不等式

平均值不等式是什么?

平均值不等式也就是均值不等式,是数学中的一个重要公式,即调和平均数不超过几何平均数,几何平均数不超过算术平均数,算术平均数不超过平方平均数,简记为“调几算方”。均值不等式也可以看成是“对于若干个非负实数,它们的算术平均不小于几何平均”的推论。公式内容为Hn≤Gn≤An≤Qn,即调和平均数不超过几何平均数,几何平均数不超过算术平均数,算术平均数不超过平方平均数。平均值不等式的推导过程:∵(a-b)²=a²-2ab+b²≧0;∴a²+b²≧2ab;当且仅仅当a=b时等号成立(a,b∈R)。∵(√m-√n)²=m-2√(mn)+n≧0;∴m+n≧2√(mn);当且仅仅当m=n时等号成立(m,n∈R+)。高中均值不等式:a²+b²≥2ab;√(ab)≤(a+b)/2;a²+b²+c²≥(a+b+c)²/3;a+b+c≥3×三次根号abc。
左迁2023-05-23 19:24:581

平均值不等式是什么?

平均值不等式是数学中的一个重要公式。公式内容为Hn≤Gn≤An≤Qn,即调和平均数不超过几何平均数,几何平均数不超过算术平均数,算术平均数不超过平方平均数。关于均值不等式的证明方法有很多,数学归纳法(第一数学归纳法或反向归纳法)、拉格朗日乘数法、琴生不等式法、排序不等式法、柯西不等式法等等。相关信息:不等式两边相加或相减同一个数或式子,不等号的方向不变。(移项要变号)不等式两边相乘或相除同一个正数,不等号的方向不变;相当系数化1,这是得正数才能使用。不等式两边乘或除以同一个负数,不等号的方向改变;÷或×1个负数的时候要变号。
黑桃花2023-05-23 19:24:581

均值不等式是什么啊

概念:1、调和平均数:Hn=2、几何平均数:Gn=3、算术平均数:An=4、平方平均数:Qn=5、均值定理: 如果属于 正实数 那么且仅当时 等号成立。这四种平均数满足Hn≤Gn≤An≤Qna1、a2、… 、an∈R +,当且仅当a1=a2= … =an时取“=”号均值不等式的一般形式:设函数D(r)=[(a1^r+a2^r+...an^r)/n]^(1/r)(当r不等于0时);(a1a2...an)^(1/n)(当r=0时)(即D(0)=(a1a2...an)^(1/n))则 [1]当注意到Hn≤Gn≤An≤Qn仅是上述不等式的特殊情形,即D(-1)≤D(0)≤D⑴≤D⑵由以上简化,有一个简单结论,中学常用2/(1/a+1/b)≤√ab≤(a+b)/2≤√[(a^2+b^2)/2]均值定理的证明:因为 a 〉0 , b 〉0 所以( a+b)/2 - √ab =( a+b-2√ab)/2 = (√a-√b)^2/2 ≥ 0即( a+b)/2≥√ab. 当且仅当a= b ,等号成立。[1]编辑本段记忆调几算方,即调和平均数【Hn=n/(1/a1+1/a2+...+1/an)】≤ 几何平均数【Gn=(a1a2...an)^(1/n) 】≤算术平均数【An=(a1+a2+...+an)/n】 ≤平方平均数:【Qn=√ (a1^2+a2^2+...+an^2)/n】 Hn≤Gn≤An≤Qn编辑本段变形⑴对实数a,b,有a^2+b^2≥2ab (当且仅当a=b时取“=”号),a^2+b^2>0>-2ab⑵对非负实数a,b,有a+b≥2√(a×b)≥0,即(a+b)/2≥√(a×b)≥0⑶对负实数a,b,有a+b<-2√(a*b)<0⑷对实数a,b,有a(a-b)≥b(a-b)⑸对非负实数a,b,有a^2+b^2≥2ab≥0⑹对实数a,b,有a^2+b^2≥1/2*(a+b)^2≥2ab⑺对实数a,b,c,有a^2+b^2+c^2≥1/3*(a+b+c)^2⑻对实数a,b,c,有a^2+b^2+c^2≥ab+bc+ac⑼对非负数a,b,有a^2+ab+b^2≥3/4*(a+b)^2⑽对非负数a,b,c,有(a+b+c)/3≥(abc)^(1/3)编辑本段证明均值不等式方法很多,数学归纳法(第一或反向归纳)、拉格朗日乘数法、琴生不等式法、排序不等式法、柯西不等式法等等用数学归纳法证明,需要一个辅助结论。引理:设A≥0,B≥0,则(A+B)^n≥A^n+nA^(n-1)B。注:引理的正确性较明显,条件A≥0,B≥0可以弱化为A≥0,A+B≥0,有兴趣的同学可以想想如何证明(用数学归纳法)。原题等价于:((a1+a2+…+an)/n)^n≥a1a2…an。当n=2时易证;假设当n=k时命题成立,即((a1+a2+…+ak)/k)^k≥a1a2…ak。那么当n=k+1时,不妨设a(k+1)是a1,a2 ,…,a(k+1)中最大者,则k a(k+1)≥a1+a2+…+ak。设s=a1+a2+…+ak,{[a1+a2+…+a(k+1)]/(k+1)}^(k+1)={s/k+[k a(k+1)-s]/[k(k+1)]}^(k+1)≥(s/k)^(k+1)+(k+1)(s/k)^k[k a(k+1)-s]/k(k+1) 用引理=(s/k)^k* a(k+1)≥a1a2…a(k+1)。用归纳假设下面介绍个好理解的方法琴生不等式法琴生不等式:上凸函数f(x),x1,x2,...xn是函数f(x)在区间(a,b)内的任意n个点,则有:f[(x1+x2+...+xn)/n]≥1/n*[f(x1)+f(x2)+...+f(xn)]设f(x)=lnx,f(x)为上凸增函数所以,ln[(x1+x2+...+xn)/n]≥1/n*[ln(x1)+ln(x2)+...+ln(xn)]=ln[(x1*x2*...*xn)^(1/n)]即(x1+x2+...+xn)/n≥(x1*x2*...*xn)^(1/n)在圆中用射影定理证明(半径不小于半弦)编辑本段应用例一 证明不等式:2√x≥3-1/x (x>0)证明:2√x+1/x=√x+√x+1/x≥3*[(√x)*(√x)*(1/x)]^(1/3)=3所以,2√x≥3-1/x例二 长方形的面积为p,求周长的最小值解:设长,宽分别为a,b,则a*b=p因为a+b≥2√(ab),所以2(a+b)≥4√(ab)=4√p周长最小值为4√p例三 长方形的周长为p,求面积的最大值解:设长,宽分别为a,b,则2(a+b)=p因为a+b=p/2≥2√(ab),所以ab≤p^2/16面积最大值是p^2/16编辑本段其他不等式琴生不等式 (具有凹凸性)绝对值不等式权方和不等式赫尔德不等式闵可夫斯基不等式贝努利不等式柯西不等式切比雪夫不等式外森比克不等式排序不等式编辑本段重要不等式柯西不等式柯西不等式的一般证法有以下几种:⑴Cauchy不等式的形式化写法就是:记两列数分别是ai,bi,则有 (∑ai^2) * (∑bi^2) ≥ (∑ai * bi)^2.我们令 f(x) = ∑(ai + x * bi)^2 = (∑bi^2) * x^2 + 2 * (∑ai * bi) * x + (∑ai^2)则我们知道恒有 f(x) ≥ 0.用二次函数无实根或只有一个实根的条件,就有 Δ = 4 * (∑ai * bi)^2 - 4 * (∑ai^2) * (∑bi^2) ≤ 0.于是移项得到结论。⑵用向量来证.m=(a1,a2......an) n=(b1,b2......bn)mn=a1b1+a2b2+......+anbn=(a1^+a2^+......+an^)^1/2乘以(b1^+b2^+......+bn^)^1/2乘以cosX.因为cosX小于等于1,所以:a1b1+a2b2+......+anbn小于等于a1^+a2^+......+an^)^1/2乘以(b1^+b2^+......+bn^)^1/2这就证明了不等式.柯西不等式还有很多种,这里只取两种较常用的证法.柯西不等式在求某些函数最值中和证明某些不等式时是经常使用的理论根据,我们在教学中应给予极大的重视。巧拆常数:例:设a、b、c 为正数且各不相等。求证:(2/a+c)+(2/b+c)+(2/c+a)>(9/a+b+c)分析:∵a 、b 、c 均为正数∴为证结论正确只需证:2(a+b+c)[(1/a+b)+(1/b+c)+(1/c+a)]>9而2(a+b+c)=(a+b)+(a+c)+(c+b)又 9=(1+1+1)(1+1+1)证明:Θ2(a+b+c)[(1/a+b)+(1/b+c)+(1/c+a)]=[(a+b)+(a+c)+(b+c)][1/a+b)+(1/b+c)+(1/c+a)]≥(1+1+1)(1+1+1)=9又 a、b 、c 各不相等,故等号不能成立∴原不等式成立。像这样的例子还有很多,词条里不再一一列举,大家可以在参考资料里找到柯西不等式的证明及应用的具体文献.排序不等式排序不等式是高中数学竞赛大纲要求的基本不等式。设有两组数 a 1,a 2,…… a n,b 1,b 2,…… b n 满足 a 1 ≤ a 2 ≤……≤ a n,b 1 ≤ b 2 ≤……≤ b n 则有 a 1 b n + a 2 b n?1 +……+ a n b1≤ a 1 b t + a 2 b t +……+ a n b t ≤ a 1 b 1 + a 2 b 2 +……+ a n b n 式中t1,t2,……,tn是1,2,……,n的任意一个排列, 当且仅当 a 1 = a 2 =……= a n 或 b 1 = b 2 =……= b n 时成立。以上排序不等式也可简记为:反序和≤乱序和≤同序和.证明时可采用逐步调整法。例如,证明:其余不变时,将a 1 b 1 + a 2 b 2 调整为a 1 b 2 + a 2 b 1 ,值变小,只需作差证明(a 1 -a 2)*(b 1 -b 2)≥0,这由题知成立。依次类推,根据逐步调整法,排序不等式得证。切比雪夫不等式切比雪夫不等式有两个⑴设存在数列a1,a2,a3.....an和b1,b2,b3......bn满足a1≤a2≤a3≤.....≤an和b1≤b2≤b3≤......≤bn那么,∑aibi≥(1/n)(∑ai)(∑bi)⑵设存在数列a1,a2,a3.....an和b1,b2,b3......bn满足a1≤a2≤a3≤.....≤an和b1≥b2≥b3≥......≥bn那么,∑aibi≤(1/n)(∑ai)(∑bi)琴生不等式设f(x)为上凸函数,则f[(x1+x2+……+xn)/n]≥[f(x1)+f(x2)+……+f(xn)]/n,称为琴生不等式(幂平均)。加权形式为:f[(a1x1+a2x2+……+anxn)]≥a1f(x1)+a2f(x2)+……+anf(xn),其中ai>=0(i=1,2,……,n),且a1+a2+……+an=1.从图中直观地证明E1F1≥E2F2≥E3F3≥E4F4,当a=b时取等号。幂平均不等式幂平均不等式:ai>0(1≤i≤n),且α>;β,则有(∑ai^α/n)^1/α≥(∑ai^β/n)^1/β成立iff a1=a2=a3=……=an 时取等号加权的形式:设ai>0,pi>0(1≤i≤n),且α>;β,则有(∑pi*ai^α/∑pi)^1/α≥(∑pi*ai^β/∑pi)^1/βiff a1=a2=a3=……=an, p1=p2=p3=……=pn 时取等号。特例:- 调和平均(-1次幂), - 几何平均(0次幂), - 算术平均(1次幂), , - 二次平均(2次
bikbok2023-05-23 19:24:583

基本不等式怎么学

基本不等式是主要应用于求某些函数的最值及证明的不等式。其表述为:两个正实数的算术平均数大于或等于它们的几何平均数。在使用基本不等式时,要牢记“一正”“二定”“三相等”的七字真言。“一正”就是指两个式子都为正数,“二定”是指应用基本不等式求最值时,和或积为定值,“三相等”是指当且仅当两个式子相等时,才能取等号。具体来说,利用基本不等式求最值包括下面两种类型的题目:已知x>0;y>0,则:如果积xy是定值p,那么当且仅当x=y时,x+y有最小值。(简记:积定和最小)如果和x+y是定值p,那么当且仅当x=y时,xy有最大值。(简记:和定积最大)基本不等式主要是看两点,1)两个相乘代数式中和是否为定值2)两个相加代数式积是否为定值如果不为定值,想办法看能不能凑出定值形式,再不行的话就用后面要学的导数来做哈再就是注意保证两式为正与取等条件即可.(要求最值一定保证一正二定三相等)关键是多做,对一些方法要有一定的感觉,而对方法有感觉的前提就是要建立在大量的做题中,把一些本来想不到的方法,想到.很多不等式的题目都是,技巧性很强,没碰到死活做不出,看了答案,发现原来这么简单的,为了达到这样一种水平就必须多做题.
Ntou1232023-05-23 19:24:571

2.什么叫移项?不等式的性质有哪些?

