矩阵的秩

矩阵的初等变换和矩阵的秩有什么关系

秩是初等变换的全系不变量,也就是说初等变换不改变秩两个秩相等的同型矩阵一定可以通过初等变换互相转化
人类地板流精华2023-06-08 07:32:191

矩阵的秩r是什么?

矩阵的列秩和行秩总是相等的,因此它们 可以简单地称作矩阵A的秩。通常表示为r( A),rk(A)或rank A。
北境漫步2023-06-08 07:28:323

请问齐次方程非零解的个数和系数矩阵的秩的关系还有自由变量个数的关系怎么理解,比如AX=O有两个非零

由 AX=0 有两个非零解(由你所说 应该线性无关)所以AX=0 的基础解系 n-r(A) = 4-r(A) >= 2即 r(A) <= 4-2 = 2但 r(A)>=2 需给出A的结构, 比如有个非零的2阶子式
九万里风9 2023-06-08 07:28:301

非线性方程基础解系设的自由变量个数是不是等于这个方程形成的矩阵的秩

不是的非齐次线性方程组的基础解系中向量个数就等于其导出组的基础解系中向量的个数,所以基础解系中向量个数=未知量个数-系数矩阵的秩,即n-r
tt白2023-06-08 07:28:291

三阶矩阵的秩为2说明什么

一个矩阵的秩是指矩阵中非零元素所在的行或列的最大线性无关组数。对于一个三阶矩阵的秩为2,意味着这个矩阵中有两行或两列是线性无关的,而第三行或第三列可以由这两行或两列线性组合得到。这个结论可以用行列式的性质来证明,即一个三阶矩阵的行列式为0时,它的秩必然小于3。因此,秩为2的三阶矩阵可以看作是一个平面,在三维空间中的投影。这个平面可以用两个线性无关的向量来表示,而第三个向量则可以用这两个向量的线性组合来表示。这在计算机图形学中有很多应用,例如计算三维模型的表面法线等。
善士六合2023-06-08 07:28:283

矩阵的维数和矩阵的秩有什么区别

1、矩阵的维数和矩阵的秩两者范围不同:维度,是数学中独立参数的数目;而秩表示的是其生成的子空间的维度。如果还考虑m× n矩阵,将A的秩定义为向量组F的秩,则可以看到如此定义的A的秩就是矩阵 A的线性无关纵列的极大数目。2、矩阵的维数和矩阵的秩两者用途不同:“点基于点是0维、点基于直线是1维、点基于平面是2维、点基于体是3维”。再进一步解释,在点上描述(定位)一个点就是点本身,不需要参数;在直线上描述(定位)一个点,需要1个参数(坐标值)。在平面上描述(定位)一个点,需要2个参数(坐标值);在体上描述(定位)一个点,需要3个参数(坐标值)。而矩阵的秩的一个有用应用是计算线性方程组解的数目。3、矩阵的维数和矩阵的秩两者对应关系不同:矩阵的维数没有固定的对应关系。而对于每个矩阵A,fA都是一个线性映射,同时,对每个的线性映射f,都存在矩阵A使得 f= fA。也就是说,映射是一个同构映射。所以一个矩阵 A的秩还可定义为fA的像的维度。矩阵 A称为 fA的变换矩阵。参考资料来源:搜狗百科-维度参考资料来源:搜狗百科-秩(线性代数术语)
真颛2023-06-08 07:28:183

矩阵的秩和自由变量的关系

矩阵的秩和自由变量的关系是秩代表了自由变量的个数。秩代表了自由变量的个数,秩小于行数,代表约束个数大于自变量个数方程组有零解或无解,等于列数则表示约束个数与自变量个数相等,方程组有唯一解或零解。自由变量,指的是未指定符号的通配符。
小白2023-06-08 07:28:131

由向量组构成的矩阵,和由向量组的转置构成的矩阵的秩是否相同

这,.行向量组的秩和列向量组的秩是相等的,可以这么理解,矩阵转置后,秩不变,行列互换,所以这两者的秩是相同的,也就是矩阵的秩.但行秩与列秩在以后的证明上不同,逐渐学一些就知道了
善士六合2023-05-26 13:01:411

请问矩阵的秩和向量组的秩在定义上和计算方法上有什么关系?

两者的定义你说的都对两者的关系是矩阵的秩等于矩阵列向量组的秩(即列秩),而不是等于列数矩阵的秩也等于行向量组的秩,即行秩计算矩阵的秩:用初等行变换化为梯矩阵,非零行数即矩阵的秩列变换也可用,但行变换足够计算向量组的秩:将向量按列构成矩阵,用初等行变换化梯矩阵,非零行数即向量组的秩,非零行的首非零元所在列对应的向量构成一个极大无关组
Jm-R2023-05-26 13:01:411

请问矩阵的秩和向量组的秩在定义上和计算方法上有什么关系?

不用矩阵的秩也行。先从向量组里面任意找出两个向量a1,a2,判断a1,a2的分量是否对应成比例,如果不是,则a1,a2线性无关。继续往a1,a2中添加向量a3,如果a3可以由a1,a2线性表示,则a1,a2,a3线性相关,那么换一个向量a4添加到a1,a2中,继续判定a4是否可以由a1,a2线性表示。如果找不到一个向量,不能由a1,a2线性表示,那么a1,a2就是最大线性无关组。如果有一个向量a5,使得a5不能由a1,a2线性表示,那么a1,a2,a5线性无关。继续往a1,a2,a5中添加向量。重复以上步骤,直到最后不能再添加向量,使得所得向量组线性无关,那么最后得到的向量组就是最大线性无关组。这个方法可以找出最大线性无关组,但是不能事前就判断出最大线性无关组所含向量个数。
wpBeta2023-05-26 13:01:412

矩阵的秩和增广矩阵的秩怎么看

化简为最简行阶梯形,然后数一下非零行数矩阵的秩是2,增广矩阵秩也是2
bikbok2023-05-26 13:01:411

矩阵的秩和特征值有什么关系?

关系:如果矩阵可以对角化,那么非0特征值的个数就等于矩阵的秩;如果矩阵不可以对角化,这个结论就不一定成立了。为讨论方便,设A为m阶方阵。证明:设方阵A的秩为n。如将特征值的取值扩展到复数领域,则一个广义特征值有如下形式:Aν=λBν。其中A和B为矩阵。其广义特征值(第二种意义)λ 可以通过求解方程(A-λB)ν=0,得到det(A-λB)=0(其中det即行列式)构成形如A-λB的矩阵的集合。其中特征值中存在的复数项。若是的属于的特征向量,则也是对应于的特征向量,因而特征向量不能由特征值惟一确定。反之,不同特征值对应的特征向量不会相等,亦即一个特征向量只能属于一个特征值。
meira2023-05-26 13:01:401

矩阵的秩和伴随矩阵的秩之间有什么关系

根据伴随矩阵的元素的定义:每个元素等于原矩阵去掉该元素所在的行与列后得到的行列式的值乘以(-1)的i+j次方的代数余子式。有:1.当r(A)=n时,由于公式r(AB)<=r(A),r(AB)<=r(B),并且r(AA*)=r(I)=n,则,伴随的秩为n;2.当r(A)=n-1时,r(AA*)=|A|I=0,加上公式r(A)+r(B)<=n-r(AB),带入得到,r(A*)=1;3.当r(A)<n-1时,由上述定义得到伴随矩阵其每个元素都为零,所以秩为零。
黑桃花2023-05-26 13:01:409

矩阵的秩和矩阵的特征值个数的关系,并证明

“关系: 1、方阵A不满秩等价于A有零特征值。 2、A的秩不小于A的非零特征值的个数。 证明: 定理1:n阶方阵A可相似对角化的充要条件是A有n个线性无关的特征向量。 定理2:设A为n阶实对称矩阵,则A必能相似对角化。 定
北有云溪2023-05-26 13:01:404

矩阵的秩和其特征值有什么关系?

为讨论方便,设A为m阶方阵证明:设方阵A的秩为n因为任何矩阵都可以通过一系列初等变换,变成形如1 0 … 0 … 00 1 … 0 … 0…………………0 0 … 1 … 00 0 … 0 … 0…………………0 0 … 0 … 0的矩阵,称为矩阵的标准形(注:这不是二次型的对称矩阵提到的标准形)本题讨论的是方阵,就是可以通过一系列初等行变换的标准形为主对角线前若干个是1;其余的是若干个0以及除对角线以外的元素都是0。设A的标准形为B因为“m×m阶矩阵构成的数域P上的线性空间”与“该线性空间上的全体线性变换在数域P上的线性空间”同构。所以研究得到线性空间的性质可以照搬到线性变换空间上应用,从同构的意义上说,他们是“无差别”的。(由于线性变换符号的字体不能单独以花体字体区别,所以用形如“线性变换A”,表示线性变换用形如“矩阵A”,表示线性变换的矩阵)前面知识应该提到的内容:一系列初等矩阵的乘积是非退化的,初等变换不改变矩阵的秩,初等变换是可逆的所以矩阵B的秩(1的个数),就是矩阵A的秩,就是n因为可逆且不改变秩,所以讨论矩阵B的情况,可以应用到矩阵A上。我们随即看到,如果线性变换B(或者说矩阵B)的秩是n,则线性变换B就是对线性空间的前n个基做恒等映射(因为基向量组没有秩序,我们取前n个不会有原则性的问题)后m-n个基做零变换,所构成的线性变换,线性变换B的特征多项式是(λ-1)^n就可以快速找到n个线性无关的特征向量,这些特征向量直接取线性空间的前n个基就可以了。我们得到的结论是,线性变换B秩是多少,就一定找到有多少个线性无关的特征向量。因为一个特征向量只能属于一个特征值,所以有多少个线性无关的特征向量,就有多少个特征值(不管你的特征值是不是一样)这里有n个1,都是一样的(从特征多项式也知道有n个重根)因为非退化的线性替换不改变空间的维数,不改变矩阵的秩。下面我们解释重根为什么按重数计算,对矩阵B做初等行变换,第i行乘以数域P上的数k≠1(当然,如果k=1纯属脱裤子放屁),我们的特征多项式变为(λ-1)^(n-1)*(λ-k),其它初等变换相应类推。借用学物理的思维,一个变换莫测的关系中,寻找守恒量是什么?这个是有意义的。而做这样的非退化的线性变换变换,虽然特征值会随之改变,但是守恒量是一定能找到n个线性无关的特征向量,其个数就是矩阵B(线性变换B)的秩是不变的。这样我们就发现了守恒量,至于属于不同特征向量的特征值是否相等,纯属巧合,无意义。有多少个碰巧相等的都无所谓,有多少个相等(相当于特征多项式的几次方),就当然重复计算。最后来一个问题的封闭,题目说的是方阵A这个简单,将矩阵B做一系列初等行变换,虽然特征多项式改变了,线性变换改变了,特征多项式也变了,但是我们发现的守恒量n,是不变的。
wpBeta2023-05-26 13:01:401

