向量数量积的坐标运算
向量数量积的坐标运算:a·b=x1·x2+y1·y2。已知两个非零向量a、b,那么|a||b|cosθ(θ是a与b的夹角)叫做a与b的数量积或内积,记作a·b。两个向量的数量积等于它们对应坐标的乘积的和。即:若a=(x1,y1),b=(x2,y2),则a·b=x1·x2+y1·y2。向量数量积的坐标的几何意义:一个向量在另一个向量方向上的投影,设θ是a、b的夹角,则|b|cosθ叫做向量b在向量a的方向上的投影|a|cosθ叫做向量a在向量b方向上的投影。数量积a·b等于a的长度|a|与b在a的方向上的投影|b|cosθ的乘积。 注意:两向量的数量积是数量,投影也是数量。射影是矢量。向量数量积的性质:设a、b为非零向量,则①设e是单位向量,且e与a的夹角为θ,则e·a=a·e=|a||e|cosθ。②a⊥b等价于a·b=0。③当a与b同向时,a·b=|a||b|;当a与b反向时,a·b=-|a||b| ;a·a=|a|=a或|a|=√a·a。④|a·b|≤|a|·|b|,当且仅当a与b共线时,即a∥b时等号成立。⑤cosθ=a·b╱|a||b|(θ为向量a、b的夹角)。⑥零向量与任意向量的数量积为0。 向量数量积的运算律:(1)交换律:a·b=b·a。(2)数乘结合律:(λa)·b=λ(a·b)=a·(λb)。bikbok2023-05-14 15:35:551
两向量相乘的坐标公式啊
A( a,b)B(c,d)A*B=ac+bc同学您好,如果问题已解决,记得采纳哦~~~您的采纳是对我的肯定~祝您策马奔腾哦~此后故乡只2023-05-14 15:35:551
两个向量相乘,两个坐标有什么关系,公式忘了
点乘的话就是对应坐标乘积和,叉乘的话,列行列式,第一行为(i,j,k),二三行分别是这两个向量的三个坐标。苏州马小云2023-05-14 15:35:551
坐标向量相乘公式是什么?
向量的相乘公式是a·b=x1x2+y1y2=|a||b|cosθ,θ是向量a和b的夹角,在数学中,向量是指具有大小(magnitude)和方向的量。长度相等且方向相同的向量叫做相等向量.向量a与b相等,记作a=b。所有的零向量都相等。当用有向线段表示向量时,起点可以任意选取。任意两个相等的非零向量,都可用同一条有向线段来表示。代数规则:1、反交换律:a×b=-b×a。2、加法的分配律:a×(b+c)=a×b+a×c。3、与标量乘法兼容:(ra)×b=a×(rb)=r(a×b)。4、不满足结合律,但满足雅可比恒等式:a×(b×c)+b×(c×a)+c×(a×b)=0。5、分配律,线性性和雅可比恒等式别表明:具有向量加法和叉积的R3构成了一个李代数。6、两个非零向量a和b平行,当且仅当a×b=0。tt白2023-05-14 15:35:551
向量相乘的坐标公式是什么?
向量相乘的坐标公式是:a·b=x1x2+y1y2=|a||b|cosθ,θ是向量a和b的夹角,在数学中,向量是指具有大小(magnitude)和方向的量。长度相等且方向相同的向量叫做相等向量.向量a与b相等,记作a=b。所有的零向量都相等。当用有向线段表示向量时,起点可以任意选取。任意两个相等的非零向量,都可用同一条有向线段来表示。代数规则:1、反交换律:a×b=-b×a。2、加法的分配律:a×(b+c)=a×b+a×c。3、与标量乘法兼容:(ra)×b=a×(rb)=r(a×b)。4、不满足结合律,但满足雅可比恒等式:a×(b×c)+b×(c×a)+c×(a×b)=0。5、分配律,线性性和雅可比恒等式别表明:具有向量加法和叉积的R3构成了一个李代数。6、两个非零向量a和b平行,当且仅当a×b=0。豆豆staR2023-05-14 15:35:551
向量相乘的坐标公式是什么?
向量相乘的坐标公式是:a·b=x1x2+y1y2=|a||b|cosθ,θ是向量a和b的夹角,在数学中,向量是指具有大小(magnitude)和方向的量。长度相等且方向相同的向量叫做相等向量.向量a与b相等,记作a=b。所有的零向量都相等。当用有向线段表示向量时,起点可以任意选取。任意两个相等的非零向量,都可用同一条有向线段来表示。代数规则:1、反交换律:a×b=-b×a。2、加法的分配律:a×(b+c)=a×b+a×c。3、与标量乘法兼容:(ra)×b=a×(rb)=r(a×b)。4、不满足结合律,但满足雅可比恒等式:a×(b×c)+b×(c×a)+c×(a×b)=0。5、分配律,线性性和雅可比恒等式别表明:具有向量加法和叉积的R3构成了一个李代数。6、两个非零向量a和b平行,当且仅当a×b=0。墨然殇2023-05-14 15:35:551
向量相乘的坐标公式是什么?
向量相乘的坐标公式是:a·b=x1x2+y1y2=|a||b|cosθ,θ是向量a和b的夹角,在数学中,向量是指具有大小(magnitude)和方向的量。长度相等且方向相同的向量叫做相等向量.向量a与b相等,记作a=b。所有的零向量都相等。当用有向线段表示向量时,起点可以任意选取。任意两个相等的非零向量,都可用同一条有向线段来表示。代数规则:1、反交换律:a×b=-b×a。2、加法的分配律:a×(b+c)=a×b+a×c。3、与标量乘法兼容:(ra)×b=a×(rb)=r(a×b)。4、不满足结合律,但满足雅可比恒等式:a×(b×c)+b×(c×a)+c×(a×b)=0。5、分配律,线性性和雅可比恒等式别表明:具有向量加法和叉积的R3构成了一个李代数。6、两个非零向量a和b平行,当且仅当a×b=0。左迁2023-05-14 15:35:551
坐标向量相乘怎么算
坐标向量相乘:各对应元素相乘,然后相加。比如已知向量AB=(2,3)与向量SD(5,8),求向量AB×向量SD,则向量AB×向量SD=2×5+3×8=34。 在平面直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量i,j作为一组基底。a为平面直角坐标系内的任意向量,以坐标原点O为起点作向量OP=a。由平面向量基本定理知,有且只有一对实数(x,y),使得a=向量OP=xi+yj,因此把实数对(x,y)叫做向量a的坐标,记作a=(x,y)。这就是向量a的坐标表示。其中(x,y)就是点P的坐标。向量OP称为点P的位置向量。Ntou1232023-05-14 15:35:551
如何计算向量坐标的乘积,公式是什么
向量内积的坐标表达式的推导,即a·b=|a||b|cos‹a,b›与a·b=a1b1+a2b2两个式子的内在联系.瑞瑞爱吃桃2023-05-14 15:35:552
两个向量的乘积的坐标结果是坐标吗
看你怎么乘内积得标量,外积得向量mlhxueli 2023-05-14 15:35:555
已知向量坐标,向量乘法公式为什么
例:设向量a=(5,4),向量b=(3,4),则向量a×向量b=5×3+4×4=31康康map2023-05-14 15:35:555
两个向量相乘点坐标是怎么乘的
向量a=(x,y,z),向量b=(u,v,w),向量ab相乘分数量积、向量积两种情况: 1、数量积(点积):a·b=xu+yv+zw。 2、向量积(叉积):a×b=|ijk||xyz||uvw|。 在数学中,向量指具有大小和方向的量。它可以形象化地表示为带箭头的线段。北营2023-05-14 15:35:551
已知2个向量坐标(a,b)和(c,d)问他们的相乘怎么表示
点乘为ac+bd叉乘为他们的模乘积乘以两向量夹角正弦真颛2023-05-14 15:35:551
坐标向量相乘公式
a=(x1,y1),b=(x2,y2)a*b=x1*x2+y1*y2这就是坐标公式哪里不清欢迎追问,满意谢谢采纳!wpBeta2023-05-14 15:35:541
两个坐标向量相乘怎么算
分为数乘、点乘和叉乘,计算方法如下:1、向量的数乘,也叫向量的数量积或标量积,是一个向量和一个数相乘的运算,结果是一个向量。如果向量a的坐标为(x1,y1,z1),数k为一个常数,则向量a与数k的数乘为:k·a=(kx1,ky1,kz1)。数乘的结果是改变向量的长度,但不改变向量的方向。2、向量的点乘,也叫向量的内积或数量积,是两个向量相乘的运算,结果是一个数。如果向量a的坐标为(x1,y1,z1),向量b的坐标为(x2,y2,z2),则向量a与向量b的点乘为:a·b=x1x2+y1y2+z1z2。3、向量的叉乘,也叫向量的外积或矢量积,是两个向量相乘的运算,结果是一个向量。如果向量a的坐标为(x1,y1,z1),向量b的坐标为(x2,y2,z2),则向量a与向量b的叉乘为:a×b=(y1z2-z1y2,z1x2-x1z2,x1y2-y1x2)。墨然殇2023-05-14 15:35:541
向量坐标之间能相乘吗
如果是坐标系内点与点的坐标之间就不可以相乘了,但如果是两个向量的坐标就可以,例如(A,B)(C,D)= AC + BD 详情参见高二数学必修4 向量部分的内容CarieVinne 2023-05-14 15:35:541
如果已知P,Q两点坐标,怎么算向量PQ,如果已知两向量的坐标,这两个向量相乘怎么算
设P(x1,y1) Q(x2,y2) 则PQ=(x2-x1,y2-y1) P*Q=x1*x2+y1*y2黑桃花2023-05-14 15:35:541
两个用坐标表示的向量怎么数量积?
x1乘x2再加上y1乘y2就可以了九万里风9 2023-05-14 15:35:546
向量相乘能不能写成坐标乘坐标的形式,只是问写法而已~~
就是写成这样,尤其记住不能写成(a,b)×(c,d),它代表的不是向量相乘了,而是一个向量积,结果仍为向量,而不是数字。你的结果结果为:ac+bd。瑞瑞爱吃桃2023-05-14 15:35:541
为什么两个向量平行相应的坐标相乘然后相减为零呢
两向量平行,坐标交叉相乘积相等、、定理北境漫步2023-05-14 15:35:542
向量的运算乘法不是坐标
向量相乘结果是数,根据公式结果为两个模长乘以夹角的余弦,这些都是数字没有方向,结果自然也不带方向了wpBeta2023-05-14 15:35:541
数学 空间向量如何相乘 空间向量的模怎么算 模又如何相乘
空间向量都是用坐标表示的,向量相乘就是两个向量的横坐标的积加上纵坐标的积再加上z轴坐标的积,比如AB向量坐标是(a1,b1,c1)CD向量坐标是(a2,b2,c2)那么向量AB乘以向量CD等于a1a2+b1b2+c1c2向量的模就是根号下横坐标。纵坐标,z轴坐标平凡的和,比如向量AB坐标轴是(a,b,c)AB的模就是根号下a2+b2+c2,模没有方向只有大小,摸相乘就相当于小学的数字相乘,直接乘就行了。NerveM 2023-05-14 15:35:541
向量坐标的加法减法乘法的运算法则
解应为一个数。根据向量乘法原则,向量与向量相乘得到一个数,数与向量相乘仍为向量,向量相加减也为向量,最后向量与向量相乘为数。Chen2023-05-14 15:35:541
知道两个向量的坐标,怎么求它们的点乘
点乘是对应坐标相乘再求和『比如A(1,1)B(2,1)则他们的点乘为1*2+1*1=3』善士六合2023-05-14 15:35:543
向量坐标相乘怎么算一个已知向量的模怎么求
向量的模指的是该向量的长度或者大小,用符号||v||表示。求一个向量的模可以通过计算向量坐标相乘再开根号来实现。假设一个向量v的坐标为(v1, v2, …, vn),那么它的模为:||v|| = sqrt(v1^2 + v2^2 + ... + vn^2)。向量坐标相乘是将两个向量对应分量的乘积相加,这个结果可以是一个标量,也可以是一个矩阵,具体取决于向量的定义和具体运算的规则。北境漫步2023-05-14 15:35:541
平面向量坐标相乘公式
A·B=XZ+YK (A+B)²=(X+Z)²+(Y+K)² =X²+Z²+2XZ+Y²+K²+2YK可桃可挑2023-05-14 15:35:542
向量坐标(1,3)×(1,1)怎么算
向量坐标(1,3)×(1,1)=(1×1,1×3)=(1,3)此后故乡只2023-05-14 15:35:546
“两个向量不共线”是什么意思?