移项是将等号左边的式子移到等号右边;不等式一共有三条性质。不等式性质1:不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变;不等式性质2:不等式的两边同时乘(或除以)同一个正数,不等号的方向不变;不等式性质3:不等式的两边同时乘(或除以)同一个负数,不等号的方向改变。移项要变号。
水元素sl2023-05-22 18:13:361

超越不等式是什么?

超越不等式(transcendental inequality)是一种特殊不等式,指含超越式的不等式。例如sinx-cosy≤1,log3(x2-2x)>0等,除指数不等式、对数不等式、三角不等式、反三角不等式外,凡含超越式、其他代数式的有限次代数运算及有限次复合的不等式都是(初等)超越不等式。超越不等式解题方法:解上述几种初等超越不等式,主要有两种方法:一是将超越函数(指指数函数、对数函数、三角函数、反三角函数等)用新变量代替,此即换元法;另一是利用超越函数(指上述四种函数)的单调性,将其转化为代数不等式求解,此即函数单调性法。其次还有分类讨论法,即当不等式中指数函数或对数函数的底与1比较其范围不确定时,需对其底进行分类讨论,才能求得其解。还有化同底法,当指数与对数不等式中底不相同时,可设法化成同底的指数与对数不等式来解,这里对数的换底公式是一个很好的工具。其次还可以用图解法,例如对高次不等式与超越不等式,都可以借助于函数图象来求解。
此后故乡只2023-05-22 18:13:061

什么叫超越函数,超越不等式?

不等式两边的函数,如果都是代数函数,则称这个不等式为代数不等式;如果至少有一个是超越函数,则称这个不等式为超越不等式.前者可以划分为有理不等式(整式不等式和分式不等式)和无理不等式;后者包括指数不等式、对数不等式、三角不等式和反三角不等式等.
Jm-R2023-05-22 18:13:052

奥数,高斯函数不等式

先证两个结论。设x=[x]+{x},其中,{x}是x的小数部分。(1) 对于适当的n和x,有n{x}>1从而 [nx]=[n[x]]+[n{x}]≥n[x](2)由于a+b=[a]+[b]+{a}+{b}而0<{a}+{b}<2从而 [a+b]≥[a]+[b]于是 [3x+3y]=[x+y+2(x+y)]≥[x+y]+[2(x+y)]≥[x]+[y]+2[x+y]
bikbok2023-05-22 18:12:372

绝对值不等式怎么来的

绝对值不等式即||a|-|b|| ≤|a±b|≤|a|+|b|如果说其推导的来源当然就是来自三角形里两边之和大于第三边而两边之差小于第三边
西柚不是西游2023-05-22 07:47:561

使用不等式的时候要写取等条件吗 不写会不会扣分

看题目是问什么吧,你这个问题问的有些笼统,不太好回答,可以找个不确定的题目,这样会便于回答。
kikcik2023-05-22 07:47:562

不等式的基本性质

【教学目标】  1.知识与技能:使学生了解不等式的性质,能根据不等式的性质将简单的一元一次不等式转化为“”或“”的形式;  2.过程与方法:通过等式的性质类比不等式的性质,使学生经历探索不等式性质的过程,初步体会不完全归纳法是探索数学规律的一种方法,体会类比的思想方法,体会数形结合思想和转化思想;感受分类讨论的思想方法.  3.情感态度与价值观:使学生在操作、交流的数学活动中,感受数学学习的乐趣,增强学好数学的自信心.  【教学重点】探索不等式的性质,理解不等式的性质.  【教学难点】初步理解不等式性质3;不等式性质的符号表示.  【教学方式】启发式、探究式  【教学手段】多媒体  【教学过程】教学环节 教学内容 设计意图问题情境 师:叶落知秋,意思是看见树叶飘落,就知道秋天来了.告诉我们可以从已知的事物通过合理的推断,来认识新事物.师:任意两个有理数存在大小关系,两个表示数的式子也有相等或不等关系.我们这节课来探索不等式的性质.(引出课题:8.2.2.不等式的性质)一、回顾 等式的性质(学生口述,教师板书.并注意符号语言)在等式两端加(减)同一个数或式,结果仍是等式.若则(若则)在等式两端同乘以一个数或式(除以一个不为零的数或式),结果仍是等式.若则(若则)二、了解新事物(一)、观察思考表示80与60的大小 甲乙两人体重分别为80㎏和60㎏,两人体重的大小关系为①若两人通过减肥,体重都减少了5㎏两人体重的大小关系为②若两人不注意健康的饮食,体重都增加了2㎏两人体重的大小关系为教师归纳:上述关系可记为: 让学生了解本节课要研究的对象及其意义,为类比等式的性质探索不等式的性质作准备.探索不等式的性质让学生类比等式的性质1归纳不等式的性质1: (师订正板书:)不等式的性质1:在不等式两端加(减)同一个数或式,不等号方向不变.试着用符号语言描述你得到的结论.能否用数轴理解不等式性质1试着用符号语言描述你得到的结论.教师板书: 性质1.如果,那么.(二)、探索发现填写下列表格你发现了什么?不等式 两边同乘以(除以)一个数 比较大小同乘以2同除以3同乘以同乘以0学生讨论、总结、表述.(师订正板书:)性质2.在不等式的两端同乘以一个正数,不等号方向不变.如果,那么.性质3.在不等式的两端同乘以一个负数,不等号方向改变.如果,那么.比较:不等式3个性质的异同不等式性质与等式性质的异同强调:等号不具有方向,不等号有方向!(三)、巧记口诀加减都用性质1,不等号方向不改变;乘除正数性质2,不等号方向还不变;乘除负数性质3,不等号方向必改变.类比等式的性质,探索不等式的性质.让学生初步体会不完全归纳法是探索数学规律的一种方法,体会数形结合思想和转化思想;培养学生发现数学规律的能力.知识巩固阅读活动阅读教材第124页“不等式的性质”三、小试牛刀 例1.设,用“>”或“<”填空:(1);(2) ;(3);(4).例2将不等式化成或的形式,并在数轴上表示解.解:在原不等式两端同减得,两边同除以2得与解方程一样,解不等式的过程,就是要将不等式变形成“”或“”的形式.练习:利用不等式的性质解下列不等式,并说出利用不等式的哪条性质?(1);(2); (3);(4).四、勇攀高峰(升华)(一)判断正误1、2、3、4、5、6、概念辨析、字母的身份辨析,分类讨论.让学生感受数学中文字语言表述的准确性及符号语言的简洁性、概括性.利用自己探究的知识,解决存在疑惑的问题,体会成功.通过例题引导学生再次体会:解不等式就是利用不等式的性质,将不等式进行变形,逐步转化成“”或“”的形式.并进一步巩固、检验学生对不等式性质的理解.关注学生的易错点:方向、符号.课堂小结 教师引导学生作课堂小结(总结知识上、思想方法上以及自己在探究性质的过程中的一些思考或值得借鉴、关注的地方)1、不等式3个性质2、类比思想3、数形结合思想4、分类讨论的思想方法.反思、回顾学习过程,利于学生养成经常反思、总结的良好的学习品质.布置作业一.习题8.21.解不等式:(1)x-5<0 (2)3x≥2x-6(3)2x<-3 (4)-2x>2.写出下图所表示的不等式的解集3.解下列不等式,并把它们的解集在数轴上表示出来.(1)3x≥-3; (2)-3x+3<0(3)2x+2≤3x+3 (4)5x-1>8x+34.取什么值时,代数式的值:(1)大于1? (2)等于1? (3)小于1?二.个性作业 1、你能比较和的大小吗?和谁大呢?2、已知∣5x-3∣=3-5x,求x的取值范围.3、判断下列不等式的变形是否正确:
苏州马小云2023-05-22 07:47:5511

解不等式的解法步骤

解不等式的解法步骤:1、找出未知数的项、常数项,该化简的化简。2、未知数的项放不等号左边,常数项移到右边。3、不等号两边进行加减乘除运算。4、不等号两边同除未知数的系数,注意符号的改变。解不等式的注意事项:不等式两边相加或相减同一个数或式子,不等号的方向不变。(移项要变号)不等式两边相乘或相除同一个正数,不等号的方向不变。(相当系数化1,这是得正数才能使用)不等式两边乘或除以同一个负数,不等号的方向改变。(÷或×1个负数的时候要变号)可以在数轴上确定解集:把每个不等式的解集在数轴上表示出来,数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集。有几个就要几个。在确定一元二次不等式时,a>0,Δ=b^2-4ac>0时,不等式解集可用"大于取两边,小于取中间"求出。
苏州马小云2023-05-22 07:47:551

请问解绝对值不等式,,什么时候需要用到数形结合

解绝对值不等式时,我们通常是将绝对值不等式转化成两个一般的不等式来求解集的,在转化时,我们就要用到绝对值的几何意义借助于数轴(这个“形”)来转化;在求得两个一般的不等式的解集后,最终求绝对值不等式的解集时,也要借助于数轴这个“形”来直观的得出其解集,这就是数学上经常用到的“数形结合”的思想;“数形结合”适合所有的绝对值不等式(组)求解集,也适合所有的不等式求解集,不仅如此,在我们所学过的数学知识中,又有多少不是通过“数”与“形”结合来展现获取的呢?
北境漫步2023-05-21 22:10:181

什么是weyl不等式?

wely不等式 : 听说过 外尔(韦尔)不等式 没有找到 找到了 告诉你
余辉2023-05-20 08:56:491

运用拉格朗日中值定理证明不等式(lnb-lna)/(b-a)>(2a)/(a^2+b^2)

取特值。a取1,b取e。
小白2023-05-20 08:56:443

matlab中的LMI工具箱如何求解带有克罗内克积的线性矩阵不等式?

