的问题在16世纪已获得圆满解决,但是在以后的几个世纪里,探寻五次和五次以上方程的一般公式解法却一直没有得到结果.1770年前后,法国数学家拉格朗日转变代数的思维方法,提出方程根的排列与置换理论是解代数方程的关键所在,并利用拉格朗日预解式方法,即利用1的任意n次单位根 ( n =1)引进了预解式x1+ x2+ 2x3+…+ n-1xn,详细分析了二、三、四次方程的根式解法.他的工作有力地促进了代数方程论的进步.但是他的这种方法却不能对一般五次方程作根式解,于是他怀疑五次方程无根式解.并且他在寻求一般n次方程的代数解法时也遭失败,从而认识到一般的四次以上代数方程不可能有根式解.他的这种思维方法和研究根的置换方法给后人以启示. 1799年,鲁菲尼证明了五次以上方程的预解式不可能是四次以下的,从而转证五次以上方程是不可用根式求解的,但他的证明不完善.同年,德国数学家高斯开辟了一个新方法,在证明代数基本理论时,他不去计算一个根,而是证明它的存在.随后,他又着手探讨高次方程的具体解法.在1801年,他解决了分圆方程xp-1=0(p为质数)可用根式求解,这表明并非所有高次方程不能用根式求解.因此,可用根式求解的是所有高次方程还是部分高次方程的问题需进一步查明. 随后,挪威数学家阿贝尔开始解决这个问题.1824年到1826年,阿贝尔着手考察可用根式求解的方程的根具有什么性质,于是他修正了鲁菲尼证明中的缺陷,严格证明:如果一个方程可以根式求解,则出现在根的表达式中的每个根式都可表示成方程的根和某些单位根的有理数.并且利用这个定理又证明出了阿贝尔定理:一般高于四次的方程不可能代数地求解.接着他进一步思考哪些特殊的高次方程才可用根式解的问题.在高斯分圆方程可解性理论的基础上,他解决了任意次的一类特殊方程的可解性问题,发现这类特殊方程的特点是一个方程的全部根都是其中一个根(假设为x)的有理函数,并且任意两个根q1(x)与q2(x)满足q1q2(x)=q2q1(x),q1,q2为有理函数.现在称这种方程为阿贝尔方程.其实在对阿贝尔方程的研究中已经涉及到了群的一些思想和特殊结果,只是阿贝尔没能意识到,也没有明确地构造方程根的置换集合(因为若方程所有的根都用根x1来表示成有理函数qj(x1),j=1,2,3,…,n,当用另一个根xi代替x1时,其中1〈i≤n ,那么qj(xi)是以不同顺序排列的原方程的根,j=1,2,…,n.实际上应说根xi=q1(xi),q2(xi),…,qn(xi)是根x1,x2,…,xn的一个置换),而仅仅考虑可交换性q1q2(x)=q2q1(x)来证明方程只要满足这种性质,便可简化为低次的辅助方程,辅助方程可依次用根式求解. 阿贝尔解决了构造任意次数的代数可解的方程的问题,却没能解决判定已知方程是否可用根式求解的问题.法国数学家伽罗瓦正是处在这样的背景下,开始接手阿贝尔未竞的事业. 伽罗瓦在证明不存在一个五次或高于五次的方程的一般根式解法时,与拉格朗日相同,也从方程根的置换入手.当他系统地研究了方程根的排列置换性质后,提出了一些确定的准则以判定一个已知方程的解是否能通过根式找到,然而这些方法恰好导致他去考虑一种称之为“群”的元素集合的抽象代数理论.在1831年的论文中,伽罗瓦首次提出了“群”这一术语,把具有封闭性的置换的集合称为群,首次定义了置换群的概念.他认为了解置换群是解决方程理论的关键,方程是一个其对称性可用群的性质描述的系统.他从此开始把方程论问题转化为群论的问题来解决,直接研究群论.他引入了不少有关群论的新概念,从而也产生了他自己的伽罗瓦群论,因此后人都称他为群论的创始人. 对有理系数的n次方程 x+axn-1+a2xn-2+…+an-1x+an=0 (1) 假设它的n个根x1,x2,…,xn的每一个变换叫做一个置换,n个根共有n!个可能的置换,它们的集合关于置换的乘法构成一个群,是根的置换群.方程的可解性可以在根的置换群的某些性质中有所反映,于是伽罗瓦把代数方程可解性问题转化为与相关的置换群及其子群性质的分析问题.现在把与方程联系起的置换群(它表现了方程的对称性质)称为伽罗瓦群,它是在某方程系数域中的群.一个方程的伽罗瓦群是对于每一个其函数值为有理数的关于根的多项式函数都满足这个要求的最大置换群,也可以说成对于任一个取有理数值的关于根的多项式函数,伽罗瓦群中的每个置换都使这函数的值不变.伽罗瓦创立群论是为了应用于方程论,但他并不局限于此,而是把群论进行了推广,作用于其他研究领域.可惜的是,伽罗瓦群论的理论毕竟太深奥,对十九世纪初的人们来说是很难理解的,连当时的数学大师都不能理解他的数学思想和他的工作的实质,以至他的论文得不到发表.更不幸的是伽罗瓦在二十一岁时便因一场愚蠢的决斗而早逝,我们不得不为这位天才感到惋惜.到十九世纪六十年代,他的理论才终于为人们所理解和接受. 伽罗瓦群理论被公认为十九世纪最杰出的数学成就之一.他给方程可解性问题提供了全面而透彻的解答,解决了困扰数学家们长达数百年之久的问题.伽罗瓦群论还给出了判断几何图形能否用直尺和圆规作图的一般判别法,圆满解决了三等分任意角或倍立方体的问题都是不可解的.最重要的是,群论开辟了全新的研究领域,以结构研究代替计算,把从偏重计算研究的思维方式转变为用结构观念研究的思维方式,并把数学运算归类,使群论迅速发展成为一门崭新的数学分支,对近世代数的形成和发展产生了巨大影响.同时这种理论对于物理学、化学的发展,甚至对于二十世纪结构主义哲学的产生和发展都发生了巨大的影响.http://www.nhyz.org/psz/%CA%FD%D1%A7%CA%B7/buer.html肖振2023-05-20 08:56:261
一元七次方程求根公式
伽罗瓦可解性定理。伽罗瓦工作的核心部分是可解性判别准则:当且仅当多项式方程的群是可解群(伽罗瓦群),这个方程可用代数的方法求解。无尘剑 2023-05-20 08:56:261
我已找到一元五次方程的求根公式了
根据 Galois理论,每种方程对应一个伽罗瓦群,这个方程可解,当且仅当这个群可解,而当n大于等于5时,这个群一般是不可解的,这个问题多年前就被证明了。一元五次方程是没有求根公式的,因为它对应的伽罗瓦群不可解。这是某一年的菲尔斯奖。不可能随便说说就解决的。用伽罗瓦理论还可以解决几何三大难题,化圆为方,二体积问题,还有三等分角问题FinCloud2023-05-20 08:56:261
一元五次方程为什么没有求根公式
一元五次方程是没有求根公式的,因为它对应的伽罗瓦群不可解。求一元五次方程的根式解曾困扰数学家三百余年,阿贝尔和伽罗瓦的工作证明了一般一元五次方程没有根式解。1930 年华罗庚《苏家驹之代数的五次方程式解法不能 成立之理由》一文,是对试图推翻阿贝尔和伽罗瓦证明的一种反驳,也是华罗庚的成名之作。 最近国内学者声称“破解”了一元五次方程。这种“破解”,仅限于一元五次方程根的数值求解。6 世纪,在意大利数学家塔塔利亚(Tartaglia)、卡尔达诺(Cardano)、费拉利(Ferrari)等人的努力下,用根式求解三次方程与四次方程的方法终获解决。这样,利用代数符号,无论是二次方程、三次方程还是四次方程,都能通过根式求出它的一般解。于是,数学家们开始寻找一元五次方程的公式解法。虽屡遭挫折,但人们相信,五次方程的解就隐藏在某个角落。在随后三百多年,破解五次方程成了数学中最迷人的挑战之一,很多数学家和数学爱好者,都把它作为检验自己才能的试金石。可是毫无例外,他们都失败了。五次及以上方程的根式解虽然没有找到,人们却积累了很多的经验和知识,特别值得一提的是法国数学家拉格朗日(Lagrange)。1770 年,拉格朗日发表了《关于代数方程解的思考》,他讨论了人们所熟知的解二、三、四次方程的一切方法,并且指出这些成功解法所根据的情况对于五次以及更高次的方程是不可能发生的。拉格朗日试图得出这种不可能性的证明,然而,经过顽强的努力之后,拉格朗日不得不坦言这个问题“好像是在向人类的智慧挑战”。墨然殇2023-05-20 08:56:261
急求关于证明5次以上多项式不存在求根公式的证明!!
