矩阵的秩

(矩阵的转置乘矩阵)的秩=矩阵的秩。那么矩阵乘(矩阵的转置)的秩是什么?求证明

有没有一种可能,矩阵=矩阵的转置的转置
再也不做站长了2023-05-24 18:38:204

矩阵的秩等于矩阵的迹

设n阶幂等a特征值为t,对应特征向量为x,秩r(a)=rax=txa^2x=tax=t^2x=txt^2-t=0t=1或0若r=na有n个不为零的特征值t=1矩阵的迹=所有特征值之和=n*1=n=r若r评论000加载更多
大鱼炖火锅2023-05-24 18:38:162

矩阵的秩等于矩阵的迹

只考虑对角阵,则矩阵的秩表示对角元中多少个非零,矩阵的迹表示所有对角元的和。所以如果对角阵的对角元全为0或1(即投影矩阵),秩一定等于迹。不然除非对角阵的对角元非常特殊,例如二阶对角阵的两个对角元为3和-1,则秩=迹=2;如果两个对角元为3和0,则秩=1,迹=3对于一般的矩阵,由特征值求秩时还要考虑特征值0对应的特征子空间的维数,问题显得更复杂。但除非很特殊的情况(例如投影矩阵),秩一般不等于迹
凡尘2023-05-24 18:38:131

矩阵的秩是什么意思,怎么计算矩阵的秩

有2种方式定义1. 用向量组的秩定义矩阵的秩 = 行向量组的秩 = 列向量组的秩2. 用非零子式定义矩阵的秩等于矩阵的最高阶非零子式的阶
北境漫步2023-05-24 18:37:512

矩阵的秩是什么?

首先应该是齐次的线性方程组。方程个数小于未知数个数即系数矩阵的秩小于未知数的个数。我觉得这样可能好理解一点的是系数矩阵的秩就是有效方程的个数。未知数的个数多余有效方程的个数自然有非零解。类似于X+Y=3 一个方程两个未知数X Y自然有非零解。重要定理每一个线性空间都有一个基。对一个 n 行 n 列的非零矩阵 A,如果存在一个矩阵 B 使 AB = BA =E(E是单位矩阵),则 A 为非奇异矩阵(或称可逆矩阵),B为A的逆阵。矩阵非奇异(可逆)当且仅当它的行列式不为零。矩阵非奇异当且仅当它代表的线性变换是个自同构。矩阵半正定当且仅当它的每个特征值大于或等于零。矩阵正定当且仅当它的每个特征值都大于零。以上内容参考:百度百科-线性代数
瑞瑞爱吃桃2023-05-24 18:37:501

矩阵的秩是什么意思?

矩阵的秩矩阵的秩是线性代数中的一个概念。在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数。通常表示为r(A),rk(A)或rankA。在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数目。类似地,行秩是A的线性无关的横行的极大数目。通俗一点说,如果把矩阵看成一个个行向量或者列向量,秩就是这些行向量或者列向量的秩,也就是极大无关组中所含向量的个数。拓展资料;变化规律(1) 转置后秩不变(2)r(A)<=min(m,n),A是m*n型矩阵(3)r(kA)=r(A),k不等于0(4)r(A)=0 <=> A=0(5)r(A+B)<=r(A)+r(B)(6)r(AB)<=min(r(A),r(B))(7)r(A)+r(B)-n<=r(AB)
肖振2023-05-24 18:37:501

矩阵的秩怎么求

矩阵的秩计算公式是A=(aij)m×n。矩阵的秩是线性代数中的一个概念。在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数,通常表示为r(A),rk(A)或rank A。 矩阵的秩求解方法 矩阵的秩计算公式:A=(aij)m×n 矩阵的秩是线性代数中的一个概念。在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数,通常表示为r(A),rk(A)或rankA。 在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数目。类似地,行秩是A的线性无关的横行的极大数目。即如果把矩阵看成一个个行向量或者列向量,秩就是这些行向量或者列向量的秩,也就是极大无关组中所含向量的个数。
铁血嘟嘟2023-05-24 18:37:501

什么叫做矩阵的秩?怎么样求秩呢?

矩阵的秩是反映矩阵固有特性的一个重要概念。 定义1. 在m´n矩阵A中,任意决定k行和k列 (1£k£min{m,n}) 交叉点上的元素构成A的一个k阶子矩阵,此子矩阵的行列式,称为A的一个k阶子式。 例如,在阶梯形矩阵 中,选定1,3行和3,4列,它们交叉点上的元素所组成的2阶子矩阵的行列式 就是矩阵A的一个2阶子式。 定义2. A=(aij)m×n的不为零的子式的最大阶数称为矩阵A 的秩,记作rA,或rankA。 特别规定零矩阵的秩为零。 显然rA≤min(m,n) 易得: 若A中至少有一个r阶子式不等于零,且在r<min(m,n)时,A中所有的r+1阶子式全为零,则A的秩为r。 由定义直接可得n阶可逆矩阵的秩为n,通常又将可逆矩阵称为满秩矩阵, det(A)¹ 0;不满秩矩阵就是奇异矩阵,det(A)=0。
北有云溪2023-05-24 18:37:501

矩阵的秩有几种求法,或者说是有几种常见的情况,每种

矩阵秩的求法很多,一般归结起来有以下几种:1)通过对矩阵做初等变换(包括行变换以及列变换)化简为梯形矩阵求秩。此类求解一般适用于矩阵阶数不是很大的情况,可以精确确定矩阵的秩,而且求解快速比较容易掌握。2)通过矩阵的行列式,由于行列式的概念仅仅适用于方阵的概念。通过行列式是否为0则可以大致判断出矩阵是否是满秩。3)对矩阵做分块处理,如果矩阵阶数较大时将矩阵分块通过分块矩阵的性质来研究原矩阵的秩也是重要的研究方法。此类情况一般也是可以确定原矩阵秩的。4)对矩阵分解,此处区别与上面对矩阵分块。例如n阶方阵A,R分解(Q为正交阵,R为上三角阵)以及Jordan分解等。通过对矩阵分解,将矩阵化繁为简来求矩阵的秩也会有应用。5)对矩阵整体做初等变换(行变换为左乘初等矩阵,列变换为右乘初等矩阵)。此类情况多在证明秩的不等式过程有应用,技巧很高与前面提到的分块矩阵联系密切。
北境漫步2023-05-24 18:37:501

矩阵的秩的十个结论是什么?

