- u投在线
-
负无琼大,0)上是减函数,又有f(-2)=0
这说明它不可能过原点!奇函数在对称的区域上有相同的单调性,所以x在0到正无穷上递减。所以,x在负无穷到-2上大于0,(-2,0)上小于0,(0,2)上大于0,2,正无穷上小于0。
只要把y=x与y=f(x)异号的区域找出来就可以了,答案是x<-2或x>2
- mlhxueli
-
因为是奇函数,画图可知(略)
答案:x<-2或x>2
- tt白
-
你的题是不是有问题?
f(-2)=0 求不等式X*f(x)<0
那当X=-2时 f(-2)=0
X*f(x)= -2*0 怎么会有X*f(x)<0
什么是负无理数
无理数,即非有理数之实数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。无理数包括正无理数和负无理数。(负无理数即正有理数的相反数)例如:-π、-根号2 ……2023-05-18 23:45:482
负无理数属于负数吗·~~
是的,包含的。2023-05-18 23:46:045
企业的职工负无等级的工伤工伤待遇是怎么给的
根据国务院《 工伤保险条例 》[的规定, 工伤保险待遇 项目和标准如下: (一)治(医)疗费治疗工伤所需费用必须符合工伤保险诊疗项目目录、工伤保险药品目录、工伤保险住院服务标准 (二)住院 伙食补助费 职工住院治疗工伤的,由所在单位按照本单位因公出差伙食补助标准的70%发给住院伙食补助费 (三)外地就医交通费、食宿费经医疗机构出具证明,报经办机构同意,工伤职工到统筹地区以外就医的,所需交通、食宿费用由所在单位按照本单位职工因公出差标准报销 (四)康复治疗费工伤职工到签订服务协议的医疗机构进行康复性治疗的费用,符合工伤保险诊疗项目目录、工伤保险药品目录、工伤保险住院服务标准的本条第三款规定的,从 工伤保险基金 支付 (五)辅助器具费工伤职工因日常生活或者就业需要,经 劳动能力鉴定 委员会确认,可以安装假肢、矫形器、假眼、假牙和配置轮椅等辅助器具,所需费用按照国家规定的标准从工伤保险基金支付 (六) 停工留薪期 工资职工因工作遭受事故伤害或者患职业病需要暂停工作接受工伤医疗的,在停工留薪期内,原 工资福利待遇 不变,由所在单位按月支付 (七)生活护理费生活不能自理的工伤职工在停工留薪期需要护理的,由所在单位负责工伤职工已经评定伤残等级并经劳动能力鉴定委员会确认需要生活护理的,从工伤保险基金按月支付生活护理费2023-05-18 23:46:171
高考负无写闭区间算错吗?
算错 负无穷怎么能写闭区间呢 你要知道大学里一个闭区间是有很多开区间没有的性质的 闭区间和开区间是有着本质区别的 开区间是有无穷趋于的思想在里面2023-05-18 23:46:241
负无理数的小数部分,是减去比它小的负整数,还是减去
,还是减去2023-05-18 23:46:323
请写出一个负无理数______.
由无理数的定义可知,- 2 、- 3 …是负无理数. 故答案为:- 2 (答案不唯一).2023-05-18 23:46:391
负无理数是系数吗
不是。系数不为0,应为有理数。系数,是指代数式的单项式中的数字因数。单项式中所有字母的指数的和叫做它的次数。2023-05-18 23:46:451
负数无理数的由来
负数的由来 人们在生活中经常会遇到各种相反意义的量。比如,在记账时有余有亏;在计算粮仓存米时,有时要记进粮食,有时要记出粮食。为了方便,人们就考虑了相反意义的数来表示。于是人们引入了正负数这个概念,把余钱进粮食记为正,把亏钱、出粮食记为负。可见正负数是生产实践中产生的。 据史料记载,早在两千多年前,我国就有了正负数的概念,掌握了正负数的运算法则。人们计算的时候用一些小竹棍摆出各种数字来进行计算。比如,356摆成||| ,3056摆成等等。这些小竹棍叫做“算筹”算筹也可以用骨头和象牙来制作。 我国三国时期的学者刘徽在建立负数的概念上有重大贡献。刘徽首先给出了正负数的定义,他说:“今两算得失相反,要令正负以名之。”意思是说,在计算过程中遇到具有相反意义的量,要用正数和负数来区分它们。 刘徽第一次给出了正负区分正负数的方法。他说:“正算赤,负算黑;否则以邪正为异”意思是说,用红色的小棍摆出的数表示正数,用黑色的小棍摆出的数表示负数;也可以用斜摆的小棍表示负数,用正摆的小棍表示正数。 我国古代著名的数学专著《九章算术》(成书于公元一世纪)中,最早提出了正负数加减法的法则:“正负数曰:同名相除,异名相益,正无入负之,负无入正之;其异名相除,同名相益,正无入正之,负无入负之。”这里的“名”就是“号”,“除”就是“减”,“相益”、“相除”就是两数的绝对值“相加”、“相减”,“无”就是“零”。 用现在的话说就是:“正负数的加减法则是:同符号两数相减,等于其绝对值相减,异号两数相减,等于其绝对值相加。零减正数得负数,零减负数得正数。异号两数相加,等于其绝对值相减,同号两数相加,等于其绝对值相加。零加正数等于正数,零加负数等于负数。” 这段关于正负数的运算法则的叙述是完全正确的,与现在的法则完全一致!负数的引入是我国数学家杰出的贡献之一。 用不同颜色的数表示正负数的习惯,一直保留到现在。现在一般用红色表示负数,报纸上登载某国经济上出现赤字,表明支出大于收入,财政上亏了钱。 负数是正数的相反数。在实际生活中,我们经常用正数和负数来表示意义相反的两个量。夏天武汉气温高达42°C,你会想到武汉的确象火炉,冬天哈尔滨气温-32°C一个负号让你感到北方冬天的寒冷。 在现今的中小学教材中,负数的引入,是通过算术运算的方法引入的:只需以一个较小的数减去一个较大的数,便可以得到一个负数。这种引入方法可以在某种特殊的问题情景中给出负数的直观理解。而在古代数学中,负数常常是在代数方程的求解过程中产生的。对古代巴比伦的代数研究发现,巴比伦人在解方程中没有提出负数根的概念,即不用或未能发现负数根的概念。3世纪的希腊学者丢番图的著作中,也只给出了方程的正根。然而,在中国的传统数学中,已较早形成负数和相关的运算法则。 除《九章算术》定义有关正负运算方法外,东汉末年刘烘(公元206年)、宋代扬辉(1261年)也论及了正负数加减法则,都与九章算术所说的完全一致。特别值得一提的是,元代朱世杰除了明确给出了正负数同号异号的加减法则外,还给出了关于正负数的乘除法则。他在算法启蒙中,负数在国外得到认识和被承认,较之中国要晚得多。在印度,数学家婆罗摩笈多于公元628年才认识负数可以是二次方程的根。而在欧洲14世纪最有成就的法国数学家丘凯把负数说成是荒谬的数。直到十七世纪荷兰人日拉尔(1629年)才首先认识和使用负数解决几何问题。 与中国古代数学家不同,西方数学家更多的是研究负数存在的合理性。16、17世纪欧洲大多数数学家不承认负数是数。帕斯卡认为从0减去4是纯粹的胡说。帕斯卡的朋友阿润德提出一个有趣的说法来反对负数,他说(-1):1=1:(-1),那么较小的数与较大的数的比怎么能等于较大的数与较小的数比呢?直到1712年,连莱布尼兹也承认这种说法合理。英国数学家瓦里承认负数,同时认为负数小于零而大于无穷大(1655年)。他对此解释到:因为a>0时,英国著名代数学家德·摩根 在1831年仍认为负数是虚构的。他用以下的例子说明这一点:“父亲56岁,其子29岁。问何时父亲年龄将是儿子的二倍?”他列方程56+x=2(29+x),并解得x=-2。他称此解是荒唐的。当然,欧洲18世纪排斥负数的人已经不多了。随着19世纪整数理论基础的建立,负数在逻辑上的合理性才真正建立。无理数的由来 毕达哥拉斯 (Pythagqras,约公元前885年至公元前400年间),从小就很聪明,一次他背着柴禾从街上走过,一位长者见他捆柴的方法与别人不同,便说:“这孩子有数学才能,将来会成为一个大学者。”他闻听此言,便摔掉柴禾南渡地中海到泰勒斯门下去求学。毕达哥拉斯本来就极聪明,经泰勒一指点,许多数学难题在他的手下便迎刃而解。其中,他证明了三角形的内角和等于180度;能算出你若要用瓷砖铺地,则只有用正三角、正四角、正六角三种正多角砖才能刚好将地铺满,还证明了世界上只有五种正多面体,即:正4、6、8、12、20面体。他还发现了奇数、偶数、三角数、四角数、完全数、友数,直到毕达哥拉斯数。然而他最伟大的成就是发现了后来以他的名字命名的毕达哥拉斯定理(勾股弦定理),即:直角三角形两直角边为边长的正方形的面积之和等于以斜边为边长的正方形的面积。据说,这是当时毕达哥拉斯在寺庙里见工匠们用方砖铺地,经常要计算面积,于是便发明了此法。 毕达哥拉斯将数学知识运用得纯熟之后,觉得不能只满足于用来算题解题,于是他试着从数学领域扩大到哲学,用数的观点去解释一下世界。经过一番刻苦实践,他提出“凡物皆数”的观点,数的元素就是万物的元素,世界是由数组成的,世界上的一切没有不可以用数来表示的,数本身就是世界的秩序。毕达哥拉斯还在自己的周围建立了一个青年兄弟会。在他死后大约200年,他的门徒们把这种理论加以研究发展,形成了一个强大的毕达哥拉斯学派。 