5次以上代数方程无求根公式的定理,是Lagrange猜想出来的,后来Abel最先证明之。 ——伽罗华的早逝和群论的命运 埃.伽罗华(E.Galois,1811-1832)创立了具有划时代意义的数学分支——群论 在数学发展史上作出了重大贡献。但是,他在还不到21岁的时候就与世长辞了。剖析伽 罗华短促而坎坷的一生,对于我们如何对待人才,怎样发展科学,具有一定的启发作用 。 伽罗华是法国巴黎郊区布尔—拉—林镇镇长的儿子。12岁之前受他母亲教育的,在 这时期他学习了希腊语、拉丁文和通常的算术课。1923年他离开了双亲,考入巴黎预科 学校路易—勒—格兰学院(皇家中学),从而开始接受正规学校的教育。在第三年,他 报名选学了第一门数学课。由于他的老师深刻地讲授,伽罗华对数学产生了浓厚的兴趣 ,他很快地学完了通常规定的课程,并求教于当时的数学大师。他如饥似渴地阅读了A. M.勒让德的著作《几何原理》和T.L.拉格朗日的《代数方程的解法》、《解析函数论 》、《微积分学教程》。由于他刻苦学习,能着重领会和掌握其中的数学思维方法,因 引,这些功课的学习,使他思路开阔,科学创造的思维能力得到了训练和提高。他的中 学数学专业班的老师里查说“伽罗华只宜在数学的尖端领域工作”。1829年3月他在《纯 粹与应用数学年报》上发表了他的第一篇论文——《周期连分数的一个定理的证明》。 这时他还是一位中学生。他曾先后两次参加综合技术大学的入学考试,结果都落第了。 1829年7月2日,正当他准备入学考试的时候,他父亲由于受不了牧师的攻击、诽谤、自 杀了。这些遭遇都给伽罗华带来了不幸。1829年10月25日,他只被师范大学录取为预备 生。 当伽罗华17岁时,就着手研究数学中最困难的问题之一一般π次方程求解问题。我 们知道,一般的二次方程的解,要求对系数的一个函数求平方根。要得出三次方程的一 般解,要求对系数的函数开立方。一般的四次方程的解,要求开四次方。一般的五次方 程的解是否也能用加减乘除开方这五种运算的代数方法从方程的系数得出呢?许多人为 之耗去许多精力,但都失败了。直到1770年,法国数学家拉格朗日对上述问题的研究才 算迈出重要的一步。他精心分析了二次、三次、四次方程根式解结构之后,提出了方程 的预解式概念,并且进一步看出预解式和诸根排列置换下形式不变性有关,这时他认识 到求解一般五次方程的代数方法可能不存在。此后,挪威数学家阿贝尔利用置换群的理 论给出了高于四次的一般代数方程的代数求解公式不存在的严格证明。伽罗华在前人研 究成果的基础上,利用群论的方法,从系统结构的整体上彻底解决了根式解的难题。他 从拉格朗日那里学习和继承了问题转化的思想,即把预解式的构成同置换群联系起来, 并在阿贝尔研究的基础上,进一步发展了他的思想,把全部问题转化成或者归结为置换 群及其子群结构的分析上。高斯早就预见到代数方程的根式解的问题终归为二项方程的 求解问题。伽罗华仔细分析了具有根式解的二项方程作为“预解方程”时所对应的置换 子群的特征。结果他发现,如果一个群可以生成一系列极大正规子群,而它们的合成因 子是质数,则该群是可解的。当大于四次的代数方程所对应的群的合成因子就不全是质 数,因而五次及高于五次的代数方程有些是不能用代数方法解出的。 1829年,伽罗华在他中学最后一年快要结束时,他把关于群论研究所初步结果的第 一批论文提交给法国科学院。科学院委托当时法国最杰出的数学家柯西作为这些论文的 鉴定人。在1830年1月18日柯西曾计划对伽罗华的研究成果在科学院举行一次全面的意见 听取会。他在一封信中写道:“今天我应当向科学院提交一份关于年轻的伽罗华的工作 报告……但因病在家。我很贵憾未能出席今天的会议,希望你安排我参加下次会议以讨 论已指明的议题。”然而,第二周当柯西向科学院宣读他自己的一篇论文时,并未介绍 伽罗华的著作。为什么会发生这样的事情?这是值得研究的一个问题。1830年2月,伽罗 华将他的研究成果比较详细地写成论文交上去了。以参加科学院的数学大奖评选,论文 寄给当时科学院终身秘书J.B.傅立叶,但傅立叶在当年5月就去世了,在他的遗物中未 能发现伽罗华的手稿。就这样,伽罗华递交的两次数学论文都被遗失了。 人们由于受已有经验、旧传统观念和偏见的束缚,往往产生出一种墨守陈规的倾向 和不愿接受新鲜事物的惰性。我们认为:柯西之所以原先打算讨论伽罗华所提供的报告 ,以后又不了了之,很可能是他思想的偏见所致,领会不了伽罗华在数学上具有革命性 的新思想。在伽罗华之前人们考虑方程求解问题,基本是一个方法一个方法孤立地去解 决,解次数不同的方程,用不同的方法。直到拉格朗日开始,才注意到解各种代数方程 的方法之间的联系,并用根的置换理论看清了以前各种解法之间的统一性。拉格朗日这 种从整体上考虑问题的新的思想萌芽被伽罗华接受过来,并大大发展了,产生出新的思 想——系统结构的整体思想。把孤立地考虑方程求解的问题归结为数学新的对象——群 及其子群的结构性质分析上去,这就从局部考虑问题上升到整体考虑问题。这是以前数 学家考虑问题不曾有的一种具有革命性的新思想,从而开拓出群论这个新的数学研究领 域。 1831年1月,伽罗华在寻求确定方程的可解性这个问题上,又得到一个结论,他写成 论文提交给法国科学院。这篇论文是伽罗华关于群论的重要著作。当时的数学家S.K. 泊松为了理解这篇论文绞尽了脑汁。尽管借助于拉格朗日已证明的一个结果可以表明伽 罗华所要证明的论断是正确的,但最后他还是建议科学院否定它。 对事业必胜和信念激励着年轻的伽罗华。虽然他的论文一再被丢失,得不到应有的 支持,但他并没有灰心,他坚信他的科研成果,不仅一次又一次地想办法传播出去,还 进一步向更广的领域探索。