设函数 φ (x)连续且满足 φ (x)=e^x+ ∫(x,0)(t-x) φ(t)dt,求φ(x) 解: φ (x)=e^x+ ∫[0→x] (t-x) φ(t)dt =e^x+ ∫[0→x] tφ(t)dt-x∫[0→x] φ(t)dt 两边对x求导得: φ"(x)=e^x+ xφ(x)-∫[0→x] φ(t)dt-xφ(x) =e^x-∫[0→x] φ(t)dt (1) 两边再对导: φ""(x)...
西柚不是西游2023-05-20 08:56:351

切比雪夫不等式是什么?

切比雪夫(Chebyshev)不等式:对于任一随机变量X ,若EX与DX均存在,则对任意ε>0,恒有P{|X-EX|>=ε}<=DX/ε^2。切比雪夫不等式可以使人们在随机变量X的分布未知的情况下,对事件|x-u|<ε概率作出估计。19世纪俄国数学家切比雪夫研究统计规律中,论证并用标准差表达了一个不等式,这个不等式具有普遍的意义,被称作切比雪夫定理,其大意是:任意一个数据集中,位于其平均数m个标准差范围内的比例(或部分)总是至少为1-1/m2,其中m为大于1的任意正数。对于m=2,m=3和m=5有如下结果:所有数据中,至少有3/4(或75%)的数据位于平均数2个标准差范围内。所有数据中,至少有8/9(或88.9%)的数据位于平均数3个标准差范围内。所有数据中,至少有24/25(或96%)的数据位于平均数5个标准差范围内。切比雪夫(Chebyshev)不等式它适用于几乎无限种类型的概率分布,并在比正态更宽松的假设下工作。扩展资料:切比雪夫(1821~1894),俄文原名Пафну́тий Льво́вич Чебышёв,俄罗斯数学家、力学家。1821年5月26日生于卡卢加省奥卡托沃,1894年12月8日卒于彼得堡。他一生发表了70多篇科学论文,内容涉及数论、概率论、函数逼近论、积分学等方面。他证明了贝尔特兰公式,自然数列中素数分布的定理,大数定律的一般公式以及中心极限定理。他不仅重视纯数学,而且十分重视数学的应用。关于切比雪夫在概率论中所引进的方法论变革的伟大意义,苏联著名数学家柯尔莫哥洛夫在“俄罗斯概率科学的发展”(Роль сусской нaуки в сaзвии теории вероятносгей,ИБИД,стр,53—64)一文中写道:“从方法论的观点来看,切比雪夫所带来的根本变革的主要意义不在于他是第一个在极限理论中坚持绝对精确的数学家(A.棣莫弗(de Moivre)、P-S.拉普拉斯(Laplace)和泊松的证明与形式逻辑的背景是不协调的,他们不同于雅格布·伯努利,后者用详尽的算术精确性证明了他的极限定理)。切比雪夫的工作的主要意义在于他总是渴望从极限规律中精确地估计任何次试验中的可能偏差并以有效的不等式表达出来。此外,切比雪夫是清楚地预见到诸如‘随机变量"及其‘期望(平均)值"等概念的价值,并将它们加以应用的第一个人。参考资料来源:百度百科——切比雪夫定理
NerveM 2023-05-19 20:17:021

若f(x)为奇函数,且在(负无琼大,0)上是减函数,又有f(-2)=0 求不等式X*f(x)

你的题是不是有问题? f(-2)=0 求不等式X*f(x)<0 那当X=-2时 f(-2)=0 X*f(x)= -2*0 怎么会有X*f(x)<0
tt白2023-05-19 11:02:133

怎么证明托勒密不等式

严格地说是叫“托勒密定理”,这种网上都有,我给你个网站, http://baike.baidu.com/view/148250.html 觉得好的话就选我,不好的话也没关系,反正打字很麻烦,复制过来也不好,是抄袭,楼主自己看吧。 麻烦采纳,谢谢!
左迁2023-05-18 15:14:203

请问谁知道托勒密不等式的完整证明?

定理如果四边形内接于圆,那么它的两对对边的乘积之和等于它的对角线的乘积.证设四边形abcd有外接圆o,ac和bd相交于p,∠cpd=α(图3-107).若四边形abcd的四边都相等,则四边形abcd为圆内接菱形,即正方形,结论显然成立.若四边不全相等,不失一般性,设‖bd,于是△abd≌△edb,从而ad=be.又而 s四边形abcd=s四边形bcde,所以即(ad×bc+ab×cd)sin∠ebc=ac×bd×sinα.由于∠α=∠dac+∠adb=∠dbc+∠ebd=∠ebc,所以ad×bc+ab×cd=ac×bd.说明(1)托勒密定理可以作如下推广:“在凸四边形abcd中,ab×cd+ad×bc≥ac×bd.当且仅当四边形abcd是圆内接四边形时,等号成立.”由此可知,托勒密定理的逆定理也成立.
wpBeta2023-05-18 15:14:193

如何证明柯西不等式的积分形式?

可以先证明欧几里德空间中的柯西–布尼亚科夫斯基不等式,然后将其一举应用到离散形式和积分形式。欧几里德空间是指带有内积运算的线性空间。对于其中任意两个元素α,β,定义一个二元实函数(α,β),具有性质:1.(α,β)=(β,α)2.(α+β,γ)=(α,γ)+(β,γ)3.(α,α)≥0,当且仅当α是零向量时取等号。需要注意的是内积运算到底怎么算并无规定,只要满足上述三条性质即可。因此这里说的是广义的内积。下面证明柯西–布尼亚科夫斯基不等式:|(α,β)|≤‖α‖‖β‖,其中‖α‖是√(α,α),即α的长度。置γ=α+kβ,其中k是待定系数。则(γ,γ)=(α,α)+2k(α,β)+k²(β,β)≥0现在取k=-(α,β)/(β,β)带入上式,得:(α,α)-2(α,β)²/(β,β)+(α,β)²/(β,β)从而(α,α)≥(α,β)²/(β,β)立得(α,β)²≤(α,α)(β,β)两边开方,不等式得证。现在马上令[a,b]上的全体连续函数的集合为一个线性空间,定义内积运算(f,g)=∫ f(x)g(x)dx显然这是一个欧几里德空间。利用柯西不等式,立即有积分结果。二维形式的证明:(a2+bB)=(c2+d2)=a2×2+b2×d2+a2×d2+b2×c2=(ac+bd)2+(ad-bc)22(ac+bd)2(a,b,c,dE R)等号在且仅在ad-bc=0即ad=bc时成立。三角形式的证明:(Va2 +b"+Vee+df)2=a2+b2+c2+d2+2Va2+b°×Vc+de≥a2+b2+C2+d2+2lac+bdl2a2-2ac+c2+b2-2bd+d2=(a-c02+(b-d)2两边开平方得:Va-+"+ve+df2(a-c)2+(0-d)。
九万里风9 2023-05-18 13:56:071

华氏不等式公式

1、华氏定理:命q是一个正整数,f(x)=akxk+...+a1x 为一个k次整系数多项式且最大公约(ak, ...,a1,q)=1。2、其次对于任何 ε>0皆有华氏定理溯源于高斯(C.F. Gauss)他首先引进f(x)=ax2 的特例情况。3、最后即所谓高斯和: S(q, ax2),(a,q)=1,并得到估计 S(q, ax2)=O(q1/2).高斯引进并研究高斯和。
韦斯特兰2023-05-18 09:39:331

华氏定理的华氏定理与华氏不等式

1936年华罗庚到剑桥大学进修了两年,他师从哈代,积极参加剑桥大学数论小组的学术讨论班活动,迅速进入到该领域前沿。华罗庚潜心研究数论的重要问题,解决了华林(Waring)问题,他利(Tarry)问题等数学难题,其杰出才华在剑桥沃土上显露出来,在国际数学界引人注目 。华罗庚抓紧这两年的时间,学习非常刻苦努力,写了十八篇关于“华林问题”、“他利问题”,“奇数的哥德巴赫问题”的论文,先后发表在英、苏、印度、法、德等国的杂志上。他的工作成绩得到了大家的认可与赞许。其中他的最有名的一篇论文“论高斯的完整三角和估计问题”,代表了他的工作在这个领域的有着长期与重要的影响。苏联数学家维诺格拉朵夫(1891-1983),从1934年至1983年一直担任苏联科学院斯捷克洛夫数学研究所的所长。他对韦尔和的估计方法及以素数为变数的指数和估计方法自30年代以来,对数论发展产生了深刻的影响。他在堆垒数论方面得到不少深刻的结果,尤其是他对奇数的哥德巴赫猜想的基本解决及关于华林问题的结论是最为有名。维诺格拉朵夫的主要成就是发表在30年代,这也是华罗庚进入数论研究的高峰时期。他认真学习了维诺格拉朵夫的方法,虽然华罗庚是自学维诺格拉朵夫方法的。但他对这个方法的了解和贡献却不在旁人之下。维诺格拉朵夫在他的书《数论中的三角和方法》的序言中,提到这个方法是我与柯坡尔特、朱达柯夫、华罗庚及其他人一起合作得出的。华罗庚最重要的数论工作当然还是他自己独创性的工作。
无尘剑 2023-05-18 09:39:321

三元基本不等式有哪些

三元基本不等式公式证明:如果a,b,c∈R,那么a3+b3+c3≥3abc,当且仅当a=b=c时,等号成立;如果a,b,c∈R+,那么(a+b+c)/3≥3√(abc),当且仅当a=b=c时,等号成立。 一般地,用纯粹的大于号“>”、小于号“<”连接的不等式称为严格不等式,用不小于号(大于或等于号)“≥”、不大于号(小于或等于号)“≤”连接的不等式称为非严格不等式,或称广义不等式。总的来说,用不等号(,≥,≤,≠)连接的式子叫做不等式。
凡尘2023-05-16 22:46:211

高一基本不等式公式 越多越好

加油!!1.不等式的基本性质:性质1:如果a>b,b>c,那么a>c(不等式的传递性).性质2:如果a>b,那么a+c>b+c(不等式的可加性).性质3:如果a>b,c>0,那么ac>bc;如果a>b,c<0,那么acb,c>d,那么a+c>b+d.性质5:如果a>b>0,c>d>0,那么ac>bd.性质6:如果a>b>0,n∈N,n>1,那么an>bn,且.例1:判断下列命题的真假,并说明理由.若a>b,c=d,则ac2>bd2;(假)若,则a>b;(真)若a>b且ab<0,则;(假)若a若,则a>b;(真)若|a|b2;(充要条件)命题A:a命题A:,命题B:0说明:本题要求学生完成一种规范的证明或解题过程,在完善解题规范的过程中完善自身逻辑思维的严密性.a,b∈R且a>b,比较a3-b3与ab2-a2b的大小.(≥)说明:强调在最后一步中,说明等号取到的情况,为今后基本不等式求最值作思维准备.例4:设a>b,n是偶数且n∈N*,试比较an+bn与an-1b+abn-1的大小.说明:本例条件是a>b,与正值不等式乘方性质相比在于缺少了a,b为正值这一条件,为此我们必须对a,b的取值情况加以分类讨论.因为a>b,可由三种情况(1)a>b≥0;(2)a≥0>b;(3)0>a>b.由此得到总有an+bn>an-1b+abn-1.通过本例可以开始渗透分类讨论的数学思想.练习:1.若a≠0,比较(a2+1)2与a4+a2+1的大小.(>)2.若a>0,b>0且a≠b,比较a3+b3与a2b+ab2的大小.(>)3.判断下列命题的真假,并说明理由.(1)若a>b,则a2>b2;(假)(2)若a>b,则a3>b3;(真)(3)若a>b,则ac2>bc2;(假)(4)若,则a>b;(真)若a>b,c>d,则a-d>b-c.(真).
九万里风9 2023-05-16 22:46:211

均值不等式的6个基本公式是什么?怎么证?