意思是两条向量所在的直线不平行也不重合。1、设向量a,b,a,b不共线即a,b不平行(a,b是自由向量,平行即共线),因平行的条件是存在常数k,使b=ka,故不共线的条件是b=ka不成立,即两向量不成比例。2、向量共线的特点:1)充分性:对于向量 a(a≠0)、b,如果有一个实数λ,使 b=λa,那么由实数与向量的积的定义 知,向量a与b共线。2)必要性:已知向量a与b共线,a≠0,且向量b的长度是向量a的长度的m倍,即_b_=m_a_。那么当向量a与b同方向时,令λ=m,有 b =λa,当向量a与b反方向时,令λ=-m,有 b=λa。如果b=0,那么λ=0。3)唯一性:如果 b=λa=μa,那么(λ-μ)a=0。但因a≠0,所以λ=μ。扩展资料向量的分类:1、负向量如果向量AB与向量CD的模相等且方向相反,那么我们把向量AB叫做向量CD的负向量,也称为相反向量。 2、零向量长度为0的向量叫做零向量,记作0。零向量的始点和终点重合,所以零向量没有确定的方向,或说零向量的方向是任意的。3、相等向量长度相等且方向相同的向量叫做相等向量.向量a与b相等,记作a=b。规定:所有的零向量都相等,当用有向线段表示向量时,起点可以任意选取。任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段的起点无关.同向且等长的有向线段都表示同一向量。参考资料:百度百科-向量康康map2023-05-14 15:35:531
向量共线问题
通俗的讲就是他们两方向一致或相反,两向量又不等于0! c≠0,那么向量b与c共线的充要条件是:存在唯一实数λ,使得b=λc。c=0,那么对于任何向量b都与c共线,没什么条件。CarieVinne 2023-05-14 15:35:531
向量共线和平行一样吗
向量共线和向量平行是一样的。两个向量共线就是两个向量平行。简言之,共线向量就是平行向量,方向相同或相反的非零向量叫平行向量,表示为a∥b,任意一组平行向量都可移到同一直线上,所以称为共线向量。苏萦2023-05-14 15:35:531
若向量a与向量b共线,则说明什么
郭敦顒回答: 向量a与向量b共线,则向量a∥向量b,说明向量a与向量b同向或反向,它们的和或差仍在这条直线上. 向量a与向量b的夹角为θ=0,cosθ= cos0=1,点积有最大值;而sinθ=sin0=0,叉积最小.大鱼炖火锅2023-05-14 15:35:531
关于向量共线的问题
方向相同或相反的非零向量叫平行向量。表示为a∥b 任意一组平行向量都可移到同一直线上, 因此平行向量也叫共线向量。 规定:0向量与任意向量平行。 向量共线的充要条件: 若向量a与向量b(b为非零向量)共线,则a=λb(λ为实数)。 向量a与向量b共线的充要条件是,a与b线性相关,即存在不全为0的两个实数λ和μ,使 λa+μb=0 更一般的,平面内若a =(p1,p2) b =(q1,q2),a∥b 的充要条件是p1·q2=p2·q1meira2023-05-14 15:35:531
两向量共线公式
解答:①向量共线的条件:向量a,向量b共线(向量a≠0)等价于:存在唯一的实数λ,使得向量b=λ向量a②向量共线的坐标表示:设向量a=(x1,y1),向量b=(x2,y2),则有:向量a,向量b共线等价于:x1y2-x2y1=0【希望我的回答对您有所帮助!】北有云溪2023-05-14 15:35:532
向量怎样共线?
两向量X,Y轴座标为有理数倍左迁2023-05-14 15:35:536
两个向量a,b共线的等价条件
因为两向量共线,所以可把a,b两向量当作基底,所以a+λb与-(b-2a)的坐标分别为(1,λ)和(2,-1)由向量共线的坐标表示可知2λ=-1所以λ=-1/2拌三丝2023-05-14 15:35:532
三点共线和向量共线的区别和联系
向量共线是两向量所在直线平行或共线三点共线是三点可连成一条直线可桃可挑2023-05-14 15:35:531
向量共线的条件
向量共线的条件,可能是两个向量只要相等的话,那么这两个向量一定是共线的。水元素sl2023-05-14 15:35:531
向量相乘用坐标表示的公式是什么
向量a(x1,y1),向量b(x2,y2)向量a点乘向量b等于x1x2+y1y2扩展资料实数λ和向量a的叉乘乘积是一个向量,记作λa,且|λa|=|λ|*|a|。当λ>0时,λa的方向与a的方向相同;当λ<0时,λa的方向与a的方向相反;当λ=0时,λa=0,方向任意。当a=0时,对于任意实数λ,都有λa=0。注:按定义知,如果λa=0,那么λ=0或a=0。实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。当|λ|>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的|λ|倍当|λ|<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的|λ|倍。实数p和向量a的点乘乘积是一个数。数与向量的乘法满足下面的运算律结合律:(λa)·b=λ(a·b)=(a·λb)。向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.数乘向量的消去律:①如果实数λ≠0且λa=λb,那么a=b。②如果a≠0且λa=μa,那么λ=μ。需要注意的是:向量的加减乘(向量没有除法)运算满足实数加减乘运算法则。凡尘2023-05-14 15:35:5310
坐标向量相乘怎么算
坐标向量相乘:各对应元素相乘,然后相加。比如已知向量AB=(2,3)与向量SD(5,8),求向量AB×向量SD,则向量AB×向量SD=2×5+3×8=34。在平面直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量i,j作为一组基底。a为平面直角坐标系内的任意向量,以坐标原点O为起点作向量OP=a。由平面向量基本定理知,有且只有一对实数(x,y),使得a=向量OP=xi+yj,因此把实数对(x,y)叫做向量a的坐标,记作a=(x,y)。这就是向量a的坐标表示。其中(x,y)就是点P的坐标。向量OP称为点P的位置向量。苏萦2023-05-14 15:35:531
向量的乘法 有坐标的怎样做
a与b的数量积:a·b=|a||b|cosθa与b的数量积坐标运算:设a=(x1,y1),b=(x2,y2),则a·b=x1x2+y1y2苏萦2023-05-14 15:35:532
数学空间向量 怎样判断共线共面
已知空间任意一点O和不共线的三点A.B.C,则点P位于平面ABC内的充要条件是:存在x.y.z∈R,满足x+y+z=1 使OP=xOA+yOB+zOC。 证明:(充分性) ∵x+y+z=1 ∴ z=1-x-y 又∵OP=xOA+yOB+zOC ∴ OP =xOA+yOB+(1-x-y)OC OP=x(OA-OC)+y(OB-OC)+OC OP-OC=x(OA-OC)+y(OB-OC) ∴ CP=xCA+yCB 又由已知条件A、B、C三点不共线可得CA、CB是不共线向量 ∴ 根据平面向量的基本定理可知,点P位于平面ABC内 ∴ 充分性成立(必要性) ∵点P位于平面ABC内 又由已知条件A、B、C三点不共线可得CA、CB是不共线向量 ∴ 根据平面向量的基本定理可知,存在实数x,y使得 CP=xCA+yCB ∴ OP-OC=x(OA-OC)+y(OB-OC) OP=x(OA-OC)+y(OB-OC)+OC OP =xOA+yOB+(1-x-y)OC 令z=1-x-y 则x+y+z=1 且 OP=xOA+yOB+zOC 即,存在实数x、y、z满足x+y+z=1,使得OP=xOA+yOB+zOC ∴ 必要性成立小白2023-05-14 15:35:521
两条直线重合或共面 与 两个向量共线或共面 各有什么不同?
首先,直线重合说明是同一条直线,共面说明两条在同一平面上,而直线还有一个关系是异面。而向量却不一样,向量,通常称的是自由向量,即方向不变,起点不点,所以所有的向量都是共面的(因为可以把起点放在同一点),而共线则说明方向相同或相反,即可以把起点放在同一点,在同一条直线上。善士六合2023-05-14 15:35:521
向量共线可得什么结论?
嗯啊,就是这样可桃可挑2023-05-14 15:35:522
平面向量a,b共线的充要条件是( )
C中,由于 0 向量可以与任何向量共线,所以当 a=0 ,而 b ≠ 0 时,这样的实数 λ 就不存在了。C 只是 a、b 共线的充分条件。D 选项的条件是 λ1*a+λ2*b=0 吧??充分性:不妨设 λ1 ≠ 0 ,则 a= -λ2/λ1*b ,令 λ= -λ2/λ1 ,则 a=λb ,因此 a//b 。必要性:因为 a//b ,所以(1)若 a=0 向量,则 1a+0b=0 ,取 λ1=1 ,λ2=0 ;(2)若 a ≠ 0 向量,则 存在实数 λ 使 b=λa ,此时 λa+(-1)b=0 ,取 λ1=λ ,λ2= -1 ,可以看出,总存在不全为 0 的两个实数 λ1、λ2 使 λ1*a+λ2*b=0 向量。答案选 D 。bikbok2023-05-14 15:35:521
高中数学平面向量为什么这么难? 其他题目不会做,至少答案看的懂 平面向量看书看了1个星期 定
千万别放弃 一个过来人给你的忠告,不懂的可以问我!!!千万别放弃苏州马小云2023-05-14 15:35:523
怎么证明两个向量共线
两个向量共线是指表示它们的有向线段互相平行,通俗的说就是同向或反向的向量叫共线向量,又叫平行向量。有一个特殊情况,就是规定:零向量可以与任何向量共线。定理:向量a、b(b≠0)共线的充要条件是存在实数λ使a=λb。所以,要证明两个向量共线,只须证明它们之间有一个倍数关系即可。例:已知e1、e2是不共线的单位向量,向量a=e1+2e2,b=-2e1+e2,c=4e1+3e2,求证明:a与b+c共线。证明:因为b+c=(-2e1+e2)+(4e1+3e2)=2e1+4e2=2(e1+2e2)=2a,所以a与b+c共线。苏萦2023-05-14 15:35:521
向量共线的条件
向量共线的条件包括方向相同或相反;向量a=k向量b;a=(x1,y1),b=(x2,y2),a//b等价于x1y2-x2y1=0。零向量与任何向量共线。对于向量 a(a≠0)、b,如果有一个实数λ,使 b=λa,那么由实数与向量的积的定义知,向量a与b共线。如果 b=λa=μa,那么(λ-μ)a=0。但因a≠0,所以λ=μ。 扩展资料 向量共线的条件包括方向相同或相反;向量a=k向量b;a=(x1,y1),b=(x2,y2),a//b等价于x1y2-x2y1=0。零向量与任何向量共线。对于向量 a(a≠0)、b,如果有一个实数λ,使 b=λa,那么由实数与向量的"积的定义知,向量a与b共线。Ntou1232023-05-14 15:35:521
两个向量共线的公式
两个向量共线的公式:向量m=(a,b),向量n=(c,d);两者共线时ad=bc。若向量a与向量b(b为非零向量)共线,则a=λb(λ为实数)。向量a与向量b共线的充要条件是,a与b线性相关,即存在不全为0的两个实数λ和μ,使λa+μb=0。更一般的,平面内若a=(p1,p2),b=(q1,q2),a∥b的充要条件是p1·q2=p2·q1。向量a与向量b共线的充要条件是,a与b线性相关,即存在不全为0的两个实数λ和μ,使λa+μb=0。更一般的,平面内若a=(p1,p2),b=(q1,q2),a∥b的充要条件是p1·q2=p2·q1。拓展:1、两向量共线公式:2、(1)a,b共线则a=kb(k∈R,且k≠0)。3、(2)向量a=(x1,y1);b=(x2,y2);a//b,则x1*y2=x2*y1。4、方向相同或相反的非零向量叫平行向量。表示为a∥b任意一组平行向量都可移到同一直线上,因此平行向量也叫向量共线。共线向量也是平行向量,方向相同或相反的非零向量称为平行向量,用a∥b、 任何一组平行向量都可以移动到同一直线上,因此称为共线向量。共线向量的基本定理表明,如果≠0,则向量b与a共线的充要条件是存在唯一实数λ,使得b=λa。铁血嘟嘟2023-05-14 15:35:521
怎么证明向量与直线共线
向量平行和向量共线是一回事情.方向相同或相反的非零向量叫平行向量。表示为a‖b 任意一组平行向量都可移到同一直线上,因此平行向量也叫共线向量。 规定:0向量与任意向量平行。 若向量a与向量b(b为非零向量)共线,则a=λb(λ为实数)。 向量a与向量b共线的充要条件是,a与b线性相关,即存在不全为0的两个实数λ和μ,使λa+μb=0 更一般的,平面内若a=(p1,p2)b=(q1,q2),a‖b的充要条件是p1·q2=p2·q1陶小凡2023-05-14 15:35:522
向量的共线与共线向量有什么关系
向量共线强调a为非零向量还真是笨笨CarieVinne 2023-05-14 15:35:522
若向量a与向量b共线,则说明什么
郭敦顒回答: 向量a与向量b共线,则向量a∥向量b,说明向量a与向量b同向或反向,它们的和或差仍在这条直线上. 向量a与向量b的夹角为θ=0,cosθ= cos0=1,点积有最大值;而sinθ=sin0=0,叉积最小.阿啵呲嘚2023-05-14 15:35:521
如果两个向量共线可得出什么结论?