一天,学派的成员们刚开完一个学术讨论会,正坐着游船出来领略山水风光,以驱散一天的疲劳。这天,风和日丽,海风轻轻的吹,荡起层层波浪,大家心里很高兴。一个满脸胡子的学者看着辽阔的海面兴奋地说:“毕达哥拉斯先生的理论一点都不错。你们看这海浪一层一层,波峰浪谷,就好像奇数、偶数相间一样。世界就是数字的秩序。”“是的,是的。”这时一个正在摇桨的大个子插进来说:“就说这小船和大海吧。用小船去量海水,肯定能得出一个精确的数字。一切事物之间都是可以用数字互相表示的。” “我看不一定。”这时船尾的一个学者突然提问了,他沉静地说:“要是量到最后,不是整数呢?” “那就是小数。”“要是小数既除不尽,又不能循环呢?” “不可能,世界上的一切东西,都可以相互用数字直接准确地表达出来。” 这时,那个学者以一种不想再争辩的口气冷静地说:“并不是世界上一切事物都可以用我们现在知道的数来互相表示,就以毕达哥拉斯先生研究最多的直角三角形来说吧,假如是等腰直角三角形,你就无法用一个直角边准确地量出斜边来。” 这个提问的学者叫希帕索斯(Hippasus),他在毕达哥拉斯学派中是一个聪明、好学、有独立思考能力的青年数学家。今天要不是因为争论,还不想发表自己这个新见解呢。那个摇桨的大个子一听这话就停下手来大叫着:“不可能,先生的理论置之四海皆准。”希帕索斯眨了眨聪明的大眼,伸出两手,用两个虎口比成一个等腰直角三角形说: “如果直边是3,斜边是几?” “4。” “再准确些?” “4.2。” “再准确些?” “4.24。” “再准确些呢?” 大个子的脸涨得绯红,一时答不上来。希帕索斯说:“你就再往后数上10位、20位也不能算是最精确的。我演算了很多次,任何等腰直角三角形的一边与余边,都不能用一个精确的数字表示出来。”这话像一声晴天霹雳,全船立即响起一阵怒吼:“你敢违背毕达哥拉斯先生的理论,敢破坏我们学派的信条!敢不相信数字就是世界!”希帕索斯这时十分冷静,他说:“我这是个新的发现,就是毕达哥拉斯先生在世也会奖赏我的。你们可以随时去验证。”可是人们不听他的解释,愤怒地喊着:“叛逆!先生的不肖门徒。”“打死他!批死他!”大胡子冲上来,当胸给了他一拳。希帕索斯抗议着:“你们无视科学,你们竟这样无理!”“捍卫学派的信条永远有理。”这时大个子也冲了过来,猛地将他抱起:“我们给你一个最高的奖赏吧!”说着就把希帕索斯扔进了海里。蓝色的海水很快淹没了他的躯体,再也没有出来。这时,天空飘过几朵白云,海面掠过几只水鸟,一场风波过后,这地中海海滨又显得那样宁静了。 一位很有才华的数学家就这样被奴隶专制制度的学阀们毁灭了。但是这倒真使人们看清了希帕索斯的思想价值。这次事件后,毕达哥拉斯学派的成员们确实发现不但等腰直角三角形的直角边无法去量准斜边,而且圆的直径也无法去量尽圆周,那个数字是3.1415926535897932384626……更是永远也无法精确。慢慢地,他们感觉后悔了,后悔杀死希帕索斯的无理行动。他们渐渐明白了,明白了直觉并不是绝对可靠的,有的东西必须靠科学的证明;他们明白了,过去他们所认识的数字“0”,自然数等有理数之外,还有一些无限的不能循环的小数,这确实是一种新发现的数——应该叫它“无理数”。这个名字反映了数学的本来面貌,但也真实的记录了毕达哥拉斯学派中学阀的蛮横无理。 由无理数引发的数学危机一直延续到19世纪。1872年,德国数学家戴德金从连续性的要求出发,用有理数的“分割”来定义无理数,并把实数理论建立在严格的科学基础上,从而结束了无理数被认为“无理”的时代,也结束了持续2000多年的数学史上的第一次大危机。2023-05-18 23:46:522
为什么正无差不能和负无差机组并列
正无差和负无差机组之间有着共同的特点,即它们都是一种无差分机组,它们的输出电压和输入电压之间没有任何差分。正无差机组和负无差机组都可以用来提供高质量的电源,以及提供稳定的电压和电流。正无差机组和负无差机组也可以用来提供高效的电源,以及提供精确的电压和电流控制。因此,正无差和负无差机组之间有着共同的特点,可以并列。2023-05-18 23:46:592
异名相除,同名相益,正无入正之,负无入负之
减法:遇到同符号数字应相减其数值,遇到异符号数字应相加其数值,零减正数的差是负数,零减负数的差是正数.2023-05-18 23:47:051
请问负数无理数的由来?还有那本数学史的书籍有说到负数无理数的由来?
负数---人们在生活中经常会遇到各种相反意义的量。比如,在记帐时有余有亏;在计算粮仓存米时,有时要记进粮食,有时要记出粮食。为了方便,人们就考虑了相反意义的数来表示。于是人们引入了正负数这个概念,把余钱进粮食记为正,把亏钱、出粮食记为负。可见正负数是生产实践中产生的。据史料记载,早在两千多年前,我国就有了正负数的概念,掌握了正负数的运算法则。人们计算的时候用一些小竹棍摆出各种数字来进行计算。比如,356摆成||| ,3056摆成等等。这些小竹棍叫做“算筹”算筹也可以用骨头和象牙来制作。 我国三国时期的学者刘徽在建立负数的概念上有重大贡献。刘徽首先给出了正负数的定义,他说:“今两算得失相反,要令正负以名之。”意思是说,在计算过程中遇到具有相反意义的量,要用正数和负数来区分它们。刘徽第一次给出了正负区分正负数的方法。他说:“正算赤,负算黑;否则以邪正为异”意思是说,用红色的小棍摆出的数表示正数,用黑色的小棍摆出的数表示负数;也可以用斜摆的小棍表示负数,用正摆的小棍表示正数。 我国古代著名的数学专著《九章算术》(成书于公元一世纪)中,最早提出了正负数加减法的法则:“正负数曰:同名相除,异名相益,正无入负之,负无入正之;其异名相除,同名相益,正无入正之,负无入负之。”这里的“名”就是“号”,“除”就是“减”,“相益”、“相除”就是两数的绝对值“相加”、“相减”,“无”就是“零”。用现在的话说就是:“正负数的加减法则是:同符号两数相减,等于其绝对值相减,异号两数相减,等于其绝对值相加。零减正数得负数,零减负数得正数。异号两数相加,等于其绝对值相减,同号两数相加,等于其绝对值相加。零加正数等于正数,零加负数等于负数。” 这段关于正负数的运算法则的叙述是完全正确的,与现在的法则完全一致!负数的引入是我国数学家杰出的贡献之一。用不同颜色的数表示正负数的习惯,一直保留到现在。现在一般用红色表示负数,报纸上登载某国经济上出现赤字,表明支出大于收入,财政上亏了钱。负数是正数的相反数。在实际生活中,我们经常用正数和负数来表示意义相反的两个量。夏天武汉气温高达42°C,你会想到武汉的确象火炉,冬天哈尔滨气温-32°C一个负号让你感到北方冬天的寒冷。在现今的中小学教材中,负数的引入,是通过算术运算的方法引入的:只需以一个较小的数减去一个较大的数,便可以得到一个负数。这种引入方法可以在某种特殊的问题情景中给出负数的直观理解。而在古代数学中,负数常常是在代数方程的求解过程中产生的。对古代巴比伦的代数研究发现,巴比伦人在解方程中没有提出负数根的概念,即不用或未能发现负数根的概念。3世纪的希腊学者丢番图的著作中,也只给出了方程的正根。然而,在中国的传统数学中,已较早形成负数和相关的运算法则。除《九章算术》定义有关正负运算方法外,东汉末年刘烘(公元206年)、宋代扬辉(1261年)也论及了正负数加减法则,都与九章算术所说的完全一致。特别值得一提的是,元代朱世杰除了明确给出了正负数同号异号的加减法则外,还给出了关于正负数的乘除法则。负数在国外得到认识和被承认,较之中国要晚得多。在印度,数学家婆罗摩笈多于公元628年才认识负数可以是二次方程的根。而在欧洲14世纪最有成就的法国数学家丘凯把负数说成是荒谬的数。直到十七世纪荷兰人日拉尔(1629年)才首先认识和使用负数解决几何问题。 无理数----公元前500年,古希腊毕达哥拉斯(Pythagoras)学派的弟(Hippasus)发现了一个惊人的事实,一个正方形的对角线与其一边的长度是不可子希勃索斯公度的(若正方形边长是1,则对角线的长不是一个有理数)这一不可公度性与毕氏学派“万物皆为数”(指有理数)的哲理大相径庭。这一发现使该学派领导人惶恐、恼怒,认为这将动摇他们在学术界的统治地位。希勃索斯因此被囚禁,受到百般折磨,最后竟遭到沉舟身亡的惩处。 毕氏弟子的发现,第一次向人们揭示了有理数系的缺陷,证明它不能同连续的无限直线同等看待,有理数并没有布满数轴上的点,在数轴上存在着不能用有理数表示的“孔隙”。而这种“孔隙”经后人证明简直多得“不可胜数”。于是,古希腊人把有理数视为连续衔接的那种算术连续统的设想彻底地破灭了。不可公度量的发现连同著名的芝诺悖论一同被称为数学史上的第一次危机,对以后2000多年数学的发展产生了深远的影响,促使人们从依靠直觉、经验而转向依靠证明,推动了公理几何学与逻辑学的发展,并且孕育了微积分的思想萌芽。 不可通约的本质是什么?长期以来众说纷坛,得不到正确的解释,两个不可通约的比值也一直被认为是不可理喻的数。15世纪意大利著名画家达.芬奇称之为“无理的数”,17世纪德国天文学家开普勒称之为“不可名状”的数。 然而,真理毕竟是淹没不了的,毕氏学派抹杀真理才是“无理”。人们为了纪念希勃索斯这位为真理而献身的可敬学者,就把不可通约的量取名为“无理数”——这便是“无理数”的由来。 你可以上网查查,那比书更详尽2023-05-18 23:47:241