均值不等式6个基本公式是、Hn≤Gn≤An≤Qn。1、均值不等式,又名平均值不等式、平均不等式,是数学中的一个重要公式。公式内容为Hn≤Gn≤An≤Qn,即调和平均数不超过几何平均数,几何平均数不超过算术平均数,算术平均数不超过平方平均数。2、关于均值不等式的证明方法有很多,数学归纳法(第一数学归纳法或反向归纳法)、拉格朗日乘数法、琴生不等式法、排序不等式法、柯西不等式法等等,都可以证明均值不等式。3、均值基本公式:已知x,y∈R+,x+y=S,x·y=P,如果P是定值,那么当且仅当x=y时,S有最小值;如果S是定值,那么当且仅当x=y时,P有最大值。或当a、b∈R+,a+b=k(定值)时,a+b≥2√ab (定值)当且仅当a=b时取等号。4、设X1,X2,X3,……,Xn为大于0的数,则X1+X2+X3+……+Xn≥n乘n次根号下X1乘X2乘X3乘……乘Xn。均值定理,又称基本不等式。主要内容为在正实数范围内,若干数的几何平均数不超过他们的算术平均数,且当这些数全部相等时,算术平均数与几何平均数相等。5、均值定理是高中数学学习中的一个非常重要的知识点,在函数求最值问题中有十分频繁的应用。均值定理特点:一正:各部分为正数。二定:不等号左或右是定值。三相等:等号能够取得。
小白2023-05-16 22:46:211

abc的均值不等式公式

abc的均值不等式公式:a^2+b^2 ≥ 2ab√(ab)≤(a+b)/2 ≤(a^2+b^2)/2a^2+b^2+c^2≥(a+b+c)^2/3≥ab+bc+aca+b+c≥3×三次根号abc证明关于均值不等式的证明方法有很多,数学归纳法(第一数学归纳法或反向归纳法)、拉格朗日乘数法、琴生不等式法、排序不等式法、柯西不等式法等等,都可以证明均值不等式,在这里简要介绍数学归纳法的证明方法:(注:在此证明的,是对n维形式的均值不等式的证明方法)用数学归纳法证明,需要一个辅助结论。
左迁2023-05-16 22:46:211

求“柯西不等式”公式,知道的告诉一下…谢谢…

柯西不等式由a^2+b^2≥2ab(a∈ R,b∈ R)得a+b≥2√ ab(a>0,b>0)
左迁2023-05-16 22:46:212

不等式基本性质有哪些?

基本不等式有:1、三角不等式三角不等式即在三角形中两边之和大于第三边,是平面几何不等式里最为基础的结论。广义托勒密定理、欧拉定理及欧拉不等式最后都会用这一不等式导出不等关系。2、平均值不等式Hn≤Gn≤An≤Qn被称为平均值不等式,即调和平均数不超过几何平均数,几何平均数不超过算术平均数,算术平均数不超过平方平均数,简记为“调几算方”。3、二元均值不等式二元均值不等式表示两个正实数的算术平均数大于或等于它们的几何平均数。公式为:a^2+b^2≥2ab;推广有:一般地,若a1,a2,a3,···,an,是正实数,则有均值不等式:4、杨氏不等式杨氏不等式又称Young不等式 ,Young不等式是加权算术-几何平均值不等式的特例,其一般形式为:假设a,b是非负实数,p>1,1/p+1/q=1,那么:等号成立当且仅当a^p=b^q。5、柯西不等式柯西不等式是由大数学家柯西(Cauchy)在研究数学分析中的“流数”问题时得到的。但从历史的角度讲,该不等式应当称为Cauchy-Buniakowsky-Schwarz不等式(柯西-布尼亚科夫斯基-施瓦茨不等式),其一般形式为:6、赫尔德不等式赫尔德不等式是数学分析的一条不等式,取名自奥图·赫尔德(Otto Hölder)。这是一条揭示Lp空间相互关系的基本不等式。设p>1,1/p+1/q=1,令a1,···,an和b1,···,bn是非负实数,则有:扩展资料基本不等式应用:1、应用基本不等式解题一定要注意应用的前提:“一正”“二定”“三相等”。所谓“一正”是指正数,“二定”是指应用基本不等式求最值时,和或积为定值,“三相等”是指满足等号成立的条件.2、在利用基本不等式求最值时,要根据式子的特征灵活变形,配凑出积、和为常数的形式,然后再利用基本不等式。3、条件最值的求解通常有两种方法:(1)一是消元法,即根据条件建立两个量之间的函数关系,然后代入代数式转化为函数的最值求解;(2)二是将条件灵活变形,利用常数“1”代换的方法构造和或积为常数的式子,然后利用基本不等式求解最值。参考资料来源:百度百科—不等式
kikcik2023-05-16 22:46:211

均值不等式公式如何表示?

均值不等式公式如下:扩展资料不等式在初中、高中甚至竞赛中都是比较相对综合、有难度的一块内容,经常会与方程、函数等其它知识点一起考察,一般的题型有:解不等式、证明不等式、求最大最小值。公式内容为Hn≤Gn≤An≤Qn,即调和平均数不超过几何平均数,几何平均数不超过算术平均数,算术平均数不超过平方平均数。
人类地板流精华2023-05-16 22:46:211

绝对值不等式公式四个高中

绝对值是指一个数在数轴上所对应点到原点的距离。用“| |”来表示。|b-a|或|a-b|表示数轴上表示a的点和表示b的点的距离。绝对值不等式的公式为:||a|-|b||≤|a±b|≤|a|+|b|。|a|表示数轴上的点a与原点的距离叫做数a的绝对值。|b-a|或|a-b|表示数轴上表示a的点和表示b的点的距离。当a,b同号时它们位于原点的同一边,此时a与﹣b的距离等于它们到原点的距离之和。当a,b异号时它们分别位于原点的两边,此时a与﹣b的距离小于它们到原点的距离之和。(|a-b|表示a-b与原点的距离,也表示a与b之间的距离)。绝对值重要不等式推导过程 :我们知道|x|={x,(x>0);x,(x=0);-x,(x<0);因此,有:-|a|≤a≤|a|......①-|b|≤b≤|b|......②-|b|≤-b≤|b|......③由①+②得:-(|a|+|b|)≤a+b≤|a|+|b|即|a+b|≤|a|+|b|......④由①+③得:-(|a|+|b|)≤a-b≤|a|+|b|即|a-b|≤|a|+|b|......⑤另:|a|=|(a+b)-b|=|(a-b)+b||b|=|(b+a)-a|=|(b-a)+a|由④知:|a|=|(a+b)-b|≤|a+b|+|-b|=>|a|-|b|≤|a+b|.......⑥|b|=|(b+a)-a|≤|b+a|+|-a|=>|a|-|b|≥-|a+b|.......⑦|a|=|(a-b)+b|≤|a-b|+|b|=>|a|-|b|≤|a-b|.......⑧|b|=|(b-a)+a|≤|b-a|+|a|=>|a|-|b|≥-|a-b|.......⑨由⑥,⑦得:| |a|-|b| |≤|a+b|......⑩由⑧,⑨得:| |a|-|b| |≤|a-b|......⑪综合④⑤⑩⑪得到有关绝对值的重要不等式:|a|-|b|≤|a±b|≤|a|+|b|要注意等号成立的条件(特别是求最值),即:|a-b|=|a|+|b|→ab≤0|a|-|b|=|a+b|→b(a+b)≤0|a|-|b|=|a-b|→b(a-b)≥0注: |a|-|b|=|a+b|→|a|=|a+b|+|b|→|(a+b)-b|=|a+b|+|b|→b(a+b)≤0同理可得|a|-|b|=|a-b|→b(a-b)≥0。
陶小凡2023-05-16 22:46:211

不等式的公式高中数学

不等式的公式有:a^2+b^2≥2ab。√(ab)≤(a+b)/2≤(a^2+b^2)/2。a^2+b^2+c^2≥(a+b+c)^2/3≥ab+bc+ac。a+b+c≥3×三次根号abc。均值不等式,又名平均值不等式、平均不等式,是数学中的一个重要公式。公式内容为Hn≤Gn≤An≤Qn,即调和平均数不超过几何平均数,几何平均数不超过算术平均数,算术平均数不超过平方平均数。
北有云溪2023-05-16 22:46:211

柯西不等式公式有哪些

1、二维形式:(a^2+b^2)(c^2 + d^2)≥(ac+bd)^2等号成立条件:ad=bc2、三角形式:√(a^2+b^2)+√(c^2+d^2)≥√[(a-c)^2+(b-d)^2]等号成立条件:ad=bc3、向量形式:|α||β|≥|α·β|,α=(a1,a2,?,an),β=(b1,b2,?,bn)(n∈N,n≥2)等号成立条件:β为零向量,或α=λβ(λ∈R)。4、一般形式:(∑ai^2)(∑bi^2) ≥ (∑ai·bi)^2等号成立条件:a1:b1=a2:b2=?=an:bn,或ai、bi均为零。扩展资料:不等式的特殊性质有以下三种:①不等式性质1:不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变;②不等式性质2:不等式的两边同时乘(或除以)同一个正数,不等号的方向不变。常用定理①不等式F(x)< G(x)与不等式 G(x)>F(x)同解。②如果不等式F(x) < G(x)的定义域被解析式H( x )的定义域所包含,那么不等式 F(x)<G(x)与不等式F(x)+H(x)<G(x)+H(x)同解。③如果不等式F(x)<G(x) 的定义域被解析式H(x)的定义域所包含,并且H(x)>0,那么不等式F(x)<G(x)与不等式H(x)F(x)<H( x )G(x) 同解。④不等式F(x)G(x)>0与不等式同解;不等式F(x)G(x)<0与不等式同解。 排序不等式:对于两组有序的实数x1≤x2≤?≤xn,y1≤y2≤?≤yn,设yi1,yi2,?,yin是后一组的任意一个排列,记S=x1yn+x2yn-1+?+xny1,M=x1yi1+x2yi2+?+xnyin,L=x1y1+x2y2+?+xnyn,那么恒有S≤M≤L。当且仅当x1=x2=??=xn且y1=y2=??yn时,等号成立。参考资料来源:百度百科-柯西不等式
余辉2023-05-16 22:46:211

均值不等式的6个基本公式

均值不等式6个基本公式如下:关于均值不等式的证明方法有很多,数学归纳法(第一数学归纳法或反向归纳法)、拉格朗日乘数法、琴生不等式法、排序不等式法、柯西不等式法等等,都可以证明均值不等式。几何平均数是对各变量值的连乘积开项数次方根。求几何平均数的方法叫做几何平均法。如果总水平、总成果等于所有阶段、所有环节水平、成果的连乘积总和时,求各阶段、各环节的一般水平、一般成果,要使用几何平均法计算几何平均数,而不能使用算术平均法计算算术平均数。根据所拿握资料的形式不同,其分为简单几何平均数和加权几何平均数两种形式。
铁血嘟嘟2023-05-16 22:46:211

高一数学不等式公式

高一数学不等式公式有如下:1、√((a²+b²)/2)≥(a+b)/2≥√ab≥2/(1/a+1/b)。(当且仅当a=b时,等号成立)。2、√(ab)≤(a+b)/2。(当且仅当a=b时,等号成立)。3、a²+b²≥2ab。(当且仅当a=b时,等号成立)。4、ab≤(a+b)²/4。(当且仅当a=b时,等号成立)。5、||a|-|b| |≤|a+b|≤|a|+|b|。(当且仅当a=b时,等号成立)。基本不等式两大技巧1、“1”的妙用。题目中如果出现了两个式子之和为常数,要求这两个式子的倒数之和的最小值,通常用所求这个式子乘以1,然后把1用前面的常数表示出来,并将两个式子展开即可计算。如果题目已知两个式子倒数之和为常数,求两个式子之和的最小值,方法同上。2、调整系数。有时候求解两个式子之积的最大值时,需要这两个式子之和为常数,但是很多时候并不是常数,这时候需要对其中某些系数进行调整,以便使其和为常数。
康康map2023-05-16 22:46:201

均值不等式公式是什么?