可以的出来他们线性相关,存在k1*e1+k2*e2=0;因为0向量和任意共线,所以不能得到更强的结论一个向量可以被另外一个表示!北境漫步2023-05-14 15:35:521
请问向量加减法中,所指的共线和不共线分别是什么意思!
在数学中,我们把既有大小,又有方向的量叫做向量,所谓共线和不共线,当然是指是否在同一条直线上的向量.当两个向量共线时平行四边形法则就不适用.亲,选我,我自己打出来的.瑞瑞爱吃桃2023-05-14 15:35:521
高中向量问题
(-π/6,0)的坐标位置在x轴左半轴(负半轴),所以按照(-π/6,0)平移是向左平移,谢谢ardim2023-05-14 15:35:512
高考向量问题
1.与向量概念有关的问题⑴向量不同于数量,数量是只有大小的量(称标量),而向量既有大小又有方向;数量可以比较大小,而向量不能比较大小,只有它的模才能比较大小.记号“ > ”错了,而| |>| |才有意义.⑵有些向量与起点有关,有些向量与起点无关.由于一切向量有其共性(力和方向),故我们只研究与起点无关的向量(既自由向量).当遇到与起点有关向量时,可平移向量.⑶平行向量(既共线向量)不一定相等,但相等向量一定是平行向量,既向量平行是向量相等的必要条件.⑷单位向量是模为1的向量,其坐标表示为( ),其中 、 满足 =1(可用(cos ,sin )(0≤ ≤2π)表示).⑸零向量 的长度为0,是有方向的,并且方向是任意的,实数0仅仅是一个无方向的实数.⑹有向线段是向量的一种表示方法,并不是说向量就是有向线段.2.与向量运算有关的问题⑴向量与向量相加,其和仍是一个向量.①当两个向量 和 不共线时, 的方向与 、 都不相同,且| |<| |+| |; ②当两个向量 和 共线且同向时, 、 、 的方向都相同,且 ;③当向量 和 反向时,若| |>| |, 与 方向相同 ,且| |=| |-| |;若| |<| |时, 与 方向相同,且| + |=| |-| |.⑵向量与向量相减,其差仍是一个向量.向量减法的实质是加法的逆运算.⑶围成一周首尾相接的向量(有向线段表示)的和为零向量.如, ,(在△ABC中) .(□ABCD中)⑷判定两向量共线的注意事项如果两个非零向量 , ,使 =λ (λ∈R),那么 ‖ ;反之,如 ‖ ,且 ≠0,那么 =λ .这里在“反之”中,没有指出 是非零向量,其原因为 =0时,与λ 的方向规定为平行. ⑸数量积的8个重要性质①两向量的夹角为0≤ ≤π.由于向量数量积的几何意义是一个向量的长度乘以另一向量在其上的射影值,其射影值可正、可负、可以为零,故向量的数量积是一个实数.②设 、 都是非零向量, 是单位向量, 是 与 的夹角,则③ (∵ =90°, ④在实数运算中 =0 =0或b=0.而在向量运算中 = = 或 = 是错误的,故 或 是 =0的充分而不必要条件.⑤当 与 同向时 = ( =0,cos =1); 当 与 反向时, =- ( =π,cos =-1),即 ‖ 的另一个充要条件是 .特殊情况有 = .或 = = = .如果表示向量 的有向线段的起点和终点的坐标分别为( , ),( , ),则 = ⑥ 。(因 )⑦数量积不适合乘法结合律.如 (因为 与 共线,而 与 共线)⑧数量积的消去律不成立.若 、 、 是非零向量且 并不能得到 这是因为向量不能作除数,即 是无意义的.6.与平面向量基本定理及平移有关的问题⑴平面向量基本定理是平面向量坐标表示的基础,它表明同一平面内的任一向量都可表示为其他两个不共线向量的线性组合.⑵平面向量基本定理可联系物理学中力的分解模型进行理解。⑶点的平移公式:点 按给定平移向量 平移后得新点 的坐标公式为反之,由新点求旧点公式变为由新旧两点求平移向量公式为⑷图象(图形)平移:给定平移向量 = ,由旧解析式求新解析式,用公式代入旧解析式中,整理得到;由新解析式求旧解析式,用公式代入新式,整理得到。应用以上公式要注意公式中平移前的坐标 、平移后的坐标 、平移向量坐标 都在同一坐标系中。确定平移向量一般可采用如下两种方法:其一,配凑法:按题目要求进行配凑,如将 化简,即可配凑为: 则公式为 此时平移向量为 其二,待定系数法:按要求代入公式,再根据题目要求求出 【经典题例】【例1】 是不共线的两个向量,已知 若 三点共线,求 值.【思路分析】由于 三点共线,因此必存在实数 ,使 ,因而可根据已知条件和向量相等的条件得到关于 的方程,从而求 .解:略∴ =-1.【点评】用向量共线的充要条件有时可以很容易解决几何中的三点共线问题.【例2】证明三角形三条高线交于一点.【思路分析】此题可利用“形”、“数”结合的方法,通过直角坐标系将几何图形数字化,则问题解决更简洁、更易接受.证明:如图建立直角坐标系,设 所以 是 上的高,故 的三条高交于一点 .【点评】本题把两直线是否垂直的问题转化为两个非零向量的数量积是否为零的问题.【例3】已知向量 满足条件 , ,求证:△ 是正三角形.【思路分析】观察条件中的两个等式,联系向量模及加法的几何意义,可构造图形巧证.如图1.又据条件易知O为定点,故可适当选取坐标系,借助向量的坐标运算,将几何问题代数化.如图2.也可联想三角知识进行坐标选取.如 使得选取具有任意性.且巧妙运用了三角变形.证明 为正三角形可从边或角的关系着手,联系两个向量数量积的有关知识可获得两种证法.证法一:如图1略.证法2如图2略.证法三:据| |= ,令 由 得 可求得| |= ,所以 为正三角形.证法四:设 由已知得 | |= ,所以 为正三角形。证法五:同证法四求得 ,于是 = 所以 ,由此可证 为正三角形.【点评】以上五种证法,不仅实现了向量重要知识的一次大聚会,而且通过向量与三角、几何联姻,开阔了学生的眼界,培养了综合运用知识的能力.【例4】如图,已知点 是△ 的重心,⑴求 ;⑵若 过△ 的重心 ,且 求证: 【思路分析】充分运用向量的几何形式运算.及向量平行的定理及推论,把相关向量用已知向量表示即可.解:⑴ ⑵显然 因为 是 的重心,所以 = 由 、 、 三点共线,有 共线,所以,有且只有一个实数 , 而 = - = ,所以 = .又因为 、 不共线,所以 ,消去 ,整理得3 = ,故 .【点评】建立 与 的关系关键是由 三点共线得出.为此要熟练运用已知向量表示未知向量.【例5】如图,直三棱柱 — ,底面 中, ,∠ °,棱 , 分别是 , 的中点. z⑴求 的长;⑵求 〈 , 〉的值;⑶求证 ⊥ .【思路分析】以 为原点建立空间坐标系,写出有关点的坐标,并进行有关运算.解:如图,以 为原点建立空间直角坐标系O- .⑴依题意得 =(0,1,0), =(1,0,1).∴| |= = .⑵依题意得A1(1,0,2),B(0,1,0),C(0,0,0), B1(0,1,2).∴ =(1,-1,2), =(0,1,2). | |= ,| |= ,∴ 〈 , 〉 = ⑶依题意得 (0,0,2),M( =(-1,1,-2), =( . = .∴ ⊥ ,∴ ⊥C .【点评】利用题中已知条件,选取恰当点建立空间坐标系,并写出相应点的坐标是这类题的关键.【例6】四棱锥P—ABCD中,底面ABCD是一个平行四边形, , ={4,2,0}, ={-1,2,-1}.⑴求证:PA⊥底面ABCD;⑵求四棱锥P—ABCD的体积;⑶对于向量 定义一种运算:( × = 试计算( × ) 的绝对值的值;说明其与四棱锥P—ABCD体积的关系,并由此猜想向量这一运算( × ) 的绝对值的几何意义.【思路分析】根据所给向量的坐标,结合运算法则进行运算.解:⑴∵ ∴AP⊥AB又∵ AP⊥AD,∵AB、AD是底面ABCD上的两条相交直线,∴AP⊥底面ABCD。⑵设 与 的夹角为 ,则V= | | |= ⑶|( × ) |=|-4-32-4-8|=48.它是四棱锥P—ABCD体积的3倍.猜测:| ( × ) |在几何上可表示以AB、AD、AP为棱的平行六面体的体积(或以AB、AD、AP为棱的直四棱锥的体积)。【点评】本题考察空间向量的坐标表示、空间向量的数量积、空间向量垂直的充要条件、空间向量夹角运算公式和直线与平面垂直的判定定理、棱锥的体积公式等.【例7】如图,已知椭圆 ,直线 : P是 上一点,射线OP交椭圆与点R,又点Q在OP上,且满足|OQ||OP|= .当点P在L上移动时,求点Q的轨迹方程,并说明轨迹是什么曲线.【思路分析】将 看作向量,则它们共线而切同向,利用向量共线的充要条件,结合平面向量的坐标表示可迅速解题.解:设 ∵ 、 同向,且|OQ||OP|= 代入L方程得 ⑴ 同向 代入椭圆方程得 ⑵由①、②得 不全为0), 点Q的轨迹为椭圆 (去掉原点).【点评】解析几何解答题中以向量知识为主线,用向量坐标形式表示已知条件可达到解题目的.【例8】从抛物线 外的一点P(a,b)向该抛物线引切线PA,PB.① 求切点A,B的坐标. (其中A的x坐标大于B的x的坐标).② 求 的值.③ 当∠APB为锐角时,求点P的纵坐标的取值范围.解:① 从 得 =2x,因此设切点的x坐标为 ,切线方程便为 由于该切线通过P点,从而 由于引出两条切线,故 >0所以切点的坐标为A ② ④ 若∠APB为锐角,则有 >0,所以4b+1<0因此P的纵坐标的取值范围是b<- 【热身冲刺】一.选择题1.已知向量 和 反向,则下列等式成立的是( ).A.| | -| |=| |B. C. | |D. 2.已知向量 ,其中 则满足条件的不共线的向量共有( ).A.16个 B.13个 C.12个 D.9个3.函数 的图象按向量 平移后,所得函数的解析式是 则 等于( ).A. B. C. D. 4.已知若 和 夹角为钝角,则 的取值范围是( )A. > B. ≥ < ≤ 5.已知向量 = , = 与 的夹角为60°,则直线 与圆 的位置关系是( ).A. 相切 B.相交 C.相离 D.随α、β的值而定6.平面上有四个互异的点A、B、C、D,已知 则 的形状是( ).A. 直角三角形 B.等腰三角形 C.等腰直角三角形 D.等边三角形7.已知 中,点D在BC边上,且 则 的值是( ).A. B. C. D.08.已知A、B、C三点共线,且A、B、C三点的纵坐标分别为2、5、10,则A点分 所得的比是( ).A. B. C. D. 9.下列说法正确的是( )A. 任何三个不共线的向量都可构成空间的一个基底.B. 单位正交基底中的基向量模为1,且互相垂直.C. 不共面的三个向量就可构成空间的单位正交基底.D. 只要对空间一点P存在三个有序实数x,y,z,使O,A,B,C四点满足 则 就构成空间的一个基底.10.同时垂直于 的单位向量是( )A. B.( C.( )D.( )或( )11.若 ,则| |的取值范围是( )A.[0,5] B.[1,5] C.(1,5) D.[1,25]12.已知 若 共同作用在一个物体上,使物体从点 移到点 ,则合力所做的功为( )A. 10 B.12 C.14 D.16二.填空题13.若对 个向量 … 存在 个不全为零的实数 …, ,使得 …,+ 成立,则称向量 … 为“线性相关”.