负数在古代中国怎么记录
用红色表示负数 据史料记载,早在两千多年前,我国就有了正负数的概念,掌握了正负数的运算法则。人们计算的时候用一些小竹棍摆出各种数字来进行计算。比如,356摆成||| ,3056摆成等等。这些小竹棍叫做“算筹”算筹也可以用骨头和象牙来制作。 我国三国时期的学者刘徽在建立负数的概念上有重大贡献。刘徽首先给出了正负数的定义,他说:“今两算得失相反,要令正负以名之。”意思是说,在计算过程中遇到具有相反意义的量,要用正数和负数来区分它们。 刘徽第一次给出了正负区分正负数的方法。他说:“正算赤,负算黑;否则以邪正为异”意思是说,用红色的小棍摆出的数表示正数,用黑色的小棍摆出的数表示负数;也可以用斜摆的小棍表示负数,用正摆的小棍表示正数。 我国古代著名的数学专著《九章算术》(成书于公元一世纪)中,最早提出了正负数加减法的法则:“正负数曰:同名相除,异名相益,正无入负之,负无入正之;其异名相除,同名相益,正无入正之,负无入负之。”这里的“名”就是“号”,“除”就是“减”,“相益”、“相除”就是两数的绝对值“相加”、“相减”,“无”就是“零”。 用现在的话说就是:“正负数的加减法则是:同符号两数相减,等于其绝对值相减,异号两数相减,等于其绝对值相加。零减正数得负数,零减负数得正数。异号两数相加,等于其绝对值相减,同号两数相加,等于其绝对值相加。零加正数等于正数,零加负数等于负数。” 这段关于正负数的运算法则的叙述是完全正确的,与现在的法则完全一致!负数的引入是我国数学家杰出的贡献之一。 用不同颜色的数表示正负数的习惯,一直保留到现在。现在一般用红色表示负数,报纸上登载某国经济上出现赤字,表明支出大于收入,财政上亏了钱。2023-05-18 23:47:311
负无理数平方开根号
①开方开不尽的数是无理数,但无理数就是开方开不尽的数是错误的,故①错误; ②一个实数的立方根不是正数就是负数,还可能包括0,故②错误, ③无理数包括正无理数,0,负无理数,不包括0,故③错误, ④如果一个数的立方根是这个数本身,那么这个数是l或0,这个数还可能是-1,故④错误, 故选D.2023-05-18 23:47:371
负数在古代中国怎么记录?
用红色表示负数 据史料记载,早在两千多年前,我国就有了正负数的概念,掌握了正负数的运算法则。人们计算的时候用一些小竹棍摆出各种数字来进行计算。比如,356摆成||| ,3056摆成等等。这些小竹棍叫做“算筹”算筹也可以用骨头和象牙来制作。 我国三国时期的学者刘徽在建立负数的概念上有重大贡献。刘徽首先给出了正负数的定义,他说:“今两算得失相反,要令正负以名之。”意思是说,在计算过程中遇到具有相反意义的量,要用正数和负数来区分它们。 刘徽第一次给出了正负区分正负数的方法。他说:“正算赤,负算黑;否则以邪正为异”意思是说,用红色的小棍摆出的数表示正数,用黑色的小棍摆出的数表示负数;也可以用斜摆的小棍表示负数,用正摆的小棍表示正数。 我国古代著名的数学专著《九章算术》(成书于公元一世纪)中,最早提出了正负数加减法的法则:“正负数曰:同名相除,异名相益,正无入负之,负无入正之;其异名相除,同名相益,正无入正之,负无入负之。”这里的“名”就是“号”,“除”就是“减”,“相益”、“相除”就是两数的绝对值“相加”、“相减”,“无”就是“零”。 用现在的话说就是:“正负数的加减法则是:同符号两数相减,等于其绝对值相减,异号两数相减,等于其绝对值相加。零减正数得负数,零减负数得正数。异号两数相加,等于其绝对值相减,同号两数相加,等于其绝对值相加。零加正数等于正数,零加负数等于负数。” 这段关于正负数的运算法则的叙述是完全正确的,与现在的法则完全一致!负数的引入是我国数学家杰出的贡献之一。 用不同颜色的数表示正负数的习惯,一直保留到现在。现在一般用红色表示负数,报纸上登载某国经济上出现赤字,表明支出大于收入,财政上亏了钱。2023-05-18 23:47:452
负数无理数的由来?急
好吧这有道题。x^2=2求-x。这是个负无理数。无理数的定义是实数中不能精确地表示为两个整数之比的数。如果你觉得上边的题有点牵强。。。。那这个好了。1.sin-5.2.x^3=-2,求x。满意么。2023-05-18 23:47:511
负数是怎么产生的
负数的由来 人们在生活中经常会遇到各种相反意义的量。比如,在记账时有余有亏;在计算粮仓存米时,有时要记进粮食,有时要记出粮食。为了方便,人们就考虑了相反意义的数来表示。于是人们引入了正负数这个概念,把余钱进粮食记为正,把亏钱、出粮食记为负。可见正负数是生产实践中产生的。 据史料记载,早在两千多年前,中国就有了正负数的概念,掌握了正负数的运算法则。人们计算的时候用一些小竹棍摆出各种数字来进行计算。比如,356摆成||| ,3056摆成等等。这些小竹棍叫做“算筹”算筹也可以用骨头和象牙来制作。 中国三国时期的学者刘徽在建立负数的概念上有重大贡献。刘徽首先给出了正负数的定义,他说:“今两算得失相反,要令正负以名之。”意思是说,在计算过程中遇到具有相反意义的量,要用正数和负数来区分它们。 刘徽第一次给出了正负区分正负数的方法。他说:“正算赤,负算黑;否则以斜正为异”意思是说,用红色的小棍摆出的数表示正数,用黑色的小棍摆出的数表示负数;也可以用斜摆的小棍表示负数,用正摆的小棍表示正数。 中国古代著名的数学专著《九章算术》(成书于公元一世纪)中,最早提出了正负数加减法的法则:“正负数曰:同名相除,异名相益,正无入负之,负无入正之;其异名相除,同名相益,正无入正之,负无入负之。”这里的“名”就是“号”,“除”就是“减”,“相益”、“相除”就是两数的绝对值“相加”、“相减”,“无”就是“零”。 用现在的话说就是:“正负数的加减法则是:同符号两数相减,等于其绝对值相减,异号两数相减,等于其绝对值相加。零减正数得负数,零减负数得正数。异号两数相加,等于其绝对值相减,同号两数相加,等于其绝对值相加。零加正数等于正数,零加负数等于负数。” 这段关于正负数的运算法则的叙述是完全正确的,与现在的法则完全一致!负数的引入是中国数学家杰出的贡献之一。 用不同颜色的数表示正负数的习惯,一直保留到现在。现在一般用红色表示负数,报纸上登载某国经济上出现赤字,表明支出大于收入,财政上亏了钱。 负数是正数的相反数。在实际生活中,我们经常用正数和负数来表示意义相反的两个量。夏天武汉气温高达42°C,你会想到武汉的确象火炉,冬天哈尔滨气温-32°C一个负号让你感到北方冬天的寒冷。 在现今的中小学教材中,负数的引入,是通过算术运算的方法引入的:只需以一个较小的数减去一个较大的数,便可以得到一个负数。这种引入方法可以在某种特殊的问题情景中给出负数的直观理解。而在古代数学中,负数常常是在代数方程的求解过程中产生的。对古代巴比伦的代数研究发现,巴比伦人在解方程中没有提出负数根的概念,即不用或未能发现负数根的概念。3世纪的希腊学者丢番图的著作中,也只给出了方程的正根。然而,在中国的传统数学中,已较早形成负数和相关的运算法则。 除《九章算术》定义有关正负运算方法外,东汉末年刘烘(公元206年)、宋代扬辉(1261年)也论及了正负数加减法则,都与九章算术所说的完全一致。特别值得一提的是,元代朱世杰除了明确给出了正负数同号异号的加减法则外,还给出了关于正负数的乘除法则。他在算法启蒙中,负数在国外得到认识和被承认,较之中国要晚得多。在印度,数学家婆罗摩笈多于公元628年才认识负数可以是二次方程的根。而在欧洲14世纪最有成就的法国数学家丘凯把负数说成是荒谬的数。直到十七世纪荷兰人日拉尔(1629年)才首先认识和使用负数解决几何问题。 与中国古代数学家不同,西方数学家更多的是研究负数存在的合理性。16、17世纪欧洲大多数数学家不承认负数是数。帕斯卡认为从0减去4是纯粹的胡说。帕斯卡的朋友阿润德提出一个有趣的说法来反对负数,他说(-1):1=1:(-1),那么较小的数与较大的数的比怎么能等于较大的数与较小的数比呢?直到1712年,连莱布尼兹也承认这种说法合理。英国数学家瓦里承认负数,同时认为负数小于零而大于无穷大(1655年)。他对此解释到:因为a>0时,英国著名代数学家德·摩根 在1831年仍认为负数是虚构的。他用以下的例子说明这一点:“父亲56岁,其子29岁。问何时父亲年龄将是儿子的二倍?”他列方程56+x=2(29+x),并解得x=-2。他称此解是荒唐的。当然,欧洲18世纪排斥负数的人已经不多了。随着19世纪整数理论基础的建立,负数在逻辑上的合理性才真正建立。2023-05-18 23:47:593
关于负数的知识和生活中的负数
就是在零以下,比如零下18度,QQ游戏里的负分2023-05-18 23:48:143