均值不等式公式如下:1、√((a2+b2)/2)≥(a+b)/2≥√ab≥2/(1/a+1/b)。(当且仅当a=b时间,等号成立)2、√(ab)≤(a+b)/2。(当且仅当a=b时间,等号成立)3、a2+b2≥2ab。(当且仅当a=b时间,等号成立)4、ab≤(a+b)2/4。(当且仅当a=b时间,等号成立)5、||a|-|b| |≤|a+b|≤|a|+|b|。(当且仅当a=b时间,等号成立)均值不等式的证明关于均值不等式的证明方法有很多,数学归纳法(第一数学归纳法或反向归纳法)、拉格朗日乘数法、琴生不等式法、排序不等式法、柯西不等式法等等,都可以证明均值不等式。用数学归纳法证明,需要一个辅助结论。引理的正确性较明显,条件A≥0,B≥0可以弱化为A≥0,A+B≥0,有兴趣的同学可以想想如何证明(用数学归纳法)(或用二项展开公式更为简便)。以上资料参考:百度百科-均值不等式
水元素sl2023-05-16 22:46:201

三元均值不等式公式是什么?

定理1:如果a,b,c∈R,那么a³+b³+c³≥3abc,当且仅当a=b=c时,等号成立。定理2:如果a,b,c∈R+,那么(a+b+c)/3≥³√(abc),当且仅当a=b=c时,等号成立。结论:设x,y,z都是正数,则有:(1)若xyz=S(定值),则当x=y=z时,x+y+z有最小值3³√S。(2)若x+y+z=P(定值),则当x=y=z时,xyz有最大值P³/27。记忆:“一正、二定、三相等”。不等式的特殊性质有以下三种:①不等式性质1:不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变。②不等式性质2:不等式的两边同时乘(或除以)同一个正数,不等号的方向不变。③不等式性质3:不等式的两边同时乘(或除以)同一个负数,不等号的方向变。总结:当两个正数的积为定值时,它们的和有最小值;当两个正数的和为定值时,它们的积有最大值。
九万里风9 2023-05-16 22:46:201

解不等式的万能公式是什么?

常用的不等式的基本性质:a>b,b>c=>a>c;a>b=>a+c>b+c;a>b,c>0=>ac>bc;a>b,cacb>0,c>d>0=>ac>bd;a>b,ab>0=>1/ab>0=>a^n>b^n;基本不等式:根号(ab)≤(a+b)^2/2那么可以变为a^2-2ab+b^2≥0a^2+b^2≥2ab扩展:若有y=x1*x2*x3.....Xn且x1+x2+x3+...+Xn=常数P,则Y的最大值为((x1+x2+x3+.....+Xn)/n)^n有两条哦!一个是||a|-|b||≤|a-b|≤|a|+|b|另一个是||a|-|b||≤|a+b|≤|a|+|b|证明方法可利用向量,把a、b看作向量,利用三角形两边之差小于第三边,两边之和大于第三边。柯西不等式:设a1,a2,…an,b1,b2…bn均是实数,则有(a1b1+a2b2+…+anbn)^2≤(a1^2+a2^2+…an^2)*(b1^2+b2^2+…bn^2)当且仅当ai=λbi(λ为常数,i=1,2.3,…n)时取等号。排序不等式:设a1,a2,…an;b1,b2…bn均是实数,且a1≥a2≥a3≥…≥an,b1≥b2≥b3≥…≥bn;则有a1b1+a2b2+…+anbn(顺序和)≥a1b2+a2b1+a3b3+…+aibj+…+anbm(乱序和)≥a1bn+a2bn-1+a3bn-2+…+anb1(逆序和),仅当a1=a2=a3=…an,b1=b2=b3=…=bn时等号成立
可桃可挑2023-05-16 22:46:203

绝对值不等式有哪些基本公式?

绝对值不等式6个基本公式是||a|-|b||≤|a+b|≤|a|+|b|。||a|-|b||≤|a±b|≤|a|+|b|是由两个双边不等式组成。一个是||a|-|b||≤|a+b|≤|a|+|b|,这个不等式当a、b同方向时如果是实数,就是正负符合相同|a+b|=|a|+|b|成立。绝对值不等式基本公式当a、b异向如果是实数,就是ab正负符合不同时,||a|-|b||=|a±b|成立。另一个是||a|-|b||≤|a-b|≤|a|+|b|,这个等号成立的条件刚好和前面相反,当a、b异向如果是实数,就是ab正负符合不同时,|a-b|=|a|+|b|成立。当a、b同方向时如果是实数,就是正负符合相同时,||a|-|b||=|a-b|成立。||a|-|b||≤|a-b|≤|a|+|b|,ΙabΙ=ΙaΙΙbΙ,|a/b|=|a|/|b|(b≠0),|a|<|b|可逆推出|b|>|a|,∥a|−Ib∥≤la+b|≤la|+lb|当且仅当ab≤0时左边等号成立,ab≥0时右边等号成立。
九万里风9 2023-05-16 22:46:201

不等式公式是什么?

基本不等式公式都包含:对于正数a、b.A=(a+b)/2,叫做a、b的算术平均数G=√(ab),叫做a、b的几何平均数S=√[(a^2+b^2)/2],叫做a、b的平方平均数H=2/(1/a+1/b)=2ab/(a+b)叫做调和平均数不等关系:H=<G=<A=<S.其中G=<A是基本的扩展资料基本性质①如果x>y,那么y<x;如果y<x,那么x>y;(对称性)②如果x>y,y>z;那么x>z;(传递性)③如果x>y,而z为任意实数或整式,那么x+z>y+z;(加法原则,或叫同向不等式可加性)④ 如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz<yz;(乘法原则)⑤如果x>y,m>n,那么x+m>y+n;(充分不必要条件)⑥如果x>y>0,m>n>0,那么xm>yn;⑦如果x>y>0,xn>yn(n为正数),xn<yn(n为负数)。
无尘剑 2023-05-16 22:46:201

均值不等式的6个公式是什么?

均值不等式6个基本公式如下:关于均值不等式的证明方法有很多,数学归纳法(第一数学归纳法或反向归纳法)、拉格朗日乘数法、琴生不等式法、排序不等式法、柯西不等式法等等,都可以证明均值不等式。几何平均数是对各变量值的连乘积开项数次方根。求几何平均数的方法叫做几何平均法。如果总水平、总成果等于所有阶段、所有环节水平、成果的连乘积总和时,求各阶段、各环节的一般水平、一般成果,要使用几何平均法计算几何平均数,而不能使用算术平均法计算算术平均数。根据所拿握资料的形式不同,其分为简单几何平均数和加权几何平均数两种形式。
bikbok2023-05-16 22:46:201

三角不等式公式是什么?

三角不等式公式:|a|-|b|≤|a±b|≤|a|+|b|。||a|-|b||≤|a±b|≤|a|+|b|是由两个双边不等式组成。一个是||a|-|b||≤|a+b|≤|a|+|b|,这个不等式当a、b同方向时(如果是实数,就是正负符合相同)|a+b|=|a|+|b|成立。当a、b异向(如果是实数,就是ab正负符合不同)时,||a|-|b||=|a±b|成立。另一个是||a|-|b||≤|a-b|≤|a|+|b|,这个等号成立的条件刚好和前面相反,当a、b异向(如果是实数,就是ab正负符合不同)时,|a-b|=|a|+|b|成立。当a、b同方向时(如果是实数,就是正负符合相同)时,||a|-|b||=|a-b|成立。三角不等式介绍:三角不等式,即在三角形中两边之和大于第三边,有时亦指用不等号连接的含有三角函数的式子。三角不等式虽然简单,但却是平面几何不等式里最为基础的结论。
瑞瑞爱吃桃2023-05-16 22:46:201

均值不等式的公式是什么?

均值不等式的公式内容为Hn≤Gn≤An≤Qn。拓展资料:均值不等式,又名平均值不等式、平均不等式,是数学中的一个重要公式。Hn≤Gn≤An≤Qn,即调和平均数不超过几何平均数,几何平均数不超过算术平均数,算术平均数不超过平方平均数。简记为“调几算方”。调和平均数:几何平均数:算术平均数:平方平均数:
韦斯特兰2023-05-16 22:46:201

什么是常用不等式公式,如何运用?

常用不等式公式:①√((a²+b²)/2)≥(a+b)/2≥√ab≥2/(1/a+1/b)。②√(ab)≤(a+b)/2。③a²+b²≥2ab。④ab≤(a+b)²/4。⑤||a|-|b| |≤|a+b|≤|a|+|b|。原理:①不等式F(x)< G(x)与不等式 G(x)>F(x)同解。②如果不等式F(x) < G(x)的定义域被解析式H( x )的定义域所包含,那么不等式 F(x)<G(x)与不等式F(x)+H(x)<G(x)+H(x)同解。③如果不等式F(x)<G(x) 的定义域被解析式H(x)的定义域所包含,并且H(x)>0,那么不等式F(x)<G(x)与不等式H(x)F(x)<H( x )G(x) 同解;如果H(x)<0,那么不等式F(x)<G(x)与不等式H (x)F(x)>H(x)G(x)同解。④不等式F(x)G(x)>0与不等式同解;不等式F(x)G(x)<0与不等式同解。
Jm-R2023-05-16 22:46:201

不等式有关公式

①√((a²+b²)/2)≥(a+b)/2≥√ab≥2/(1/a+1/b)②√(ab)≤(a+b)/2③a²+b²≥2ab④ab≤(a+b)²/4⑤||a|-|b| |≤|a+b|≤|a|+|b|
再也不做站长了2023-05-16 22:46:192

均值不等式公式

均值不等式公式如下:扩展资料不等式在初中、高中甚至竞赛中都是比较相对综合、有难度的一块内容,经常会与方程、函数等其它知识点一起考察,一般的题型有:解不等式、证明不等式、求最大最小值。公式内容为Hn≤Gn≤An≤Qn,即调和平均数不超过几何平均数,几何平均数不超过算术平均数,算术平均数不超过平方平均数。
墨然殇2023-05-16 22:46:191

均值不等式是什么?公式是什么?