依此规定,能说明 “线性相关”的实数 依次可以取 .(写出一组数值即可,不必考虑所有情况)14.若直线 按向量 平移后与圆 : 相切,则实数m的值等于 .15.已知 中, <0, = 则 与 的夹角为 .16.已知 ,则以 、 为边的平行四边形的两条高的长 .三.解答题17.在平行四边形ABCD中,A , ,点M是线段AB的中点,线段CM与BD交于点P.⑴若 求点C的坐标;⑵当| |=| |时,求点P的轨迹.18.已知 且 与 之间满足关系: 其中k>0.⑴用k表示 ⑵求 的最小值,并求此时 与 夹角 的大小. C A 19.如图,正方形 与等腰直角 G△ ACB互相垂直,∠ACB= ,E、F C A分别是AB、BC的中点,G是 上的点. F E ⑴如果 试确定点 的位置; B⑵在满足条件⑴的情况下,试求 < >的值.20.如图,已知三棱锥P-ABC在某个空间直角坐标系中, P ⑴画出这个空间直角坐标系,并指 A C出 与 轴的正方向的夹角.⑵求证: ; B⑶若M为BC的中点, 求直线AM与平面PBC所成角的大小.答案选择题答案:1.C; 2.C; 3.B; 4.B; 5.C; 6.B; 7.D; 8.C; 9.B; 10.D; 11.B; 12.C填空题答案:13.只要写出-4c,2c,c中一组即可. 14.3或13. 15. . 16. ; 解答题答案:17.⑴设点C坐标为( ),又 即 即点 .⑵设 则 =3 ABCD为菱形. ⊥ 即故点P的轨迹是以(5,1)为圆心,2为半径去掉与直线y=1的两个交点.18. ⑴ 两边平方,得 ,即 ⑵ 从而 ,∴ 的最小值为 ,此时 , ,即 与 夹角为 .19. ⑴易知 以C为坐标原点,建立空间直角坐标系C-x,y,z,,设AC=CB=a.AG=x,则A(0,a,0), (0,0,a),G(0,a,x),E( ).G为 的中点.〈 〉= 20. ⑴以A为坐标原点O,以AC为Oy轴,以AP所在直线为Oz轴, 与Ox轴的正向夹角为30°;⑵由 去证;⑶连AM、PM,可证∠AMP为AM 与平面PBC所成角,又n= 故所成角为45°.铁血嘟嘟2023-05-14 15:35:511
平面向量的鸡爪定理
平面向量的鸡爪定理如下:我们在向量部分经常会遇到一个模型,叫做 爪子模型,很多同学对于结论记忆非常熟悉,但是对于 爪子模型的实质,并不是非常理解。同时,很多同学对于 爪子模型的应用,并不熟悉。其实爪子模型来源于 平面向量三点共线定理。爪子定理:设O为面上一点,过平面外一点B的直线BO在面上的射影为AO,OC为面上的一条直线,那么∠COB,∠AOC,∠AOB三角的余弦关系为:cos∠BOC=cos∠AOBcos∠AOC(∠AOC,∠AOB只能是锐角),又名三余弦定理。爪子模型来源于平面向量三点共线定理:经典例题:对于此题目,我们可以根据爪子模型, EGF三点共线,DEC三点共线,CFD三点共线直接得到这个题目的答案。公式特点:辅助记忆:这三个角中,∠COB是最大的,其余弦值最小,等于另外两个角的余弦值之积。斜线与平面所成∠AOB是斜线与平面内所有直线所成的角中最小的角。(运用时可以背诵成,横的角乘以竖的角等于斜的角。)黑桃花2023-05-14 15:35:511
在向量中,点到直线的距离怎么算
第一步,求出已知直线的方向向量,然后在这条直线上任意取一点。第二步,构造一个新的向量(已知点和所取的那一点)。第三步,求出新的向量与方向向量的向量积的模。第四步,求出方向向量的模。第五步,拿第三步比上第四步即可求出点到直线的距离。望采纳,谢谢。黑桃花2023-05-14 15:35:512
为什么说平面向量是正确的?它的导出背景是什么?是牛顿力学吗?可它在相对论中它也不正确啊?
请问整数的加法是不是“定义”出来的?要真的从数学上明确定义“加法”和“乘法”,必须用到群论。从一般的角度来讲,任何一个理论体系的公理,定义都是不能证明的。比如欧几里得几何“两点之间有且仅有一条直线”,甚至“直线”和“圆”的存在在欧式几何里都是必须先假定其存在而不能证明其存在的。 平面向量理论在数学上是可以从一套公理体系导出的,在数学上来说是自洽的。因此作为一种数学理论,它是正确的。至于他是否能描述我们这个世界,这是物理学家的事。而你也知道它能很好的描述低速的经典物理,那它就是有用的。数学家找到所有可能的宇宙,而物理学家则是寻找我们这个宇宙的规律。 今天正好听到一句名言。“几何学是不真实的,但它是有用的”------亨利 庞加莱(被称为数学史上最后一个通才,即通晓所在时代所有数学的最后一人)mlhxueli 2023-05-14 15:35:512
数学向量题该怎么做
我也是额!不过老师说向量最简单额!空间向量学了没水元素sl2023-05-14 15:35:518
平面向量基底
没错啊,楼主再找老师确认下。因为任意两个不平行的向量都可以表示其他的向量。人类地板流精华2023-05-14 15:35:512
线性代数中,向量和矢量的关系是什么?
这两个是同一个概念,彼此没有差别,指的是同一个东西拌三丝2023-05-14 15:35:513
平面向量平行和垂直的判定方法!!
康康map2023-05-14 15:35:514
投影向量的计算公式是什么?
投影向量的计算公式:向量a·向量b=|a|*|b|*cosΘ。平面向量是在二维平面内既有方向又有大小的量,物理学中也称作矢量,与之相对的是只有大小、没有方向的数量。平面向量用a,b,c上面加一个小箭头表示,也可以用表示向量的有向线段的起点和终点字母表示。向量投影:投影指图形的影子投到一个面或一条线上。投影就是物体在太阳光的照射下在地面形成的影子。当太阳光与地面垂直时是正投影,这就是线性代数中研究的投影。当物体与地面垂直时,影子长度为0。设两个非零向量a与b的夹角为θ,则将|b|·cosθ叫作向量b在向量a方向上的投影或称标投影。一个向量在另一个向量方向上的投影是一个数量称投影向量。向量积,别称外积、叉积、矢积、叉乘,是在向量空间中向量的二元运算。它的运算结果是一个向量而不是一个标量,并且两个向量的叉积与这两个向量和垂直。其通常应用于物理学光学和计算机图形学中。北营2023-05-14 15:35:501
高中平面向量
向量的概念 既有方向又有大小的量叫做向量(物理学中叫做矢量),只有大小没有方向的量叫做数量(物理学中叫做标量)。向量的几何表示 具有方向的线段叫做有向线段,以A为起点,B为终点的有向线段记作AB。(AB是印刷体,也就是粗体字母,书写体是上面加个→) 有向线段AB的长度叫做向量的模,记作|AB|。 有向线段包含3个因素:起点、方向、长度。 相等向量、平行向量、共线向量、零向量、单位向量: 长度相等且方向相同的向量叫做相等向量。 两个方向相同或相反的非零向量叫做平行向量, 向量a、b平行,记作a//b,零向量与任意向量平行,即0//a, 在向量中共线向量就是平行向量,(这和直线不同,直线共线就是同一条直线了,而向量共线就是指两条是平行向量) 长度等于0的向量叫做零向量,记作0。 零向量的方向是任意的;且零向量与任何向量都垂直。 长度等于1个单位长度的向量叫做单位向量。平面向量的坐标表示 在直角坐标系内,我们分别取与x轴、y轴方向相同的两个单位向量i、j作为基底。任作一个向量a,由平面向量基本定理知,有且只有一对实数x、y,使得 a=λ1i+λ2j 我们把(x,y)叫做向量a的(直角)坐标,记作 a=(x,y), 其中x叫做a在x轴上的坐标,y叫做a在y轴上的坐标,上式叫做向量的坐标表示。 在平面直角坐标系内,每一个平面向量都可以用一对实数唯一表示。向量的运算 加法运算 向量加法的定义 已知向量a、b,在平面上任意取一点A,作AB=a,BC=b,再作向量AC,则向量AC叫做a与b的和,记做a+b,即a+b=AB+BC=AC AB+BC=AC,这种计算法则叫做向量加法的三角形法则。(首尾相连,连接首尾,指向终点) 已知两个从同一点O出发的两个向量OA、OB,以OA、OB为邻边作平行四边形OACB,则以O为起点的对角线OC就是向量OA、OB的和,这种计算法则叫做向量加法的平行四边形法则。 对于零向量和任意向量a,有:0+a=a+0=a。 |a+b|≤|a|+|b|。 向量的加法满足所有的加法运算定律。 减法运算 AB-AC=CB,这种计算法则叫做向量减法的三角形法则。(共起点,连终点,方向指向被减向量) 与a长度相等,方向相反的向量,叫做a的相反向量,-(-a)=a,零向量的相反向量仍然是零向量。 (1)a+(-a)=(-a)+a=0(2)a-b=a+(-b)。 数乘运算 实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa,|λa|=|λ||a|,当λ > 0时,λa的方向和a的方向相同,当λ < 0时,λa的方向和a的方向相反,当λ = 0时,λa = 0。 设λ、μ是实数,那么:(1)(λμ)a = λ(μa)(2)(λ + μ)a = λa + μa(3)λ(a ± b) = λa ± λb(4)(-λ)a =-(λa) = λ(-a)。 向量的加法运算、减法运算、数乘运算统称线性运算。坐标运算 已知a=(x1,y1),b=(x2,y2),则 a+b=(x1i+y1j)+(x2i+y2j) =(x1+x2)i+(y1+y2)j 即 a+b=(x1+x2,y1+y2)。 同理可得 a-b=(x1-x2,y1-y2)。 这就是说,两个向量和与差的坐标分别等于这两个向量相应坐标的和与差。 由此可以得到: 一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标。 根据上面的结论又可得 若a=(x,y),则λa=(λx,λy) 这就是说,实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标。向量的数量积 已知两个非零向量a、b,那么|a||b|cos θ叫做a与b的数量积或内积,记作a•b,θ是a与b的夹角,|a|cos θ(|b|cos θ)叫做向量a在b方向上(b在a方向上)的投影。零向量与任意向量的数量积为0。 a•b的几何意义:数量积a•b等于a的长度|a|与b在a的方向上的投影|b|cos θ的乘积。 两个向量的数量积等于它们对应坐标的乘积的和。即:若a=(x1,y1),b=(x2,y2),则a·b=x1x2+y1y2 向量的数量积的性质 (1)a·a=∣a∣^2≥0 (2)a·b=b·a (3)k(ab)=(ka)b=a(kb) (4)a·(b+c)=a·b+a·c (5)a·b=0<=>a⊥b (6)a=kb<=>a//b (7)e1·e2=|e1||e2|cosθ=cosθ 如果e1和e2是同一平面内的两个不共线向量,那么对该平面内的任一向量a,有且只有一对实数λ、μ,使a= λ*e1+ μ*e2,(λ+μ=1)。北境漫步2023-05-14 15:35:503
谁能教教我有关向量的知识?