伽罗华诞生在拿破仑帝国时代,经历了波旁王朝的复辟时期 ,又赶上路易.腓力浦朝代初期。他是当时最先进的革命政治集团——共和党的成员。 这时法国激烈的政治斗争吸引了年轻热情的伽罗华,他先后两次被捕入狱,并且被学校 开除了。第二次被捕是1831年7月14日,直到1832年4月29日才出狱。不久,由于参加无 意义的决斗受重伤,于5月31日离开了人间。在他临死的前一夜还把他的重大科研成果匆 忙写成后,委托他的朋友薛伐里叶保存下来,从而使他的劳动结晶流传后世,造福人类 。 伽罗华的重大创作在生前始终没有机会发表。直到1846年,也就是他死后14年,法 国数学家刘维尔才着手整理后,首次发表于刘维尔主编的《数学杂志》上,自此,伽罗 华的重大贡献才逐渐为人们所了解。1870年法国数学家约当根据伽罗华的思想,写了《 论置换与代数方程》一书,在这本书里伽罗华的思想得到了进一步的阐述。今天由伽罗 华开创的群论,不仅对近代数学的各个方面,而且对物理学、化学的许多分支都产生了 重大的影响。 伽罗华及其所创立的群论蒙难的历史事实深刻地告诉我们:作为在学术上有杰出贡 献的老一辈科学家,一定要积极热情地鼓励和支持年青一代的科学研究成果。要发扬“ 甘当梯子”的精神,让年青科学工作者“踩着自己的肩膀”攀登到科学的顶峰。就是说 ,对于创造活力的青年人,作为老一代的科学家就应该像园丁培育芳草一样去精心浇灌 ,对于他们在创造过程中出现的这样或那样的问题应该耐心地予以指教,有的问题应与 他们一块去思考,共同去完善提高它。不要怕青年人超过自己,要欢迎他们超过自己。 同时青年人也要尊重老一代科学家,虚心学习他的长处,主动取得他们的支持和帮助。 只有这样,才能各自发挥所长,共同攻关,携手前进,为迅速发展科学事业做出更大的 贡献。 ------------------ http://www.baidu.com/s?cl=3&wd=%D6%A4%C3%F75%B4%CE%D2%D4%C9%CF%B6%E0%CF%EE%CA%BD%B2%BB%B4%E6%D4%DA%C7%F3%B8%F9%B9%AB%CA%BD北营2023-05-20 08:56:252
一般一元五次方程有求根公式吗?
从方程的根式解法发展过程来看,早在古巴比伦数学和印度数学的记载中,他们就能够用根式求解一元二次方程ax2+bx+c=0,给出的解相当于+,,这是对系数函数求平方根。接着古希腊人和古东方人又解决了某些特殊的三次数字方程,但没有得到三次方程的一般解法。这个问题直到文艺复兴的极盛期(即16世纪初)才由意大利人解决。他们对一般的三次方程x3+ax2+bx+c=0,由卡丹公式解出根 x= + ,其中p = ba2,q = a3,显然它是由系数的函数开三次方所得。同一时期,意大利人费尔拉里又求解出一般四次方程x4+ax3+bx2+cx+d=0的根是由系数的函数开四次方所得。 用根式求解四次或四次以下方程的问题在16世纪已获得圆满解决,但是在以后的几个世纪里,探寻五次和五次以上方程的一般公式解法却一直没有得到结果。1770年前后,法国数学家拉格朗日转变代数的思维方法,提出方程根的排列与置换理论是解代数方程的关键所在,并利用拉格朗日预解式方法,即利用1的任意n次单位根 ( n =1)引进了预解式x1+ x2+ 2x3+…+ n-1xn,详细分析了二、三、四次方程的根式解法。他的工作有力地促进了代数方程论的进步。但是他的这种方法却不能对一般五次方程作根式解,于是他怀疑五次方程无根式解。并且他在寻求一般n次方程的代数解法时也遭失败,从而认识到一般的四次以上代数方程不可能有根式解。他的这种思维方法和研究根的置换方法给后人以启示。 1799年,鲁菲尼证明了五次以上方程的预解式不可能是四次以下的,从而转证五次以上方程是不可用根式求解的,但他的证明不完善。同年,德国数学家高斯开辟了一个新方法,在证明代数基本理论时,他不去计算一个根,而是证明它的存在。随后,他又着手探讨高次方程的具体解法。在1801年,他解决了分圆方程xp-1=0(p为质数)可用根式求解,这表明并非所有高次方程不能用根式求解。因此,可用根式求解的是所有高次方程还是部分高次方程的问题需进一步查明。 随后,挪威数学家阿贝尔开始解决这个问题。1824年到1826年,阿贝尔着手考察可用根式求解的方程的根具有什么性质,于是他修正了鲁菲尼证明中的缺陷,严格证明:如果一个方程可以根式求解,则出现在根的表达式中的每个根式都可表示成方程的根和某些单位根的有理数。并且利用这个定理又证明出了阿贝尔定理:一般高于四次的方程不可能代数地求解。接着他进一步思考哪些特殊的高次方程才可用根式解的问题。在高斯分圆方程可解性理论的基础上,他解决了任意次的一类特殊方程的可解性问题,发现这类特殊方程的特点是一个方程的全部根都是其中一个根(假设为x)的有理函数,并且任意两个根q1(x)与q2(x)满足q1q2(x)=q2q1(x),q1,q2为有理函数。现在称这种方程为阿贝尔方程。其实在对阿贝尔方程的研究中已经涉及到了群的一些思想和特殊结果,只是阿贝尔没能意识到,也没有明确地构造方程根的置换集合(因为若方程所有的根都用根x1来表示成有理函数qj(x1),j=1,2,3,…,n,当用另一个根xi代替x1时,其中1〈i≤n ,那么qj(xi)是以不同顺序排列的原方程的根,j=1,2,…,n。实际上应说根xi=q1(xi),q2(xi),…,qn(xi)是根x1,x2,…,xn的一个置换),而仅仅考虑可交换性q1q2(x)=q2q1(x)来证明方程只要满足这种性质,便可简化为低次的辅助方程,辅助方程可依次用根式求解。 