读懂矩阵的秩和行列式的意义

作为一个工科的学生,我们长期以来会使用比如像是矩阵以及行列式这些在线性代数上的知识,在这篇文章中,我想来聊一聊这些问题,即设么事面积,以及什么事面积的高纬度的推广. 1:什么是面积? 对于什么是面积,大家可能首先就会想到我们生活中常用的长*宽么?真的是这样么,其实在这里我们所谈论的面积,其实是欧几里得空间几何面积的基本的单位:平行四边形的面积.关于平行四边形的面积的定义,几何上所说的就是相邻两边边长乘以他们之间的夹角的正弦. 但是当我们面对到一些更一般的情形和更高维度的数理问题的时候,我们就有必要把这个面积的定义推广开来.首先我们应当要注意的是.面积是作为一个标量,他是来自于相邻的两个边的两个矢量相乘的结果,因此来时,我们需要把面积看作为一种映射的关系. 这里的V可以看做一个适量,V*V代表的是两个适量的有序对,那么f自然而然就是所求的面积. 现在我们将来证明这个映射是一个线性的映射,请坐稳扶好: 现在我们举一个最简单的例子,现在我们假设第一个矢量是(1.0),第二个矢量是(0,1),也就是说两个矢量分别是X轴和Y轴上的单位为正的单位向量,那么由这两个矢量构成的四边形,这个四边形其实就是一个正方形,根据面积的定义,其实就是*宽=1*1=1 因此我们可以得到: 现在假设把第一个矢量缩放a倍,这个四边形的面积也会变为相对应的a倍,这样的面积也将会变为原来的a倍,把第二个矢量缩放为b倍,这样的面积也会变为原来的b倍,如果这个时候我们同时对两个向量缩放为ab倍,这样的话面积也会变为原来的ab倍,这说明,面积的映射对于其他的两个操作数的矢量的标量积是呈现出各自线性的,如下: 其实在实际的情况下,面积的映射对于其操作数(矢量)的矢量加法也是线性的.因为矢量加法的操作本身就是一个线性的,那么他的面积的映射其实也就是一个线性的映射.现在我想通过几个例子,来解释下映射加法线性的一些后果. 两个共线矢量所张成的平行四边形是一条线,因此来说这个面积是0.现在假设面积映射是关于一个适量加法的线性映射,那么我们有以下的结果 其实这里其实用到了一个理论: 也就是说,在交换相互垂直操作数适量的顺序后,面积的映射变成一个负值.到底是正还是负取决于你认为的定义.一般情况下,我们把X轴的矢量放在前边,Y轴的矢量放在后边,从X轴到Y轴张成的一个平行四边形的面积,我们把这个符号一般看作为正号. 2:三维空间里的应用 在三维空间中,我们一般是利用的右手定则进行实验.如果以X轴的正方形为头部,Y轴的正方向为尾部.右手定则告诉我,纸面方向向外的方向是面积的正方向.如果反过来,纸面向内的方向就是该面积的正方向.与所规定的正负号的方向是相反的.现在这样来看正负号的几何的意义就比较明显了 现在我们假设用平面内的任意两个矢量所张成的平行四边形的面积,现在用公式来进行表示: 在这里,其实我们不难看到,所谓的面积其实就是一个2*2的矩阵的行列式: 就跟下边的图所示的一样: 其实我们的第一行即使我们的第一个行向量(a,b),第二行就是第二个行向量(c,d),再或者是第一列是第一个列向量(a,b)的转秩,第二个列自然就是第二个列向量(c,d)的转秩.当然这么做还是取决于我们是把矢量写成行向量还是列向量的形式表达. 3:行列式的性质的计算 在上述的推理中,我们可以很容易的发现,行列式的值是把与行列式的矢量写成列向量的横排还是行向量的竖排的方式是无关的.这也就是为什么,在计算行列式的时候,行列的地位是对等的.并且我们还应当注意到,根据上述的分析,交换向量的顺序,面积是负号的原因.这也就是为什么行列式中,交换列向量或者行向量一次,就应当要取一次负号的原因.另外行列式其他的计算的性子,其实都一一反映在面积映射的线性性当中. 所以,综上所述,行列式实际上本身就是一个关于面积的形式的推广.其实就是在给定一组基的情况下,N个向量张成的一个N维定义的广义四边形的体积,其实这就是行列式本质的一个含义. 4:行列式的一个推广 根据上边的结论,我们其实很容易的推广到三维体积的一个计算:在这里我们应该要注意到,行列式的定义,其实是每一行各取一个不同列的元素的一个乘积并且符号和所谓的逆序性有关的.什么是逆虚性?所谓逆序性,其几何意义就是在规定了一个正方向之后(比如从1,2,3,4,5...N这个顺序定义为正号),交换任意一对数都取一次负号。这样的性质我们在上述的面积函数中已经有所看到,实际上体积,更高维度的广义体积,也有正方向之说,只不过已经难以用右手法则(以及叉乘)来形象说明罢了。右手定则的局限性也是将高维面积推广成行列式表达的一个动机之一。 对于这样交换任意一堆指标的操作就可以改变符号的性质,其实我们就叫做反对称性.这个时候,如果你善于思考,你会想为什么要取不同行不同列元素的乘积.因为如果有任意两个元素是同行同列的,那么他们交换他们的列指标,乘积不变但是符号要相反.因此乘积必须要是0,这也就是在行列式值中不予体现的原因之一. 行列式的定义其实是比较的冗杂的,其实就是来自于广大的面积映射的反对称性,其实面积映射是一个2维的,把二维任意拓展到多维,我们其实就可以发现R维的形式和R*R的行列式的形式是完全一致的. 其实在这里,我们可以把各种维度所代表的东西来总结下,二维所代表的是平面内的面积,三维自然而然其实就是三维空间内的体积,四维其实就是四维空间内的超体积.依次类推.在上边的推理中我们发现,这些矢量给定的基坐标写出的矩阵必然是方阵,矩阵的行列式对应的面积或者是体积.这样的推广证明相信在任意一本的线性代数书中都会看到,我只是说了人话而已. 5:行列式和矩阵的逆 我们知道很多定理,比如行列式为0的矩阵,不可逆,行列式不为0的矩阵,可逆,这个时候我们不禁要问,代表面积的行列式,是如何和线性变化的可逆性联合在一起的. 这个时候我们就应该要理解线性变化的几何意义.现在我来陈述一下: 如果我们把空间中一组线性无关的矢量都写成列向量的形式,那么他们所张成的N维体体积不为零,根据上面的分析,其值由行列式给出。向量经过线性变换A变换之后,得到的新向量形式如下: 注意到A是一个N*N的矩阵,向量是列向量。 变换前,N维体的体积是: 变换之后,N维体的体积是(注意到,第二个等式实际上说明了几何意义是如何定义矩阵乘法的,也就是 N*N 矩阵 A 和另外一个 N 个列向量组成的 N*N 矩阵的乘法): A的行列式如果不为零,则代表这个变换后,N维体的体积不是NULL。又结合线性无关与体积的性质,我们可以说: 如果 A 的行列式不为零,那么 A 可以把一组线性无关的矢量,映射成一组新的,线性无关的矢量; A 是可逆的(一对一的映射,保真映射, KERNEL 是 {0} ) 如果 A 的行列式为零,那么 A 就会把一组线性无关的矢量,映射成一组线性相关的矢量 如果 A 的行列式为负数,那么 A 将会改变原 N 维体体积的朝向。 从线性无关到线性相关,其中丢失了部分信息(例如坍缩成共线或者共面),因此这个变换显然就是不可逆的。线性是否无关和所张成 N 维体的体积有直接关系,这个体积值又与 A 的行列式有关。因此我们就建立了 A 的行列式与其是否可逆的几何关系。 举例说明,我们假设A是一个3维的矩阵。如果映射前,有一组三个线性无关的矢量,我们知道它们张成的体积不是0;经过映射后,他们对应的新矢量也能张成一个平行六面体,那么这个平行六面体的体积就是原体积乘以A的行列式。 显然,如果A的行列式是0,那么变换后的新“平行六面体"的体积将不可避免的也是0。根据上文的结论,我们有:变换后的这一组新矢量线性相关。 结论: 线性变换 A 的行列式是否为零,就代表了其映射的保真性,也即,能不能把一组线性无关的矢量变换成另一组保持无关性的矢量。 6:秩 但是有的时候,虽然行列式A不能把空间一组数目最大的矢量线性无关,但是它能够保证那个一组少数目的矢量让其线性无关,这个数目矢量往往小于线性空间的维度,这个数目就叫做线性变换A的秩 比如:一个秩为2为3*3的矩阵A,因为秩小于3,那么任何一个3维六面体经过他的变化后,体积变为0,退化一个面,但是仍然存在一个面积不为0的面,在变换以后还是一个非零面积的面 所以说所谓的一个线性变换的秩,无非就是变化后,还能保持一个非零体积的几何形状的最大的维度. 通过上边理解了秩,行列式,可逆性的几何意义,我们就能随意的构造一个线性变化的A,使得他要么保全所有的几何体,要么降维成为特定维度特定结构的几何体,压缩成为更低维度的几何体,所以说,可以看作为一个”降维打击” 更高维度的推理,希望有兴趣的小伙伴可以自己去证明,不明白的问题亦可以在文章下面评论.希望能够和大家多多交流,多谢指教.
韦斯特兰2023-05-26 13:01:401

矩阵的秩和什么有关?