概念:  1、调和平均数:Hn=n/(1/a1+1/a2+...+1/an)  2、几何平均数:Gn=(a1a2...an)^(1/n)=n次√(a1*a2*a3*...*an)  3、算术平均数:An=(a1+a2+...+an)/n  4、平方平均数:Qn=√ [(a1^2+a2^2+...+an^2)/n]  这四种平均数满足Hn≤Gn≤An≤Qn  a1、a2、… 、an∈R +,当且仅当a1=a2= … =an时取“=”号  均值不等式的一般形式:设函数D(r)=[(a1^r+a2^r+...an^r)/n]^(1/r)(当r不等于0时);  (a1a2...an)^(1/n)(当r=0时)(即D(0)=(a1a2...an)^(1/n))  则有:当r<s时,D(r)≤D(s)  注意到Hn≤Gn≤An≤Qn仅是上述不等式的特殊情形,即D(-1)≤D(0)≤D(1)≤D(2)
ardim2023-05-16 22:46:193

不等式需要变号有哪几种情况

不等式需要变号有以下情况:1、不等式两边同乘或同除以一个负数;2、不等式两边同号(即同正或同负) 倒数时需变号 。不等式两边同乘或同除以一个负数;举例:5>1,同时乘以一个负数-1,就变成了-5<-1,这是因为正数是数字越大,值越大而负数是数字越大值越小;不等式两边同号(即同正或同负) 倒数时需变号:举例:3<8,求导数后变成1/3>1/8,这是因为,分数的性质,分母越大,分数值越小决定的。编辑于 2020-07-16查看全部4个回答高中不等式公式大全,提高高中生成绩的方法根据数学相关内容为您推荐不等式公式高中不等式公式大全,从高一到高三初期,我儿子就一直特别努力,可是成绩就是没提高,高中不等式公式大全,试过了这个方法,他的成绩真的提高了zc.hebop.cn广告不等式公式高中数学_多数人不知的提分秘诀_尖子生这样做根据数学相关内容为您推荐高中数学不等式公式高中数学,与其刷题,不如花点时间巩固高考必备知识点!别让提分项失分!高二 高三了,还是中等生,三个提分策略",决定你高考成绩,点击查看xr10.ahchuangheng.cn广告不等式什么时候要变号专家1对1在线解答问题5分钟内响应 | 万名专业答主极速提问篮球大图 正在咨询一个旅游问题— 你看完啦,以下内容更有趣 —算数学题的软件_3-10岁儿童数学思维在线教育_轻松学数学火花思维,教育行业一线团队,自主研发高效教育课程,高品质小班在线教学,让孩子爱学习,会思考,100%原创课件,全程专属班主任跟进服务,让家长更放心!广告2021-03-20解不等式什么时候需要变号34不等式的基本性质应用2赞·1播放解不等式什么时候需要变号?不等式两边都乘以或除以一个负数,要改变不等号的方向。 例:5>-3,两边同时乘以-2的时候,得出的结果是 -10<6 因为不等式基本上是在数轴上表现出来的,严格的不等式就会用“”表示,如果不等号两边是都是正数那么正数乘以负数,正数越大乘积就会变得越小,所以符号肯定改变了;如果同是负数,负负得正,负数越小乘积越大,符号也是改变的;如果一正一负乘以负数则正变负小于负变正,符号也一定会变,除以负数同理。 扩展资料: 一般地,用纯粹的大于号“>”、小于号“,≥,≤,≠)连接的式子叫做不等式。其中,两边的解析式的公共定义域称为不等式的定义域。 整式不等式:整式不等式两边都是整式(即未知数不在分母上)。 一元一次不等式:含有一个未知数(即一元),并且未知数的次数是1次(即一次)的不等式。如3-X>0 同理:二元一次不等式:含有两个未知数(即二元),并且未知数的次数是1次(即一次)的不等式。102赞·4,258浏览2019-11-13解不等式时,什么时候要改变符号?当不等式左右两边同时除以或乘以负数时,需改变不等式符号。 以2x-5<4x-2为例,步骤如下: 第一步:式子左右两边均加5。如图: 第二步:进行常数计算,消除左边的常数。如图: 第三步:将4x的移动到式子左边,方便合并同类项(注意:不管是常数还是未知数,从左边换到右边或从右边换到左边,数值上均需乘以-1,即改变符号)。如图: 第四步:合并同类项。计算2x-4x,得出结果为-2x。如图: 第五步:式子左右两边均除以-2,消除未知数上的系数(由于除以或乘以负数,不等式符号需做变换,即从原来的“<”变成“>”)。得出最后结论为:x>-1.5如图:233赞·7,729浏览2019-10-15不等式在计算时,什么时候要变号加减或乘除负数时都要不等式两边同时加减一个相同的负数,不等号不用变。 不等式两边同时加减相同的任何实数,无论这个实数是0,是正数还是负数,不等号都不变。 我想这点应该容易理解吧。 比方说a>b成立,那么a+(-3)和b+(-3)之间当然还是a+(-3)>b+(-3)成立。不可能变成a+(-3)<b+(-3)成立。和常识都不相符。 不等式两边同时乘除一个负数,不等号要变号。 例如a>b成立,那么两边同时乘以-2得到-2a和-2b,那么就是-2a<-2b成立了。两边同时除以-2,也是得到-a/2<-b/2成立了。87赞·2,734浏览2018-01-25不等式什么时候要变号若不等号左边为负数,不等号改变方向;若不等号两边为负数,不等号改变方向;其余情况不等号均不改变方向。7赞·1,771浏览2019-07-10宜春 不等式,好老师1对1教出好成绩.0元试听根据数学相关内容为您推荐等式上海掌小门教育科技..广告高中数学基本不等式知识点:快速提高考试成绩_这几点是关键_赶紧收藏…根据文中提到的数学为您推荐山西蛋壳网络科技有限公司广告正在加载评论
苏萦2023-05-16 22:46:191

初中不等式公式

两边同时加减同一个数,不变。两边同时乘以或除以同一个正数,不变。两边同时乘以或除以同一个负数,不等号改变方向。两边都是正数,两边同时同次非负乘方开方,不变。两边都是正数,两边同时倒数,反号。两边都是正数,两边同时同负次乘方开方,反号。平方数≥0由(a-b)²≥0,得a²十b²≥2ab,a=b时等号成立。设A=a²≥0,B=b²≥0,代入得A十B≥2√(AB)或者(A十B)/2≥√(AB),前面叫“算术平均数”,后面叫“几何平均数”。定理,正数的算术平均数大于等于几何平均数。
小白2023-05-16 22:46:191

柯西不等式公式是什么?

1、二维形式:(a^2+b^2)(c^2 + d^2)≥(ac+bd)^22、三角形式:√(a^2+b^2)+√(c^2+d^2)≥√[(a-c)^2+(b-d)^2]3、向量形式:|α||β|≥|α·β|,α=(a1,a2,…,an),β=(b1,b2,…,bn)(n∈N,n≥2)4、一般形式:(∑ai^2)(∑bi^2)≥(∑ai·bi)^2不等式的特殊性质有以下三种:①不等式性质1:不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变;②不等式性质2:不等式的两边同时乘(或除以)同一个正数,不等号的方向不变;③不等式性质3:不等式的两边同时乘(或除以)同一个负数,不等号的方向变。总结:当两个正数的积为定值时,它们的和有最小值;当两个正数的和为定值时,它们的积有最大值。
小菜G的建站之路2023-05-16 22:46:191

不等式公式

a+b+c≥3倍*3次开根abc常用的不等式的基本性质:a>b,b>c => a>c; a>b => a+c>b+c; a>b,c>0 => ac>bc; a>b,c<0 =>ac<bc; a>b>0,c>d>0 => ac>bd; a>b,ab>0 => 1/a<1/b; a>b>0 => a^n>b^n; 基本不等式:根号(ab)≤(a+b)^2/2 那么可以变为 a^2-2ab+b^2 ≥ 0 a^2+b^2 ≥ 2ab 扩展:若有y=x1*x2*x3.....Xn 且x1+x2+x3+...+Xn=常数P,则Y的最大值为((x1+x2+x3+.....+Xn)/n)^n 有两条哦! 一个是| |a|-|b| |≤|a-b|≤|a|+|b| 另一个是| |a|-|b| |≤|a+b|≤|a|+|b| 证明方法可利用向量,把a、b 看作向量,利用三角形两边之差小于第三边,两边之和大于第三边。 柯西不等式: 设a1,a2,…an,b1,b2…bn均是实数,则有(a1b1+a2b2+…+anbn)^2≤(a1^2+a2^2+…an^2)*(b1^2+b2^2+…bn^2) 当且仅当ai=λbi(λ为常数,i=1,2.3,…n)时取等号。 排序不等式: 设a1,a2,…an;b1,b2…bn均是实数,且a1≥a2≥a3≥…≥an,b1≥b2≥b3≥…≥bn;则有a1b1+a2b2+…+anbn(顺序和)≥a1b2+a2b1+a3b3+…+aibj+…+anbm(乱序和)≥a1bn+a2bn-1+a3bn-2+…+anb1(逆序和),仅当a1=a2=a3=…an,b1=b2=b3=…=bn时等号成立。
bikbok2023-05-16 22:46:191

三角不等式公式是什么?

三角不等式公式:|a|-|b|≤|a±b|≤|a|+|b|。||a|-|b||≤|a±b|≤|a|+|b|是由两个双边不等式组成。一个是||a|-|b||≤|a+b|≤|a|+|b|,这个不等式当a、b同方向时(如果是实数,就是正负符合相同)|a+b|=|a|+|b|成立。当a、b异向(如果是实数,就是ab正负符合不同)时,||a|-|b||=|a±b|成立。另一个是||a|-|b||≤|a-b|≤|a|+|b|,这个等号成立的条件刚好和前面相反,当a、b异向(如果是实数,就是ab正负符合不同)时,|a-b|=|a|+|b|成立。当a、b同方向时(如果是实数,就是正负符合相同)时,||a|-|b||=|a-b|成立。三角不等式介绍:三角不等式,即在三角形中两边之和大于第三边,有时亦指用不等号连接的含有三角函数的式子。三角不等式虽然简单,但却是平面几何不等式里最为基础的结论。
左迁2023-05-16 22:46:191

高中常用的不等式公式有哪些?

(a+b)/2≥√ab a^2+b^2≥2ab (a+b+c)/3≥(abc)^(1/3) a^3+b^3+c^3≥3abc (a1+a2+…+an)/n≥(a1a2…an)^(1/n) 2/(1/a+1/b)≤√ab≤(a+b)/2≤√[(a^2+b^2)/2] 详见如下参考资料的网址
苏萦2023-05-16 22:46:197

柯西不等式公式有哪些

都被说了
CarieVinne 2023-05-16 22:46:196

不等式5个公式是什么?

高中5个基本不等式的公式是:(1)√((a²+b²)/2)≥(a+b)/2≥√ab≥2/(1/a+1/b)。(当且仅当a=b时,等号成立)。(2)√(ab)≤(a+b)/2。(当且仅当a=b时,等号成立)。(3)a²+b²≥2ab。(当且仅当a=b时,等号成立)。(4)ab≤(a+b)²/4。(当且仅当a=b时,等号成立)。(5)||a|-|b| |≤|a+b|≤|a|+|b|。(当且仅当a=b时,等号成立)。基本不等式两大技巧1、“1”的妙用。题目中如果出现了两个式子之和为常数,要求这两个式子的倒数之和的最小值,通常用所求这个式子乘以1,然后把1用前面的常数表示出来,并将两个式子展开即可计算。如果题目已知两个式子倒数之和为常数,求两个式子之和的最小值,方法同上。2、调整系数。有时候求解两个式子之积的最大值时,需要这两个式子之和为常数,但是很多时候并不是常数,这时候需要对其中某些系数进行调整,以便使其和为常数。
CarieVinne 2023-05-16 22:46:181

高中常用的不等式公式有哪些

高中常用的不等式公式有:(1)(a+b)/2≥√ab (2)a^2+b^2≥2ab (3)(a+b+c)/3≥(abc)^(1/3) (4)a^3+b^3+c^3≥3abc (5)(a1+a2+…+an)/n≥(a1a2…an)^(1/n) (6)2/(1/a+1/b)≤√ab≤(a+b)/2≤√[(a^2+b^2)/2] 扩展资料:不等式基本性质:①如果x>y,那么y<x;如果y<x,那么x>y;(对称性)②如果x>y,y>z;那么x>z;(传递性)③如果x>y,而z为任意实数或整式,那么x+z>y+z;(加法原则,或叫同向不等式可加性)④ 如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz<yz;(乘法原则)⑤如果x>y,m>n,那么x+m>y+n;(充分不必要条件)不等式两边相加或相减同一个数或式子,不等号的方向不变。(移项要变号)不等式两边相乘或相除同一个正数,不等号的方向不变。(相当系数化1,这是得正数才能使用)不等式两边乘或除以同一个负数,不等号的方向改变。(÷或×1个负数的时候要变号)参考资料:百度百科---基本不等式
Jm-R2023-05-16 22:46:181

均值不等式公式是什么?