阿贝尔解决了构造任意次数的代数可解的方程的问题,却没能解决判定已知方程是否可用根式求解的问题。法国数学家伽罗瓦正是处在这样的背景下,开始接手阿贝尔未竞的事业。伽罗瓦在证明不存在一个五次或高于五次的方程的一般根式解法时,与拉格朗日相同,也从方程根的置换入手。当他系统地研究了方程根的排列置换性质后,提出了一些确定的准则以判定一个已知方程的解是否能通过根式找到,然而这些方法恰好导致他去考虑一种称之为“群”的元素集合的抽象代数理论。在1831年的论文中,伽罗瓦首次提出了“群”这一术语,把具有封闭性的置换的集合称为群,首次定义了置换群的概念。他认为了解置换群是解决方程理论的关键,方程是一个其对称性可用群的性质描述的系统。他从此开始把方程论问题转化为群论的问题来解决,直接研究群论。他引入了不少有关群论的新概念,从而也产生了他自己的伽罗瓦群论,因此后人都称他为群论的创始人。 对有理系数的n次方程 x+axn-1+a2xn-2+…+an-1x+an=0 (1) 假设它的n个根x1,x2,…,xn的每一个变换叫做一个置换,n个根共有n!个可能的置换,它们的集合关于置换的乘法构成一个群,是根的置换群。方程的可解性可以在根的置换群的某些性质中有所反映,于是伽罗瓦把代数方程可解性问题转化为与相关的置换群及其子群性质的分析问题。现在把与方程联系起的置换群(它表现了方程的对称性质)称为伽罗瓦群,它是在某方程系数域中的群。一个方程的伽罗瓦群是对于每一个其函数值为有理数的关于根的多项式函数都满足这个要求的最大置换群,也可以说成对于任一个取有理数值的关于根的多项式函数,伽罗瓦群中的每个置换都使这函数的值不变。伽罗瓦创立群论是为了应用于方程论,但他并不局限于此,而是把群论进行了推广,作用于其他研究领域。可惜的是,伽罗瓦群论的理论毕竟太深奥,对十九世纪初的人们来说是很难理解的,连当时的数学大师都不能理解他的数学思想和他的工作的实质,以至他的论文得不到发表。更不幸的是伽罗瓦在二十一岁时便因一场愚蠢的决斗而早逝,我们不得不为这位天才感到惋惜。到十九世纪六十年代,他的理论才终于为人们所理解和接受。 伽罗瓦群理论被公认为十九世纪最杰出的数学成就之一。他给方程可解性问题提供了全面而透彻的解答,解决了困扰数学家们长达数百年之久的问题。伽罗瓦群论还给出了判断几何图形能否用直尺和圆规作图的一般判别法,圆满解决了三等分任意角或倍立方体的问题都是不可解的。最重要的是,群论开辟了全新的研究领域,以结构研究代替计算,把从偏重计算研究的思维方式转变为用结构观念研究的思维方式,并把数学运算归类,使群论迅速发展成为一门崭新的数学分支,对近世代数的形成和发展产生了巨大影响。同时这种理论对于物理学、化学的发展,甚至对于二十世纪结构主义哲学的产生和发展都发生了巨大的影响黑桃花2023-05-20 08:56:251
急求四次方程求根公式(要完整的过程)还有五次方程无求根公式的证明过程
方程两边同时除以最高次项的系数可得 x^4+bx^3+cx^2+dx+e=0 (1) 移项可得 x^4+bx^3=-cx^2-dx-e (2) 两边同时加上(1/2bx)^2 ,可将(2)式左边配成完全平方,方程成为 (x^2+1/2bx)^2=(1/4b^2-c)x^2-dx-e (3) 在(3)式两边同时加上(x^2+1/2bx)y+1/4y^2 可得 [(x^2+1/2bx)+1/2y]^2= (1/4b^2-c+y)x^2+(1/2by-d)x+1/4y^2-e (4) (4)式中的y是一个参数。当(4)式中的x为原方程的根时,不论y取什么值,(4)式都应成立。特别,如果所取的y值使(4)式右边关于x的二次三项式也能变成一个完全平方式,则对(4)对两边同时开方可以得到次数较低的方程。 为了使(4)式右边关于x的二次三项式也能变成一个完全平方式,只需使它的判别式变成0,即 (1/2by-d)^2-4(1/4b^2-c+y)(1/4y^2-e)=0 (5) 这是关于y的一元三次方程,可以通过塔塔利亚公式来求出y应取的实数值。 把由(5)式求出的y值代入(4)式后,(4)式的两边都成为完全平方,两边开方,可以得到两个关于x的一元二次方程。解这两个一元二次方程,就可以得出原方程的四个根。 费拉里发现的上述解法的创造性及巧妙之处在于:第一次配方得到(3)式后引进参数y,并再次配方把(3)式的左边配成含有参数y的完全平方,即得到(4)式,再利用(5)式使(4)的右边也成为完全平方,从而把一个一元四次方程的求解问题化成了一个一元三次方程及两个一元二次方程的求解问题。 五次方程无求根公式的证明过程 很复杂 一般人看不懂 如下:从方程的根式解法发展过程来看,早在古巴比伦数学和印度数学的记载中,他们就能够用根式求解一元二次方程ax2+bx+c=0,给出的解相当于+,,这是对系数函数求平方根。接着古希腊人和古东方人又解决了某些特殊的三次数字方程,但没有得到三次方程的一般解法。这个问题直到文艺复兴的极盛期(即16世纪初)才由意大利人解决。他们对一般的三次方程x3+ax2+bx+c=0,由卡丹公式解出根 x= + ,其中p = ba2,q = a3,显然它是由系数的函数开三次方所得。同一时期,意大利人费尔拉里又求解出一般四次方程x4+ax3+bx2+cx+d=0的根是由系数的函数开四次方所得。 用根式求解四次或四次以下方程的问题在16世纪已获得圆满解决,但是在以后的几个世纪里,探寻五次和五次以上方程的一般公式解法却一直没有得到结果。