向量 在初中课改教材初三课本中学习 高一必修4里学到[编辑本段]数量的定义 数学中,把只有大小但没有方向的量叫做数量(或纯量),物理中常称为标量。[编辑本段]向量的定义 数学中,既有大小又有方向的量叫做向量(亦称矢(shi 3声)量)。 注:在线性代数中的向量是指n个实数组成的有序数组,称为n维向量。α=(a1,a2,…,an) 称为n维向量.其中ai称为向量α的第i个分量。 ("a1"的"1"为a的下标,"ai"的"i"为a的下标,其他类推)。[编辑本段]向量的表示 1、代数表示:一般印刷用黑体小写字母α、β、γ … 或a、b、c … 等来表示,手写用在a、b、c…等字母上加一箭头表示。 2、几何表示:向量可以用有向线段来表示。有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向。(若规定线段AB的端点A为起点,B为终点,则线段就具有了从起点A到终点B的方向和长度。这种具有方向和长度的线段叫做有向线段。) 3、坐标表示:在平面直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量i,j作为基底。a为平面直角坐标系内的任意向量,以坐标原点O为起点作向量OP=a。由平面向量基本定理知,有且只有一对实数(x,y),使得 a=向量OP=xi+yj,因此把实数对(x,y)叫做向量a的坐标,记作a=(x,y)。这就是向量a的坐标表示。其中(x,y)就是点P的坐标。向量OP称为点P的位置向量。[编辑本段]向量的模和向量的数量 向量的大小,也就是向量的长度(或称模)。向量a的模记作|a|。 注: 1、向量的模是非负实数,是可以比较大小的。 2、因为方向不能比较大小,所以向量也就不能比较大小。对于向量来说“大于”和“小于”的概念是没有意义的。例如,“向量AB>向量CD”是没有意义的。[编辑本段]特殊的向量 单位向量 长度为单位1的向量,叫做单位向量.与向量a同向且长度为单位1的向量,叫做a方向上的单位向量,记作a0,a0=a/|a|。 零向量 长度为0的向量叫做零向量,记作0.零向量的始点和终点重合,所以零向量没有确定的方向,或说零向量的方向是任意的。 相等向量 长度相等且方向相同的向量叫做相等向量.向量a与b相等,记作a=b. 规定:所有的零向量都相等. 当用有向线段表示向量时,起点可以任意选取。任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段的起点无关.同向且等长的有向线段都表示同一向量。 自由向量 始点不固定的向量,它可以任意的平行移动,而且移动后的向量仍然代表原来的向量。 在自由向量的意义下,相等的向量都看作是同一个向量。 数学中只研究自由向量。 滑动向量 沿着直线作用的向量称为滑动向量。 固定向量 作用于一点的向量称为固定向量(亦称胶着向量)。 位置向量 对于坐标平面内的任意一点P,我们把向量OP叫做点P的位置向量,记作:向量P。[编辑本段]相反向量 与a长度相等、方向相反的向量叫做a的相反向量,记作-a。有 -(-a)=a; 零向量的相反向量仍是零向量。 平行向量 方向相同或相反的非零向量叫做平行(或共线)向量.向量a、b平行(共线),记作a‖b. 零向量长度为零,是起点与终点重合的向量,其方向不确定,我们规定:零向量与任一向量平行. 平行于同一直线的一组向量是共线向量。 共面向量 平行于同一平面的三个(或多于三个)向量叫做共面向量。 空间中的向量有且只有一下两种位置关系:⑴共面;⑵不共面。 只有三个或三个以上向量才谈共面不共面。[编辑本段]向量的运算 设a=(x,y),b=(x",y")。 1、向量的加法 向量的加法满足平行四边形法则和三角形法则。 AB+BC=AC。 a+b=(x+x",y+y")。 a+0=0+a=a。 向量加法的运算律: 交换律:a+b=b+a; 结合律:(a+b)+c=a+(b+c)。 2、向量的减法 如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0 AB-AC=CB. 即“共同起点,指向被减” a=(x,y) b=(x",y") 则 a-b=(x-x",y-y"). 4、数乘向量 实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣·∣a∣。 当λ>0时,λa与a同方向; 当λ<0时,λa与a反方向; 当λ=0时,λa=0,方向任意。 当a=0时,对于任意实数λ,都有λa=0。 注:按定义知,如果λa=0,那么λ=0或a=0。 实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。 当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍; 当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。 数与向量的乘法满足下面的运算律 结合律:(λa)·b=λ(a·b)=(a·λb)。 向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa. 数对于向量的分配律(第二分配律):λ(a+b)=λa+λb. 数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b。② 如果a≠0且λa=μa,那么λ=μ。 3、向量的的数量积 定义:已知两个非零向量a,b。作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π 定义:两个向量的数量积(内积、点积)是一个数量,记作a·b。若a、b不共线,则a·b=|a|·|b|·cos〈a,b〉;若a、b共线,则a·b=+-∣a∣∣b∣。 向量的数量积的坐标表示:a·b=x·x"+y·y"。 向量的数量积的运算律 a·b=b·a(交换律); (λa)·b=λ(a·b)(关于数乘法的结合律); (a+b)·c=a·c+b·c(分配律); 向量的数量积的性质 a·a=|a|的平方。 a⊥b 〈=〉a·b=0。 |a·b|≤|a|·|b|。 向量的数量积与实数运算的主要不同点 1、向量的数量积不满足结合律,即:(a·b)·c≠a·(b·c);例如:(a·b)^2≠a^2·b^2。 2、向量的数量积不满足消去律,即:由 a·b=a·c (a≠0),推不出 b=c。 3、|a·b|≠|a|·|b| 4、由 |a|=|b| ,推不出 a=b或a=-b。 4、向量的向量积 定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b。若a、b不共线,则a×b的模是:∣a×b∣=|a|·|b|·sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系。若a、b共线,则a×b=0。 向量的向量积性质: ∣a×b∣是以a和b为边的平行四边形面积。 a×a=0。 a‖b〈=〉a×b=0。 向量的向量积运算律 a×b=-b×a; (λa)×b=λ(a×b)=a×(λb); (a+b)×c=a×c+b×c. 注:向量没有除法,“向量AB/向量CD”是没有意义的。 向量的三角形不等式 1、∣∣a∣-∣b∣∣≤∣a+b∣≤∣a∣+∣b∣; ① 当且仅当a、b反向时,左边取等号; ② 当且仅当a、b同向时,右边取等号。 2、∣∣a∣-∣b∣∣≤∣a-b∣≤∣a∣+∣b∣。 ① 当且仅当a、b同向时,左边取等号; ② 当且仅当a、b反向时,右边取等号。 定比分点 定比分点公式(向量P1P=λ·向量PP2) 设P1、P2是直线上的两点,P是l上不同于P1、P2的任意一点。则存在一个实数 λ,使 向量P1P=λ·向量PP2,λ叫做点P分有向线段P1P2所成的比。 若P1(x1,y1),P2(x2,y2),P(x,y),则有 OP=(OP1+λOP2)(1+λ);(定比分点向量公式) x=(x1+λx2)/(1+λ), y=(y1+λy2)/(1+λ)。(定比分点坐标公式) 我们把上面的式子叫做有向线段P1P2的定比分点公式 三点共线定理 若OC=λOA +μOB ,且λ+μ=1 ,则A、B、C三点共线 三角形重心判断式 在△ABC中,若GA +GB +GC=O,则G为△ABC的重心[编辑本段]向量共线的重要条件 若b≠0,则a//b的重要条件是存在唯一实数λ,使a=λb。 a//b的重要条件是 xy"-x"y=0。 零向量0平行于任何向量。[编辑本段]向量垂直的充要条件 a⊥b的充要条件是 a·b=0。 a⊥b的充要条件是 xx"+yy"=0。 零向量0垂直于任何向量.[编辑本段]向量的来源 向量(或矢量),最初被应用于物理学.很多物理量如力、速度、位移以及电场强度、磁感应强度等都是向量.大约公元前350年前,古希腊著名学者亚里士多德就知道了力可以表示成向量,两个力的组合作用可用著名的平行四边形法则来得到.“向量”一词来自力学、解析几何中的有向线段.最先使用有向线段表示向量的是英国大科学家牛顿. 课本上讨论的向量是一种带几何性质的量,除零向量外,总可以画出箭头表示方向.但是在高等数学中还有更广泛的向量.例如,把所有实系数多项式的全体看成一个多项式空间,这里的多项式都可看成一个向量.在这种情况下,要找出起点和终点甚至画出箭头表示方向是办不到的.这种空间中的向量比几何中的向量要广泛得多,可以是任意数学对象或物理对象.这样,就可以指导线性代数方法应用到广阔的自然科学领域中去了.因此,向量空间的概念,已成了数学中最基本的概念和线性代数的中心内容,它的理论和方法在自然科学的各领域中得到了广泛的应用.而向量及其线性运算也为“向量空间”这一抽象的概念提供出了一个具体的模型. 从数学发展史来看,历史上很长一段时间,空间的向量结构并未被数学家们所认识,直到19世纪末20世纪初,人们才把空间的性质与向量运算联系起来,使向量成为具有一套优良运算通性的数学体系. 向量能够进入数学并得到发展,首先应从复数的几何表示谈起.18世纪末期,挪威测量学家威塞尔首次利用坐标平面上的点来表示复数a+bi,并利用具有几何意义的复数运算来定义向量的运算.把坐标平面上的点用向量表示出来,并把向量的几何表示用于研究几何问题与三角问题.人们逐步接受了复数,也学会了利用复数来表示和研究平面中的向量,向量就这样平静地进入了数学. 但复数的利用是受限制的,因为它仅能用于表示平面,若有不在同一平面上的力作用于同一物体,则需要寻找所谓三维“复数”以及相应的运算体系.19世纪中期,英国数学家汉密尔顿发明了四元数(包括数量部分和向量部分),以代表空间的向量.他的工作为向量代数和向量分析的建立奠定了基础.随后,电磁理论的发现者,英国的数学物理学家麦克思韦尔把四元数的数量部分和向量部分分开处理,从而创造了大量的向量分析. 三维向量分析的开创,以及同四元数的正式分裂,是英国的居伯斯和海维塞德于19世纪8O年代各自独立完成的.他们提出,一个向量不过是四元数的向量部分,但不独立于任何四元数.他们引进了两种类型的乘法,即数量积和向量积.并把向量代数推广到变向量的向量微积分.从此,向量的方法被引进到分析和解析几何中来,并逐步完善,成为了一套优良的数学工具.习题:http://www.zbjy.cn/content/200804/40485.shtmlhttp://www.ttshopping.net/Soft/softdown.asp?softid=117444meira2023-05-14 15:35:501
什么是平面向量的法向量?