关于矩阵的秩的10个结论是:(1)若A为mxn矩阵,B为mxq矩阵,将A,B拼接在一起的矩阵的秩记为r(A,B),则有:max{r(A),r(B)}<=r(A,B)<=r(A)+r(B)。(2)若A,B均为mxn矩阵,则:r(A+B)<=r(A)+r(B)。(3)若A为mxn矩阵,B为nxs矩阵,则:r(A)+r(B)-n<=r(AB)<=min{r(A),r(B)}。(4)若A为mxn矩阵,B为nxk矩阵,C为kxs矩阵,则:r(AB)+r(BC)<=r(ABC)+r(B)。r(A)+r(B)+r(C)<=n+s+min{r(A),r(B),r(C)}。(5)伴随矩阵的秩只有三种情况:当r(A)=n时,则r(A*)=n。当r(A)=n-1时,则r(A*)=n-1。当r(A)<n-1时,则r(A*)=0。(6)两个矩阵A,B,如果满足rank(AB-BA)≤1,那么他们可以同时上三角化,这对应到线性变换就是指A,B有公共特征向量。(7)如果矩阵A不可逆,满足rank(A)=rank(A²),那么A的属于特征值0的初等因子只能是1次。(8)如果矩阵A,满足rank(A)=r,则有相抵标准型,A=PDQ,其中D=diag{I_r,O}。(9)设A是mxn的矩阵,则r(A)≤min(m,n)。【注】 若一个矩阵的秩为0,那么这个矩阵一定是0矩阵,反过来亦然。(10)r(A)=r(A′)=r(AA′)=r(A′A)。【注】A表示任意矩阵,也就是m行n列,最简单的就是向量。A′表示A的转置。
大鱼炖火锅2023-05-24 18:37:501

什么叫矩阵的秩

将矩阵做初等行变换后,非零行的个数叫行秩将其进行初等列变换后,非零列的个数叫列秩矩阵的秩是方阵经过初等行变换或者列变换后的行秩或列秩
wpBeta2023-05-24 18:37:501

矩阵的秩是什么意思。

就是二次型对应矩阵的秩。等于二次型非0特征根的个数。一个矩阵A的列秩是A的线性独立的纵列的极大数目。类似地,行秩是A的线性无关的横行的极大数目。如果把矩阵看成一个个行向量或者列向量,秩就是这些行向量或者列向量的秩,也就是极大无关组中所含向量的个数。当r(A)<=n-2时,最高阶非零子式的阶数<=n-2,任何n-1阶子式均为零,而伴随阵中的各元素就是n-1阶子式再加上个正负号,所以伴随阵为0矩阵。当r(A)<=n-1时,最高阶非零子式的阶数<=n-1,所以n-1阶子式有可能不为零,所以伴随阵有可能非零(等号成立时伴随阵必为非零)。扩展资料:n个变量的二次多项式称为二次型,即在一个多项式中,未知数的个数为任意多个,但每一项的次数都为2的多项式。线性代数的重要内容之一,它起源于几何学中二次曲线方程和二次曲面方程化为标准形问题的研究。柯西在别人著作的基础上,着手研究化简变数的二次型问题,并证明了特征方程在直角坐标系的任何变换下不变性。后来,他又证明了n个变数的两个二次型能用同一个线性变换同时化成平方和。双线性形式B的核由正交于V的所有元素组成,而二次形式Q的核由B的核中的有Q(u)=0的所有元素u组成。 如果2是可逆的,则Q和它的相伴双线性形式B有同样的核。双线性形式B被称为非奇异的,如果它的核是0;二次形式Q被称为非奇异的,如果它的核是0。参考资料来源;百度百科——矩阵的秩
康康map2023-05-24 18:37:501

计算矩阵的秩

矩阵化简后为:0 0 6 -20 0 0 -20 0 0 0所以矩阵的秩为2.
康康map2023-05-24 18:37:503

如何求矩阵的秩

首先α=(a1,a2,a3,an)^T是一个列向量。而且向量中的每个元素都不为0,所以aat的秩等于1(单个向量的秩不可能大于1)。同理α^T是一个行向量,所以α^T的秩也是等于1的。A=αα^T。根据矩阵秩的性质中。AB的秩≤A的秩和B的秩的较小的数。所以A的秩≤α的秩和α^T的秩中较小的数。即A的秩≤1。同时因为α和α^T的每个元素都不为0。所以A矩阵的每个元素也都不为0,所以A的秩不可能为0,所以A的秩为1。矩阵的秩:定理:矩阵的行秩,列秩,秩都相等。定理:初等变换不改变矩阵的秩。定理:如果A可逆,则r(AB)=r(B),r(BA)=r(B)。定理:矩阵的乘积的秩Rab<=min{Ra,Rb};引理:设矩阵A=(aij)sxn的列秩等于A的列数n,则A的列秩,秩都等于n。当r(A)<=n-2时,最高阶非零子式的阶数<=n-2,任何n-1阶子式均为零,而伴随阵中的各元素就是n-1阶子式再加上个正负号,所以伴随阵为0矩阵。以上内容参考:百度百科-矩阵的秩
北有云溪2023-05-24 18:37:501

矩阵的秩怎么求?