一个矩阵中行秩与列秩是相等的,矩阵的行秩与列秩统称为矩阵的秩。在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数目。类似地,行秩是A的线性无关的横行的极大数目。即如果把矩阵看成一个个行向量或者列向量,秩就是这些行向量或者列向量的秩,也就是极大无关组中所含向量的个数。矩阵的列秩和行秩总是相等的,因此它们可以简单地称作矩阵A的秩。通常表示为r(A),rk(A)或rank A。性质及定理:定理:矩阵的行秩,列秩,秩都相等。定理:初等变换不改变矩阵的秩。定理:如果A可逆,则r(AB)=r(B),r(BA)=r(B)。定理:矩阵的乘积的秩Rab<=min{Ra,Rb}。引理:设矩阵A=(aij)sxn的列秩等于A的列数n,则A的列秩,秩都等于n。当r(A)<=n-2时,最高阶非零子式的阶数<=n-2,任何n-1阶子式均为零,而伴随阵中的各元素就是n-1阶子式再加上个正负号,所以伴随阵为0矩阵。当r(A)<=n-1时,最高阶非零子式的阶数<=n-1,所以n-1阶子式有可能不为零,所以伴随阵有可能非零(等号成立时伴随阵必为非零)。
NerveM 2023-05-26 13:01:391

线性代数问题(关于矩阵的秩和伴随矩阵)

要使用一个重要结论:AB=0,A是的列数=B的行数n,则r(A)+r(B)≤n。这个应该是书上的例题,以同济版线性代数为例。AA*=0,所以r(A)+r(A*)≤n,所以r(A*)≤n-(n-1)=1。又r(A)=n-1,A有n-1阶子式非零,所以r(A*)≥1。所以r(A*)=1。
Jm-R2023-05-26 13:01:391

矩阵的秩和增广矩阵有什么区别?

如:方程AX=b 系数矩阵为A,它的增广矩阵为(A b)。增广矩阵通常用于判断矩阵的有解的情况,比如说r(A)<r(A b) 方程组无解;r(A)=r(A B)=n,方程组有唯一解;r(A)=r(A B)<n,方程组无穷解;r(A)>r(A B)不可能,因为增广矩阵的秩大于等于系数矩阵的秩。对于方程组(1):a11 x1+a12 x2+a13 x3+…+a1n xn=b1(1)a21 x1+a12 x2+a23 x3+…+a2n xn=b2(2)……………………ai1 x1+ai2 x2+ai3 x3+ … +ain xn=bi(i)……………………am1 x1+am2 x2+am3 x3+…+amn xn=bm(m)
阿啵呲嘚2023-05-26 13:01:391

向量组的秩与矩阵的秩在数量上是否相同的?

任何一个列向量组a1,a2,...,ak都可以组成一个矩阵A=(a1,a2,...,ak),矩阵A的秩与向量组a1,a2,...,ak的秩是一样的
meira2023-05-26 13:01:392

相量组的秩和矩阵的秩有什么区别?

矩阵的秩与向量组的秩的联系:矩阵的秩等于它的行向量组的秩,也等于它的列向量组的秩;矩阵行(列)满秩,与向量组的线性相关和线性无关也有一定的联系。
瑞瑞爱吃桃2023-05-26 13:01:381

矩阵的秩与特征向量的个数的关系是怎样的呢?

矩阵的秩与特征向量的个数的关系:特征值的个数等于矩阵的秩,特征向量的个数至少等于矩阵的秩,(即大于等于矩阵的秩),小于等于矩阵的阶数,等于阶数时,矩阵可相似化为对角矩阵,小于矩阵的阶数时,矩阵可以相似化为对应的约旦标准形。在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数目。类似地,行秩是A的线性无关的横行的极大数目。通俗一点说,如果把矩阵看成一个个行向量或者列向量,秩就是这些行向量或者列向量的秩,也就是极大无关组中所含向量的个数。相关定义方阵(行数、列数相等的矩阵)的列秩和行秩总是相等的,因此它们可以简单地称作矩阵A的秩。通常表示为r(A),rk(A)或。m×n矩阵的秩最大为m和n中的较小者,表示为 min(m,n)。有尽可能大的秩的矩阵被称为有满秩;类似的,否则矩阵是秩不足(或称为“欠秩”)的。设A是一组向量,定义A的极大无关组中向量的个数为A的秩。定义1. 在m*n矩阵A中,任意决定α行和β列交叉点上的元素构成A的一个k阶子矩阵,此子矩阵的行列式,称为A的一个k阶子式。例如,在阶梯形矩阵中,选定1,3行和3,4列,它们交叉点上的元素所组成的2阶子矩阵的行列式 就是矩阵A的一个2阶子式。定义2.A=(aij)m×n的不为零的子式的最大阶数称为矩阵A的秩,记作rA,或rankA或R(A)。
meira2023-05-26 13:01:381

矩阵的秩和特征值有什么关系?

特征值与秩的关系:如果矩阵可以对角化,那么非0特征值的个数就等于矩阵的秩如果矩阵不可以对角化,这个结论就不一定成立。证明:定理1:n阶方阵A可相似对角化的充要条件是A有n个线性无关的特征向量。定理2:设A为n阶实对称矩阵,则A必能相似对角化。定理3:设A为n阶实对称矩阵,矩阵的秩r(A)=k,(0<k<n,k为正整数),则λ=0恰为A的n-k重特征值。定理4:设A为n阶方阵,矩阵的秩r(A)=k,(0<k<n,k为正整数),则λ=0至少为A的n-k的重特征值。定理5:设A为n阶方阵,矩阵的秩r(A)=k,(0<k<n,k为正整数),且A可相似对角化,则λ=0恰为A的n-k重特征值。定理6:设A为n阶方阵,矩阵的秩rf(A)=k,(0<k<n,k为正整数),且A可对角化,则λ=0恰为f(A)的n-k重特征值。
善士六合2023-05-26 13:01:381

矩阵的秩和特征值有什么关系?

内容如下:1、方阵A不满秩等价于A有零特征值。2、A的秩不小于A的非零特征值的个数。线性变换秩是多少,就一定找到有多少个线性无关的特征向量。因为一个特征向量只能属于一个特征值,所以有多少个线性无关的特征向量,就有多少个特征值(不管特征值是不是一样)。这里有n个1,都是一样的(从特征多项式也知道有n个重根)。因为非退化的线性替换不改变空间的维数,不改变矩阵的秩。其他性质线性变换,转置。矩阵是线性变换的便利表达法,皆因矩阵乘法与及线性变换的合成有以下的连系:以 Rn 表示 n×1 矩阵(即长度为n的矢量)。对每个线性变换 f : Rn -> Rm 都存在唯一 m×n 矩阵 A 使得 f(x) = Ax 对所有 x &in; Rn。 这矩阵 A "代表了" 线性变换 f。 今另有 k×m 矩阵 B 代表线性变换 g : Rm -> Rk,则矩阵积 BA 代表了线性变换 g o f。矩阵 A 代表的线性代数的映像的维数称为 A 的矩阵秩。矩阵秩亦是 A 的行(或列)生成空间的维数。m×n矩阵 A 的转置是由行列交换角式生成的 n×m 矩阵 Atr (亦纪作 AT 或 tA),即 Atr[i, j] = A[j, i] 对所有 i and j。若 A 代表某一线性变换则 Atr 表示其对偶算子。转置有以下特性:(A + B)tr = Atr + Btr,(AB)tr = BtrAtr。注记矩阵可看成二阶张量, 因此张量可以认为是矩阵和向量的一种自然推广。
ardim2023-05-26 13:01:381

矩阵的秩和特征值之间有没有关系?

一句话:秩就是非零特征值的个数
北境漫步2023-05-26 13:01:383

矩阵的秩和其伴随矩阵的秩有什么关系?

AA*=|A|E,r(A)=n。n阶方阵A满秩,故其可逆,A=P1*p2*p3…*pn,Pj为初等矩阵(j=1,2,…n),而初等矩阵不会改变矩阵的秩,故R(A*)=R(E)=n.
水元素sl2023-05-26 13:01:3812

矩阵的秩和特征值有什么关系?