1770年前后,法国数学家拉格朗日转变代数的思维方法,提出方程根的排列与置换理论是解代数方程的关键所在,并利用拉格朗日预解式方法,即利用1的任意n次单位根 ( n =1)引进了预解式x1+ x2+ 2x3+…+ n-1xn,详细分析了二、三、四次方程的根式解法。他的工作有力地促进了代数方程论的进步。但是他的这种方法却不能对一般五次方程作根式解,于是他怀疑五次方程无根式解。并且他在寻求一般n次方程的代数解法时也遭失败,从而认识到一般的四次以上代数方程不可能有根式解。他的这种思维方法和研究根的置换方法给后人以启示。 1799年,鲁菲尼证明了五次以上方程的预解式不可能是四次以下的,从而转证五次以上方程是不可用根式求解的,但他的证明不完善。同年,德国数学家高斯开辟了一个新方法,在证明代数基本理论时,他不去计算一个根,而是证明它的存在。随后,他又着手探讨高次方程的具体解法。在1801年,他解决了分圆方程xp-1=0(p为质数)可用根式求解,这表明并非所有高次方程不能用根式求解。因此,可用根式求解的是所有高次方程还是部分高次方程的问题需进一步查明。 随后,挪威数学家阿贝尔开始解决这个问题。1824年到1826年,阿贝尔着手考察可用根式求解的方程的根具有什么性质,于是他修正了鲁菲尼证明中的缺陷,严格证明:如果一个方程可以根式求解,则出现在根的表达式中的每个根式都可表示成方程的根和某些单位根的有理数。并且利用这个定理又证明出了阿贝尔定理:一般高于四次的方程不可能代数地求解。接着他进一步思考哪些特殊的高次方程才可用根式解的问题。在高斯分圆方程可解性理论的基础上,他解决了任意次的一类特殊方程的可解性问题,发现这类特殊方程的特点是一个方程的全部根都是其中一个根(假设为x)的有理函数,并且任意两个根q1(x)与q2(x)满足q1q2(x)=q2q1(x),q1,q2为有理函数。现在称这种方程为阿贝尔方程。其实在对阿贝尔方程的研究中已经涉及到了群的一些思想和特殊结果,只是阿贝尔没能意识到,也没有明确地构造方程根的置换集合(因为若方程所有的根都用根x1来表示成有理函数qj(x1),j=1,2,3,…,n,当用另一个根xi代替x1时,其中1〈i≤n ,那么qj(xi)是以不同顺序排列的原方程的根,j=1,2,…,n。实际上应说根xi=q1(xi),q2(xi),…,qn(xi)是根x1,x2,…,xn的一个置换),而仅仅考虑可交换性q1q2(x)=q2q1(x)来证明方程只要满足这种性质,便可简化为低次的辅助方程,辅助方程可依次用根式求解。 阿贝尔解决了构造任意次数的代数可解的方程的问题,却没能解决判定已知方程是否可用根式求解的问题。法国数学家伽罗瓦正是处在这样的背景下,开始接手阿贝尔未竞的事业。伽罗瓦在证明不存在一个五次或高于五次的方程的一般根式解法时,与拉格朗日相同,也从方程根的置换入手。当他系统地研究了方程根的排列置换性质后,提出了一些确定的准则以判定一个已知方程的解是否能通过根式找到,然而这些方法恰好导致他去考虑一种称之为“群”的元素集合的抽象代数理论。在1831年的论文中,伽罗瓦首次提出了“群”这一术语,把具有封闭性的置换的集合称为群,首次定义了置换群的概念。他认为了解置换群是解决方程理论的关键,方程是一个其对称性可用群的性质描述的系统。他从此开始把方程论问题转化为群论的问题来解决,直接研究群论。他引入了不少有关群论的新概念,从而也产生了他自己的伽罗瓦群论,因此后人都称他为群论的创始人。 对有理系数的n次方程 x+axn-1+a2xn-2+…+an-1x+an=0 (1) 假设它的n个根x1,x2,…,xn的每一个变换叫做一个置换,n个根共有n!个可能的置换,它们的集合关于置换的乘法构成一个群,是根的置换群。方程的可解性可以在根的置换群的某些性质中有所反映,于是伽罗瓦把代数方程可解性问题转化为与相关的置换群及其子群性质的分析问题。现在把与方程联系起的置换群(它表现了方程的对称性质)称为伽罗瓦群,它是在某方程系数域中的群。一个方程的伽罗瓦群是对于每一个其函数值为有理数的关于根的多项式函数都满足这个要求的最大置换群,也可以说成对于任一个取有理数值的关于根的多项式函数,伽罗瓦群中的每个置换都使这函数的值不变。伽罗瓦创立群论是为了应用于方程论,但他并不局限于此,而是把群论进行了推广,作用于其他研究领域。可惜的是,伽罗瓦群论的理论毕竟太深奥,对十九世纪初的人们来说是很难理解的,连当时的数学大师都不能理解他的数学思想和他的工作的实质,以至他的论文得不到发表。更不幸的是伽罗瓦在二十一岁时便因一场愚蠢的决斗而早逝,我们不得不为这位天才感到惋惜。到十九世纪六十年代,他的理论才终于为人们所理解和接受。 伽罗瓦群理论被公认为十九世纪最杰出的数学成就之一。他给方程可解性问题提供了全面而透彻的解答,解决了困扰数学家们长达数百年之久的问题。伽罗瓦群论还给出了判断几何图形能否用直尺和圆规作图的一般判别法,圆满解决了三等分任意角或倍立方体的问题都是不可解的。最重要的是,群论开辟了全新的研究领域,以结构研究代替计算,把从偏重计算研究的思维方式转变为用结构观念研究的思维方式,并把数学运算归类,使群论迅速发展成为一门崭新的数学分支,对近世代数的形成和发展产生了巨大影响。同时这种理论对于物理学、化学的发展,甚至对于二十世纪结构主义哲学的产生和发展都发生了巨大的影响无尘剑 2023-05-20 08:56:251
为什么五次以上的方程没有求根公式?
笨,有了计算机还用你去算吗?你是学数学的吗?学数学的也不会去算的哦~~无尘剑 2023-05-20 08:56:254
关于证明5次以上多项式不存在求根公式的证明!!