负数是如何产生的
负数是怎样产生的?中国是世界上首先使用负数的国家.战国时期李悝(约前455~395)在《法经》中已出现使用负数的实例:“衣五人终岁用千五百不足四百五十.”在甘肃居延出土的汉简中,出现了大量的“负算”,如“相除以负百二十四算”、“负二千二百四十五算”、“负四算,得七算,相除得三算”.以负与得相比较,表示缺少,亏空之意,显然来自生活实践的需要. 从历史上看,负数产生的另一个原因是由于解方程的需要.据世界上第一部关于负数完整介绍的古算书《九章算术》记载,由于在解方程组的时候常常会碰到小数减大数的情况,为了使方程组能够解下去,数学家发明了负数.公元前3世纪刘徽在注解《九章算术》时率先给出了负数的定义:“两算得矢相反,要以正负以名之”,并辩证地阐明:“言负者未必少,言正者未必正于多.”而西方直到1572年,意大利数学家邦贝利(R.Bombelli,1526~1572)在他的《代数学》中才给出了负数的明确定义. 由于我国古代数字是用算筹摆出来的,为了区分正数和负数,古代数学家创造了两种方法:一种是用不同颜色的算筹分别表示,通常用红筹表示正数,黑筹表示负数;另一种是采取在正数上面斜放一支筹,来表示负数.因为后者的思想较新,很快发展为在数的最前面一位数码上斜放一小横来表示负数.1629年颇具远见的法国数学家吉拉尔(A.Girard,1595~1632)在《代数新发现》中用减号表示负数和减法运算,吉拉尔的负数符号得到人们的公认,一直沿用至今. 刘徽在注解《九章算术》“方程”章时给出了正负数的加减法则:“同名相除,异名相益,正无入负之,负无入正之”“异名相除,同名相益,正无入正之,负无入负之”.遗憾的是他未能像正负数的加减运算那样,总结出正负数乘除运算的一般法则,而是通过具体的例子予以处理.正负数的乘除法则直到1299年元代数学家朱世杰的《算学启蒙》中才有明确记载:“同名相乘为正,异名相乘为负,同名相除所得为正,异名相除所得为负.” 印度最早使用负数的是婆罗摩芨多(Brahmagupta,598~665),他在628年完成的《婆罗摩修正体系》中给出了正负数的四则运算法则,认为负数就是负债和损失,并用小点或小圈标在数字上面表示负数. 西方首先使用负数的是古希腊的丢番图(Diophantus,250年前后),尽管不承认方程的负根,但他已知道“减数乘减数得加数,加数乘减数得减数”.可见对正负数的四则运算他已了如指掌.在解方程中若出现负根,他就放弃这个方程,认为是不可解的.从这可看出负数在西方备受冷落,久久得不到人们的认可.1484年,法国的舒开在《算术三篇》中曾给出二次方程的一个负根,却又不承认它,说它是荒谬的数;意大利学者卡丹在《大术》中承认负根,但认为负数是“假数”.直到1637年笛卡尔(Descarts,1596~1650)在《几何》中认真考虑了方程正负根出现的规律,未加证明地给出了正负号法则,此后才被采用,但依旧议论纷纷.如法国数学家阿纳德(1612~1694)认为:若承认-1∶1=1∶-1,而-1<1,那么较小数与较大数的比,怎能等于较大数与较小数之比呢?直到1831年,英国著名数学家德摩根(A.DeMorgan,1806~1871)在他的《论数学的研究和困难》中仍坚持认为负数是荒谬的.他举例说:“父亲活56,他的儿子29岁,问什么时候,父亲的岁数将是儿子的2倍?”解方程56+x=2(29+x),得x=-2,他说这个结果是荒谬的. 负数的地位最后是由德国的维尔斯特拉斯和意大利的皮亚诺确立的.1860年维尔斯在柏林大学的一次讲课时,把有理数定义为整数对,即当m,n为整数时,n/m(m≠0)定义为一个有理数,当m,n中有一个为负整数时,就得到一个负有理数.这就把负数的基础确立在整数基础上.40年后,皮亚诺在著名的《算术原理新方法》(1889)中又用自然数确立了整数的地位:设a,b为自然数,则数对(a,b)即“a-b”定义一个整数,当a>b时为正整数;a<b时就得到了一个负整数.至此,通过近2000年的努力,历经数十代数学家的前仆后继的工作和努力,负数的地位终于被牢固地确立了,半个多世纪的争论也终于降下了帷幕.2023-05-18 23:48:212
正负数加减法,怎么算?
(-1)+1=0(-1)-1=-2满足交换律,结合律,分配律。和正数一样。就是把负数出现的地方用减去该数替换即可2023-05-18 23:48:418
负数的认识
负数是数学术语,负数与正数表示意义相反的量。一个负数总是某个正数的相反数。负数用负号(MinusSign,即相当于减号)-和一个正数标记,如-2、代表的就是2的相反数。中国对负数的认识史料记载, 我国在战国时期就认识到了负数。如李悝(约前455-395)在《法经》中写道,“衣五人终岁用千五百不足四百五十”。而在甘肃居延出土的汉简中, 有“相除以负百二十四算” 、“负二千二百四十五算” 、“ 负四算, 得七算, 相除得三算”等类似叙述,这里把“负”与“得”相比,意为缺少、亏空,就是今天负数的雏形。关于负数的加减法运算法则是在我国古代数学经典著作《九章算术》给出的,其最晚成书于公元前1世纪。“正负数曰:同名相除,异名相益,正无入负之,负无入正之;其异名相除,同名相益,正无入正之,负无入负之。”这里的“名”就是“号”,“除”就是“减”,“相益”、“相除”就是两数的绝对值“相加”、“相减”,“无”就是“零”。 用现在的话说就是:“正负数的加减法则是:同符号两数相减,等于其绝对值相减,异号两数相减,等于其绝对值相加。零减正数得负数,零减负数得正数。异号两数相加,等于其绝对值相减,同号两数相加,等于其绝对值相加。零加正数等于正数,零加负数等于负数。” 刘徽(约225-295)在注释《九章算术》时,给出负数解释,“两算得失相反,要令正负以名之。”意为在计算过程中遇到具有相反意义的量,应用正负数加以区分。他还第一次给出区分正负数的方法:“正算赤,负算黑;否则以邪正为异。”即在算筹运算中,用红筹表示正数,用黑筹表示负数;亦可用斜放小竹棍表示负数,用正放小竹棍表示正数。这段关于正负数的运算法则的叙述是完全正确的,与现在的法则完全一致!负数的引入是我国数学家杰出的贡献之一。 用不同颜色的数表示正负数的习惯,一直保留到现在。现在一般用红色表示负数,报纸上登载某国经济上出现赤字,表明支出大于收入,财政上亏了钱。 负数是正数的相反数。在实际生活中,我们经常用正数和负数来表示意义相反的两个量。夏天武汉气温高达42°C你会想到武汉的确象火炉,冬天哈尔滨气温-32°C一个负号让你感到北方冬天的寒冷。在现今的中小学教材中,负数的引入,是通过温度引入的,这种引入方法可以在具体的情景中给出负数的直观理解。而在古代数学中,负数常常是在代数方程的求解过程中产生的。对古代巴比伦的代数研究发现,巴比伦人在解方程中没有提出负数根的概念,即不用或未能发现负数根的概念。3世纪的希腊学者丢番图的著作中,也只给出了方程的正根。然而,在中国的传统数学中,已较早形成负数和相关的运算法则。除《九章算术》定义有关正负运算方法外,东汉末年的刘洪(约130-210)和宋代杨辉也论及了正负数加减法则,皆与《九章算术》一致。尤为称道的是,朱世杰(1249-1314)在其1299年问世的《算学启蒙》中给出正负数的乘除法则:同名相乘为正,异名相乘为负,同名相除所得为正, 异名相除所得为负.这里的乘除运算已是今天的乘除了。2023-05-18 23:49:011
负数是谁发明的
零是一个界限。我们看温度计,温度就有“零上”与“零下”两种情况。如昨天最高气温是8摄氏度(注意:不要把“8摄氏度”说成“摄氏8度”,因为摄氏度”是一个度量单位,三个字不能分开),最低气温是零下4摄氏度。通常我们称“零上”为“正”,零下为“负”。“正”的量用正数表示,“负”的量用负数(在正数前面加上一个负号“-”所得的数)表示。那么,昨天的气温范围就是-4℃~8℃。为了表示两种相反意义的量,就必须用正数与负数。 值得我们引以自豪的是:负数在世界上最早出现于我国西汉时期(公元前206年到公元25年)编成的一部数学巨著《九章算术》的“方程章”中。这一章已讨论了一次方程组的解法。我们知道,解方程组时,在消去一个未知数的过程中往往会出现其他未知数的系数为负数的情形。因此解方程组必然要引进负数概念。《九章算术》中指出:“两算得失相反,要令正负以名之”。当时是用算筹来进行计算的,所以在筹算中,相应地规定以红等为正,黑筹为负;或将算筹直列作正,斜置作负。这样,遇到具有相反意义的量,就能用正负数明确地加以区别了。 在《九章算术》中,除了引进正负数的概念之处,还完整地叙述了正负数的加减运算法则——“正负术”。即“同名相除,异名相益,正无入负之,负无入正之;其异名相除,同名相益,正无入正之,负无入负之”。这段话的前一半说的是减法法则,后一半说的是加法法则。它的意思是:同号两数相减,等于其绝对值相减,异号两数相减,等于其绝对值相加;零减正得负,零减负得正。异号两数相加,等于其绝对值相减;同号两数相加,等于其绝对值相加;零加正得正,零加负得负。外国首先提到负数的是印度人巴士卡洛,那已是公元1150年的事了,比《九章算术》成书迟1千多年。即使到那时,对负数感到迷惑不解的仍大有人在。例如法国大数学家韦达,他在代数方面作出了巨大贡献,但他却努力避免引进负数,在解方程求得负根时统统舍去。1544年,德国人斯梯弗尔还把负数称为“荒谬”、“无稽”。他们的主要障碍就是把零看作“没有,所以不能理解“比‘没有"还要少”的现象。直到1637年,法国大数学家笛卡儿发明了解析几何学,创立了坐标系和点的坐标概念,负数才获得了几何意义和实际意义。确立了它在数学中的地位,逐渐为人们所公认。 从上面可以看出,我国数学巨著《九章算术》中的“正负术”与“方程术”不仅是我国数学中的两项伟大成就,在世界数学史上也是一份十分可贵的财富。 不过,《九章算术》并没有完全解决正负数的乘、除运算。“负负得正”这一法则,是公元11世纪我国宋朝的《议古根源》一书中阐明的。毫无疑问,这在世界数学史上也是捷足先登的。 我们在小学里只学习正数与零,这样就不能做“小数减去大数”的减法。有了负数后,在数集合内,任何减法都是可以进行的。另外,加法、乘法、除法(除数不为零)也都是可以进行的。2023-05-18 23:49:234