如果矩阵可以对角化,那么非0特征值的个数就等于矩阵的秩;如果矩阵不可以对角化,这个结论就不一定成立了。如将特征值的取值扩展到复数领域,则一个广义特征值有Aν=λBν其中A和B为矩阵。其广义特征值第二种意义λ可以通过求解方程(A-λB)ν=0,得到det(A-λB)=0(其中det即行列式)构成形如A-λB的矩阵的集合。其中特征值中存在的复数项。怎么学好数学先看笔记后做作业。 有的高中学生感到。老师讲过的,自己已经听得明明白白了。但是,为什么自己一做题就困难重重了呢?其原因在于,学生对教师所讲的内容的理解,还没能达到教师所要求的层次。因此,每天在做作业之前,一定要把课本的有关内容和当天的课堂笔记先看一看。能否坚持如此,常常是好学生与差学生的最大区别。尤其练习题不太配套时,作业中往往没有老师刚刚讲过的题目类型,因此不能对比消化。如果自己又不注意对此落实,天长日久,就会造成极大损失。
无尘剑 2023-05-26 13:01:371

请问矩阵的秩和向量组的秩在定义上和计算方法上有什么关系?

两者的定义你说的都对两者的关系是 矩阵的秩等于矩阵列向量组的秩(即列秩), 而不是等于列数矩阵的秩 也等于行向量组的秩, 即行秩计算矩阵的秩: 用初等行变换化为梯矩阵, 非零行数即矩阵的秩列变换也可用, 但行变换足够 计算向量组的秩: 将向量按列构成矩阵, 用初等行变换化梯矩阵, 非零行数即向量组的秩, 非零行的首非零元所在列对应的向量构成一个极大无关组
Chen2023-05-26 13:01:371

向量组的秩与矩阵的秩一样吗 有什么区别

问问向量组的秩和矩阵秩求法有区别吗最佳答案一、求解目的不同1、向量组的秩:向量组的秩为线性代数的基本概念,它表示的是一个向量组的极大线性无关组所含向量的个数。由向量组的秩可以引出矩阵的秩的定义。 2、矩阵秩:矩阵的秩是线性代数中的一个概念。在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数。通常表示为r(A),rk(A)或rank A。二、求解过程不同1、向量组的秩:一个m行n列的矩阵可以看做是m个行向量构成的行向量组,也可看做n个列向量构成的列向量组,行向量组的秩成为行秩,列向量组的秩成为列秩。2、矩阵秩:一个矩阵A的列秩是A的线性独立的纵列的极大数目。类似地,行秩是A的线性无关的横行的极大数目。
西柚不是西游2023-05-26 13:01:372

矩阵的秩和向量组的秩有什么内在联系

有.有的教材是先讲向量组的秩,再讲矩阵的秩事实上,矩阵的行向量组的秩=列向量组的秩=矩阵的秩这被称为矩阵的三秩定理.
凡尘2023-05-24 22:50:202

"矩阵的秩小于N,那么矩阵的系数行列式等于0。"如何理解?

矩阵的秩的定义是什么?想必是不知道的。矩阵的秩就是矩阵的最大非零子式的阶数。意思就是,例如5阶矩阵a,秩为4,说明a的5阶行列式为0,4阶行列式存在不为0.矩阵的秩小于n,说明n阶行列式为0.对于线性代数概念的理解掌握,是学习的基础。newmanhero2015年5月9日10:13:10希望对你有所帮助,望采纳。
Ntou1232023-05-24 22:50:202

矩阵的秩r=0,矩阵是否就是零矩阵?

不要说“觉得是”,而是“必然的”
苏州马小云2023-05-24 22:50:202

矩阵行列式>0,则矩阵的秩是多少,如果矩阵行列式<0或者=0呢?谢谢~

对于一个n阶的n*n矩阵A来说,如果其行列式|A|=0,则说明矩阵的秩小于n,即非满秩矩阵而如果|A|≠0,无论是大于还是小于0,都说明矩阵的秩就等于n实际上行列式|A|=0,就说明矩阵A在经过若干次初等变换之后存在元素全部为0的行,所以其秩R(A)<n而行列式|A|≠0,即经过若干次初等变换之后不存在元素全部为0的行,其秩R(A)=n
九万里风9 2023-05-24 22:50:202

两个矩阵的乘积为零矩阵,那么这两个矩阵的秩之间有什么关系?

如果a是mxn的矩阵,b是nxk的矩阵,ab=0,那么rank(a)+rank(b)<=n
FinCloud2023-05-24 22:50:203

可对角化矩阵的秩等于什么?

可对角化矩阵的秩等于对角化后非零对角元个数。
阿啵呲嘚2023-05-24 22:50:192

若一个矩阵的秩为0,则该矩阵等于

rank(ab)<=min{rank(a),rank(b)}这个对一般的a和b都成立,不需要其中任何一个满秩的条件至于证明,直接比较ab和a的列秩
凡尘2023-05-24 22:50:192

为什么说可逆矩阵乘以任何矩阵不改变矩阵的秩??想看具体的定理或者根据。

前后两个矩阵分别构造一个齐次方程组,两个方程组同解,则秩相同
bikbok2023-05-24 22:50:194

一个矩阵的秩为零的充要条件是什么?

就是矩阵的所有元素均为0
豆豆staR2023-05-24 22:50:192

矩阵的秩在什么情况下=0、1、n?

考虑秩的定义.若有某个矩阵系数不为0,则矩阵秩至少是1.因此矩阵秩为0当且仅当矩阵系数全部是0,或者说是0矩阵.
可桃可挑2023-05-24 22:50:192

矩阵的秩在什么情况下=0,1

矩阵的秩等于0的充分必要条件是这个矩阵是零矩阵。矩阵的秩等于1的充分必要条件是这个矩阵非零且各行各列都成比例。
无尘剑 2023-05-24 22:50:192

零矩阵的秩是0么?

零矩阵的秩应该是0
Ntou1232023-05-24 22:50:193

矩阵的秩小于N,那么矩阵的系数行列式等于0,如何理解?

最简单的解释应该是:两行相等的行列式=0
FinCloud2023-05-24 22:50:196

矩阵的秩是谁提出的?

矩阵的秩是弗罗伯纽斯提出的。在矩阵论的发展史上,弗罗伯纽斯 (G.Frobenius,1849-1917) 的贡献是不可磨灭的。他讨论了最小多项式问题。引进了矩阵的秩、不变因子和初等因子、正交矩阵、矩阵的相似变换、合同矩阵等概念,以合乎逻辑的形式整理了不变因子和初等因子的理论,并讨论了正交矩阵与合同矩阵的一些重要性质。矩阵的秩:定理:矩阵的行秩,列秩,秩都相等。定理:初等变换不改变矩阵的秩。定理:如果A可逆,则r(AB)=r(B),r(BA)=r(B)。定理:矩阵的乘积的秩Rab<=min{Ra,Rb}。引理:设矩阵A=(aij)sxn的列秩等于A的列数n,则A的列秩,秩都等于n。当r(A)<=n-2时,最高阶非零子式的阶数<=n-2,任何n-1阶子式均为零,而伴随阵中的各元素就是n-1阶子式再加上个正负号,所以伴随阵为0矩阵。当r(A)<=n-1时,最高阶非零子式的阶数<=n-1,所以n-1阶子式有可能不为零,所以伴随阵有可能非零(等号成立时伴随阵必为非零)。
u投在线2023-05-24 22:50:191

伴随矩阵的秩为0说明什么

符合零矩阵要求,即矩阵的秩等于0的充分必要条件是这个矩阵是零矩阵。参照定理:对于每个矩阵A,fA都是一个线性映射,同时,对每个的 线性映射f,都存在矩阵A使得 f= fA。也就是说,映射是一个同构映射。所以一个矩阵 A的秩还可定义为fA的像的维度(像与核的讨论参见线性映射)。矩阵 A称为 fA的变换矩阵。这个定义的好处是适用于任何线性映射而不需要指定矩阵,因为每个线性映射有且仅有一个矩阵与其对应。秩还可以定义为 n减 f的核的维度;秩-零化度定理声称它等于 f的像的维度。矩阵的秩学习在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数。这是矩阵的秩的定义,但是看上去比较难以理解,因此,我打算从多种矩阵的角度来解答这个问题。一般的矩阵是mxn的类型,还有一种就是方阵,方阵就是特殊的矩阵,指的是行数和列数相等的矩阵,对于这两种矩阵而言,矩阵的秩也有着很大的区别。对于方阵(行数、列数相等)的A矩阵而言,矩阵的秩就是用R(A)来表示。
真颛2023-05-24 22:50:181

矩阵的秩怎么计算?