均值不等式公式如下:不等式在初中、高中甚至竞赛中都是比较相对综合、有难度的一块内容,经常会与方程、函数等其它知识点一起考察,一般的题型有:解不等式、证明不等式、求最大最小值。相关内容解释关于均值不等式的证明方法有很多,数学归纳法(第一数学归纳法或反向归纳法)、拉格朗日乘数法、琴生不等式法、排序不等式法、柯西不等式法等等,都可以证明均值不等式,在这里简要介绍数学归纳法的证明方法:(注:在此证明的,是对n维形式的均值不等式的证明方法。)用数学归纳法证明,需要一个辅助结论。注:引理的正确性较明显,条件A≥0,B≥0可以弱化为A≥0,A+B≥0,有兴趣的同学可以想想如何证明(用数学归纳法)(或用二项展开公式更为简便)。
北营2023-05-16 22:46:181

三项不等式公式

a+b+c≥3倍*3次开根abc常用的不等式的基本性质:a>b,b>c=>a>c;a>b=>a+c>b+c;a>b,c>0=>ac>bc;a>b,c<0=>acb>0,c>d>0=>ac>bd;a>b,ab>0=>1/a<1/b;a>b>0=>a^n>b^n;基本不等式:根号(ab)≤(a+b)^2/2那么可以变为a^2-2ab+b^2≥0a^2+b^2≥2ab扩展:若有y=x1*x2*x3.....xn且x1+x2+x3+...+xn=常数p,则y的最大值为((x1+x2+x3+.....+xn)/n)^n有两条哦!一个是||a|-|b||≤|a-b|≤|a|+|b|另一个是||a|-|b||≤|a+b|≤|a|+|b|证明方法可利用向量,把a、b看作向量,利用三角形两边之差小于第三边,两边之和大于第三边。柯西不等式:设a1,a2,…an,b1,b2…bn均是实数,则有(a1b1+a2b2+…+anbn)^2≤(a1^2+a2^2+…an^2)*(b1^2+b2^2+…bn^2)当且仅当ai=λbi(λ为常数,i=1,2.3,…n)时取等号。排序不等式:设a1,a2,…an;b1,b2…bn均是实数,且a1≥a2≥a3≥…≥an,b1≥b2≥b3≥…≥bn;则有a1b1+a2b2+…+anbn(顺序和)≥a1b2+a2b1+a3b3+…+aibj+…+anbm(乱序和)≥a1bn+a2bn-1+a3bn-2+…+anb1(逆序和),仅当a1=a2=a3=…an,b1=b2=b3=…=bn时等号成立。
mlhxueli 2023-05-16 22:46:181

高考数学不等式公式整理

.不等式的基本性质: 性质1:如果a>b,b>c,那么a>c(不等式的传递性). 性质2:如果a>b,那么a+c>b+c(不等式的可加性). 性质3:如果a>b,c>0,那么ac>bc;如果a>b,c<0,那么acb,c>d,那么a+c>b+d. 性质5:如果a>b>0,c>d>0,那么ac>bd. 性质6:如果a>b>0,n∈N,n>1,那么an>bn,且. 例1:判断下列命题的真假,并说明理由. 若a>b,c=d,则ac2>bd2;(假) 若,则a>b;(真) 若a>b且ab<0,则;(假) 若a若,则a>b;(真) 若|a|b2;(充要条件) 命题A:a命题A:,命题B:0说明:本题要求学生完成一种规范的证明或解题过程,在完善解题规范的过程中完善自身逻辑思维的严密性. a,b∈R且a>b,比较a3-b3与ab2-a2b的大小.(≥) 说明:强调在最后一步中,说明等号取到的情况,为今后基本不等式求最值作思维准备. 例4:设a>b,n是偶数且n∈N*,试比较an+bn与an-1b+abn-1的大小. 说明:本例条件是a>b,与正值不等式乘方性质相比在于缺少了a,b为正值这一条件,为此我们必须对a,b的取值情况加以分类讨论.因为a>b,可由三种情况(1)a>b≥0;(2)a≥0>b;(3)0>a>b.由此得到总有an+bn>an-1b+abn-1.通过本例可以开始渗透分类讨论的数学思想. 练习: 1.若a≠0,比较(a2+1)2与a4+a2+1的大小.(>) 2.若a>0,b>0且a≠b,比较a3+b3与a2b+ab2的大小.(>) 3.判断下列命题的真假,并说明理由. (1)若a>b,则a2>b2;(假) (2)若a>b,则a3>b3;(真) (3)若a>b,则ac2>bc2;(假) (4)若,则a>b;(真) 若a>b,c>d,则a-d>b-c.(真).
再也不做站长了2023-05-16 22:46:182

高中数学均值不等式部分的公式

均值不等式
小菜G的建站之路2023-05-16 22:46:186

哪些基本不等式公式是包含的呢?

基本不等式公式都包含:对于正数a、b. A=(a+b)/2,叫做a、b的算术平均数 G=√(ab),叫做a、b的几何平均数 S=√[(a^2+b^2)/2],叫做a、b的平方平均数 H=2/(1/a+1/b)=2ab/(a+b)叫做调和平均数 不等关系:H=<G=<A=<S.其中G=<A是基本的基本不等式:又称柯西不等式,是由大数学家柯西(Cauchy)在研究数学分析中的“流数”问题时得到的。但从历史的角度讲,该不等式应当称为Cauchy-Buniakowsky-Schwarz不等式,因为,正是后两位数学家彼此独立地在积分学中推而广之,才将这一不等式应用到近乎完善的地步。 柯西不等式非常重要,灵活巧妙地应用它,可以使一些较为困难的问题迎刃而解。 柯西不等式在证明不等式、解三角形、求函数最值、解方程等问题的方面得到应用。二维形式:(a^2+b^2+c^2)*(1+1+1)>=(a+b+c)^2=1 (柯西不等式) 所(a^2+b^2+c^2)>=1/3 (1式) 又a^3+b^3+c^3=(a^3+b^3+c^...(平方的和的乘积不小于乘积的和的平方)
北境漫步2023-05-16 22:46:181

均值不等式公式是什么?

均值不等式公式如下:扩展资料不等式在初中、高中甚至竞赛中都是比较相对综合、有难度的一块内容,经常会与方程、函数等其它知识点一起考察,一般的题型有:解不等式、证明不等式、求最大最小值。公式内容为Hn≤Gn≤An≤Qn,即调和平均数不超过几何平均数,几何平均数不超过算术平均数,算术平均数不超过平方平均数。
北境漫步2023-05-16 22:46:182

均值不等式的6个公式是什么?

均值不等式6个基本公式是、Hn≤Gn≤An≤Qn。1、均值不等式,又名平均值不等式、平均不等式,是数学中的一个重要公式。公式内容为Hn≤Gn≤An≤Qn,即调和平均数不超过几何平均数,几何平均数不超过算术平均数,算术平均数不超过平方平均数。2、关于均值不等式的证明方法有很多,数学归纳法(第一数学归纳法或反向归纳法)、拉格朗日乘数法、琴生不等式法、排序不等式法、柯西不等式法等等,都可以证明均值不等式。3、均值基本公式:已知x,y∈R+,x+y=S,x·y=P,如果P是定值,那么当且仅当x=y时,S有最小值;如果S是定值,那么当且仅当x=y时,P有最大值。或当a、b∈R+,a+b=k(定值)时,a+b≥2√ab (定值)当且仅当a=b时取等号。4、设X1,X2,X3,……,Xn为大于0的数,则X1+X2+X3+……+Xn≥n乘n次根号下X1乘X2乘X3乘……乘Xn。均值定理,又称基本不等式。主要内容为在正实数范围内,若干数的几何平均数不超过他们的算术平均数,且当这些数全部相等时,算术平均数与几何平均数相等。5、均值定理是高中数学学习中的一个非常重要的知识点,在函数求最值问题中有十分频繁的应用。均值定理特点:一正:各部分为正数。二定:不等号左或右是定值。三相等:等号能够取得。
凡尘2023-05-16 22:46:181

均值不等式的常用公式?

(1)对实数a,b,有a^2+b^2≥2ab(当且仅当a=b时取“=”号),a^2+b^2>0>-2ab(2)对非负实数a,b,有a+b≥2√(a*b)≥0,即(a+b)/2≥√(a*b)≥0(3)对负实数a,b,有a+b<0<2√(a*b)(4)对实数a,b,有a(a-b)≥b(a-b)(5)对非负数a,b,有a^2+b^2≥2ab≥0(6)对非负数a,b,有a^2+b^2≥1/2*(a+b)^2≥ab(7)对非负数a,b,c,有a^2+b^2+c^2≥1/3*(a+b+c)^2(8)对非负数a,b,c,有a^2+b^2+c^2≥ab+bc+ac(9)对非负数a,b,有a^2+ab+b^2≥3/4*(a+b)^
ardim2023-05-16 22:46:185

绝对值不等式6个基本公式是什么?

绝对值是指一个数在数轴上所对应点到原点的距离,用“| |”来表示。|b-a|或|a-b|表示数轴上表示a的点和表示b的点的距离。绝对值不等式的公式为:||a|-|b||≤|a±b|≤|a|+|b|。|a|表示数轴上的点a与原点的距离叫做数a的绝对值。|b-a|或|a-b|表示数轴上表示a的点和表示b的点的距离。当a,b同号时它们位于原点的同一边,此时a与﹣b的距离等于它们到原点的距离之和。当a,b异号时它们分别位于原点的两边,此时a与﹣b的距离小于它们到原点的距离之和。(|a-b|表示a-b与原点的距离,也表示a与b之间的距离)。
FinCloud2023-05-16 22:46:181

高中数学不等式公式总结,要很全的,最好有例题谢谢

看看这个能不能帮你
北有云溪2023-05-16 22:46:182

柯西不等式高中公式是什么?

1、二维形式:(a^2+b^2)(c^2 + d^2)≥(ac+bd)^2。等号成立条件:ad=bc。2、三角形式:√(a^2+b^2)+√(c^2+d^2)≥√[(a-c)^2+(b-d)^2]。等号成立条件:ad=bc。3、向量形式:|α||β|≥|α·β|,α=(a1,a2,…,an),β=(b1,b2,…,bn)(n∈N,n≥2)。等号成立条件:β为零向量,或α=λβ(λ∈R)。4、一般形式:(∑ai^2)(∑bi^2)≥(∑ai·bi)^2。等号成立条件:a1:b1=a2:b2=…=an:bn,或ai、bi均为零。相关信息:柯西不等式是由柯西在研究过程中发现的一个不等式,其在解决不等式证明的有关问题中有着十分广泛的应用,所以在高等数学提升中与研究中非常重要,是高等数学研究内容之一。据说,法国科学院《会刊》创刊的时候,由于柯西的作品实在太多,以致于科学院要负担很大的印刷费用,超出科学院的预算,因此,科学院后来规定论文最长的只能够到四页。柯西较长的论文因而只得投稿到其它地方。
凡尘2023-05-16 22:46:181

不等式公式

不等式公式如下:一、基本不等式√(ab)≤(a+b)/2,那么可以变为 a^2-2ab+b^2 ≥ 0,a^2+b^2 ≥ 2ab,ab≤a与b的平均数的平方。二、绝对值不等式公式| |a|-|b| |≤|a-b|≤|a|+|b|。| |a|-|b| |≤|a+b|≤|a|+|b|。三、柯西不等式设a1,a2,an,b1,b2,bn均是实数,则有(a1b1+a2b2++anbn)^2≤(a1^2+a2^2+an^2)*(b1^2+b2^2+bn^2) 当且仅当ai=λbi(λ为常数,i=1,2.3,n)时取等号。四、三角不等式对于任意两个向量b其加强的不等式,这个不等式也可称为向量的三角不等式。五、四边形不等式如果对于任意的a1≤a2<b1≤b2,有m[a1,b1]+m[a2,b2]≤m[a1,b2]+m[a2,b1],那么m[i,j]满足四边形不等式。
ardim2023-05-16 22:46:171

数学不等式的公式都有哪些?