正无理数负,无理数统称为无理数,
数分为正数、负数和零,同理无理数分为正无理数和负无理数.零属于有理数,故无理数不包含0.2023-05-18 23:49:301
最大的负数是什么?
0.999……等于1,那么最大的负数无限接近为0可不可以理解为0?最小的正数呢?2023-05-18 23:49:383
负数是怎样产生的?我国负数最早出现在什么时代
中国是世界上最早认识和应用负数的国家,比西方早(一千多 )年. 据史料记载,早在两千多年前,我国就有了正负数的概念,掌握了正负数的运算法则.人们计算的时候用一些小竹棍摆出各种数字来进行计算.比如,356摆成||| ,3056摆成等等.这些小竹棍叫做“算筹”算筹也可以用骨头和象牙来制作.我国古代著名的数学专著《九章算术》(成书于公元一世纪)中,最早提出了正负数加减法的法则:“正负数曰:同名相除,异名相益,正无入负之,负无入正之;其异名相除,同名相益,正无入正之,负无入负之.”这里的“名”就是“号”,“除”就是“减”,“相益”、“相除”就是两数的绝对值“相加”、“相减”,“无”就是“零”. 印度人最早在我国之后提出负数,628年左右的婆罗摩笈多(约598-665).他提出了负数的运算法则,并用小点或小圈记在数字上表示负数.在欧洲初步认识提出负数概念,最早要算意大利数学家斐波那契(1170-1250).2023-05-18 23:49:535
比负4大的负无理数
本题需先根据已知条件,写出一个负数并且是无理数即可求出答案. ∵写一个比-4大的负无理数, 首先写出一个数是无理数,再写出它是负数 ∴如- , 等. 故答案为:- ,- 等.2023-05-18 23:50:291
负整数和负无理数有什么区别
旷雁of广西说得对2023-05-18 23:50:363
负数起源于哪里
据史料记载,早在两千多年前,中国就有了正负数的概念,掌握了正负数的运算法则.人们计算的时候用一些小竹棍摆出各种数字来进行计算.比如,356摆成||| ,3056摆成等等.这些小竹棍叫做“算筹”算筹也可以用骨头和象牙来制作.中国三国时期的学者刘徽在建立负数的概念上有重大贡献.刘徽首先给出了正负数的定义,他说:“今两算得失相反,要令正负以名之.”意思是说,在计算过程中遇到具有相反意义的量,要用正数和负数来区分它们.刘徽第一次给出了正负区分正负数的方法.他说:“正算赤,负算黑;否则以斜正为异”意思是说,用红色的小棍摆出的数表示正数,用黑色的小棍摆出的数表示负数;也可以用斜摆的小棍表示负数,用正摆的小棍表示正数.中国古代著名的数学专著《九章算术》(成书于公元一世纪)中,最早提出了正负数加减法的法则:“正负数曰:同名相除,异名相益,正无入负之,负无入正之;其异名相除,同名相益,正无入正之,负无入负之.”这里的“名”就是“号”,“除”就是“减”,“相益”、“相除”就是两数的绝对值“相加”、“相减”,“无”就是“零”.用现在的话说就是:“正负数的加减法则是:同符号两数相减,等于其绝对值相减,异号两数相减,等于其绝对值相加.零减正数得负数,零减负数得正数.异号两数相加,等于其绝对值相减,同号两数相加,等于其绝对值相加.零加正数等于正数,零加负数等于负数.”这段关于正负数的运算法则的叙述是完全正确的,与现在的法则完全一致!负数的引入是中国数学家杰出的贡献之一.2023-05-18 23:50:432
无理数包括正无理数,0和负无理数。对吗?
0是有理数(无理数是不循环的无限小数),所以无理数只包括正无理数2023-05-18 23:51:204
无理数包括正无理数,0和负无理数。对吗?
无理数包括正无理数,0和负无理数。对吗? 对, 无理数定义: 即非有理数之实数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会回圈。 常见的无理数有大部分的平方根、π和e 无理数包括正无理数和负无理数对吗 无理数指无限不回圈小数 无理数应满足三个条件:①是小数;②是无限小数;③不回圈.圆周率π=3.141592653、 分为正无理数和负无理数。所以你是正确的 请采纳。 无理数包括:正无理数,0,和负无理数。对吗?为什么? 不对。0是有理数。 正数包括无理数吗 无理数包括正负吗 实数可以分为正数、零和负数,也可以分为有理数和无理数,同样也可以分为整数和小数。这是按照不同的方式进行的划分。正数可以包括有理数和无理数,无理数也可以分为正有理数和负有理数。 下列命题中,正确的是()A无理数包括正无理数 0 负无理数 B无理数不是实数 C无理数是带根号的数 D无理数 A:0不是无理数 B:无理数是实数 C:不一定 如√4 D:正确 定义如此 选 D 下列说法正确的是?(A)√2,√2,√3都是无理数。(B)无理数包括正无理数,负无理数和0. D. 概念题! 正无理数负,无理数统称为无理数,对吗? 数分为正数、负数和零,同理无理数分为正无理数和负无理数。零属于有理数,故无理数不包含0。 有下列说法:1无理数就是开方开不尽的数 2无理数是无限不回圈小数 3无理数包括正无理数 0 负无理数 4 无理 123都错,4是对的。关于1和2我想说明一下,如果把顺序反过来就行了,开方开不尽的数是无理数,无线不回圈小数是无理数,但如果说原文中的“是”和“就是”,这是不确切的。 无理数与无理数之和是无理数对吗 当然不对,正负根号2的和就是有理数0。无理数对四则运算都没有封闭性。2023-05-18 23:51:471
负数无理数的由来
负数:人们在生活中经常会遇到各种相反意义的量。比如,在记账时有余有亏;在计算粮仓存米时,有时要记进粮食,有时要记出粮食。为了方便,人们就考虑了相反意义的数来表示。于是人们引入了正负数这个概念,把余钱进粮食记为正,把亏钱、出粮食记为负无理数:据说是人们在求边长为1的正方形的对角线时2023-05-18 23:51:531
有没有最大的负无理数
没有。2023-05-18 23:52:004
初中数学负数比较大小的方法
很多同学都学习过负数,那么负数我们要怎么进行比较?大家一起来看看吧。 比较两个负数大小的方法 1、比较绝对值,绝对值大的反而小。 2、在数轴线上,越靠近0越大。 3、作差法,用第一个负数减去第二个负数,如果算出来的是正数,那么第一个负数大,如果算出来的是负数,那么第二个负数大。 4、作商法,用第一个负数比上第二个负数,如果比的值小于1,那么分子那个负数大,如果比出来的值大于1,那么分母那个负数大。 负数用负号(相当于减号)“-”和一个正数标记,如−2,代表的就是2的相反数。于是,任何正数前加上负号便成了负数。 负数的历史 据史料记载,早在两千多年前,我国就有了正负数的概念,掌握了正负数的运算法则。人们计算的时候用一些小竹棍摆出各种数字来进行计算。比如,356摆成||| ,3056摆成等等。这些小竹棍叫做“算筹”算筹也可以用骨头和象牙来制作。 我国三国时期的学者刘徽在建立负数的概念上有重大贡献。刘徽首先给出了正负数的定义,他说:“今两算得失相反,要令正负以名之。”意思是说,在计算过程中遇到具有相反意义的量,要用正数和负数来区分它们。 刘徽第一次给出了正负区分正负数的方法。他说:“正算赤,负算黑;否则以邪正为异”意思是说,用红色的小棍摆出的数表示正数,用黑色的小棍摆出的数表示负数;也可以用斜摆的小棍表示负数,用正摆的小棍表示正数。 我国古代著名的数学专著《九章算术》(成书于公元一世纪)中,最早提出了正负数加减法的法则:“正负数曰:同名相除,异名相益,正无入负之,负无入正之;其异名相除,同名相益,正无入正之,负无入负之。” 以上就是一些负数的相关信息,供大家参考。2023-05-18 23:52:091
到底是什么妨碍了数学家们接受负数?