一个方阵与其伴随矩阵的秩的关系:(1)当r(A)=n时,|A|≠0,所以|A*|≠0,所以r(A*)=n;(2)  当r(A)=n-1时,|A|=0,但是矩阵A中至少存在一个n-1阶子式不为0(秩的定义),所以r(A*)大于等于1(A*的定义);   为了证明r(A*)=1,下面证明  r(A*) 小于等于1                           这里利用公式AA*=|A|E=0,根据上次给大家总结的有关秩的结论,我们得到r(A)+r(A*)小于等于n,因为r(A)=n-1,所以 r(A*) 小于等于1 ,综上 r(A*) =1;(3)当r(A)<n-1时,矩阵A中所有n-1阶子式均为0,即A*=0,所以r(A*)=0扩展资料:矩阵的秩计算公式:A=(aij)m×n矩阵的秩是线性代数中的一个概念。在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数,通常表示为r(A),rk(A)或rank A。在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数目。类似地,行秩是A的线性无关的横行的极大数目。即如果把矩阵看成一个个行向量或者列向量,秩就是这些行向量或者列向量的秩,也就是极大无关组中所含向量的个数。
FinCloud2023-05-24 18:37:501

矩阵的秩怎么计算?

矩阵的秩计算方法:矩阵的行秩,列秩,秩都相等,初等变换不改变矩阵的秩,如果A可逆,则r(AB)=r(B),r(BA)=r(B),矩阵的乘积的秩Rab<=min{Ra,Rb}。引理:设矩阵A=(aij)sxn的列秩等于A的列数n,则A的列秩,秩都等于n,当r(A)<=n-2时,最高阶非零子式的阶数<=n-2,任何n-1阶子式均为零,而伴随阵中的各元素就是n-1阶子式再加上个正负号,所以伴随阵为0矩阵,当r(A)<=n-1时,最高阶非零子式的阶数<=n-1,所以n-1阶子式有可能不为零,所以伴随阵有可能非零。矩阵的秩的变化规律(1)转置后秩不变(2)r(A)<=min(m,n),A是m*n型矩阵(3)r(kA)=r(A),k不等于0(4)r(A)=0<=>A=0(5)r(A+B)<=r(A)+r(B)(6)r(AB)<=min(r(A),r(B))(7)r(A)+r(B)-n<=r(AB)(8)P、Q为可逆矩阵,则r(PAQ)=r(A)(9)n阶方阵A,若|A|=0,则r(A)<n,否则r(A)=n(10)若Ax=B有解,则r(A)=r(A,B)(11)若A~B,则人r(A)=r(B)(12)若所有n阶子式为零,则r(A)<t(t为A的逆序数)(13)A中若有S阶非零子式,则r(A)>=S
再也不做站长了2023-05-24 18:37:501

矩阵的秩是什么?

首先α=(a1,a2,a3,an)^T是一个列向量。而且向量中的每个元素都不为0,所以aat的秩等于1(单个向量的秩不可能大于1)。同理α^T是一个行向量,所以α^T的秩也是等于1的。A=αα^T。根据矩阵秩的性质中。AB的秩≤A的秩和B的秩的较小的数。所以A的秩≤α的秩和α^T的秩中较小的数。即A的秩≤1。同时因为α和α^T的每个元素都不为0。所以A矩阵的每个元素也都不为0,所以A的秩不可能为0,所以A的秩为1。矩阵的秩:定理:矩阵的行秩,列秩,秩都相等。定理:初等变换不改变矩阵的秩。定理:如果A可逆,则r(AB)=r(B),r(BA)=r(B)。定理:矩阵的乘积的秩Rab<=min{Ra,Rb};引理:设矩阵A=(aij)sxn的列秩等于A的列数n,则A的列秩,秩都等于n。当r(A)<=n-2时,最高阶非零子式的阶数<=n-2,任何n-1阶子式均为零,而伴随阵中的各元素就是n-1阶子式再加上个正负号,所以伴随阵为0矩阵。以上内容参考:百度百科-矩阵的秩
瑞瑞爱吃桃2023-05-24 18:37:501

矩阵的秩为什么等于列秩?

矩阵行向量组的秩 = 矩阵列向量组的秩 = 矩阵的秩,任何情况下都相等。三个秩其实是从不同方面描述矩阵的秩,对于同一个矩阵,三秩在任意情况下均相等。行秩与列秩比较常用。在计算中,行秩与列秩可用于计算矩阵的秩(高斯消元法)。在证明中,行秩与列秩实质上将矩阵的秩转化为向量组的秩,故可有向量的性质推证矩阵性质。重要定理每一个线性空间都有一个基。对一个 n 行 n 列的非零矩阵 A,如果存在一个矩阵 B 使 AB = BA =E(E是单位矩阵),则 A 为非奇异矩阵(或称可逆矩阵),B为A的逆阵。矩阵非奇异(可逆)当且仅当它的行列式不为零。矩阵非奇异当且仅当它代表的线性变换是个自同构。矩阵半正定当且仅当它的每个特征值大于或等于零。矩阵正定当且仅当它的每个特征值都大于零。解线性方程组的克拉默法则。以上内容参考:百度百科-线性代数
韦斯特兰2023-05-24 18:37:491

矩阵的秩的变化规律

(1)转置后秩不变(2)r(A)<=min(m,n),A是m*n型矩阵(3)r(kA)=r(A),k不等于0(4)r(A)=0 <=> A=0(5)r(A+B)<=r(A)+r(B)(6)r(AB)<=min(r(A),r(B))(7)r(A)+r(B)-n<=r(AB)证明:  AB与n阶单位矩阵En构造分块矩阵  |AB O|  |O En|  A分乘下面两块矩阵加到上面两块矩阵,有  |AB A|  |0 En|  右边两块矩阵分乘-B加到左边两块矩阵,有  |0 A |  |-B En|  所以,r(AB)+n=r(第一个矩阵)=r(最后一个矩阵)>=r(A)+r(B)  即r(A)+r(B)-n<=r(AB)注:这里的n指的是A的列数。这里假定A是m×n matrix。特别的:A:m*n,B:n*s,AB=0 -> r(A)+r(B)<=n(8)P,Q为可逆矩阵, 则 r(PA)=r(A)=r(AQ)=r(PAQ)
Ntou1232023-05-24 18:37:491

矩阵的秩是什么意思?