常用不等式公式:①√((a²+b²)/2)≥(a+b)/2≥√ab≥2/(1/a+1/b)。②√(ab)≤(a+b)/2。③a²+b²≥2ab。④ab≤(a+b)²/4。⑤||a|-|b| |≤|a+b|≤|a|+|b|。原理:①不等式F(x)< G(x)与不等式 G(x)>F(x)同解。②如果不等式F(x) < G(x)的定义域被解析式H( x )的定义域所包含,那么不等式 F(x)<G(x)与不等式F(x)+H(x)<G(x)+H(x)同解。③如果不等式F(x)<G(x) 的定义域被解析式H(x)的定义域所包含,并且H(x)>0,那么不等式F(x)<G(x)与不等式H(x)F(x)<H( x )G(x) 同解;如果H(x)<0,那么不等式F(x)<G(x)与不等式H (x)F(x)>H(x)G(x)同解。④不等式F(x)G(x)>0与不等式同解;不等式F(x)G(x)<0与不等式同解。
瑞瑞爱吃桃2023-05-16 22:46:171

不等式公式 不等式公式是什么

  基本不等式公式为:a+b≥2√(ab)。   常用的不等式公式有:   √((a²+b²)/2)≥(a+b)/2≥√ab≥2/(1/a+1/b)   √ab≤(a+b)/2   a²+b²≥2ab   ab≤(a+b)²/4   ||a|-|b||≤|a+b|≤|a|+|b|(注:|a|读作a的绝对值)   其中,a>0,b>0,当且仅当a=b时,等号成立。  一般地,用纯粹的大于号“>”、小于号“<”表示大小关系的式子,叫作不等式。用“≠”表示不等关系的式子也是不等式。不等式的特殊性质有以下三种:   1、不等式的两边同时加上或减去同一个数或式子,不等号的方向不变;   2、不等式的两边同时乘或除以同一个正数,不等号的方向不变;   3、不等式的两边同时乘或除以同一个负数,不等号的方向变。
豆豆staR2023-05-16 22:46:171

解不等式的公式

解不等式的公式如下:基本不等式公式为: a+b≥2√(ab)。常用的不等式公式。√((a2+b2)/2)>(a+b)/2≥√ab≥2/(1/a+1/b)√ab≤(a+b)/2a2+b2>2abab≤(a+b)2/4lla-Ibl[≤la+b|≤la/+b/(注:la读作a的绝对值)其中,a >0,b>0,当且仅当a=b时,等号成立。不等式(inequality)是用不等号连接的式子。不等式分为严格不等式与非严格不等式,用纯粹的大于号、小于号连接的不等式称为严格不等式,用不小于号(大于或等于号)、不大于号(小于或等于号)连接的不等式称为非严格不等式,或称广义不等式。不等式既可以表达一个命题,也可以表示一个问题。一般地,用纯粹的大于号“>”、小于号“<”连接的不等式称为严格不等式,用不小于号(大于或等于号)“≥”、不大于号(小于或等于号)“≤”连接的不等式称为非严格不等式,或称广义不等式。总的来说,用不等号(<,>,≥,≤,≠)连接的式子叫做不等式。其中,两边的解析式的公共定义域称为不等式的定义域。如果x>y,那么y<x;如果y<x,那么x>y;(对称性)如果x>y,y>z;那么x>z;(传递性)如果x>y,而z为任意实数或整式,那么x+z>y+z;(加法原则,或叫同向不等式可加性)如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz<yz;(乘法原则)如果x>y,m>n,那么x+m>y+n;(充分不必要条件)如果x>y>0,m>n>0,那么xm>yn;如果x>y>0,那么x的n次幂>y的n次幂(n为正数),x的n次幂<y的n次幂(n为负数)。或者说,不等式的基本性质的另一种表达方式有:解不等式的途径,利用函数的性质。对指无理不等式,化为有理不等式。高次向着低次代,步步转化要等价。数形之间互转化,帮助解答作用大。证不等式的方法,实数性质威力大。求差与0比大小,作商和1争高下。直接困难分析好,思路清晰综合法。非负常用基本式,正面难则反证法。还有重要不等式,以及数学归纳法。图形函数来帮助,画图、建模、构造法。不等式的定义一般地,用纯粹的大于号">"、小于号"<"连接的不等式称为严格不等式,用不小于号(大于或等于号)"≥"、不大于号(小于或等于号)"≤"连接的不等式称为非严格不等式,或称广义不等式。总的来说,用不等号(<,>,≥,≤,≠)连接的式子叫做不等式。通常不等式中的数是实数,字母也代表实数,不等式的一般形式为F(x,y,……,z)≤G(x,y,……,z )(其中不等号也可以为<,≤,≥,> 中某一个),两边的解析式的公共定义域称为不等式的定义域,不等式既可以表达一个命题,也可以表示一个问题。
水元素sl2023-05-16 22:46:171

不等式公式高中数学

高中阶段的不等式公式:一、两个数的不等式公式1、若a-b>0,则a>b(作差)。2、若a>b,则a±c>b±c。3、若a+b>c,则a>b-c(移项)。4、若a>b,则c>d(不等号同向相加成立,两个大的加起来,肯定比两个小的加起来大)。5、若a>b>0,c>d>0则ac>bd(两个大正数相乘肯定比两个小正数的相乘大)。6、若a>b>0,则an>bn(n∈N,n>1)。二、基本不等式(也叫均值不等式)思想:反应的是算术平均值(a+b)/2和几何平均值的大小关系,这里a,b都是非负数。1、(a+b)/2≥ab(算术平均值不小于几何平均值)。2、a2+b2≥2ab(由1两边平方变化而来)。3、ab≤(a2+b2)/2≤(a+b)2 /2(由2扩展而来)。三、绝对值不等式公式(a,b看成向量,“||”看成向量的模也适用)思想:三角形两边之差小于第三边,两边之和大于第三边。1、||a|-|b| |≤|a-b|≤|a|+|b|2、||a|-|b| |≤|a+b|≤|a|+|b|四、二次函数不等式f(x)=ax2+bx +c(a≠0)思想:函数图像是开口向上(a>0)或开口向下(a<0)的曲线,令函数值为0,解出f(x)的零点,符号看函数值处在纵坐标的正半轴还是负半轴。一般两个零点为。假如为m,n(m<n),则:1、f(x)>o,即ax2+bx+c>o(a<0),解集为(-∞,m)(n,+∞)。(大于取两头)2、f(x)<o,即ax2+bx+c<o(a<0),解集为(m,n)。(小于取中间)3、f(x)>o,即ax2+bx+c>o(a<0),解集为(m,n)。4、f(x)<o,即ax2+bx+c>o(a<0),解集为(-∞,m)(n,+∞)。五、函数单调性的不等式思想:函数值与自变量的变化量同增为增,同减为增,增减为减。1、f(x)为增函数:在x1、x2都在定义域内,若x1>x2,则f(x1)>f(x2)。2、f(x)为减函数:在x1、x2都在定义域内,若x1<x2,则f(x1)>f(x2)。3、若f(x)单调函数,在x1、x2都在定义域内(x1、x2均不为0),若存在零点,则不等式f(x1)×f(x2)<o。六、两个不同的函数表达式的不等式1、若f(x)/g(x)>0,则f(x)×g(x)>0;若f(x)/g(x)<0,则f(x)×g(x)<0,反过来也成立。2、若f(x)>0,g(x)>0,则g(x)+g(x)>0;若f(x)<0,g(x)<0,则g(x)+g(x)<0。七、与导数有关的不等式1、若f(x)在区间(a,b)内单调增,则导数f"(x)>0。2、若f(x)在区间(a,b)内单调减,则导数f"(x)<0。导数反应的函数值变化量与自变量的比的符号,与上述五所列公式的思想是一致的。作差法,用“f(x1)-f(x2)”除以“x1-x2”,取极限就得出相同的结论。
ardim2023-05-16 22:46:171

不等式公式是什么?

基本不等式公式都包含:对于正数a、b。A=(a+b)/2,叫做a、b的算术平均数。G=√(ab),叫做a、b的几何平均数。S=√[(a^2+b^2)/2],叫做a、b的平方平均数。H=2/(1/a+1/b)=2ab/(a+b)叫做调和平均数。不等关系:H=<G=<A=<S.其中G=<A是基本的。常用定理①不等式F(x)< G(x)与不等式 G(x)>F(x)同解。②如果不等式F(x) < G(x)的定义域被解析式H( x )的定义域所包含,那么不等式 F(x)。③如果不等式F(x)定义域被解析式H(x)的定义域所包含,并且H(x)>0,那么不等式F(x)H(x)G(x)同解。
wpBeta2023-05-16 22:46:171

不等式公式是什么?

基本不等式公式都包含:对于正数a、b.A=(a+b)/2,叫做a、b的算术平均数G=√(ab),叫做a、b的几何平均数S=√[(a^2+b^2)/2],叫做a、b的平方平均数H=2/(1/a+1/b)=2ab/(a+b)叫做调和平均数不等关系:H=<G=<A=<S.其中G=<A是基本的基本性质①如果x>y,那么y<x;如果y<x,那么x>y;(对称性)②如果x>y,y>z;那么x>z;(传递性)③如果x>y,而z为任意实数或整式,那么x+z>y+z;(加法原则,或叫同向不等式可加性)④ 如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz<yz;(乘法原则)⑤如果x>y,m>n,那么x+m>y+n;(充分不必要条件)⑥如果x>y>0,m>n>0,那么xm>yn;⑦如果x>y>0,xn>yn(n为正数),xn<yn(n为负数)。
凡尘2023-05-16 22:46:171

什么是等价不等式

它们中的字母的可取值范围完全相同, 并且同时成立或同时不成立。等价不等式意思是它们中的字母的可取值范围完全相同, 并且同时成立或同时不成立。一个不等式(组)与另一个不等式(组),或另外几个不等式(组)“等价”,是指它们中的字母的可取值范围完全相同,并且同时成立或同时不成立.很明显,这时它们的解集也完全相同,所以“等价”的不等式(组)是“同解”的不等式(组),“同解”在解不等式(组)中是十分重要的,如果没有“同解”的保证,在不等式(组)的变形中,就可能缩小或扩大未知数的可取值范围,这样就无法判断最后结果是否为原不等式(组)的解集(因为不等式或不等式组的解集往往含有无限多个元素,所以用代入法逐个进行验算是不可能的)。
此后故乡只2023-05-16 14:50:491
 首页 上一页  3 4 5 6 7 8