在数学中不是有整数 ,负数。新的负数有什么意义,还是有另一个思考。2023-05-18 23:52:1715
我国最早发现正·负数的人是谁
,3056摆成等等。这些小竹棍叫做“算筹”算筹也能够用骨头和象牙来制作。 我国3国时期的学者刘徽在建立负数的概念上有重大贡献。刘徽首先给出了正负数的定义,他说:“今两算得失相反,要令正负以名之。”意思是说,在计算进程中遇到具有相反意义的量,要用正数和负数来辨别它们。 刘徽第1次给出了正负辨别正负数的方法。他说:“正算赤,负算黑;否则以邪正为异”意思是说,用红色的小棍摆出的数表示正数,用黑色的小棍摆出的数表示负数;也能够用斜摆的小棍表示负数,用正摆的小棍表示正数。 我国古代著名的数学专著《9章算术》(成书于公元1世纪)中,最早提出了正负数加减法的法则:“正负数曰:同名相除,异名相益,正无入负之,负无入正之;其异名相除,同名相益,正无入正之,负无入负之。”这里的“名”就是“号”,“除”就是“减”,“相益”、“相除”就是两数的绝对值“相加”、“相减”,“无”就是“零”。除《9章算术》定义有关正负运算方法外,东汉末年刘烘(公元206年)、宋朝扬辉(1261年)也论及了正负数加减法则,都与9章算术所说的完全1致。特别值得1提的是,元朝朱世杰除明确给出了正负数同号异号的加减法则外,还给出了关于正负数的乘除法则。他在算法启蒙中,负数在国外得到认识和被承认,较当中国要晚很多。在印度,数学家婆罗摩笈多于公元628年才认识负数可以是2次方程的根。而在欧洲14世纪最有成绩的法国数学家丘凯把负数说成是荒诞的数。直到107世纪荷兰人日拉尔(1629年)才首先认识和使用负数解决几何问题。 查看原帖>>2023-05-18 23:53:011
写出一个比-4大的负无理数 .
本题需先根据已知条件,写出一个负数并且是无理数即可求出答案. ∵写一个比-4大的负无理数, 首先写出一个数是无理数,再写出它是负数 ∴如- , 等. 故答案为:- ,- 等.2023-05-18 23:53:071
正数和负数的历史来源
我国三国时期的学者刘徽在建立负数的概念上有重大贡献.刘徽首先给出了正负数的定义,他说:“今两算得失相反,要令正负以名之.”意思是说,在计算过程中遇到具有相反意义的量,要用正数和负数来区分它们.刘徽第一次给出了正负区分正负数的方法.他说:“正算赤,负算黑;否则以邪正为异”意思是说,用红色的小棍摆出的数表示正数,用黑色的小棍摆出的数表示负数;也可以用斜摆的小棍表示负数,用正摆的小棍表示正数.我国古代著名的数学专著《九章算术》(成书于公元一世纪)中,最早提出了正负数加减法的法则:“正负数曰:同名相除,异名相益,正无入负之,负无入正之;其异名相除,同名相益,正无入正之,负无入负之.”这里的“名”就是“号”,“除”就是“减”,“相益”、“相除”就是两数的绝对值“相加”、“相减”,“无”就是“零”.用现在的话说就是:“正负数的加减法则是:同符号两数相减,等于其绝对值相减,异号两数相减,等于其绝对值相加.零减正数得负数,零减负数得正数.异号两数相加,等于其绝对值相减,同号两数相加,等于其绝对值相加.零加正数等于正数,零加负数等于负数.” 这段关于正负数的运算法则的叙述是完全正确的,与现在的法则完全一致!负数的引入是我国数学家杰出的贡献之一.用不同颜色的数表示正负数的习惯,一直保留到现在.现在一般用红色表示负数,报纸上登载某国经济上出现赤字,表明支出大于收入,财政上亏了钱.负数是正数的相反数.在实际生活中,我们经常用正数和负数来表示意义相反的两个量.夏天武汉气温高达42°C,你会想到武汉的确象火炉,冬天哈尔滨气温-32°C一个负号让你感到北方冬天的寒冷.在现今的中小学教材中,负数的引入,是通过算术运算的方法引入的:只需以一个较小的数减去一个较大的数,便可以得到一个负数.这种引入方法可以在某种特殊的问题情景中给出负数的直观理解.2023-05-18 23:53:421
请写出一个你熟悉的负无理数:_______________
由于开方开不尽的数或无限不循环小数是无理数,根据此定义即可解答.解:例如- .(答案不唯一).2023-05-18 23:53:501
负无理数是什么意思?
负无理数即正有理数的相反数。无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。 常见的无理数有非完全平方数的平方根、π和e(其中后两者均为超越数)等。无理数包括正无理数和负无理数。常见的无理数有:圆周长与其直径的比值,欧拉数e,黄金比例φ等等。扩展资料:无理数在位置数字系统中表示(例如,以十进制数字或任何其他自然基础表示)不会终止,也不会重复,即不包含数字的子序列。例如,数字π的十进制表示从3.14159265358979开始,但没有有限数字的数字可以精确地表示π,也不重复。必须终止或重复的有理数字的十进制扩展的证据不同于终止或重复的十进制扩展必须是有理数的证据,尽管基本而不冗长,但两种证明都需要一些工作。数学家通常不会把“终止或重复”作为有理数概念的定义。参考资料:无理数-百度百科2023-05-18 23:54:191
负数中有正无理数吗?
负无理数即正有理数的相反数。无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。 常见的无理数有非完全平方数的平方根、π和e(其中后两者均为超越数)等。无理数包括正无理数和负无理数。常见的无理数有:圆周长与其直径的比值,欧拉数e,黄金比例φ等等。扩展资料:无理数在位置数字系统中表示(例如,以十进制数字或任何其他自然基础表示)不会终止,也不会重复,即不包含数字的子序列。例如,数字π的十进制表示从3.14159265358979开始,但没有有限数字的数字可以精确地表示π,也不重复。必须终止或重复的有理数字的十进制扩展的证据不同于终止或重复的十进制扩展必须是有理数的证据,尽管基本而不冗长,但两种证明都需要一些工作。数学家通常不会把“终止或重复”作为有理数概念的定义。参考资料:无理数-百度百科2023-05-18 23:54:321
下列各数中表示负无理数的是( )A.-3.14B.3125C.|-6|D.3?9
A、-3.14是有理数,故选项错误;B、3125=5,是有理数,故选项错误;C、|-6|>0,是正无理数,故选项错误;D、表示负无理数的是3?9,故选项正确.故选D.2023-05-18 23:54:461
什么是正负数
比0大的数叫正数.正数前面常有一个符号“+”,通常可以省略不写.正数有无数个,包括正整数,正分数和正无理数. 正数的几何意义:在数轴上表示正数的点都在数轴上0的右边。负数是数学术语,指小于0的实数,负数是同绝对值正数的相反数.任何正数前加上负号都等于负数.在数轴线上,负数都在0的左侧,所有的负数都比自然数小.负数用负号(即相当于减号)“-”标记。例题我们在小学学过自然数;一个物体也没有,就用0来表示,测量和计算有时不能得到整数的结果,这就要用分数和小数表示。同学们还见过其他种类的数吗?有两个温度计,温度计液面指在0以上第6刻度,它表示的温度是6℃,那么温度计液面指在0以下第6刻度,这时的温度如何表示呢?提示:如果还用6℃来表示,那么就无法区分是零上6℃还是零下6℃,因此我们就引入一种新数——负数。参考答案:记作-6℃。说明:我们为了区分零上6℃与零下6℃这一组具有相反意义的量,因而引入了负数的概念。正数有无数个,包括正有理数和正无理数。正有理数又包括正整数和正分数。正数的几何意义:在数轴上表示正数的点都在数轴上原点的右边。2023-05-18 23:54:542
据史科记载,最早认识和使用负数的国家是?