伽罗瓦仔细研究了前人的理论,特别是拉格朗日、鲁菲尼、高斯、阿贝尔等人的著作,开始研究多项式方程的可解性理论,他并不急于寻求解高次方程的方法,而是将重心放在判定已知的方程是否有根式解。如果有,也不去追究该方程的根究竟是怎样的,只需证明有根式解存在即可。峰 1.伽罗瓦群论的创建 伽罗瓦在证明不存在一个五次或高于五次的方程的一般根式解法时,与拉格朗日相同,也从方程根的置换入手。当他系统地研究了方程根的排列置换性质后,提出了一些确定的准则以判定一个已知方程的解是否能通过根式找到,然而这些方法恰好导致他去考虑一种称之为“群”的元素集合的抽象代数理论。在1831年的论文中,伽罗瓦首次提出了“群”这一术语,把具有封闭性的置换的集合称为群,首次定义了置换群的概念。他认为了解置换群是解决方程理论的关键,方程是一个其对称性可用群的性质描述的系统。他从此开始把方程论问题转化为群论的问题来解决,直接研究群论。他引入了不少有关群论的新概念,从而也产生了他自己的伽罗瓦群论,因此后人都称他为群论的创始人。 对有理系数的n次方程 x+axn-1+a2xn-2+…+an-1x+an=0 (1) 假设它的n个根x1,x2,…,xn的每一个变换叫做一个置换,n个根共有n!个可能的置换,它们的集合关于置换的乘法构成一个群,是根的置换群。方程的可解性可以在根的置换群的某些性质中有所反映,于是伽罗瓦把代数方程可解性问题转化为与相关的置换群及其子群性质的分析问题。现在把与方程联系起的置换群(它表现了方程的对称性质)称为伽罗瓦群,它是在某方程系数域中的群。一个方程的伽罗瓦群是对于每一个其函数值为有理数的关于根的多项式函数都满足这个要求的最大置换群,也可以说成对于任一个取有理数值的关于根的多项式函数,伽罗瓦群中的每个置换都使这函数的值不变。 2.伽罗瓦群论的实质 我们可以从伽罗瓦的工作过程中,逐步领悟伽罗瓦理论的精髓。首先分析一下他是怎样在不知道方程根的情况下,构造伽罗瓦群的。仍然是对方程(1),设它的根x1,x2,…,xn中无重根,他构造了类似于拉格朗日预解式的关于x1,x2,…,xn的一次对称多项式 △1=a1x1+a2x2+…+anxn,其中ai(i=1,2,3,…,n)不必是单位根,但它必是一些整数且使得n!个形如△1的一次式△1,△2,…,△n!各不相同,接着又构造了一个方程 =0 (2) 该方程的系数必定为有理数(可由对称多项式定理证明),并且能够分解为有理数域上的不可约多项式之积。设f(x)=是的任意一个给定的m次的不可约因子,则方程(1)的伽罗瓦群是指n!个△i中的这m个排列的全体。同时他又由韦达定理知伽罗瓦群也是一个对称群,它完全体现了此方程的根的对称性。但是计算一个已知方程的伽罗瓦群是有一定困难的,因此伽罗瓦的目的并不在于计算伽罗瓦群,而是证明:恒有这样的n次方程存在,其伽罗瓦群是方程根的可能的最大置换群s(n),s(n)是由n!个元素集合构成的,s(n)中的元素乘积实际上是指两个置换之积。现在把s(n)中的元素个数称为阶,s(n)的阶是n!。 伽罗瓦找出方程系数域中的伽罗瓦群g后,开始寻找它的最大子群h1,找到h1后用一套仅含有理运算的手续(即寻找预解式)来找到根的一个函数。的系数属于方程的系数域r,并且在h1的置换下不改变值,但在g的所有别的置换下改变值。再用上述方法,依次寻找h1的最大子群h2,h2的最大子群h3,…于是得到h1,h2,…,hm,直到hm里的元素恰好是恒等变换(即hm为单位群i)。在得到一系列子群与逐次的预解式的同时,系数域r也随之一步步扩大为r1,r2,…,rm,每个ri对应于群hi。当hm=i时,rm就是该方程的根域,其余的r1,r2,…,rm-1是中间域。一个方程可否根式求解与根域的性质密切相关。例如,四次方程 x4+px2+q=0 (3) p与q独立,系数域r添加字母或未知数p、q到有理数中而得到的域,先计算出它的伽罗瓦群g,g是s(4)的一个8阶子群,g={e,e1,e2,…e7},其中e=,e1=,e2=,e3=,e4=,e5=, e6=, e7=。 要把r扩充到r1,需在r中构造一个预解式,则预解式的根,添加到r中得到一个新域r1,于是可证明原方程(3)关于域r1的群是h1,h1={e,e1,e2,e3},并发现预解式的次数等于子群h1在母群g中的指数8÷4=2(即指母群的阶除以子群的阶)。第二步,构造第二个预解式,解出根 ,于是在域r1中添加得到域r2,同样找出方程(3)在r2中的群h2,h2={e,e1},此时,第二个预解式的次数也等于群h2在h1中的指数4÷2=2。第三步,构造第三个预解式,得它的根 ,把添加到r2中得扩域r3,此时方程(3)在r3中的群为h3,h3={e},即h3=i,则r3是方程(3)的根域,且该预解式的次数仍等于群h3在h2中的指数2÷1=2。在这个特殊的四次方程中,系数域到根域的扩域过程中每次添加的都是根式,则方程可用根式解。这种可解理论对于一般的高次方程也同样适用,只要满足系数域到根域的扩域过程中每次都是添加根式,那么一般的高次方程也能用根式求解。 现仍以四次方程(3)为例,伽罗瓦从中发现了这些预解式实质上是一个二次的二项方程,既然可解原理对高次方程也适用,那么对于能用根式求解的一般高次方程,它的预解式方程组必定存在,并且所有的预解式都应是一个素数次p的二项方程xp=a。由于高斯早已证明二项方程是可用根式求解的。因此反之,如果任一高次方程所有的逐次预解式都是二项方程,则能用根式求解原方程。于是,伽罗瓦引出了根式求解原理,并且还引入了群论中的一个重要概念“正规子群”。 他是这样给正规子群下定义的:设h是g的一个子群,如果对g中的每个g都有gh=hg,则称h为g的一个正规子群,其中gh表示先实行置换g,然后再应用h的任一元素,即用g的任意元素g乘h的所有置换而得到的一个新置换集合。定义引入后,伽罗瓦证明了当作为约化方程的群(如由g 约化到h1)的预解式是一个二项方程xp=a (p为素数)时,则h1是g的一个正规子群。反之,若h1是g的正规子群,且指数为素数p,则相应的预解式一定是p次二项方程。他还定义了极大正规子群:如果一个有限群有正规子群,则必有一个子群,其阶为这有限群中所有正规子群中的最大者,这个子群称为有限群的极大正规子群。一个极大正规子群又有它自己的极大正规子群,这种序列可以逐次继续下去。因而任何一个群都可生成一个极大正规子群序列。