矩阵的秩计算公式:A=(aij)m×n。在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数,通常表示为r(A),rk(A)或rank A。在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数目。类似地,行秩是A的线性无关的横行的极大数目。即如果把矩阵看成一个个行向量或者列向量,秩就是这些行向量或者列向量的秩,也就是极大无关组中所含向量的个数。扩展资料:矩阵的秩定理:矩阵的行秩,列秩,秩都相等。定理:初等变换不改变矩阵的秩。定理:如果A可逆,则r(AB)=r(B),r(BA)=r(B)。当r(A)<=n-2时,最高阶非零子式的阶数<=n-2,任何n-1阶子式均为零,而伴随阵中的各元素就是n-1阶子式再加上个正负号,所以伴随阵为0矩阵。当r(A)<=n-1时,最高阶非零子式的阶数<=n-1,所以n-1阶子式有可能不为零,所以伴随阵有可能非零(等号成立时伴随阵必为非零)。
韦斯特兰2023-05-24 22:50:181

矩阵的秩具体求法

矩阵 A 初等行变换为[ 1 -1 0 1][-1 2 1 -1][ 2 2 3 4]初等行变换为[ 1 -1 0 1][ 0 1 1 0][ 0 4 3 2]初等行变换为[ 1 -1 0 1][ 0 1 1 0][ 0 0 -1 2]R(A) = 3
肖振2023-05-24 22:50:182

矩阵的秩怎么求

矩阵的秩怎么求介绍如下:矩阵的秩计算公式:A=(aij)m×n。矩阵的秩是线性代数中的一个概念。在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数,通常表示为r(A),rk(A)或rank A。在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数目。类似地,行秩是A的线性无关的横行的极大数目。即如果把矩阵看成一个个行向量或者列向量,秩就是这些行向量或者列向量的秩,也就是极大无关组中所含向量的个数。扩展资料:矩阵的秩定理:矩阵的行秩,列秩,秩都相等。定理:初等变换不改变矩阵的秩。定理:矩阵的乘积的秩Rab<=min{Ra,Rb};引理:设矩阵A=(aij)sxn的列秩等于A的列数n,则A的列秩,秩都等于n。当r(A)<=n-2时,最高阶非零子式的阶数<=n-2,任何n-1阶子式均为零,而伴随阵中的各元素就是n-1阶子式再加上个正负号,所以伴随阵为0矩阵。当r(A)<=n-1时,最高阶非零子式的阶数<=n-1,所以n-1阶子式有可能不为零,所以伴随阵有可能非零(等号成立时伴随阵必为非零)。
北境漫步2023-05-24 22:50:181

如何理解矩阵的秩与列向量的秩?

r(A,B)>=r(A+B)r(A,B)>=r(B)>=r(AB)r(AB)与r(A+B)没有直接关系。矩阵B可逆,AB的秩等于A的秩,那么A可逆的充要条件是A可以写成初等阵的乘积。AB等于B左乘初等矩阵,而左乘初等阵就是对B进行初等行变换,所以它的秩不变。而B可逆的充要条件是B可以写成初等阵的乘积,同理秩不变。矩阵的秩定理:矩阵的行秩,列秩,秩都相等。定理:初等变换不改变矩阵的秩。定理:如果A可逆,则r(AB)=r(B),r(BA)=r(B)。定理:矩阵的乘积的秩Rab<=min{Ra,Rb};引理:设矩阵A=(aij)sxn的列秩等于A的列数n,则A的列秩,秩都等于n。以上内容参考:百度百科-矩阵的秩
meira2023-05-24 22:50:181

如何判断一个矩阵的秩是否为零

判断一个矩阵的秩是否为零实际上就是看这个矩阵是不是零矩阵即所有的元素都是0矩阵的秩等于0的充分必要条件就是这个矩阵是零矩阵只要有非零元素存在那就不会是零矩阵
肖振2023-05-24 22:50:182

系数矩阵的秩是什么 最好能举个例子 。 求大神快回

行向量组或是列向量组的最大非线性相关向量的个数,也是行列规范化后非零的向量个数。比如(100,010,001)秩就是3,而(111,110,001)秩就是2。秩也可以理解成矩阵构成的线性方程解的个数a,秩为r,有n=a+r。在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数,通常表示为r(A),rk(A)或rank A。在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数目。类似地,行秩是A的线性无关的横行的极大数目。即如果把矩阵看成一个个行向量或者列向量,秩就是这些行向量或者列向量的秩,也就是极大无关组中所含向量的个数。扩展资料矩阵的秩定理:矩阵的行秩,列秩,秩都相等。定理:初等变换不改变矩阵的秩。定理:如果A可逆,则r(AB)=r(B),r(BA)=r(B)。定理:矩阵的乘积的秩Rab<=min{Ra,Rb};引理:设矩阵A=(aij)sxn的列秩等于A的列数n,则A的列秩,秩都等于n。当r(A)<=n-2时,最高阶非零子式的阶数<=n-2,任何n-1阶子式均为零,而伴随阵中的各元素就是n-1阶子式再加上个正负号,所以伴随阵为0矩阵。当r(A)<=n-1时,最高阶非零子式的阶数<=n-1,所以n-1阶子式有可能不为零,所以伴随阵有可能非零(等号成立时伴随阵必为非零)。
小菜G的建站之路2023-05-24 22:50:181

如何用初等行变换求矩阵的秩?

首先应该是齐次的线性方程组。方程个数小于未知数个数即系数矩阵的秩小于未知数的个数。我觉得这样可能好理解一点的是系数矩阵的秩就是有效方程的个数。未知数的个数多余有效方程的个数自然有非零解。类似于X+Y=3 一个方程两个未知数X Y自然有非零解。重要定理每一个线性空间都有一个基。对一个 n 行 n 列的非零矩阵 A,如果存在一个矩阵 B 使 AB = BA =E(E是单位矩阵),则 A 为非奇异矩阵(或称可逆矩阵),B为A的逆阵。矩阵非奇异(可逆)当且仅当它的行列式不为零。矩阵非奇异当且仅当它代表的线性变换是个自同构。矩阵半正定当且仅当它的每个特征值大于或等于零。矩阵正定当且仅当它的每个特征值都大于零。
北有云溪2023-05-24 22:50:181

求该3阶矩阵的秩

把第一行的-2,-3倍加到第二、三行,得1 2 30 -1 -50 -5 -7,此矩阵对应的行列式的值=7-25=-18≠0,∴它的秩=3.
肖振2023-05-24 22:50:182

为什么矩阵的秩等于其非零特征值的个数?如何理解?谢谢啦

应该说在可对角化的条件下,矩阵的秩等于它的代数重数或几何重数的和。
tt白2023-05-24 22:50:1813

如何用矩阵的秩来判别向量组的线性相关性?他们之间有什么联系?

矩阵的秩 等于 矩阵的行秩 等于 矩阵的列秩此即所谓的三秩定理 若矩阵的秩等于它的列数, 则列向量组线性无关, 否则线性相关若矩阵的秩等于它的行数, 则行向量组线性无关, 否则线性相关
余辉2023-05-24 22:50:171

矩阵的秩 最小 可以为0?

考虑秩的定义.若有某个矩阵系数不为0,则矩阵秩至少是1.因此矩阵秩为0当且仅当矩阵系数全部是0,或者说是0矩阵.
豆豆staR2023-05-24 22:50:172

高数求解,为什么零矩阵的秩为零

矩阵的秩的定义,是经化为阶梯型矩阵后,非零行的个数。零矩阵非零行个数是 0, 则秩 为 0.
kikcik2023-05-24 22:50:171

矩阵的秩在什么情况下为0

矩阵的秩等于0的充分必要条件是这个矩阵是零矩阵。参照定理:对于每个矩阵A,fA都是一个线性映射,同时,对每个的 线性映射f,都存在矩阵A使得 f= fA。也就是说,映射是一个同构映射。所以一个矩阵 A的秩还可定义为fA的像的维度(像与核的讨论参见线性映射)。矩阵 A称为 fA的变换矩阵。这个定义的好处是适用于任何线性映射而不需要指定矩阵,因为每个线性映射有且仅有一个矩阵与其对应。秩还可以定义为 n减 f的核的维度;秩-零化度定理声称它等于 f的像的维度。扩展资料秩线性映射的推广:只有零矩阵有秩 0 A的秩最大为 min(m,n) f是单射,当且仅当 A有秩 n(在这种情况下,我们称 A有“满列秩”)。f是满射,当且仅当 A有秩 m(在这种情况下,我们称 A有“满行秩”)。在方块矩阵A(就是 m= n) 的情况下,则 A是可逆的,当且仅当 A有秩 n(也就是 A有满秩)。如果 B是任何 n× k矩阵,则 AB的秩最大为 A的秩和 B的秩的小者。即:秩(AB)≤min(秩(A),秩(B)) 推广到若干个矩阵的情况,就是:秩(A1A2...Am)≤min(秩(A1),秩(A2)。秩(Am)) 证明:考虑矩阵的秩的线性映射的定义,令A、B对应的线性映射分别为 f和 g,则秩(AB)表示复合映射 f·g,它的象 Im f·g是 g的像 Im g在映射 f作用下的象。参考资料:百度百科—秩
小菜G的建站之路2023-05-24 22:50:171

任何矩阵的秩必须大于0是正确的么

矩阵的秩等于0的充分必要条件是这个矩阵是零矩阵。参照定理:对于每个矩阵A,fA都是一个线性映射,同时,对每个的线性映射f,都存在矩阵A使得f=fA。也就是说,映射是一个同构映射。所以一个矩阵A的秩还可定义为fA的像的维度(像与核的讨论参见线性映射)。矩阵A称为fA的变换矩阵。这个定义的好处是适用于任何线性映射而不需要指定矩阵,因为每个线性映射有且仅有一个矩阵与其对应。秩还可以定义为n减f的核的维度;秩-零化度定理声称它等于f的像的维度。
北营2023-05-24 22:50:171