矩阵的秩矩阵的秩是线性代数中的一个概念。在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数。通常表示为r(A),rk(A)或rankA。在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数目。类似地,行秩是A的线性无关的横行的极大数目。通俗一点说,如果把矩阵看成一个个行向量或者列向量,秩就是这些行向量或者列向量的秩,也就是极大无关组中所含向量的个数。拓展资料;变化规律(1) 转置后秩不变(2)r(A)<=min(m,n),A是m*n型矩阵(3)r(kA)=r(A),k不等于0(4)r(A)=0 <=> A=0(5)r(A+B)<=r(A)+r(B)(6)r(AB)<=min(r(A),r(B))(7)r(A)+r(B)-n<=r(AB)
小菜G的建站之路2023-05-24 18:37:491

怎样求矩阵的秩?

求矩阵的秩的几种方法:1、通过对矩阵做初等变换(包括行变换以及列变换)化简为梯形矩阵求秩。此类求解一般适用于矩阵阶数不是很大的情况,可以精确确定矩阵的秩,而且求解快速比较容易掌握。2、通过矩阵的行列式,由于行列式的概念仅仅适用于方阵的概念。通过行列式是否为0则可以大致判断出矩阵是否是满秩。3、对矩阵做分块处理,如果矩阵阶数较大时将矩阵分块通过分块矩阵的性质来研究原矩阵的秩也是重要的研究方法。此类情况一般也是可以确定原矩阵秩的。4、对矩阵分解,此处区别与上面对矩阵分块。例如n阶方阵A,R分解(Q为正交阵,R为上三角阵)以及Jordan分解等。通过对矩阵分解,将矩阵化繁为简来求矩阵的秩也会有应用。基本运算:矩阵运算在科学计算中非常重要  ,而矩阵的基本运算包括矩阵的加法,减法,数乘,转置,共轭和共轭转置 。
苏萦2023-05-24 18:37:491

如何求矩阵的秩

线性代数的是吧?设A是一组向量,定义A的极大无关组中向量的个数为A的秩。 定义1. 在m´n矩阵A中,任意决定k行和k列 (1£k£min{m,n}) 交叉点上的元素构成A的一个k阶子矩阵,此子矩阵的行列式,称为A的一个k阶子式。 例如,在阶梯形矩阵 中,选定1,3行和3,4列,它们交叉点上的元素所组成的2阶子矩阵的行列式 就是矩阵A的一个2阶子式。 定义2. A=(aij)m×n的不为零的子式的最大阶数称为矩阵A 的秩,记作rA,或rankA。特别规定零矩阵的秩为零。 显然rA≤min(m,n) 易得:若A中至少有一个r阶子式不等于零,且在r<min(m,n)时,A中所有的r+1阶子式全为零,则A的秩为r。 由定义直接可得n阶可逆矩阵的秩为n,通常又将可逆矩阵称为满秩矩阵, det(A)¹ 0;不满秩矩阵就是奇异矩阵,det(A)=0。 还有就是线性代数的书,我指同济大学的貌似写的很清楚了,看几个例题绝对能懂
水元素sl2023-05-24 18:37:491

矩阵的秩是什么意思?

通常是指“满秩矩阵”。设A是n阶矩阵,若r(A) = n,则称A为满秩矩阵。但满秩不局限于n阶矩阵。若矩阵秩等于行数,称为行满秩;若矩阵秩等于列数,称为列满秩。既是行满秩又是列满秩则为n阶矩阵即n阶方阵。行满秩矩阵就是行向量线性无关,列满秩矩阵就是列向量线性无关;所以如果是方阵,行满秩矩阵与列满秩矩阵是等价的。单位矩阵用初等行变换将矩阵A化为阶梯形矩阵,则矩阵中非零行的个数就定义为这个矩阵的秩,记为r(A),根据这个定义,矩阵的秩可以通过初等行变换求得。需要注意的是,矩阵的阶梯形并不是唯一的,但是阶梯形中非零行的个数总是一致的。单位矩阵的对角线上都是1,其余元素皆为0的矩阵。在矩阵的乘法中,有一种矩阵起着特殊的作用,如同数的乘法中的1,它除左上角到右下角的对角线(称为主对角线)上的元素均为1以外全都为0。可用将系数矩阵转化成单位矩阵的方法解线性方程组。
苏州马小云2023-05-24 18:37:491

矩阵的秩是什么意思啊?

λE-A=(λ+1)(λ+1)²则若当标准型为:-1 0 0,0 -1 0,0 1 -1。在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数目。类似地,行秩是A的线性无关的横行的极大数目。即如果把矩阵看成一个个行向量或者列向量,秩就是这些行向量或者列向量的秩,也就是极大无关组中所含向量的个数。扩展资料:A=(aij)m×n的不为零的子式的最大阶数称为矩阵A的秩,记作rA,或rankA或R(A)。特别规定零矩阵的秩为零。显然rA≤min(m,n) 易得:若A中至少有一个r阶子式不等于零,且在r<min(m,n)时,A中所有的r+1阶子式全为零,则A的秩为r。由定义直接可得n阶可逆矩阵的秩为n,通常又将可逆矩阵称为满秩矩阵, det(A)≠0;不满秩矩阵就是奇异矩阵,det(A)=0。由行列式的性质知,矩阵A的转置AT的秩与A的秩是一样的,即rank(A)=rank(AT)。参考资料来源:百度百科-矩阵的秩
再也不做站长了2023-05-24 18:37:491