他还提出把一个群g生成的一个极大正规子群序列标记为g、h、i、j…, 则可以确定一系列的极大正规子群的合成因子[g/h],[h/i],[i/g]…。合成因子[g/h]=g的阶数/ h的阶数。对上面的四次方程(3),h1是g的极大正规子群, h2是h1的极大正规子群,h3又是h2的极大正规子群,即对方程(3)的群g 生成了一个极大正规子群的序列g、h1、h2、h3。 随着理论的不断深入,伽罗瓦发现对于一个给定的方程,寻找它在伽罗瓦群及其极大不变子群序列完全是群论的事。因此,他完全用群论的方法去解决方程的可解性问题。最后,伽罗瓦提出了群论的另一个重要概念“可解群”。他称具有下面条件的群为可解群:如果它所生成的全部极大正规合成因子都是质数。 根据伽罗瓦理论,如果伽罗瓦群生成的全部极大正规合成因子都是质数时,方程可用根式求解。若不全为质数,则不可用根式求解。由于引入了可解群,则可说成当且仅当一个方程系数域上的群是可解群时,该方程才可用根式求解。对上面的特殊四次方程(3),它的[g/h]=8/4=2,[h1/h2]=2/1=2,2为质数,所以方程(3)是可用根式解的。再看一般的n次方程,当n=3时,有两个二次预解式t2=a和t3=b,合成序列指数为2与3,它们是质数,因此一般三次方程可根式解。同理对n=4,有四个二次预解式,合成序列指数为2,3,2,2,于是一般四次方程也可根式求解。一般n次方程的伽罗瓦群是s(n),s(n)的极大正规子群是a(n) (实际a(n)是由s(n)中的偶置换构成的一个子群。如果一个置换可表为偶数个这类置换之积,则叫偶置换。),a(n)的元素个数为s(n)中的一半,且a(n)的极大正规子群是单位群i,因此[s(n)/a(n)]=n!/(n!/2)=2,[a(n)/i]=(n!/2)/1=n!/2, 2是质数,但当n ≥5时,n!/2不是质数,所以一般的高于四次的方程是不能用根式求解的。至此,伽罗瓦完全解决了方程的可解性问题。 顺带提一下,阿贝尔是从交换群入手考虑问题的,他的出发点与伽罗瓦不同,但他们的结果都是相同的,都为了证其为可解群,并且伽罗瓦还把阿贝尔方程进行了推广,构造了一种现在称之为伽罗瓦方程的方程,伽罗瓦方程的每个根都是其中两个根的带有系数域中系数的有理函数。NerveM 2023-05-20 08:56:241
对数函数运算法则公式
对数函数运算法则公式是如果a^x=N(a>0,且a≠1),则x叫做以a为底N的对数,记做x=log(a)(N),其中a要写于log右下。其中a叫做对数的底,N叫做真数。通常将以10为底的对数叫做常用对数,以e为底的对数称为自然对数。一般地,对数函数是以幂(真数)为自变量,指数为因变量,底数为常量的函数。对数函数是6类基本初等函数之一。其中对数的定义:如果ax=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=logaN,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。一般地,函数y=logaX(a>0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。其中x是自变量,函数的定义域是(0,+∞),即x>0。它实际上就是指数函数的反函数,可表示为x=ay。因此指数函数里对于a的规定,同样适用于对数函数。人类地板流精华2023-05-20 08:56:111
有e的对数常用公式有哪些
请查数学手册。尼玛太多写不过来啊...而且你也百分之九十九都用不到....尽管如此对于用得到的人还都是常用的,不然就进不了数学手册了...墨然殇2023-05-20 08:56:102
对数的导数公式是什么?
对数函数的导数公式:一般地,如果a(a>0,且a≠1)的b次幂等于N,那么数b叫做以a为底N的对数,记作logaN=b,其中a叫做对数的底数,N叫做真数。底数则要>0且≠1真数>0并且,在比较两个函数值时:如果底数一样,真数越大,函数值越大。(a>1时)如果底数一样,真数越小,函数值越大。(0<a<1时)对数公式是数学中的一种常见公式,如果a^x=N(a>0,且a≠1),则x叫作以a为底N的对数,记做x=log(a)(N),其中a要写于log右下。其中a叫作对数的底,N叫作真数。通常我们将以10为底的对数叫作常用对数,以e为底的对数称为自然对数。特殊运算如果a(a大于0,且a不等于1)的b次幂等于N,那么数b叫作以a为底N的对数,记作log aN=b,读作以a为底N的对数,其中a叫作对数的底数,N叫作真数.一般地,函数y=log(a)X,(其中a是常数,a>0且a不等于1)叫作对数函数 它实际上就是指数函数的反函数。墨然殇2023-05-20 08:56:101
ln有哪些公式
lnab=lna+lnblna/b=lna-lnblna^n=nlnaln1=0lne=1lnx=loge(x)Ntou1232023-05-20 08:56:102
常用对数公式
运算法则公式如下:1.lnx+ lny=lnxy2.lnx-lny=ln(x/y)3.lnxⁿ=nlnx4.ln(ⁿ√x)=lnx/n5.lne=16.ln1=0拓展内容:对数运算法则(rule of logarithmic operations)一种特殊的运算方法.指积、商、幂、方根的对数的运算法则。在数学中,对数是对求幂的逆运算,正如除法是乘法的倒数,反之亦然。 这意味着一个数字的对数是必须产生另一个固定数字(基数)的指数。 在简单的情况下,乘数中的对数计数因子。更一般来说,乘幂允许将任何正实数提高到任何实际功率,总是产生正的结果,因此可以对于b不等于1的任何两个正实数b和x计算对数。NerveM 2023-05-20 08:56:102
常用对数公式
常用对数公式:f=log*lk。对数公式是数学中的一种常见公式,如果a^x=N(a>0,且a≠1),则x叫做以a为底N的对数,记做x=log(a)(N),其中a要写于log右下。其中a叫做对数的底,N叫做真数。在数学中,对数是对求幂的逆运算,正如除法是乘法的倒数,反之亦然。这意味着一个数字的对数是必须产生另一个固定数字(基数)的指数。在简单的情况下,乘数中的对数计数因子。更一般来说,乘幂允许将任何正实数提高到任何实际功率,总是产生正的结果,因此可以对于b不等于1的任何两个正实数b和x计算对数。九万里风9 2023-05-20 08:56:091
有哪些常用的对数公式?