我国2023-05-18 23:55:033
异名相除,同名相益,正无入正之,负无入负之
减法:遇到同符号数字应相减其数值,遇到异符号数字应相加其数值,零减正数的差是负数,零减负数的差是正数.2023-05-18 23:55:091
负七分之二十四是负无理数?
负七分之二十四不是负无理数。无理数是指实数范围内不能表示成两个整数之比的数。简单的说,无理数就是10进制下的无限不循环小数,如圆周率。2023-05-18 23:55:151
"异名相除,同名相益;正无人正之,负无人负之"的意
2023-05-18 23:55:232
正负数的加减法的算法分别是什么?
加法:①正数加正数,和为正数;如3+5=8②负数加负数,和为负数;如(-3)+(-5)=-8③正、负两数相加,和取绝对值较大的符号,绝对值相减;如(+3)+(-5)=-2 ;(-3)+(+5)=+2。减法:一个数减另一个数,等于一个数加另一个数的相反数,然后按上面3条进行计算。如:(+3)-(-5)=(+3)+(+5)然后按①方法算;(-3)-(+5)=(- 3)+(- 5)然后按②方法算;(+3)-(+5)=(+3)+(-5)然后按③方法算。扩展资料:核心是负负得正,正负得负。乘法取个列子:6×(-5)=-30 (这里是一正一负的乘法,将数字相乘后前面加负号。)除法取个列子:(-10)÷(-5)=2 (这里是两个负数的除法,将数字相除后前面加正号(省略正号)。)加法取个列子:12+(-5)=12-5=7 (加上一个负的数,相当于减去这个数的正数)减法也是一样的:(-5)-(-8)=(-5)+8=8-5=3负数1×负数2=(负数1×负数2) =正数负数×正数=-(正数×负数)=负数负数1÷负数2=(负数1÷负数2) =正数负数÷正数=-(负数÷正数) =负数负数都比零小,则负数都比正数小。零既不是正数,也不是负数。则-a<0<(+)a负数中没有最小的数,也没有最大的数。去除负数前的负号等于这个负数的绝对值。如-2、-5.33、-45等:-2的绝对值为2,-5.33的绝对值为5.33,-45的绝对值为45等。分数也可做负数,如:-2/5负数的平方根用虚数单位“i”表示。(实数范围内负数没有平方根)最大的负整数为:-1“正负术”是正负术加减法则。其中有一段话是“同名相除,异名相益,正无入负之,负无入正之。”其实他就是加减法则,以现代算式为例,可以将这段话解释如下:“同名相除”,即同号两数相减时,括号前为被减数的符号,括号内为被减数的绝对值减去减数的绝对值。例如:(+5)-(-3)=+(5+3)(-5)-(-3)=-(5-3)“异名相益”,即异号两数相减时,括号前为被减数的符号,括号内为被减数的绝对值加上减数的绝对值。例如:(+5)-(-3)=+(5+3)(-5)-(+3)=-(5+3)“正无入负之,负无入正之”,即0减正为负,0减负得正。例如:0-(+3)=-30-(-3)=+3史料证明:追溯到两百多年前,中国人已经开始使用负数,并应用到生产和生活中。例如,在古代商业活动中,收入为正,支出为负;以盈余为正,亏欠为负.在古代农业活动中,以增产为正,减产为负。中国人使用负数在世界上是首创。2023-05-18 23:55:291
负数是怎样产生的?我国负数最早出现在什么时代
一、负数的产生我国负数最早出现在两千多年前,那个时候中国就有了正负数的概念,掌握了正负数的运算法则。人们计算的时候用一些小竹棍摆出各种数字来进行计算。比如,356摆成||| ,3056摆成等等。这些小竹棍叫做“算筹”,算筹也可以用骨头和象牙来制作。中国三国时期的学者刘徽在建立负数的概念上有重大贡献。刘徽首先给出了正负数的定义,他说:“今两算得失相反,要令正负以名之。”意思是说,在计算过程中遇到具有相反意义的量,要用正数和负数来区分它们。刘徽第一次给出了正负区分正负数的方法。他说:“正算赤,负算黑;否则以斜正为异”意思是说,用红色的小棍摆出的数表示正数,用黑色的小棍摆出的数表示负数;也可以用斜摆的小棍表示负数,用正摆的小棍表示正数。二、我国负数最早出现中国古代著名的数学专著《九章算术》中,最早提出了正负数加减法的法则:“正负数曰:同名相除,异名相益,正无入负之,负无入正之;其异名相除,同名相益,正无入正之,负无入负之。”这里的“名”就是“号”,“除”就是“减”,“相益”、“相除”就是两数的绝对值“相加”、“相减”,“无”就是“零”。扩展资料在现今的中小学教材中,负数的引入,是通过算术运算的方法引入的:只需以一个较小的数减去一个较大的数,便可以得到一个负数。这种引入方法可以在某种特殊的问题情景中给出负数的直观理解。而在古代数学中,负数常常是在代数方程的求解过程中产生的。对古代巴比伦的代数研究发现,巴比伦人在解方程中没有提出负数根的概念,即不用或未能发现负数根的概念。3世纪的希腊学者丢番图的著作中,也只给出了方程的正根。然而,在中国的传统数学中,已较早形成负数和相关的运算法则。 除《九章算术》定义有关正负运算方法外,东汉末年刘烘(公元206年)、宋代杨辉(1261年)也论及了正负数加减法则,都与九章算术所说的完全一致。特别值得一提的是,元代朱世杰除了明确给出了正负数同号异号的加减法则外,还给出了关于正负数的乘除法则。 负数在国外得到认识和被承认,较之中国要晚得多。在印度,数学家婆罗摩笈多于公元628年才认识负数可以是二次方程的根。而在欧洲14世纪最有成就的法国数学家丘凯把负数说成是荒谬的数。直到十七世纪荷兰人日拉尔(1629年)才首先认识和使用负数解决几何问题。 参考资料来源:百度百科-负数2023-05-18 23:55:511
下列各数中表示负无理数的是( ) A.-3.14 B. 3 125 C.|-
A、-3.14是有理数,故选项错误;B、 3 125 =5,是有理数,故选项错误;C、|- 6 |>0,是正无理数,故选项错误;D、表示负无理数的是 3 -9 ,故选项正确.故选D.2023-05-18 23:56:051
负数是什么?(小学现代数学六年级)
负负得正 正正得正 正负得负负数就是比零还小的数!! 负数的简介 任何正数前加上负号都等于负数 比零小(<0 )的数.用负号(即相当于减号)“-”标记. 如-2, -5.33, -45, -0.6. 参见:非负数(Nonnegative),负数(negative number) 正数(Positive), 零(Zero),负号/减号(Minus Sign). 例1、我们在小学学过自然数1,2,3,...;一个物体也没有,就用0来表示,测量和计算有时不能得到整数的 结果,这就要用分数和小数表示.同学们还见过其他种类的数吗? 现在有两个温度计,温度计液面指在0以上第6刻度,它表示的温度是6℃,那么温度计液面指在0以下第6 刻度,这时的温度如何表示呢? 提示: 如果还用6℃来表示,那么就无法区分是零上6℃还是零下6℃,因此我们就引入一种新数——负数. 参考答案: 记作-6℃. 说明: 我们为了区分零上6℃与零下6℃这一组具有相反意义的量,因而引入了负数的概念. 例2、下面我们再看一个例子,从中国地形图上可以看到,有一座世界最高峰——珠穆朗玛峰,图上标着8844; 还有一个吐鲁番盆地,图上标着-155.你能说出它们的高度各是多少吗? 提示: 中国地形图上可以看到,上述两处都标有它们的高度的数,图上标的数表示的高度是相对海平面说的, 通常称为海拔高度.8844表示珠穆朗玛峰比海平面高8844米,-155表示吐鲁番盆地比海平面低155米. 参考答案: 珠穆朗玛峰的高度是海拔8844米; 吐鲁番盆地的高度是海拔-155米. 说明: 这个例子也说明了我们为了实际需要引入负数,是为了区分海平面以上与海平面以下高度,它们也表示 具有相反意义的量. 例3、甲地海拔高度是35米 乙地海拔高度是15米,丙地海拔高度是-20米,请问哪个地方最高,哪个地方 最低?最高的地方比最低的地方高多少? 提示: 35米,15米,-20米分别表示什么意义? 参考答案: 甲地最高,丙地最低,最高的地方比最低的地方高55米。 说明: 35米表示高出海平面35米,15米表示高出海平面15米,-20米表示低于海平面20米,所以甲地最高, 丙地最低,且甲地比丙地高55米。 例4、我们已经知道,具有相反意义的量可以用正,负数表示。例如:零上5℃和零下6℃可记为+5℃和 -6℃;高出海平面10米和低于海平面8米可记为+10米和-8米;收入200元和支出300元可记为 +200元和-300元;前进30米和后退40米可记为+30米和-40米,请问上升7米和向东运动9米可记为 +7米和-9米吗? 提示: 上升和向东运动是具有相反意义的量吗? 参考答案: 不可以记为+7米和-9米。 说明: 具有相反意义的量必须满足两个条件:(1)它们必须是同一属性的量;(2)它们的意义相反。