如何求一个矩阵的秩

矩阵的秩计算方法:矩阵的行秩,列秩,秩都相等,初等变换不改变矩阵的秩,如果A可逆,则r(AB)=r(B),r(BA)=r(B),矩阵的乘积的秩Rab<=min{Ra,Rb}。引理:设矩阵A=(aij)sxn的列秩等于A的列数n,则A的列秩,秩都等于n,当r(A)<=n-2时,最高阶非零子式的阶数<=n-2,任何n-1阶子式均为零,而伴随阵中的各元素就是n-1阶子式再加上个正负号,所以伴随阵为0矩阵,当r(A)<=n-1时,最高阶非零子式的阶数<=n-1,所以n-1阶子式有可能不为零,所以伴随阵有可能非零。矩阵的秩的变化规律(1)转置后秩不变(2)r(A)<=min(m,n),A是m*n型矩阵(3)r(kA)=r(A),k不等于0(4)r(A)=0<=>A=0(5)r(A+B)<=r(A)+r(B)(6)r(AB)<=min(r(A),r(B))(7)r(A)+r(B)-n<=r(AB)(8)P、Q为可逆矩阵,则r(PAQ)=r(A)(9)n阶方阵A,若|A|=0,则r(A)<n,否则r(A)=n(10)若Ax=B有解,则r(A)=r(A,B)(11)若A~B,则人r(A)=r(B)(12)若所有n阶子式为零,则r(A)<t(t为A的逆序数)(13)A中若有S阶非零子式,则r(A)>=S
九万里风9 2023-05-24 18:37:491

矩阵的秩怎么算

套公式啊,虽然我已经忘了公式了。
余辉2023-05-24 18:37:493

请问一下怎么看矩阵的秩

用一行的多次倍数加加减减,最后不为零的行数的个数为秩
NerveM 2023-05-24 18:37:492

求矩阵的秩的三种方法 求矩阵的秩的三种方法有哪些

1、求秩有三种方法: (1)你给的例子 。用初等变换秩不变 然后讨论未知数情况;比较简单。 (2)特殊行列式:用加边法、累加写出结果 ,用行列式值是否等于零与满秩的关系。 (3)实对称针用多角化再判断。 2、矩阵的运算:矩阵的最基本运算包括矩阵加(减)法,数乘和转置运算。被称为“矩阵加法”、“数乘”和“转置”的运算不止一种。给出 m×n 矩阵 A 和 B,可定义它们的和 A + B 为一 m×n 矩阵,等 i,j 项为 (A + B)[i, j] = A[i, j] + B[i, j]。
无尘剑 2023-05-24 18:37:491

矩阵的秩是什么意思?

首先α=(a1,a2,a3,an)^T是一个列向量。而且向量中的每个元素都不为0,所以aat的秩等于1(单个向量的秩不可能大于1)。同理α^T是一个行向量,所以α^T的秩也是等于1的。A=αα^T。根据矩阵秩的性质中。AB的秩≤A的秩和B的秩的较小的数。所以A的秩≤α的秩和α^T的秩中较小的数。即A的秩≤1。同时因为α和α^T的每个元素都不为0。所以A矩阵的每个元素也都不为0,所以A的秩不可能为0,所以A的秩为1。矩阵的秩:定理:矩阵的行秩,列秩,秩都相等。定理:初等变换不改变矩阵的秩。定理:如果A可逆,则r(AB)=r(B),r(BA)=r(B)。定理:矩阵的乘积的秩Rab<=min{Ra,Rb};引理:设矩阵A=(aij)sxn的列秩等于A的列数n,则A的列秩,秩都等于n。当r(A)<=n-2时,最高阶非零子式的阶数<=n-2,任何n-1阶子式均为零,而伴随阵中的各元素就是n-1阶子式再加上个正负号,所以伴随阵为0矩阵。以上内容参考:百度百科-矩阵的秩
北境漫步2023-05-24 18:37:481

矩阵的秩怎么计算

根据矩阵A的秩的定义求秩,找 A 中不等于 0 的子式的最高阶数。一般当行数与列数都较高时,按定义求秩是很麻烦的。对于行阶梯形矩阵,显然它的秩就等于非零行的行数。因为两个等价的矩阵的秩相等,也可以用初等变换把矩阵化为行阶梯形矩阵。矩阵经初等变换后其秩不变,因而把矩阵用初等变换化为行阶梯形矩阵,行阶梯形矩阵中非零行的行数即为所求矩阵的秩。这是求矩阵秩的一种常用方法。
无尘剑 2023-05-24 18:37:488

如何求矩阵的秩?都有哪些方法?

一般有以下几种方法:1、计算A^2,A^3 找规律,然后用归纳法证明。2、若r(A)=1,则A=αβ^T,A^n=(β^Tα)^(n-1)A注:β^Tα =α^Tβ = tr(αβ^T)3、分拆法:A=B+C,BC=CB,用二项式公式展开。适用于 B^n 易计算,C的低次幂为零:C^2 或 C^3 = 04、用对角化 A=P^-1diagPA^n = P^-1diag^nP矩阵的秩计算方法:矩阵的行秩,列秩,秩都相等,初等变换不改变矩阵的秩,如果A可逆,则r(AB)=r(B),r(BA)=r(B),矩阵的乘积的秩Rab<=min{Ra,Rb}。引理:设矩阵A=(aij)sxn的列秩等于A的列数n,则A的列秩,秩都等于n,当r(A)<=n-2时,最高阶非零子式的阶数<=n-2,任何n-1阶子式均为零,而伴随阵中的各元素就是n-1阶子式再加上个正负号,所以伴随阵为0矩阵,当r(A)<=n-1时,最高阶非零子式的阶数<=n-1,所以n-1阶子式有可能不为零,所以伴随阵有可能非零。
韦斯特兰2023-05-24 18:37:481

怎么求矩阵的秩啊?