就是与该平面向量垂直的向量,两个向量的向量积为0陶小凡2023-05-14 15:35:502
高一数学向量性质
http://wenku.baidu.com/view/890c6c1aff00bed5b9f31dd2.html向量加法与减法的几何表示:平行四边形法则、三角形法则。 向量加法有如下规律: + = + (交换律); +( +c)=( + )+c (结合律); +0= +(- )=0. 1.实数与向量的积:实数 与向量 的积是一个向量。 (1)| |=| |•| |; (2) 当 >0时, 与 的方向相同;当 <0时, 与 的方向相反;当 =0时, =0. (3)若 =( ),则 • =( ). 两个向量共线的充要条件: (1) 向量b与非零向量 共线的充要条件是有且仅有一个实数 ,使得b= . (2) 若 =( ),b=( )则 ‖b . 平面向量基本定理: 若e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量 ,有且只有一对实数 , ,使得 = e1+ e2. 2.P分有向线段 所成的比: 设P1、P2是直线 上两个点,点P是 上不同于P1、P2的任意一点,则存在一个实数 使 = , 叫做点P分有向线段 所成的比。 当点P在线段 上时, >0;当点P在线段 或 的延长线上时, <0; 分点坐标公式: 3. 向量的数量积: (1).向量的夹角: (2).两个向量的数量积: (3).向量的数量积的性质: (4) .向量的数量积的运算律: 4.主要思想与方法: 本章主要树立数形转化和结合的观点,以数代形,以形观数,用代数的运算处理几何问题,特别是处理向量的相关位置关系,正确运用共线向量和平面向量的基本定理,计算向量的模、两点的距离、向量的夹角,判断两向量是否垂直等。由于向量是一新的工具,它往往会与三角函数、数列、不等式、解几等结合起来进行综合考查,是知识的交汇点。gitcloud2023-05-14 15:35:502
数学向量问题?好模糊、
向量的定义 既有大小又有方向的量叫做向量(亦称矢量)。 在线性代数中的向量是指n个实数组成的有序数组,称为n维向量。α=(a1,a2,…,an) 称为n维向量.其中ai称为向量α的第i个分量。 ("a1"的"1"为a的下标,"ai"的"i"为a的下标,其他类推)。向量的表示 1、代数表示:一般印刷用黑体小写字母α、β、γ … 或a、b、c … 等来表示,手写用在a、b、c…等字母上加一箭头表示。 2、几何表示:向量可以用有向线段来表示。有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向。(若规定线段AB的端点A为起点,B为终点,则线段就具有了从起点A到终点B的方向和长度。这种具有方向和长度的线段叫做有向线段。) 3、坐标表示:在平面直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量i,j作为基底。a为平面直角坐标系内的任意向量,以坐标原点O为起点作向量OP=a。由平面向量基本定理知,有且只有一对实数(x,y),使得 a=向量OP=xi+yj,因此把实数对(x,y)叫做向量a的坐标,记作a=(x,y)。这就是向量a的坐标表示。其中(x,y)就是点P的坐标。向量OP称为点P的位置向量。向量的模和向量的数量 向量的大小,也就是向量的长度(或称模)。向量a的模记作|a|。[向量的模、向量的数量]向量的模、向量的数量 注: 1、向量的模是非负实数,是可以比较大小的。 2、因为方向不能比较大小,所以向量也就不能比较大小。对于向量来说“大于”和“小于”的概念是没有意义的。例如,“向量AB>向量CD”是没有意义的。特殊的向量单位向量 长度为单位1的向量,叫做单位向量.与向量a同向且长度为单位1的向量,叫做a方向上的单位向量,记作a0,a0=a/|a|。零向量 长度为0的向量叫做零向量,记作0.零向量的始点和终点重合,所以零向量没有确定的方向,或说零向量的方向是任意的。相等向量 长度相等且方向相同的向量叫做相等向量.向量a与b相等,记作a=b. 规定:所有的零向量都相等. 当用有向线段表示向量时,起点可以任意选取。任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段的起点无关.同向且等长的有向线段都表示同一向量。自由向量 始点不固定的向量,它可以任意的平行移动,而且移动后的向量仍然代表原来的向量。 在自由向量的意义下,相等的向量都看作是同一个向量。 数学中只研究自由向量。滑动向量 沿着直线作用的向量称为滑动向量。固定向量 作用于一点的向量称为固定向量(亦称胶着向量)。位置向量 对于坐标平面内的任意一点P,我们把向量OP叫做点P的位置向量,记作:向量P。相反向量 与a长度相等、方向相反的向量叫做a的相反向量,记作-a。有 -(-a)=a; 零向量的相反向量仍是零向量。平行向量 方向相同或相反的非零向量叫做平行(或共线)向量.向量a、b平行(共线),记作a‖b. 零向量长度为零,是起点与终点重合的向量,其方向不确定,我们规定:零向量与任一向量平行. 平行于同一直线的一组向量是共线向量。共线向量 平行于同一平面的一组向量叫做共面向量。 空间中的向量有且只有一下两种位置关系:⑴共线;⑵不共线。只有三个或三个以上向量才谈共面不公面。向量的运算 设a=(x,y),b=(x",y")。1、向量的加法 向量的加法满足平行四边形法则和三角形法则。 AB+BC=AC。 a+b=(x+x",y+y")。 a+0=0+a=a。 向量加法的运算率: 交换律:a+b=b+a; 结合律:(a+b)+c=a+(b+c)。2、向量的减法 如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. AB-AC=CB. a-b=(x-x",y-y").4、数乘向量 实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣·∣a∣。 当λ>0时,λa与a同方向; 当λ<0时,λa与a反方向; 当λ=0时,λa=0,方向任意。 实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。 当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍; 当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。 数与向量的乘法满足下面的运算律 结合律:(λa)·b=λ(a·b)=(a·λb)。 向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa. 数对于向量的分配律(第二分配律):λ(a+b)=λa+μb. 数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b。② 如果a≠0且λa=μa,那么λ=μ。3、向量的的数量积 定义:两个非零向量的夹角记为〈a,b〉,且〈a,b〉∈[0,π]。 定义:两个向量的数量积(内积、点积)是一个数量,记作a·b。若a、b不共线,则a·b=|a|·|b|·cos〈a,b〉;若a、b共线,则a·b=0。 向量的数量积的坐标表示:a·b=x·x"+y·y"。 向量的数量积的运算率 a·b=b·a(交换率); a+b)·c=a·c+b·c(分配率); 向量的数量积的性质 a·a=|a|的平方。 a⊥b 〈=〉a·b=0。 |a·b|≤|a|·|b|。 向量的数量积与实数运算的主要不同点 1、向量的数量积不满足结合律,即:(a·b)·c≠a·(b·c);例如:(a·b)^2≠a^2·b^2。 2、向量的数量积不满足消去律,即:由 a·b=a·c (a≠0),推不出 b=c。 3、|a·b|≠|a|·|b| 4、由 |a|=|b| ,推不出 a=b或a=-b。4、向量的向量积 定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b。若a、b不共线,则a×b的模是:∣a×b∣=|a|·|b|·sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系。若a、b共线,则a×b=0。 向量的向量积性质: ∣a×b∣是以a和b为边的平行四边形面积。 a×a=0。 a‖b〈=〉a×b=0。 向量的向量积运算律 a×b=-b×a; (λa)×b=λ(a×b)=a×(λb); (a+b)×c=a×c+b×c. 注:向量没有除法,“向量AB/向量CD”是没有意义的。向量的三角形不等式 1、∣∣a∣-∣b∣∣≤∣a+b∣≤∣a∣+∣b∣; ① 当且仅当a、b反向时,左边取等号; ② 当且仅当a、b同向时,右边取等号。 2、∣∣a∣-∣b∣∣≤∣a-b∣≤∣a∣+∣b∣。 ① 当且仅当a、b同向时,左边取等号; ② 当且仅当a、b反向时,右边取等号。定比分点 定比分点公式1 (向量P1P=λ·向量PP2) 设P1、P2是直线上的两点,P是l上不同于P1、P2的任意一点。则存在一个实数 λ,使 向量P1P=λ·向量PP2,λ叫做点P分有向线段P1P2所成的比。 若P1(x1,y1),P2(x2,y2),P(x,y),则有 OP=(OP1+λOP2)(1+λ);(定比分点向量公式) x=(x1+λx2)/(1+λ), y=(y1+λy2)/(1+λ)。(定比分点坐标公式) 我们把上面的式子叫做有向线段P1P2的定比分点公式。 定比分点公式2 (向量P1P=λ·向量P1P2) OP=(1-λ)OP1+λOP2。向量共线的充要条件 若b≠0,则a//b的充要条件是存在唯一实数λ,使a=λb。 a//b的充要条件是 xy"-x"y=0。 a//b的充要条件是 a×b=0. 零向量0平行于任何向量。向量垂直的充要条件 a⊥b的充要条件是 a·b=0。 a⊥b的充要条件是 xx"+yy"=0。 零向量0垂直于任何向量.西柚不是西游2023-05-14 15:35:501
高一 平面向量的本质
向量是一种既有大小又有方向的量,其物理意义,比如力,速度,位移等.在分析这些量的时候,既要考虑它们的大小,也要分析它们的方向.把它们抽象化就是数学上的向量.在数学领域只讨论它们运算,关系等,抛去了其实际意义,所以理解就困难点.向量的基本定理也可以说是分解定理,相当于力的分解.为了计算上的方便,借助基本定理可以定义向量的坐标,,可以说是为定义向量的坐标准备的.用基底的线性运所表示的向量,那两个系数就是它在该基底上的坐标.有了向量的坐标,向量的运算就很简单了.Chen2023-05-14 15:35:502
两个向量的夹角怎么算
平面向量夹角公式:cos=(ab的内积)/(|a||b|)(1)上部分:a与b的数量积坐标运算:设a=(x1,y1),b=(x2,y2),则a·b=x1x2+y1y2(2)下部分:是a与b的模的乘积:设a=(x1,y1),b=(x2,y2),则(|a||b|)=根号下(x1平方+y1平方)*根号下(x2平方+y2平方)正切公式用tan表示,余角公式用cos表示。正切公式(直线的斜率公式):k=(y2-y1)/(x2-x1),余弦公式(直线的斜率公式):k=(y2-y1)/(x2-x1)。西柚不是西游2023-05-14 15:35:507
平面向量的简单问题
(1)DE→ (2) ED→ 、DC→ 、 CD → 、BA → (3)CE→ 、CB → 、 EB→ (4)CE→ 、CB →、AB→ 、B A →、DE→ 、ED→ 、DC→ 、CD→ 有什么不明白的可以继续追问,望采纳!韦斯特兰2023-05-14 15:35:501
平面向量的小问题
(a+b+c)²=a²+b²+c²+2ab+2bc+2ac:这根本不是知名公式,没名字,而且对于向量,这种表示也不是很规范向量根本不可能出现在“分母”上吧?|a+b|²+|a-b|²=2(|a|²+|b|²)|a+b|²+|a-b|²=<a+b,a+b> + <a-b,a-b> = <a,a> +2<a,b> + <b,b> + <a,a> -2<a,b> + <b,b>=2<a,a> + 2<b,b> = 2(|a|²+|b|²)普通的内积计算bikbok2023-05-14 15:35:502
怎样计算空间两向量的夹角?