矩阵的秩的性质

矩阵的秩的性质如下矩阵的秩线性代数中的一个概念。在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数,通常表示为r(A),rk(A)或rank A。在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数目。类似地,行秩是A的线性无关的横行的极大数目。即如果把矩阵看成一个个行向量或者列向量,秩就是这些行向量或者列向量的秩,也就是极大无关组中所含向量的个数。方阵(行数、列数相等的矩阵)的列秩和行秩总是相等的,因此它们可以简单地称作矩阵A的秩。通常表示为r(A),rk(A)或 。m × n矩阵的秩最大为m和n中的较小者,表示为 min(m,n)。有尽可能大的秩的矩阵被称为有满秩;类似的,否则矩阵是秩不足(或称为“欠秩”)的。设A是一组向量,定义A的极大无关组中向量的个数为A的秩。定义1. 在m*n矩阵A中,任意决定α行和β列交叉点上的元素构成A的一个k阶子矩阵,此子矩阵的行列式,称为A的一个k阶子式。例如,在阶梯形矩阵中,选定1,3行和3,4列,它们交叉点上的元素所组成的2阶子矩阵的行列式 就是矩阵A的一个2阶子式。定义2. A=(aij)m×n的不为零的子式的最大阶数称为矩阵A的秩,记作rA,或rankA或R(A)。特别规定零矩阵的秩为零。显然rA≤min(m,n) 易得:若A中至少有一个r阶子式不等于零,且在r<min(m,n)时,A中所有的r+1阶子式全为零,则A的秩为r。由定义直接可得n阶可逆矩阵的秩为n,通常又将可逆矩阵称为满秩矩阵, det(A)≠0;不满秩矩阵就是奇异矩阵,det(A)=0。由行列式的性质知,矩阵A的转置AT的秩与A的秩是一样的,即rank(A)=rank(AT)。 [2] 矩阵的秩定理:矩阵的行秩,列秩,秩都相等。定理:初等变换不改变矩阵的秩。定理:如果A可逆,则r(AB)=r(B),r(BA)=r(B)。定理:矩阵的乘积的秩Rab<=min{Ra,Rb};引理:设矩阵A=(aij)sxn的列秩等于A的列数n,则A的列秩,秩都等于n。当r(A)<=n-2时,最高阶非零子式的阶数<=n-2,任何n-1阶子式均为零,而伴随阵中的各元素就是n-1阶子式再加上个正负号,所以伴随阵为0矩阵。当r(A)<=n-1时,最高阶非零子式的阶数<=n-1,所以n-1阶子式有可能不为零,所以伴随阵有可能非零(等号成立时伴随阵必为非零)   。
小白2023-05-24 22:50:171

矩阵的秩怎么求?

A=(aij)m×n矩阵的秩是线性代数中的一个概念。在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数,通常表示为r(A),rk(A)或rank A。在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数目。类似地,行秩是A的线性无关的横行的极大数目。即如果把矩阵看成一个个行向量或者列向量,秩就是这些行向量或者列向量的秩,也就是极大无关组中所含向量的个数。扩展资料:矩阵的秩定理:矩阵的行秩,列秩,秩都相等。定理:初等变换不改变矩阵的秩。定理:如果A可逆,则r(AB)=r(B),r(BA)=r(B)。定理:矩阵的乘积的秩Rab<=min{Ra,Rb};引理:设矩阵A=(aij)sxn的列秩等于A的列数n,则A的列秩,秩都等于n。当r(A)<=n-2时,最高阶非零子式的阶数<=n-2,任何n-1阶子式均为零,而伴随阵中的各元素就是n-1阶子式再加上个正负号,所以伴随阵为0矩阵。当r(A)<=n-1时,最高阶非零子式的阶数<=n-1,所以n-1阶子式有可能不为零,所以伴随阵有可能非零(等号成立时伴随阵必为非零)。
tt白2023-05-24 22:50:171

矩阵的秩在什么情况下为0

这个矩阵是零矩阵时,矩阵的秩为0;这个矩阵是非零矩阵且每行成比例时,或者矩阵是只有一行或者只有一列时,矩阵的秩为1。矩阵的秩是线性代数中的一个概念。在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数,通常表示为r(A),rk(A)或rank A。 在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数目。类似地,行秩是A的线性无关的横行的极大数目。即如果把矩阵看成一个个行向量或者列向量,秩就是这些行向量或者列向量的秩,也就是极大无关组中所含向量的个数。扩展资料:矩阵的秩的性质:1、转置后秩不变;2、r(A)<=min(m,n),A是m*n型矩阵;3、r(kA)=r(A),k不等于0;4、r(A)=0 <=> A=0;5、r(A+B)<=r(A)+r(B);6、r(AB)<=min(r(A),r(B));7、r(A)+r(B)-n<=r(AB)。
小菜G的建站之路2023-05-24 22:50:164

高等代数理论基础23:矩阵的秩

定义:矩阵的行向量组的秩称为矩阵的行秩,矩阵的列向量组的秩称为矩阵的列秩 引理:若齐次线性方程组 的系数矩阵 的行秩 则它有非零解 证明:定理:矩阵的行秩与列秩相等 证明:定理: 矩阵 的行列式为零 A的秩小于n 证明:推论:齐次线性方程组 有非零解的充要条件是它的系数矩阵 的行列式等于零 定义:在一个 矩阵A中任意选定k行和k列,位于这些选定的行和列的交点上的 个元素按原来的次序所组成的k级行列式称为A的一个k级子式 注: 定理:一矩阵的秩是r的充要条件为矩阵中有一个r级子式不为零,同时所有r+1级子式全为零 证明:注: 1.矩阵A的秩 r的充要条件为A有一个r级子式不为零 2.矩阵A的秩 r的充要条件为A的所有r+1级子式全为零 3.在秩为r的矩阵中,不为零的r级子式所在的行正是它行向量组的一个极大线性无关组,所在的列正是它列向量组的一个极大线性无关组 注:初等行变换初等列变换不改变矩阵的秩 阶梯形矩阵的秩就等于其中非零行的数目 证明:其中
铁血嘟嘟2023-05-24 22:50:161

矩阵的秩详细资料大全

矩阵的秩是线性代数中的一个概念。在线性代数中,一个矩阵 A 的 列秩 是 A 的线性独立的 纵列 的极大数,通常表示为r( A ),rk( A )或rank A 。 线上性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数目。类似地,行秩是A的线性无关的横行的极大数目。即如果把矩阵看成一个个行向量或者列向量,秩就是这些行向量或者列向量的秩,也就是极大无关组中所含向量的个数。 基本介绍 中文名 :矩阵的秩 外文名 :The Rank of Matrix 领域 :线性代数 性质 :行秩是A的线性无关极大数目 公式 : A=(aij)m×n 相关定义,变化规律, 相关定义 方阵(行数、列数相等的矩阵)的列秩和行秩总是相等的,因此它们可以简单地称作矩阵 A 的 秩 。通常表示为r( A ),rk( A )或 。 m × n 矩阵的秩最大为 m 和 n 中的较小者,表示为 min( m , n )。有尽可能大的秩的矩阵被称为有 满秩 ;类似的,否则矩阵是 秩不足 (或称为“ 欠秩 ”)的。 设A是一组向量,定义A的极大无关组中向量的个数为A的秩。 定义1. 在m*n矩阵A中,任意决定α行和β列交叉点上的元素构成A的一个k阶子矩阵,此子矩阵的行列式,称为A的一个k阶子式。 例如,在阶梯形矩阵中,选定1,3行和3,4列,它们交叉点上的元素所组成的2阶子矩阵的行列式 就是矩阵A的一个2阶子式。 定义2. A=(a ij )m×n的不为零的子式的最大阶数称为矩阵A的秩,记作rA,或rankA或R(A)。 特别规定零矩阵的秩为零。 显然rA≤min(m,n) 易得: 若A中至少有一个r阶子式不等于零,且在r<min(m,n)时,A中所有的r+1阶子式全为零,则A的秩为r。 由定义直接可得n阶可逆矩阵的秩为n,通常又将可逆矩阵称为满秩矩阵, det(A)≠0;不满秩矩阵就是奇异矩阵,det(A)=0。 由行列式的性质知,矩阵A的转置A T 的秩与A的秩是一样的,即rank(A)=rank(A T )。 矩阵的秩 定理:矩阵的行秩,列秩,秩都相等。 定理:初等变换不改变矩阵的秩。 定理:矩阵的乘积的秩R ab <=min{R a ,R b }; 引理:设矩阵A=(a ij )sxn的列秩等于A的列数n,则A的列秩,秩都等于n。 当r(A)<=n-2时,最高阶非零子式的阶数<=n-2,任何n-1阶子式均为零,而伴随阵中的各元素就是n-1阶子式再加上个正负号,所以伴随阵为0矩阵。 当r(A)<=n-1时,最高阶非零子式的阶数<=n-1,所以n-1阶子式有可能不为零,所以伴随阵有可能非零(等号成立时伴随阵必为非零)。 变化规律 (1)转置后秩不变 (2)r(A)<=min(m,n),A是m*n型矩阵 (3)r(kA)=r(A),k不等于0 (4)r(A)=0 <=> A=0 (5)r(A+B)<=r(A)+r(B) (6)r(AB)<=min(r(A),r(B)) (7)r(A)+r(B)-n<=r(AB) 证明: AB与n阶单位矩阵En构造分块矩阵 |AB O| |O En| A分乘下面两块矩阵加到上面两块矩阵,有 |AB A| |0 En| 右边两块矩阵分乘-B加到左边两块矩阵,有 |0 A | |-B En| 所以,r(AB)+n=r(第一个矩阵)=r(最后一个矩阵)>=r(A)+r(B) 即r(A)+r(B)-n<=r(AB) 注:这里的n指的是A的列数。这里假定A是m×n矩阵。 特别的:A:m*n,B:n*s,AB=0 -> r(A)+r(B)<=n (8)P,Q为可逆矩阵, 则 r(PA)=r(A)=r(AQ)=r(PAQ) (9)若矩阵可相似对角化则矩阵的秩等于矩阵非零特征值的个数。
韦斯特兰2023-05-24 22:50:161

关于矩阵的秩的10个结论是什么?