求矩阵的秩的几种方法:1、通过对矩阵做初等变换(包括行变换以及列变换)化简为梯形矩阵求秩。此类求解一般适用于矩阵阶数不是很大的情况,可以精确确定矩阵的秩,而且求解快速比较容易掌握。2、通过矩阵的行列式,由于行列式的概念仅仅适用于方阵的概念。通过行列式是否为0则可以大致判断出矩阵是否是满秩。3、对矩阵做分块处理,如果矩阵阶数较大时将矩阵分块通过分块矩阵的性质来研究原矩阵的秩也是重要的研究方法。此类情况一般也是可以确定原矩阵秩的。4、对矩阵分解,此处区别与上面对矩阵分块。例如n阶方阵A,R分解(Q为正交阵,R为上三角阵)以及Jordan分解等。通过对矩阵分解,将矩阵化繁为简来求矩阵的秩也会有应用。基本运算:矩阵运算在科学计算中非常重要  ,而矩阵的基本运算包括矩阵的加法,减法,数乘,转置,共轭和共轭转置 。
苏州马小云2023-05-24 18:37:481

矩阵的秩是什么意思呢?

就是二次型对应矩阵的秩。等于二次型非0特征根的个数。一个矩阵A的列秩是A的线性独立的纵列的极大数目。类似地,行秩是A的线性无关的横行的极大数目。如果把矩阵看成一个个行向量或者列向量,秩就是这些行向量或者列向量的秩,也就是极大无关组中所含向量的个数。当r(A)<=n-2时,最高阶非零子式的阶数<=n-2,任何n-1阶子式均为零,而伴随阵中的各元素就是n-1阶子式再加上个正负号,所以伴随阵为0矩阵。当r(A)<=n-1时,最高阶非零子式的阶数<=n-1,所以n-1阶子式有可能不为零,所以伴随阵有可能非零(等号成立时伴随阵必为非零)。扩展资料:n个变量的二次多项式称为二次型,即在一个多项式中,未知数的个数为任意多个,但每一项的次数都为2的多项式。线性代数的重要内容之一,它起源于几何学中二次曲线方程和二次曲面方程化为标准形问题的研究。柯西在别人著作的基础上,着手研究化简变数的二次型问题,并证明了特征方程在直角坐标系的任何变换下不变性。后来,他又证明了n个变数的两个二次型能用同一个线性变换同时化成平方和。双线性形式B的核由正交于V的所有元素组成,而二次形式Q的核由B的核中的有Q(u)=0的所有元素u组成。 如果2是可逆的,则Q和它的相伴双线性形式B有同样的核。双线性形式B被称为非奇异的,如果它的核是0;二次形式Q被称为非奇异的,如果它的核是0。参考资料来源;百度百科——矩阵的秩
余辉2023-05-24 18:37:481

矩阵的秩是什么 麻烦讲得通俗易懂

一个矩阵A的列秩是A的线性独立的纵列的极大数目。类似地,行秩是A的线性无关的横行的极大数目。在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数目。类似地,行秩是A的线性无关的横行的极大数目。通俗一点说,如果把矩阵看成一个个行向量或者列向量,秩就是这些行向量或者列向量的秩,也就是极大无关组中所含向量的个数。扩展资料:相关规律:(1)转置后秩不变(2)r(A)<=min(m,n),A是m*n型矩阵(3)r(kA)=r(A),k不等于0(4)r(A)=0 <=> A=0(5)r(A+B)<=r(A)+r(B)(6)r(AB)<=min(r(A),r(B))(7)r(A)+r(B)-n<=r(AB)参考资料:百度百科——矩阵的秩
wpBeta2023-05-24 18:37:481

单位矩阵的秩是什么?

单位矩阵的秩就是阶数,三阶即秩为3.单位矩阵的行列式为1.
Ntou1232023-05-24 18:37:483

如何求矩阵的秩

如何求矩阵的秩,你是要求一个地方的顺序吧,不过我这边也不太了解,出过什么顺序,所以我这边也无法给你解答,希望你谅解。
小菜G的建站之路2023-05-24 18:37:478

矩阵的秩是什么?请举例说明 我不太懂

知道力学中解方程组时的静定不静定问题?比如方程AX=B A是矩阵,B是列向量,X是未知数列这个方程组中有几个独立的方程,系数矩阵A的秩就是多少。例如三维问题x+2y+z=32x+y+3z=53x+2y+4z=8三个方程中,(3)=(1)+(2)只有2个独立方程,系数矩阵的秩就是2换言之,一个矩阵中,如果某一行(或列),可以由其他行(或列)通过代数运算得到(术语上称该行(或列)向量能够用其他行(或列)向量线性表示),则该矩阵的秩减1;如果任何一行(或列)都不能由其他行(或列)线性表示,则矩阵满秩;
u投在线2023-05-24 18:37:472

矩阵的秩怎么求

如图所示
真颛2023-05-24 18:37:473

矩阵的秩是什么意思

1、矩阵的秩是线性代数中的一个概念。在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数。通常表示为r(A),rk(A)或rankA。2、在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数目。类似地,行秩是A的线性无关的横行的极大数目。通俗一点说,3、如果把矩阵看成一个个行向量或者列向量,秩就是这些行向量或者列向量的秩,也就是极大无关组中所含向量的个数。
无尘剑 2023-05-24 18:37:471

矩阵的秩是什么 麻烦讲得通俗易懂

就是有几个不可化解的方程组
凡尘2023-05-24 18:37:477

什么是矩阵的秩,有什么用处呢?