由公式x=e^lnx(lnx=e的某个值次方等于x,e^(e的某个值次方)等于x,即x=e^lnx) 转化x=e^lnx (m^x代替x,m^x为任意指数,任意指数的值也同等于x)m^x=e^lnm^x (m^x=x)m^x=e^[(lnm)x ](幂法则 loga X^y=ylogaX)以此任意指数值m^x都可以转变以e为底的对数函数。指数函数,y=ax(a>0,且a≠1),注意与幂函数的区别。对数函数y=logax(a>0,且a≠1)。指数函数y=ax与对数函数y=logax互为反函数。扩展资料1、指数运算有理数指数及其运算是本章的基础内容,要明确运算法则,化简或求值是本章知识点的主要呈现方式。在进行幂和根式的化简时,一般是先将根式化成幂的形式,并尽可能地统一成分数指数幂的形式,再利用幂的运算性质进行化简、求值或计算,以达到化繁为简的目的。2、对数运算(1)同底对数化简的常用方法:将同底的两对数的和(差)化成积(商)的对数;将积(商)的对数拆成对数的和(差),根据题目的条件选择恰当的方法。(2)对常用对数的化简要创设情境,充分利用lg 5+lg 2=1来求解。(3)对多重对数符号的化简,应从内向外逐层化简求值。(4)对数的运算性质,要注意只有当式子中所有的对数符号都有意义时,等式才成立。小菜G的建站之路2023-05-20 08:56:091
高中数学的所有对数计算公式 急啊
定义: 若a^n=b(a>0且a≠1) 则n=log(a)(b) 基本性质: 1、a^(log(a)(b))=b 2、log(a)(MN)=log(a)(M)+log(a)(N); 3、log(a)(M÷N)=log(a)(M)-log(a)(N); 4、log(a)(M^n)=nlog(a)(M) 推导 1、因为n=log(a)(b),代入则a^n=b,即a^(log(a)(b))=b。 2、MN=M×N 由基本性质1(换掉M和N) a^[log(a)(MN)]=a^[log(a)(M)]×a^[log(a)(N)] 由指数的性质 a^[log(a)(MN)]=a^{[log(a)(M)]+[log(a)(N)]} 又因为指数函数是单调函数,所以 log(a)(MN)=log(a)(M)+log(a)(N) 3、与(2)类似处理 MN=M÷N 由基本性质1(换掉M和N) a^[log(a)(M÷N)]=a^[log(a)(M)]÷a^[log(a)(N)] 由指数的性质 a^[log(a)(M÷N)]=a^{[log(a)(M)]-[log(a)(N)]} 又因为指数函数是单调函数,所以 log(a)(M÷N)=log(a)(M)-log(a)(N) 4、与(2)类似处理 M^n=M^n 由基本性质1(换掉M) a^[log(a)(M^n)]={a^[log(a)(M)]}^n 由指数的性质 a^[log(a)(M^n)]=a^{[log(a)(M)]*n} 又因为指数函数是单调函数,所以 log(a)(M^n)=nlog(a)(M) 基本性质4推广 log(a^n)(b^m)=m/n*[log(a)(b)] 推导如下: 由换底公式(换底公式见下面)[lnx是log(e)(x),e称作自然对数的底] log(a^n)(b^m)=ln(b^m)÷ln(a^n) 由基本性质4可得 log(a^n)(b^m)=[m×ln(b)]÷[n×ln(a)]=(m÷n)×{[ln(b)]÷[ln(a)]} 再由换底公式 log(a^n)(b^m)=m÷n×[log(a)(b)]--------------------------------------------(性质及推导完)编辑本段函数图象 1.对数函数的图象都过(1,0)点. 2.对于y=log(a)(n)函数, ①,当0<a<1时,图象上函数显示为(0,+∞)单减.随着a的增大,图象逐渐以(1,0)点为轴顺时针转动,但不超过X=1. ②当a>1时,图象上显示函数为(0,+∞)单增,随着a的增大,图象逐渐以(1.0)点为轴逆时针转动,但不超过X=1. 3.与其他函数与反函数之间图象关系相同,对数函数和指数函数的图象关于直线y=x对称.编辑本段其他性质 性质一:换底公式 log(a)(N)=log(b)(N)÷log(b)(a) 推导如下: N=a^[log(a)(N)] a=b^[log(b)(a)] 综合两式可得 N={b^[log(b)(a)]}^[log(a)(N)]=b^{[log(a)(N)]*[log(b)(a)]} 又因为N=b^[log(b)(N)] 所以b^[log(b)(N)]=b^{[log(a)(N)]*[log(b)(a)]} 所以log(b)(N)=[log(a)(N)]*[log(b)(a)]{这步不明白或有疑问看上面的} 所以log(a)(N)=log(b)(N)/log(b)(a) 公式二:log(a)(b)=1/log(b)(a) 证明如下: 由换底公式log(a)(b)=log(b)(b)/log(b)(a)----取以b为底的对数 log(b)(b)=1=1/log(b)(a)还可变形得:log(a)(b)×log(b)(a)=1 在实用上,常采用以10为底的对数,并将对数记号简写为lgb,称为常用对数,它适用于求十进伯制整数或小数的对数。例如lg10=1,lg100=lg102=2,lg4000=lg(103×4)=3+lg4,可见只要对某一范围的数编制出对数表,便可利用来计算其他十进制数的对数的近似值。在数学理论上一般都用以无理数e=2.7182818……为底的对数,并将记号loge。简写为ln,称为自然对数,因为自然对数函数的导数表达式特别简洁,所以显出了它比其他对数在理论上的优越性。历史上,数学工作者们编制了多种不同精确度的常用对数表和自然对数表。但随着电子技术的发展,这些数表已逐渐被现代的电子计算工具所取代。北境漫步2023-05-20 08:56:091
hermite多项式递推公式
当x>1时,Hermite多项式定义为: Hn(x)={ 1 n=0; 2x n=1; 2xHn-1(x)-2(n-1)Hn-2(x) n>1; } 注释:Hn-1,Hn-2中的n-1,n-2为下标. 所以,这个递推公式只是一个表达式,相当于y=x+2的类型 是没有证明的善士六合2023-05-20 08:56:051
拉氏变换简表,公式里有个倒L,是什么,怎么算?
……倒L太让人迷糊了 我猜是Γ应该是Γ(a)伽马函数Γ(a)=∫[0,+∞]x^(a-1)e^(-x)dx当F(s)=Γ(k+1)/s^(k+1)时f(t)=t^k 至于函数性质太多这里就不一一列举了,你可以自己查查,在数学手册里面的积分函数里面有专门一章mlhxueli 2023-05-20 08:55:501
倒写的L也就是Г是什么函数?函数如何定义的?公式是什么
Г函数最初是由欧拉(Euler1707一1783)为解决问题——“找一个函数,使它定义在正整数上的值为阶乘,即f(n)=n!,n=1,2,3…”而提出的,不少数学家从各个不同角度对它下了各种形式各异的定义,最常见的定义则是被勒让特(Legendre1752一1833)称之为的欧拉Г函数:Г函数有以下的性质:(2019.1.18新增回答)最近看到一个介绍Г函数(伽马函数)特别好的一个网页(注:腾讯的工程师写的),看完后不仅让我对伽马函数有了更深入的了解,还让我对发现该函数的大数学家欧拉佩服的五体投地!感兴趣的童鞋可以看看~名字叫《神奇的伽马函数》(2019.8.29)今天发现伽马函数的网页已经没有了,因此github上面找的一个markdown版本:网页链接凡尘2023-05-20 08:55:462
什么是算数级数?RT算术级数有什么性质?公式是什么?
算术级数就是等差数列几何级数就是等比数列算术级数中任意连续两项的差相同,这个差值叫做这个算术级数的公差算术级数前n项的和:(首项+末项)*(项数n)/2第n项:首项+公差*(n-1)铁血嘟嘟2023-05-20 08:55:421
狄利克雷函数的公式定义
实数域上的狄利克雷(Dirichlet)函数表示为:(k,j为整数)也可以简单地表示分段函数的形式D(x)= 0(x是无理数)或1(x是有理数)hi投2023-05-20 08:55:272