用公式cos@=a*b/「a」*「b」mlhxueli 2023-05-14 15:35:506
平面向量数乘运算的符号读法
λ 是这个吗?读作lambda兰亩大(谐音那么大) 这个很好记的 样子也很像很修长的美女大腿~韦斯特兰2023-05-14 15:35:502
高一向量所有公式
向量加法与减法的几何表示:平行四边形法则、三角形法则. 向量加法有如下规律: + = + (交换律); +( +c)=( + )+c (结合律); +0= +(- )=0. 1.实数与向量的积:实数 与向量 的积是一个向量. (1)| |=| |��| |; (2) 当 >0时, 与 的方向相同;当 <0时, 与 的方向相反;当 =0时, =0. (3)若 =( ),则 �� =( ). 两个向量共线的充要条件: (1) 向量b与非零向量 共线的充要条件是有且仅有一个实数 ,使得b= . (2) 若 =( ),b=( )则 ‖b . 平面向量基本定理: 若e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量 ,有且只有一对实数 , ,使得 = e1+ e2. 2.P分有向线段 所成的比: 设P1、P2是直线 上两个点,点P是 上不同于P1、P2的任意一点,则存在一个实数 使 = , 叫做点P分有向线段 所成的比. 当点P在线段 上时, >0;当点P在线段 或 的延长线上时, <0; 分点坐标公式: 3. 向量的数量积: (1).向量的夹角: (2).两个向量的数量积: (3).向量的数量积的性质: (4) .向量的数量积的运算律: 4.主要思想与方法: 本章主要树立数形转化和结合的观点,以数代形,以形观数,用代数的运算处理几何问题,特别是处理向量的相关位置关系,正确运用共线向量和平面向量的基本定理,计算向量的模、两点的距离、向量的夹角,判断两向量是否垂直等.由于向量是一新的工具,它往往会与三角函数、数列、不等式、解几等结合起来进行综合考查,是知识的交汇点.康康map2023-05-14 15:35:491
那位高手把关于向量的所有公式列出来!越详细越好!最好每一条公式都解释!
向量加法与减法的几何表示:平行四边形法则、三角形法则。 向量加法有如下规律: + = + (交换律); +( +c)=( + )+c (结合律); +0= +(- )=0. 1.实数与向量的积:实数 与向量 的积是一个向量。 (1)| |=| |•| |; (2) 当 >0时, 与 的方向相同;当 <0时, 与 的方向相反;当 =0时, =0. (3)若 =( ),则 • =( ). 两个向量共线的充要条件: (1) 向量b与非零向量 共线的充要条件是有且仅有一个实数 ,使得b= . (2) 若 =( ),b=( )则 ‖b . 平面向量基本定理: 若e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量 ,有且只有一对实数 , ,使得 = e1+ e2. 2.P分有向线段 所成的比: 设P1、P2是直线 上两个点,点P是 上不同于P1、P2的任意一点,则存在一个实数 使 = , 叫做点P分有向线段 所成的比。 当点P在线段 上时, >0;当点P在线段 或 的延长线上时, <0; 分点坐标公式: 3. 向量的数量积: (1).向量的夹角: (2).两个向量的数量积: (3).向量的数量积的性质: (4) .向量的数量积的运算律: 4.主要思想与方法: 本章主要树立数形转化和结合的观点,以数代形,以形观数,用代数的运算处理几何问题,特别是处理向量的相关位置关系,正确运用共线向量和平面向量的基本定理,计算向量的模、两点的距离、向量的夹角,判断两向量是否垂直等。由于向量是一新的工具,它往往会与三角函数、数列、不等式、解几等结合起来进行综合考查,是知识的交汇点。mlhxueli 2023-05-14 15:35:491
向量角度计算公式是什么?
平面向量夹角公式:cos=(ab的内积)/(|a||b|)(1)上部分:a与b的数量积坐标运算:设a=(x1,y1),b=(x2,y2),则a·b=x1x2+y1y2(2)下部分:是a与b的模的乘积:设a=(x1,y1),b=(x2,y2),则(|a||b|)=根号下(x1平方+y1平方)*根号下(x2平方+y2平方)向量的夹角就是向量两条向量所成角。这里应当注意,向量是具有方向性的。BC与BD是同向,所以夹角应当是60°。BC和CE可以把两条向量移动到一个起点看,它们所成角为一个钝角,120°。余弦公式A1X+B1Y+C1=0........(1)A2X+B2Y+C2=0........(2)则(1)的方向向量为u=(-B1,A1),(2)的方向向量为v=(-B2,A2)由向量数量积可知,cosφ=u·v/|u||v|,即:两直线夹角公式:cosφ=A1A2+B1B2/[√(A1^2+B1^2)√(A2^2+B2^2)]注:k1,k2分别L1,L2的斜率,即tan(α-β)=(tanα-tanβ)/(1+tanαtanβ)Chen2023-05-14 15:35:491
求高中数学向量知识点
善士六合2023-05-14 15:35:486
急求文科生需要掌握的平面向量的知识 最好有典型例题和详细解答 谢谢了
一、向量的基本概念 1.向量的定义:既有大小又有方向的量。(注意与前面我们所讲的量的区别) 2.向量的表示: 。(注意印刷体与手写体的关系) 向量的长度(模)表示为: 3.特殊向量: (1)零向量:长度为0的向量,方向为任意。记作: 。 (2)单位向量:长度为1的向量。 (3)相等向量:长度相等,方向一致的两个向量。 向量不能比较大小,向量的长度可以比较大小。 (4)平行向量(共线向量):方向相同或相反的两个非零向量叫做平行向量,规定零向量与任一向量平行,平行向量也叫做共线向量。 (5)相反向量:长度相同,方向相反的向量。 例题:判断下列命题的对错: 1.零向量与任意非零向量平行;(对) 2.长度相等方向相反的向量共线;(对) 3.若 是两个单位向量,则 相同 ; (错) 4.若向量 不共线,则 都是非零向量;(对) 5.若两个向量相等,则它们的起点、方向、长度必须相等;(错) 6.“两个向量共线”是“这两个向量相等”的充分不必要条件;(错) 7.若非零向量 是共线向量,则A、B、C、D四点共线;(错) 8.“四边形ABCD是平行四边形”的充要条件是“ ”;(错) 9.共线的向量一定相等;(错) 10.相等的向量一定共线;(对) 二、向量的基本运算 1.加法运算、减法运算: 向量的加法运算满足平行四边形法则和三角形法则。 (1)平行四边形法则 (2)三角形法则 即首尾相接的两个向量的和是由第一个向量的起点指向第二个向量的终点的有向线段所示的向量。由此,可推广到n个首尾相接的向量的和是由第一个向量的起点指向第n个向量的终点的有向线段所表示的向量。 规定:零向量与向量 的和等向量 向量加法的运算率: (1) 两个向量的模的和、差与两向量和的模的关系:2.实数与向量的积: 对于非零向量 及实数λ, 表示一个向量,其长度和方向规定如下: (1)长度: ,即等于的λ绝对值与 的长度的乘积。 (2)方向: ①当λ>0时, 的方向相同; ②当λ<0时, 的方向相反; ③当λ=0时, 规定:零向量与任意实数相乘仍为零向量。 实数与向量的积的运算律 (1) 3.平面向量的数量积: (1)两个向量的夹角: 过平面内一点O作向量 ,∠AOB=θ叫做向量 的夹角(0°≤θ≤180°) (2)数量积的定义:如果两个非零向量 的夹角是θ,那么就称数量 的数量积, 即: 规定:零向量与任意向量的数量积为零。 (3)非零向量 的数量积的性质: ① 的几何意义是: 的方向上的投影 的乘积; ② (4)向量的数量积的运算律4.定比分点运算: (1)有向线段定比分点的定义: 设P1、P2是直线l上的两点,点P是l上不同于P1、P2的任意一点,则向量 共线,由上一节我们学习的向量共线的充要条件可知,必然存在一个实数λ,使 ,则定义:点P叫做有向线段 的定比分点,λ叫做P分有向线段 所成的比。 点P分有向线面 所成的比λ的取值范围是λ∈(-∞,-1)∪(-1,0)∪(0,+∞) ,此公式叫做有向线段 的定比分点的向量公式。 例题选讲: 例1.三角形两边中点的连线平行与第三边并且等与第三边的一半。 已知:如图3--1,△ABC中,D,E分别是边AB,AC的中点。 求证:DE‖BC且 证明: ∵D、E分别是边AB,AC的中点, ∵D,B不共点, 例2.求证:三角形的三条高线交于一点。 证明:如图:设△ABC中,AB、AC边上的高BE、CF相交于H∴ ⊥ ,即三角形ABC的三条高线交于一点H。 例3.已知:O为△ABC的外心,H为垂心,求证: 证明:根据向量加法的三角形法则: 连接BO并延长交圆于D,连接DC,则DC⊥BC, ∵AH⊥BC,∴DC‖AH,同理,DA‖CH, ∴四边形ADCH为平行四边形, 三、重要定理: 1.共线向量定理:向量 共线的充要条件是有且只有一个实数λ使 2.平面向量基本定理:如果 是同一平面内两个不共线的向量,那么对于这一平面内的任意一个向量 ,有且只有一对实数 , 称为表示这一平面内所有向量的一组基底(基础)向量。 四、向量的坐标表示: 我们选择互相垂直的两个单位向量 作为基底向量,即: ,从而把向量与平面直角坐标系中的坐标联系在一起。 平面中任意一个向量都可以用向量的起点与终点坐标表示,由于向量是可以自由移动的,因此,平面中存在着无穷多个向量(这些向量都相等)对应一个坐标,而只有从原点出发的向量,才与终点的坐标一一对应。 向量 ①加法运算: ②减法运算: ③实数与向量的积: 向量平行的坐标表示: ④向量的数量积: 向量垂直的坐标表示: 两个向量的夹角的余弦: 设点P1(x1,y1)、P(x,y)、P2(x2,y2),点P分有向线段 ,则 例题选讲: 例1.直角△ABC中, 解: 当A=90°, 当B=90°, 当C=90°, 例2.已知:O为坐标原点,直线l经过点A、B, ,直线l上一点P(x,6),求:点P分有向线段 所成的比λ及P点坐标。 解:P点作为分点,确定P分 所成比λ及x,需要先确定起点A,终点B的坐标。∴ 由 五、向量的应用 向量运算的两种形式实际上是数形结合的体现,这两种形式结合起来使用,无论是解决代数问题还是几何问题都有独特的优势。 例1.求证: 证明: 设: C为角α终边上一点,则 B为角-β终边上一点,则 则: 同时: 即 [评述]:本题是利用坐标形式的运算得到两角和的余弦公式,实质上两种运算形式的综合应用。 例2.已知:a2+b2+c2=1,x2+y2+z2=1,求证:-1≤ax+cy+cz≤1 证明:构造向量: 设 [评述]:本题是用向量的方法来解决不等式的证明,十分方便,但想到构造向量并不容易。 例3.求证:点P(x0,y0)到直线Ax+By+C=0的距离 证明:考虑应用向量的方法解决问题:与直线l:Ax+By+C=0垂直的向量为 设 , 当θ为锐角时, 当θ为钝角时, [评述]:向量本来就是解析几何中的内容,用其解决解析几何的问题是非常方便的。这种点到直线的距离的解决方法也是立体几何中点到平面的距离的解决方法。 六、向量在高考中出现的题型 例1.(北京卷)若 (A)30° (B)60° (C)120° (D)150° 例2.(湖北卷)向量 不超过5,则k的取值范围是( C ) A.[-4,6] B.[-6,4] C.[-6,2] D.[-2,6] 例3.(湖南卷)若直线ax+by+c=0与圆O:x2+y2=1相交于A、B两点,且 例4.(上海卷)直角坐标平面xoy中,若定点A(1,2)与动点P(x,y)满足 ,则点P的轨迹方程是_____。