矩阵的秩与特征向量的个数的关系:特征值的个数等于矩阵的秩,特征向量的个数至少等于矩阵的秩,(即大于等于矩阵的秩),小于等于矩阵的阶数,等于阶数时,矩阵可相似化为对角矩阵,小于矩阵的阶数时,矩阵可以相似化为对应的约旦标准形。在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数目。类似地,行秩是A的线性无关的横行的极大数目。通俗一点说,如果把矩阵看成一个个行向量或者列向量,秩就是这些行向量或者列向量的秩,也就是极大无关组中所含向量的个数。相关定义方阵(行数、列数相等的矩阵)的列秩和行秩总是相等的,因此它们可以简单地称作矩阵A的秩。通常表示为r(A),rk(A)或。m×n矩阵的秩最大为m和n中的较小者,表示为 min(m,n)。有尽可能大的秩的矩阵被称为有满秩;类似的,否则矩阵是秩不足(或称为“欠秩”)的。设A是一组向量,定义A的极大无关组中向量的个数为A的秩。定义1. 在m*n矩阵A中,任意决定α行和β列交叉点上的元素构成A的一个k阶子矩阵,此子矩阵的行列式,称为A的一个k阶子式。例如,在阶梯形矩阵中,选定1,3行和3,4列,它们交叉点上的元素所组成的2阶子矩阵的行列式 就是矩阵A的一个2阶子式。定义2.A=(aij)m×n的不为零的子式的最大阶数称为矩阵A的秩,记作rA,或rankA或R(A)。
人类地板流精华2023-05-24 18:37:471

谁能具体给我讲讲矩阵的秩?

矩阵的秩是反映矩阵固有特性的一个重要概念。 定义1. 在m´n矩阵A中,任意决定k行和k列 (1£k£min{m,n}) 交叉点上的元素构成A的一个k阶子矩阵,此子矩阵的行列式,称为A的一个k阶子式。 例如,在阶梯形矩阵 中,选定1,3行和3,4列,它们交叉点上的元素所组成的2阶子矩阵的行列式 就是矩阵A的一个2阶子式。 定义2. A=(aij)m×n的不为零的子式的最大阶数称为矩阵A 的秩,记作rA,或rankA。 特别规定零矩阵的秩为零。 显然rA≤min(m,n) 易得: 若A中至少有一个r阶子式不等于零,且在r<min(m,n)时,A中所有的r+1阶子式全为零,则A的秩为r。 由定义直接可得n阶可逆矩阵的秩为n,通常又将可逆矩阵称为满秩矩阵, det(A)¹ 0;不满秩矩阵就是奇异矩阵,det(A)=0。 由行列式的性质1(1.5[4])知,矩阵A的转置AT的秩与A的秩是一样的。 例1. 计算下面矩阵的秩, 而A的所有的三阶子式,或有一行为零;或有两行成比例,因而所 有的三阶子式全为零,所以rA=2。 矩阵的秩 引理 设矩阵A=(aij)sxn的列秩等于A的列数n,则A的列秩,秩都等于n。 定理 矩阵的行秩,列秩,秩都相等。 定理 初等变换不改变矩阵的秩。 定理 矩阵的乘积的秩Rab<=min{Ra,Rb};http://www.baidu.com/s?wd=%BE%D8%D5%F3%B5%C4%D6%C8
可桃可挑2023-05-24 18:37:471

如何判断矩阵的秩?

行列式的秩如下:对于行列式来说,非零子式的最高阶数就是它的秩。矩阵的秩用来表示一种矩阵结构,表示矩阵的某些行能否被其他行代替。在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数目。类似地,行秩是A的线性无关的横行的极大数目。行列式的特点:行列式A中某行用同一数k乘,其结果等于kA。行列式A等于其转置行列式AT(AT的第i行为A的第i列)。若n阶行列式|αij|中某行(或列),行列式则|αij|是两个行列式的和,这两个行列式的第i行(或列),一个是b1,b2,…,bn;另一个是с1,с2,…,сn;其余各行(或列)上的元与|αij|的完全一样。
再也不做站长了2023-05-24 18:37:471

矩阵的秩等于什么?

三秩相等是指矩阵的列向量组的秩(简称列秩)、行向量组的秩(简称行秩)和通过子式定义的秩(k阶子式是指一个m×n的矩阵中任取k(k<=m,k<=n)行k列拼起来构成的新矩阵的行列式,矩阵的秩等于其阶数最大的非零子式的阶数)相等,三个秩都称为矩阵的秩。三个秩其实是从不同方面描述矩阵的秩,对于同一个矩阵,三秩在任意情况下均相等。行秩与列秩比较常用。在计算中,行秩与列秩可用于计算矩阵的秩(高斯消元法)。在证明中,行秩与列秩实质上将矩阵的秩转化为向量组的秩,故可有向量的性质推证矩阵性质。通过子式定义的秩用的较少,在一些特殊的证明中可能会比较便捷。
小白2023-05-24 18:37:471

如何求出矩阵的秩

矩阵A的秩与A的伴随矩阵的秩的关系:1、如果 A 满秩,则 A* 满秩;2、如果 A 秩是 n-1,则 A* 秩为1;3、如果 A 秩 < n-1,则 A* 秩为 0 。(也就是 A* = 0 矩阵)矩阵满秩,R(A)=n,那么R(A-1)=n,矩阵的逆的秩与原矩阵秩相等,而且初等变换不改变矩阵的秩,A*=|A|A-1,R(A*)=n。扩展资料:当矩阵是大于等于二阶时:主对角元素是将原矩阵该元素所在行列去掉再求行列式,非主对角元素是原矩阵该元素的共轭位置的元素去掉所在行列求行列式乘以x、y,为该元素的共轭位置的元素的行和列的序号,序号从1开始。当矩阵的阶数等于一阶时,伴随矩阵为一阶单位方阵。二阶矩阵的求法口诀:主对角线元素互换,副对角线元素变号 。
CarieVinne 2023-05-24 18:37:471

如何求出一个矩阵的秩

AB与n阶单位矩阵En构造分块矩阵|AB O||O En|A分乘下面两块矩阵加到上面两块矩阵,有|AB A||0 En|右边两块矩阵分乘-B加到左边两块矩阵,有|0 A   ||-B En|所以,r(AB)+n=r(第一个矩阵)=r(最后一个矩阵)>=r(A)+r(B)即r(A)+r(B)-n<=r(AB)特别规定零矩阵的秩为零。A=(aij)m×n的不为零的子式的最大阶数称为矩阵A的秩,记作rA,或rankA或R(A)。显然rA≤min(m,n) 易得:若A中至少有一个r阶子式不等于零,且在r<min(m,n)时,A中所有的r+1阶子式全为零,则A的秩为r。由定义直接可得n阶可逆矩阵的秩为n,通常又将可逆矩阵称为满秩矩阵, det(A)≠0;不满秩矩阵就是奇异矩阵,det(A)=0。由行列式的性质知,矩阵A的转置AT的秩与A的秩是一样的,即rank(A)=rank(AT)。
豆豆staR2023-05-24 18:37:471

矩阵的秩是什么意思?