1、两个矩阵A,B,如果满足rank(AB-BA)≤1,那么他们可以同时上三角化,这对应到线性变换就是指A,B有公共特征向量。2、如果矩阵A不可逆,满足rank(A)=rank(A²),那么A的属于特征值0的初等因子只能是1次的这个证明不难,就不提示了。3、以及如果矩阵A,满足rank(A)=r,则有相抵标准型,A=PDQ,其中D=diag{I_r,O}。4、设A是mxn的矩阵,则r(A)≤min(m,n),若一个矩阵的秩为0,那么这个矩阵一定是0矩阵,反过来亦然。5、r(A)=r(A′)=r(AA′)=r(A′A)。A表示任意矩阵,也就是m行n列,最简单的就是向量。A′表示A的转置。这是一个很好用的结论。这个结论的证明。矩阵的秩定理:矩阵的行秩,列秩,秩都相等。定理:初等变换不改变矩阵的秩。定理:如果A可逆,则r(AB)=r(B),r(BA)=r(B)。定理:矩阵的乘积的秩Rab<=min{Ra,Rb}。引理:设矩阵A=(aij)sxn的列秩等于A的列数n,则A的列秩,秩都等于n。
无尘剑 2023-05-24 22:50:161

零矩阵的秩是多少?

零矩阵的秩是0,非零矩阵的秩>0。在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数。通常表示为r(A),rk(A)或rank A。对于一个n阶的n*n矩阵A来说,如果其行列式|A|=0,则说明矩阵的秩小于n,即非满秩矩阵而如果|A|≠0,无论是大于还是小于0,都说明矩阵的秩就等于n实际上行列式|A|=0,就说明矩阵A在经过若干次初等变换之后存在元素全部为0的行,所以其秩R(A)而行列式|A|≠0,即经过若干次初等变换之后不存在元素全部为0的行,其秩R(A)=n矩阵的秩定理:矩阵的行秩,列秩,秩都相等。定理:初等变换不改变矩阵的秩。定理:如果A可逆,则r(AB)=r(B),r(BA)=r(B)。定理:矩阵的乘积的秩Rab<=min{Ra,Rb};引理:设矩阵A=(aij)sxn的列秩等于A的列数n,则A的列秩,秩都等于n。以上内容参考:百度百科-矩阵的秩
北有云溪2023-05-24 22:50:161

矩阵的秩的相关定义

矩阵的列秩和行秩总是相等的,因此它们可以简单地称作矩阵A的秩。通常表示为r(A),rk(A)或rank A。m × n矩阵的秩最大为m和n中的较小者,表示为 min(m,n)。有尽可能大的秩的矩阵被称为有满秩;类似的,否则矩阵是秩不足(或称为“欠秩”)的。设A是一组向量,定义A的极大无关组中向量的个数为A的秩。定义1. 在m*n矩阵A中,任意决定k行和k列交叉点上的元素构成A的一个k阶子矩阵,此子矩阵的行列式,称为A的一个k阶子式。例如,在阶梯形矩阵中,选定1,3行和3,4列,它们交叉点上的元素所组成的2阶子矩阵的行列式 就是矩阵A的一个2阶子式。定义2. A=(aij)m×n的不为零的子式的最大阶数称为矩阵A的秩,记作rA,或rankA或R(A)。特别规定零矩阵的秩为零。显然rA≤min(m,n) 易得:若A中至少有一个r阶子式不等于零,且在r<min(m,n)时,A中所有的r+1阶子式全为零,则A的秩为r。由定义直接可得n阶可逆矩阵的秩为n,通常又将可逆矩阵称为满秩矩阵, det(A)&sup1; 0;不满秩矩阵就是奇异矩阵,det(A)=0。由行列式的性质1(1.5[4])知,矩阵A的转置AT的秩与A的秩是一样的。例1. 计算下面矩阵的秩,而A的所有的三阶子式,或有一行为零;或有两行成比例,因而所有的三阶子式全为零,所以rA=2。矩阵的秩引理 设矩阵A=(aij)sxn的列秩等于A的列数n,则A的列秩,秩都等于n。定理 矩阵的行秩,列秩,秩都相等。定理 初等变换不改变矩阵的秩。定理 矩阵的乘积的秩Rab<=min{Ra,Rb};当r(A)<=n-2时,最高阶非零子式的阶数<=n-2,任何n-1阶子式均为零,而伴随阵中的各元素就是n-1阶子式再加上个正负号,所以伴随阵为0矩阵。当r(A)<=n-1时,最高阶非零子式的阶数<=n-1,所以n-1阶子式有可能不为零,所以伴随阵有可能非零(等号成立时伴随阵必为非零)。
陶小凡2023-05-24 22:50:161

关于线性方程组和矩阵的秩的问题

因为伴随矩阵的秩≥1时,只能=1或nA的秩是>0的,所以伴随的秩只能等于1
NerveM 2023-05-24 22:50:163

矩阵的秩与什么有关?

根据线性方程组有解判别定理,齐次线性方程组中系数矩阵的秩与增广矩阵的秩相等,所以齐次线性方程组一定有解(至少有一个零解)。若齐次线性方程组中方程的个数小于未知数的个数,即系数矩阵的秩小于未知数的个数,则方程组有无穷多解(即有非零解)。如果m<n(行数小于列数,即未知数的数量大于所给方程组数),则齐次线性方程组有非零解,否则为全零解。每一个线性空间都有一个基。对一个 n 行 n 列的非零矩阵 A,如果存在一个矩阵 B 使 AB = BA =E(E是单位矩阵),则 A 为非奇异矩阵(或称可逆矩阵),B为A的逆阵。矩阵非奇异(可逆)当且仅当它的行列式不为零。矩阵非奇异当且仅当它代表的线性变换是个自同构。矩阵半正定当且仅当它的每个特征值大于或等于零。矩阵正定当且仅当它的每个特征值都大于零。
余辉2023-05-24 22:50:161

行阶梯形矩阵的秩是什么?

行阶梯形矩阵的秩是用初等行变换。这个有很大的作用,(当矩阵是二三阶的时候,行阶梯形矩阵可以求矩阵的值)还可以求矩阵的秩,求齐次方程组的解和非齐次方程组的解,还有求方程组的最大无关组等等都需要行阶梯形,求矩阵的秩一定的化成行阶梯形而且还是行最简形。矩阵的秩定理:矩阵的行秩,列秩,秩都相等。定理:初等变换不改变矩阵的秩。定理:如果A可逆,则r(AB)=r(B),r(BA)=r(B)。定理:矩阵的乘积的秩Rab<=min{Ra,Rb}。引理:设矩阵A=(aij)sxn的列秩等于A的列数n,则A的列秩,秩都等于n。
北营2023-05-24 22:50:161

线性代数 线性方程组。谁知道第一句是为什么?矩阵方程怎么和矩阵的秩联系的

A的秩 + A的零度 = 3B的列包含在Ax=0的解空间里,所以B的秩不超过A的零度
kikcik2023-05-24 22:50:161

一个3阶矩阵只有2个线性无关的特征向量,而这个矩阵只有一个3重根的特征值,求矩阵的秩

你好!反证法:由于对应于不同特征值的特征向量线性无关,所以若三阶矩阵有两个不同的特征值,则至少有两个线性无关的特征向量,矛盾。所以三阶矩阵没有不同的特征值,即特征值是三重根。经济数学团队帮你解答,请及时采纳。谢谢!
CarieVinne 2023-05-24 22:50:164

怎样利用初等矩阵证明:初等行(列)的变换不改变矩阵的秩

同济的线性代数5版中有证明
CarieVinne 2023-05-24 22:50:144

怎样利用初等矩阵证明:初等行(列)的变换不改变矩阵的秩

证明如下:初等矩阵是指由单位矩阵经过一次三种矩阵初等变换得到的矩阵。初等矩阵的模样可以写一个3阶或者4阶的单位矩阵。初等矩阵都可逆,其次,初等矩阵的逆矩阵其实是一个同类型的初等矩阵(可看作逆变换)。扩展资料:初等矩阵的应用:1、在解线性方程组中的应用初等行变换不影响线性方程组的解,也可用于高斯消元法,用于逐渐将系数矩阵化为标准形。初等行变换不改变矩阵的核(故不改变解集),但改变了矩阵的像。反过来,初等列变换没有改变像却改变了核。2、用于求解一个矩阵的逆矩阵有的时候,当矩阵的阶数比较高的时候,使用其行列式的值和伴随矩阵求解其逆矩阵会产生较大的计算量。这时,通常使用将原矩阵和相同行数(也等于列数)的单位矩阵并排,再使用初等变换的方法将这个并排矩阵的左边化为单位矩阵,这时,右边的矩阵即为原矩阵的逆矩阵。
水元素sl2023-05-24 22:50:141

课本说齐次方程组有2个线性无关的解,即系数矩阵的秩为1。解释下为什么?难道说解的个数与秩有明确数量关系

齐次线性方程组的基础解系所含向量的个数 = n - r(A).其中n是未知量的个数 或 A 的列数.
北有云溪2023-05-24 22:50:132

一个矩阵的秩是r则它的像的维数和核的维数是多少 有关系吗?

dimR(A)+dimK(A)=A的列数。也就是像的维数加上核的维数应该等于矩阵的列数。跟矩阵的秩没有直接关系。这个叫做线性变换的维数定理。《矩阵论》上都有的,可以去看看。我在此简单证明一下:设矩阵为A,它是一个n*s的矩阵,A的秩是r.(1)像的维数:A的像的全体就是A的列向量的线性组合。由于A的秩r,所以A的列向量的极大无关组有r个向量。A的像就是由这r个向量张成的空间。所以dimR(A)=r.(2)核的维数:核的维数就是Ax=0的解中基础解系的个数,由线性代数可知,dimK(A)=s-r.(3)由此得维数定理:dimR(A)+dimK(A)=s
余辉2023-05-24 22:50:111

代数中R(A)表示A矩阵的秩,N(A)呢?