上升 和下降;向东运动和向西运动才是相反意义的量,因为上升和向东运动不是具有相反意义的量,所以不可 以记为+7米和-9米。 -π是超越数,不是有理数[编辑本段]负数的由来 人们在生活中经常会遇到各种相反意义的量。比如,在记账时有余有亏;在计算粮仓存米时,有时要记进粮食,有时要记出粮食。为了方便,人们就考虑了相反意义的数来表示。于是人们引入了正负数这个概念,把余钱进粮食记为正,把亏钱、出粮食记为负。可见正负数是生产实践中产生的。 据史料记载,早在两千多年前,我国就有了正负数的概念,掌握了正负数的运算法则。人们计算的时候用一些小竹棍摆出各种数字来进行计算。比如,356摆成||| ,3056摆成等等。这些小竹棍叫做“算筹”算筹也可以用骨头和象牙来制作。 我国三国时期的学者刘徽在建立负数的概念上有重大贡献。刘徽首先给出了正负数的定义,他说:“今两算得失相反,要令正负以名之。”意思是说,在计算过程中遇到具有相反意义的量,要用正数和负数来区分它们。 刘徽第一次给出了正负区分正负数的方法。他说:“正算赤,负算黑;否则以邪正为异”意思是说,用红色的小棍摆出的数表示正数,用黑色的小棍摆出的数表示负数;也可以用斜摆的小棍表示负数,用正摆的小棍表示正数。 我国古代著名的数学专著《九章算术》(成书于公元一世纪)中,最早提出了正负数加减法的法则:“正负数曰:同名相除,异名相益,正无入负之,负无入正之;其异名相除,同名相益,正无入正之,负无入负之。”这里的“名”就是“号”,“除”就是“减”,“相益”、“相除”就是两数的绝对值“相加”、“相减”,“无”就是“零”。 用现在的话说就是:“正负数的加减法则是:同符号两数相减,等于其绝对值相减,异号两数相减,等于其绝对值相加。零减正数得负数,零减负数得正数。异号两数相加,等于其绝对值相减,同号两数相加,等于其绝对值相加。零加正数等于正数,零加负数等于负数。” 这段关于正负数的运算法则的叙述是完全正确的,与现在的法则完全一致!负数的引入是我国数学家杰出的贡献之一。 用不同颜色的数表示正负数的习惯,一直保留到现在。现在一般用红色表示负数,报纸上登载某国经济上出现赤字,表明支出大于收入,财政上亏了钱。 负数是正数的相反数。在实际生活中,我们经常用正数和负数来表示意义相反的两个量。夏天武汉气温高达42°C,你会想到武汉的确象火炉,冬天哈尔滨气温-32°C一个负号让你感到北方冬天的寒冷。 在现今的中小学教材中,负数的引入,是通过算术运算的方法引入的:只需以一个较小的数减去一个较大的数,便可以得到一个负数。这种引入方法可以在某种特殊的问题情景中给出负数的直观理解。而在古代数学中,负数常常是在代数方程的求解过程中产生的。对古代巴比伦的代数研究发现,巴比伦人在解方程中没有提出负数根的概念,即不用或未能发现负数根的概念。3世纪的希腊学者丢番图的著作中,也只给出了方程的正根。然而,在中国的传统数学中,已较早形成负数和相关的运算法则。 除《九章算术》定义有关正负运算方法外,东汉末年刘烘(公元206年)、宋代扬辉(1261年)也论及了正负数加减法则,都与九章算术所说的完全一致。特别值得一提的是,元代朱世杰除了明确给出了正负数同号异号的加减法则外,还给出了关于正负数的乘除法则。他在算法启蒙中,负数在国外得到认识和被承认,较之中国要晚得多。在印度,数学家婆罗摩笈多于公元628年才认识负数可以是二次方程的根。而在欧洲14世纪最有成就的法国数学家丘凯把负数说成是荒谬的数。直到十七世纪荷兰人日拉尔(1629年)才首先认识和使用负数解决几何问题。 与中国古代数学家不同,西方数学家更多的是研究负数存在的合理性。16、17世纪欧洲大多数数学家不承认负数是数。帕斯卡认为从0减去4是纯粹的胡说。帕斯卡的朋友阿润德提出一个有趣的说法来反对负数,他说(-1):1=1:(-1),那么较小的数与较大的数的比怎么能等于较大的数与较小的数比呢?直到1712年,连莱布尼兹也承认这种说法合理。英国数学家瓦里承认负数,同时认为负数小于零而大于无穷大(1655年)。他对此解释到:因为a>0时,英国著名代数学家德·摩根 在1831年仍认为负数是虚构的。他用以下的例子说明这一点:“父亲56岁,其子29岁。问何时父亲年龄将是儿子的二倍?”他列方程56+x=2(29+x),并解得x=-2。他称此解是荒唐的。当然,欧洲18世纪排斥负数的人已经不多了。随着19世纪整数理论基础的建立,负数在逻辑上的合理性才真正建立。[编辑本段]负数的应用 负数被广泛应用于温度、楼层、海拔、水位、盈利、增产/减产、支出/收入、得分/扣分等方面中。[编辑本段]负数 我国在《九章算术》《方程》章中就引入了负数(negative number)的概念和正负数加减法的运算法则。在某些问题中,以卖出的数目为正(因是收入),买入的数目为负(因是付款);余钱为正,不足钱为负。在关于粮谷计算中,则以加进去的为正,减掉的为负。“正”、“负”这一对术语从这时起一直沿用到现在。 在《方程》章中,引入的正负数加法法则称为“正负术”。正负数的乘除法则出现得比较晚,在1299 年朱世杰编写的《算学启蒙》中,《明正负术》一项讲了正负数加减法法则,一共八条,比《九章算术》更加明确。在“明乘除段”中有“同名相乘为正,异名相乘为负”之句,也就是(±a)×(±b)=+ab,(±a)×( b)=-ab,这样的正负数乘法法则,是我国最早的记载。宋末李冶还创用在算筹上加斜划表示负数,负数概念的引入是中国古代数学最杰出的创造之一。 印度人最早在我国之后提出负数,628年左右的婆罗摩笈多(约598-665)。他提出了负数的运算法则,并用小点或小圈记在数字上表示负数。在欧洲初步认识提出负数概念,最早要算意大利数学家斐波那契(1170-1250)。他在解决一个盈利问题时说∶我将证明这个问题不可能有解,除非承认这个人可以负债。15世纪的舒开(1445?-1510?)和16世纪的史提非(1553)虽然他们都发现了负数,但又都把负数说成是荒谬的数,卡当(1545)给出了方程的负根,但他把它说成是“假数”。韦达知道负数的存在,但他完全不要负数。笛卡儿部分地接受了负数,他把方程的负根叫假根,因它比“无/零”更小。 哈雷奥特(1560-1621)偶然地把负数单独地写在方程的一边,并用“-”表示它们,但他并不接受负数。邦别利(1526-1572)给出了负数的明确定义。史提文在方程里用了正、负系数,并接受了负根。基拉德(1595-1629)把负数与正数等量齐观、并用减号“-”表示负数。总之在16、17世纪,欧洲人虽然接触了负数,但对负数的接受的进展是缓慢的。 负数加减乘除的计算法则: + 负数1+负数2=-|负数1+负数2|=负数 负数+正数=|正数-负数| - 负数1-负数2=|负数1-负数2| 负数-正数=-|正数+负数|=负数 × 负数1×负数2=|负数1×负数2| =正数 负数×正数=-|正数×负数| =负数 ÷ 负数1÷负数2=|负数1÷负数2| =正数 负数÷正数=-|负数÷正数| =负数2023-05-18 23:56:139
谁提出了正数和负数的概念
负数人们在生活中经常会遇到各种相反意义的量.比如,在记帐时有余有亏;在计算粮仓存米时,有时要记进粮食,有时要记出粮食.为了方便,人们就考虑了相反意义的数来表示.于是人们引入了正负数这个概念,把余钱进粮食记为正,把亏钱、出粮食记为负.可见正负数是生产实践中产生的.据史料记载,早在两千多年前,我国就有了正负数的概念,掌握了正负数的运算法则.人们计算的时候用一些小竹棍摆出各种数字来进行计算.比如,356摆成|||,3056摆成等等.这些小竹棍叫做“算筹”算筹也可以用骨头和象牙来制作.我国三国时期的学者刘徽在建立负数的概念上有重大贡献.刘徽首先给出了正负数的定义,他说:“今两算得失相反,要令正负以名之.”意思是说,在计算过程中遇到具有相反意义的量,要用正数和负数来区分它们.刘徽第一次给出了正负区分正负数的方法.他说:“正算赤,负算黑;否则以邪正为异”意思是说,用红色的小棍摆出的数表示正数,用黑色的小棍摆出的数表示负数;也可以用斜摆的小棍表示负数,用正摆的小棍表示正数.我国古代著名的数学专著《九章算术》(成书于公元一世纪)中,最早提出了正负数加减法的法则:“正负数曰:同名相除,异名相益,正无入负之,负无入正之;其异名相除,同名相益,正无入正之,负无入负之.”这里的“名”就是“号”,“除”就是“减”,“相益”、“相除”就是两数的绝对值“相加”、“相减”,“无”就是“零”.用现在的话说就是:“正负数的加减法则是:同符号两数相减,等于其绝对值相减,异号两数相减,等于其绝对值相加.零减正数得负数,零减负数得正数.异号两数相加,等于其绝对值相减,同号两数相加,等于其绝对值相加.零加正数等于正数,零加负数等于负数.”这段关于正负数的运算法则的叙述是完全正确的,与现在的法则完全一致!负数的引入是我国数学家杰出的贡献之一.2023-05-18 23:56:281