(x+2y-4=0) 例5.(本小题满分12分)(湖北卷) 如图所示的多面体是由底面为ABCD的长方体被截面AEC1F所截面而得到的,其中AB=4,BC=2,CC1=3,BE=1 (Ⅰ)求BF的长; (Ⅱ)求点C到平面AEC1F的距离 解: (Ⅰ)建立如图所示的空间直角坐标系,则D(0,0,0),B(2,4,0), A(2,0,0),C(0,4,0),E(2,4,1),C1(0,4,3), 设F(0,0,,z) ∵AEC1F为平行四边形, (Ⅱ) 设∴C到平面AEC1F的距离为 例6.(本小题满分12分)(湖北卷) 已知:向量 ,函数 在区间(-1,1)上是增函数,求:t的取值范围。 解:依定义f(x)=x2(1-x)+t(x+1)=-x3+x2+tx+t,则f′(x)=-3x2+2x+t 在区间(-1,1)上是增函数,∴在区间(-1,1)上f′(x)≥0 即t≥3x2-2x在区间(-1,1)上恒成立,设g(x)=3x2-2x 则在区间(-1,1)上g(x)max=g(-1)=5,∴当t≥g(-1),即t≥5时,满足题目的要求。 七.课后练习 1.为得到函数y=cosx的图象,可用来对函数 作平移的向量是 A. 2.直角三角形ABC中,若∠A=90°,AB=1,则 (A)1 (B)-1 (C)1或-1 (D)不能确定 3.平面中,点A(2,1),B(0,2),C(-2,1),O(0,0)。给出下面的结论: ①直线OC与直线BA平行; ② ③ ④ , 其中正确结论的个数是( ) (A)1个 (B)2个 (C)3个 (D)4个 4.△ABC中,若 (A)13 (B)26 (C) (D)24 5.若 ,则∠AOB平分线上的向量 为( ) (A) 6.若 A. 7.若将函数y=f(x)的图象按向量 平移,使图象上点P的坐标由(1,0)变为(2,2),则平移后图象的解析式为 A. y=f(x+1)-2 B. y=f(x-1)-2 C. y=f(x-1)+2 D. y=f(x+1)+2 8.若 的夹角为30°,则 9.已知: 的夹角为120°,当k为何值时, (1) 垂直; (2) 取得最小值?并求出最小值。 10.已知:二次函数f(x)对任意x∈R,都有f(1-x)=f(1+x)成立,设向量 ,当x∈[0,π]时,求:不等式 的解集。 参考答案: C B C B B B C 9. (1) (2) =(3k+2)2+12, ∴当 时, 取得最小值为 10.解析:设f(x)的二次项系数为m,其图象上两点为(1-x,y1)、B(1+x,y2) ∵ ,又∵f(1-x)=f(1+x) ∴y1=y2, 由x的任意性得f(x)的图象关于直线x=1对称, 若m>0,则x≥1时,f(x)是增函数,若m<0,则x≥1时,f(x)是减函数。当m<0时,同理可得余辉2023-05-14 15:35:481
解释一下向量
名称定义[编辑本段]我们知道,位移是既有大小又有方向的量.事实上,现实世界中,这种量是很多的,如力、速度、加速度等.我们把既有大小又有方向的量叫做向量.亦称矢量.在线性代数中的向量是指,n个实数组成的有序数组称为n维向量.一般用α,β,γ等希腊字母表示.有时也用a,b,c,o,u,v,x,y等拉丁字母表示.α=(a1,a2,…,an)称为n维向量.其中ai称为向量α的第i个分量.("a1"的"1"为a的下标,"ai"的"i"为a的下标,其他类推)坐标表示法[编辑本段]平面向量的坐标表示:在直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量 作为基底。由平面向量的基本定理知,该平面内的任一向量可表示成 ,由于与数对(x,y)是一一对应的,因此把(x,y)叫做向量的坐标,记作=(x,y),其中x叫作在x轴上的坐标,y叫做在y轴上的坐标。反义词[编辑本段]标量和向量是一对反义词.标量是只有大小但没有方向的量.例如距离.向量的来源[编辑本段]规定了方向和大小的量称为向量.向量又称为矢量,最初被应用于物理学.很多物理量如力、速度、位移以及电场强度、磁感应强度等都是向量.大约公元前350年前,古希腊著名学者亚里士多德就知道了力可以表示成向量,两个力的组合作用可用著名的平行四边形法则来得到.“向量”一词来自力学、解析几何中的有向线段.最先使用有向线段表示向量的是英国大科学家牛顿.向量的由来 向量又称为矢量,最初被应用于物理学.很多物理量如力、速度、位移以及电场强度、磁感应强度等都是向量.大约公元前350年前,古希腊著名学者亚里士多德就知道了力可以表示成向量,两个力的组合作用可用著名的平行四边形法则来得到.“向量”一词来自力学、解析几何中的有向线段.最先使用有向线段表示向量的是英国大科学家牛顿. 课本上讨论的向量是一种带几何性质的量,除零向量外,总可以画出箭头表示方向.但是在高等数学中还有更广泛的向量.例如,把所有实系数多项式的全体看成一个多项式空间,这里的多项式都可看成一个向量.在这种情况下,要找出起点和终点甚至画出箭头表示方向是办不到的.这种空间中的向量比几何中的向量要广泛得多,可以是任意数学对象或物理对象.这样,就可以指导线性代数方法应用到广阔的自然科学领域中去了.因此,向量空间的概念,已成了数学中最基本的概念和线性代数的中心内容,它的理论和方法在自然科学的各领域中得到了广泛的应用.而向量及其线性运算也为“向量空间”这一抽象的概念提供出了一个具体的模型. 从数学发展史来看,历史上很长一段时间,空间的向量结构并未被数学家们所认识,直到19世纪末20世纪初,人们才把空间的性质与向量运算联系起来,使向量成为具有一套优良运算通性的数学体系. 向量能够进入数学并得到发展,首先应从复数的几何表示谈起.18世纪末期,挪威测量学家威塞尔首次利用坐标平面上的点来表示复数a+bi,并利用具有几何意义的复数运算来定义向量的运算.把坐标平面上的点用向量表示出来,并把向量的几何表示用于研究几何问题与三角问题.人们逐步接受了复数,也学会了利用复数来表示和研究平面中的向量,向量就这样平静地进入了数学. 但复数的利用是受限制的,因为它仅能用于表示平面,若有不在同一平面上的力作用于同一物体,则需要寻找所谓三维“复数”以及相应的运算体系.19世纪中期,英国数学家汉密尔顿发明了四元数(包括数量部分和向量部分),以代表空间的向量.他的工作为向量代数和向量分析的建立奠定了基础.随后,电磁理论的发现者,英国的数学物理学家麦克思韦尔把四元数的数量部分和向量部分分开处理,从而创造了大量的向量分析. 三维向量分析的开创,以及同四元数的正式分裂,是英国的居伯斯和海维塞德于19世纪8O年代各自独立完成的.他们提出,一个向量不过是四元数的向量部分,但不独立于任何四元数.他们引进了两种类型的乘法,即数量积和向量积.并把向量代数推广到变向量的向量微积分.从此,向量的方法被引进到分析和解析几何中来,并逐步完善,成为了一套优良的数学工具.向量的运用[编辑本段]在数学中,我们通常用点表示位置,用射线表示方向.在平面内,从任一点出发的所有射线,可以分别用来表示平面内的各个方向向量的表示向量常用一条有向线段来表示,有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向.向量也可用字母a①、b、c等表示,或用表示向量的有向线段的起点和终点字母表示.向量 的大小,也就是向量 的长度(或称模),记作|a|长度为0的向量叫做零向量,记作0.长度等于1个单位长度的向量,叫做单位向量.平行向量与相等向量[编辑本段]方向相同或相反的非零向量叫做平行向量.向量a、b、c平行,记作a∥b∥c.0向量长度为零,是起点与终点重合的向量,其方向不确定,我们规定0与任一向量平行.长度相等且方向相同的向量叫做相等向量.向量a与b相等,记作a=b.零向量与零向量相等.任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段的起点无关.向量的运算[编辑本段]1、向量的加法:AB+BC=AC设a=(x,y) b=(x",y")则a+b=(x+x",y+y")向量的加法满足平行四边形法则和三角形法则。向量加法的性质:交换律:a+b=b+a结合律:(a+b)+c=a+(b+c)a+0=0+a=a2、向量的减法AB-AC=CBa-b=(x-x",y-y")若a//b则a=eb则xy`-x`y=0若a垂直b则ab=0则xx`+yy`=03、向量的乘法设a=(x,y) b=(x",y")a·b(点积)=x·x"+y·y"=|a|·|b|*cos夹角设P1、P2是直线上的两点,P是l上不同于P1、P2的任意一点。则存在一个实数 λ,使向量p1p=λ向量pp2,λ叫做点P分有向线段P1P2所成的比。若P1(x1,y1),P2(x2,y2),P(x,y) x=(x1+λx2)/(1+λ)则有{ y=(y1+λy2)/(1+λ)我们把上面的式子叫做有向线段P1P2的定比分点公式4、数乘向量实数∮和向量a的乘积是一个向量,记作∮a,且∣∮a∣=∣∮∣*∣a∣,当∮>0时,与a同方向;当∮<0时,与a反方向。实数∮叫做向量a的系数,乘数向量的几何意义时把向量a沿着的方向或反方向放大或缩小。向量又称为矢量,最初被应用于物理学.很多物理量如力、速度、位移以及电场强度、磁感应强度等都是向量.大约公元前350年前,古希腊著名学者亚里士多德就知道了力可以表示成向量,两个力的组合作用可用著名的平行四边形法则来得到.“向量”一词来自力学、解析几何中的有向线段.最先使用有向线段表示向量的是英国大科学家牛顿. 课本上讨论的向量是一种带几何性质的量,除零向量外,总可以画出箭头表示方向.但是在高等数学中还有更广泛的向量.例如,把所有实系数多项式的全体看成一个多项式空间,这里的多项式都可看成一个向量.在这种情况下,要找出起点和终点甚至画出箭头表示方向是办不到的.这种空间中的向量比几何中的向量要广泛得多,可以是任意数学对象或物理对象.这样,就可以指导线性代数方法应用到广阔的自然科学领域中去了.因此,向量空间的概念,已成了数学中最基本的概念和线性代数的中心内容,它的理论和方法在自然科学的各领域中得到了广泛的应用.而向量及其线性运算也为“向量空间”这一抽象的概念提供出了一个具体的模型. 从数学发展史来看,历史上很长一段时间,空间的向量结构并未被数学家们所认识,直到19世纪末20世纪初,人们才把空间的性质与向量运算联系起来,使向量成为具有一套优良运算通性的数学体系. 向量能够进入数学并得到发展,首先应从复数的几何表示谈起.18世纪末期,挪威测量学家威塞尔首次利用坐标平面上的点来表示复数a+bi,并利用具有几何意义的复数运算来定义向量的运算.把坐标平面上的点用向量表示出来,并把向量的几何表示用于研究几何问题与三角问题.人们逐步接受了复数,也学会了利用复数来表示和研究平面中的向量,向量就这样平静地进入了数学. 但复数的利用是受限制的,因为它仅能用于表示平面,若有不在同一平面上的力作用于同一物体,则需要寻找所谓三维“复数”以及相应的运算体系.19世纪中期,英国数学家汉密尔顿发明了四元数(包括数量部分和向量部分),以代表空间的向量.他的工作为向量代数和向量分析的建立奠定了基础.随后,电磁理论的发现者,英国的数学物理学家麦克思韦尔把四元数的数量部分和向量部分分开处理,从而创造了大量的向量分析. 三维向量分析的开创,以及同四元数的正式分裂,是英国的居伯斯和海维塞德于19世纪8O年代各自独立完成的.他们提出,一个向量不过是四元数的向量部分,但不独立于任何四元数.他们引进了两种类型的乘法,即数量积和向量积.并把向量代数推广到变向量的向量微积分.从此,向量的方法被引进到分析和解析几何中来,并逐步完善,成为了一套优良的数学工具.Ntou1232023-05-14 15:35:481