N(A)指的是A矩阵的零空间,A的核,也就是Ax=0的解组成的空间,而R(A)指的是矩阵A的秩,也是A的列空间和值空间,所以R(A)属于N(A)。
阿啵呲嘚2023-05-24 22:50:101

代数中R(A)表示A矩阵的秩,N(A)呢?

N(A)指的是A矩阵的零空间,A的核,也就是Ax=0的解组成的空间,而R(A)指的是矩阵A的秩,也是A的列空间和值空间,所以R(A)属于N(A)。
真颛2023-05-24 22:50:071

矩阵的维数和矩阵的秩有什么区别

1、矩阵的维数和矩阵的秩两者范围不同:维度,是数学中独立参数的数目;而秩表示的是其生成的子空间的维度。如果还考虑m× n矩阵,将A的秩定义为向量组F的秩,则可以看到如此定义的A的秩就是矩阵 A的线性无关纵列的极大数目。2、矩阵的维数和矩阵的秩两者用途不同:“点基于点是0维、点基于直线是1维、点基于平面是2维、点基于体是3维”。再进一步解释,在点上描述(定位)一个点就是点本身,不需要参数;在直线上描述(定位)一个点,需要1个参数(坐标值)。在平面上描述(定位)一个点,需要2个参数(坐标值);在体上描述(定位)一个点,需要3个参数(坐标值)。而矩阵的秩的一个有用应用是计算线性方程组解的数目。3、矩阵的维数和矩阵的秩两者对应关系不同:矩阵的维数没有固定的对应关系。而对于每个矩阵A,fA都是一个线性映射,同时,对每个的线性映射f,都存在矩阵A使得 f= fA。也就是说,映射是一个同构映射。所以一个矩阵 A的秩还可定义为fA的像的维度。矩阵 A称为 fA的变换矩阵。参考资料来源:搜狗百科-维度参考资料来源:搜狗百科-秩(线性代数术语)
余辉2023-05-24 22:50:057

什么是矩阵的秩

分类: 教育/科学 >> 升学入学 >> 考研 问题描述: 什么是秩 解析: 您的查询字词都已标明如下:矩阵的秩 (点击查询词,可以跳到它在文中首次出现的位置) (百度和网页hsedu/xibu/sxx/teach/gdds/jiaoan/6.7.doc的作者无关,不对其内容负责。百度快照谨为网络故障时之索引,不代表被搜索网站的即时页面。) --------------------------------------------------------------------------------6.7 矩阵的秩 齐次线性方程组的解空间 教学目的: 1. 掌握矩阵的秩和它的行空间,列空间维数之间的关系. 2. 准确地确定齐次线性方程组解空间维数. 3. 熟练地求出齐次线性方程组基础解系及非齐次线性方程式组的任意解. 教学内容: 1. 阵的秩的几何意义. 设给了数域F上一个m*n矩阵 A= 矩阵A的每一行可以看成F的一个向量,叫做A的行向量.A的每一列可以看成F的一个向量,叫做A的列向量,令a,...,a是A的列向量,这里 a=(a,a,...,a),I=1,...,m. 由a,a,...,a所生成的F的子空间£(a,a,..., a)叫做矩阵A的行空间.类似的,由A的n个列向量所生成的F的子空间叫做A的列空间. 当m≠n时,矩阵A的行空间和列空间是不同的向量空间的子空间, 引理6.7.1 设A是一个n*m矩阵 如果B=PA,P是一个N阶可逆矩阵,那么B与A有相同的行空间. 如果C=AQ,Q是一个n阶可逆矩阵,那么C与A有相同的列空间. 证:我们只证明(I),因为(ii)的证明完全类似. A=(a)mn, P=(p)mm,B=(b)mn. 令{a1,a2…am}是A的行向量,{b1,b2,…,bm}是B的行向量.B的第I行等于P的第I行等于P的第P的第I行右乘以矩阵A: bi=(bi1,bi2…,bin)=(pi1,pi2,…pim)A=pi1a1+pi2a2,…+pimam, 所以B的每一个行向量都是A的行向量的线性组合,但P可逆,所以A=P-1B.因此A的每一个行向量都是B的行向量的线性组合,这样,向时组{a1,a2,…,am}与{b1,b2,…,bm}等价,所以它们生成Fn的同一子空间. 我们知道,对于任意一个m*n矩阵A,总存在m阶可逆矩阵P和n阶可逆矩阵Q,使 (1) PAQ= 这里r等于A的秩,两边各乘以Q得 PA=Q 右端乘积中后m-r行的元素都是零,而前r 行就是Q-1的前r行.由于Q-1可逆,所以它的行向量线性无关因而它的前r行也线性无关.于是PA的行空间的维数等于r.由引理6.7.1,A的行间的维数等于r ,另一方面,将等式(1)左乘以P-1得 AQ= P 由此看出,AQ的列空间的维数等于r,从而A的列空间的维数也等于r,这样就证明了 定理6.7.2 一个矩阵的行空间的维数等于列空间的维数,等于这个矩阵的秩. 由于这一事实,我们也把一个矩阵的秩定义为它的行向量组的极大无关组所含向量的个数;也定义为它的列向量组极大无关组所含向里的个数. 数域F上线性方程组有解的充要条件是它的系数矩阵与增广矩阵有相同的秩. 线性方程组的解的结构:设 a11x1+a12x2+…a1nxn=0 a21x1+a22x2+…a2nxn=0 (3) am1x1+am2x2+amnxn=0 是数域 F上一个齐次线性方程组.令A是这个方程组的系数矩阵.那么(3)可以写 成 (3) A= (3)的每一个解都可以看作Fn的一个向量,叫做方程组(3)的一个解向量.设 =, = . 是(3)的两个解向量,而a,b是F中任意数.那么由(3"), A(ax+bh)=aA +bA = , 所以aξ+bη也是(20的一个解向量,另一方面,齐次线性方程组永远有解,数域F上一个n 元齐次线性方程组的所有解向量作成Fn的一个子空间,这个子空间叫作所给的齐次线性方程组的解空间. 现在设(3)的系数矩阵的秩等于r.那么通过行初等变换,必要时交换列,可以将系数矩阵A化为以下形式的一个矩阵; . 与这个矩阵相当的齐次线性方程组是 y1 +c1,r+1yr+1+…+c1nyn=0, y2 +c2,r+1yr+1+…+c2nyn=0, ………………………………, yr+cr,r+1yr+1+…+cr,nyn=0, 这里yk=xik,k=1,…n,就是未知量yr+1,…yn.依次让它们取值(1,0,…,0),(0,1,0,…0),…,(0,…,0,1),我们得到(4)的n-r个解向量 =, =,……., = 这n-r个解向量显然线性无关,另一方面,设(k1,k2,…,kn)是(4)的任意一个解,代入(4)得 k1=-c1,r+1kr+1-…-c1,nkn, k2=-c2,r+1kr+1-…-c2,nkn, …………………………… kr=-cr,r+1kr+1-…- cr,nkn, kr+1=1kr+1, ……………………………… kn= 1kn. 于是 =kr+1,ηr+1+kr+2ηr+2+…+knηn 因此,(4)的每一个解向量都可以由这n-r个解向量ηr+1,ηr+2,…,ηn线性表示,这样一来, {ηr+1,ηr+2,…,ηn}构成(4)的解空间的一个基,重新排列每一解向量ηi中坐标的次序,就得到齐次线性方程组(3)的解空间的一个基,即 定理6.7.3 数域上一个n个未知量的齐次线性方程组的一毁解作成Fn的一个子空间,称为这个齐次线性方程组的解空间,如果所给的方程组的系数矩阵的秩是r,那么解空间的维数n-r. 一个齐次线性方程组的解空间的一个基叫做这个方程组的一个基础解系. 例 1 求齐次线性方程组 x1-x2+5x3-x4=0 x1+x2-2x3+3x4=0 3x1-x2+8x3+x4=0 x1+3x2-9x3+7x4=0 的一个基础解系. 对行施行初等变换化简系数矩阵,得 与这个矩阵相当的齐次方程组是 取作为自由未知量,依次令和得出方程的两个解 它们作成所给的方程组的一个基础解系.方程组的任意一个解都有形式 这里是所数中任意数,方程组的解空间由一切形如的解向量组成.设 (5) A 是数域F上任意一个线性方程组,A是一个m8n矩阵,把(5)的常数都换成零,就得到一个齐次线性方程组 A= 齐次方程组(6)叫做方程组(5)的导出齐次方程组, 定理6.7.4 如果线性方程组(5)有解那么(5)的一个解与导出齐次方程组的一个解的任意解都可以写成(5)的一个固定(6)的一个解的和, 证 设ν=(c1,c2,…)是方程组(5)的一个解,δ=(d1,d2,…,dn)是导出齐次方程组(6)的一个解.那么 A=A 所以是(5)的一个解设是(5)的任意一个解.那么 A 因此μ=λ—ν是导出方程组(6)的一个解,而λ=ν+μ.
凡尘2023-05-24 22:50:011

矩阵的秩与加法

这个可以继续化简:1.用第3行把的1把所有的第四列的数都化为012-900-1500001(下面的不写了)2.用第2行的-1把第1行的2消去10100-1500001(当然你也可以把第2行乘以-1)这个矩阵的非零行就是3行,所以秩就是3因为第一行的以一个1他下面的全部是0所以这个1是消不去le第2行的-1他的那一列也全部是0同理第三行
豆豆staR2023-05-24 18:38:371
 1 2 3  下一页  尾页