就是二次型对应矩阵的秩。等于二次型非0特征根的个数。一个矩阵A的列秩是A的线性独立的纵列的极大数目。类似地,行秩是A的线性无关的横行的极大数目。如果把矩阵看成一个个行向量或者列向量,秩就是这些行向量或者列向量的秩,也就是极大无关组中所含向量的个数。当r(A)<=n-2时,最高阶非零子式的阶数<=n-2,任何n-1阶子式均为零,而伴随阵中的各元素就是n-1阶子式再加上个正负号,所以伴随阵为0矩阵。当r(A)<=n-1时,最高阶非零子式的阶数<=n-1,所以n-1阶子式有可能不为零,所以伴随阵有可能非零(等号成立时伴随阵必为非零)。扩展资料:n个变量的二次多项式称为二次型,即在一个多项式中,未知数的个数为任意多个,但每一项的次数都为2的多项式。线性代数的重要内容之一,它起源于几何学中二次曲线方程和二次曲面方程化为标准形问题的研究。柯西在别人著作的基础上,着手研究化简变数的二次型问题,并证明了特征方程在直角坐标系的任何变换下不变性。后来,他又证明了n个变数的两个二次型能用同一个线性变换同时化成平方和。双线性形式B的核由正交于V的所有元素组成,而二次形式Q的核由B的核中的有Q(u)=0的所有元素u组成。 如果2是可逆的,则Q和它的相伴双线性形式B有同样的核。双线性形式B被称为非奇异的,如果它的核是0;二次形式Q被称为非奇异的,如果它的核是0。参考资料来源;百度百科——矩阵的秩
meira2023-05-24 18:37:471

矩阵的秩怎么求?

矩阵的秩与特征向量的个数的关系:特征值的个数等于矩阵的秩,特征向量的个数至少等于矩阵的秩,(即大于等于矩阵的秩),小于等于矩阵的阶数,等于阶数时,矩阵可相似化为对角矩阵,小于矩阵的阶数时,矩阵可以相似化为对应的约旦标准形。在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数目。类似地,行秩是A的线性无关的横行的极大数目。通俗一点说,如果把矩阵看成一个个行向量或者列向量,秩就是这些行向量或者列向量的秩,也就是极大无关组中所含向量的个数。相关定义方阵(行数、列数相等的矩阵)的列秩和行秩总是相等的,因此它们可以简单地称作矩阵A的秩。通常表示为r(A),rk(A)或。m×n矩阵的秩最大为m和n中的较小者,表示为 min(m,n)。有尽可能大的秩的矩阵被称为有满秩;类似的,否则矩阵是秩不足(或称为“欠秩”)的。设A是一组向量,定义A的极大无关组中向量的个数为A的秩。定义1. 在m*n矩阵A中,任意决定α行和β列交叉点上的元素构成A的一个k阶子矩阵,此子矩阵的行列式,称为A的一个k阶子式。例如,在阶梯形矩阵中,选定1,3行和3,4列,它们交叉点上的元素所组成的2阶子矩阵的行列式 就是矩阵A的一个2阶子式。定义2.A=(aij)m×n的不为零的子式的最大阶数称为矩阵A的秩,记作rA,或rankA或R(A)。
韦斯特兰2023-05-24 18:37:471

矩阵的秩到底是什么

  矩阵的秩是线性代数中的一个概念。在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数,通常表示为r(A),rk(A)或rankA。在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数目。   类似地,行秩是A的线性无关的横行的"极大数目。即如果把矩阵看成一个个行向量或者列向量,秩就是这些行向量或者列向量的秩,也就是极大无关组中所含向量的个数。
bikbok2023-05-24 18:37:471

怎么计算矩阵的秩

矩阵的秩一般有2种方式定义 1.用向量组的秩定义 矩阵的秩 = 行向量组的秩 = 列向量组的秩 2.用非零子式定义 矩阵的秩等于矩阵的最高阶非零子式的阶 单纯计算矩阵的秩时,可用初等行变换把矩阵化成梯形 梯矩阵中非零行数就是矩阵的秩
墨然殇2023-05-24 18:37:461

什么是矩阵的秩?举例说明.

a[3][2]表示3行2列的矩阵就是1 23 45 6a[0][0]=1以此类推:a[2][1]=6
再也不做站长了2023-05-24 18:37:461

矩阵的秩怎么求

你好!矩阵的秩,就是在n*m(不妨设n>=m)阶矩阵中找一个m*m子矩阵,只要这个矩阵对应的行列式不等于0,而其他所有(m+1)*(m+1)(此时要求m+1<=n)阶矩阵对应的行列式的值均为0则矩阵的秩为m上面的题:2-10 3对应行列式的值为6而不等于0,而所有3阶矩阵对应行列式值为0,所有秩为2哪里不清请追问,满意请采纳,谢谢~~
凡尘2023-05-24 18:37:461

矩阵的秩定义

矩阵的解释[matrix] 数学元素(如联立线性方程的系数)的一组矩形排列 之一 , 服从 特殊 的 代数 规律 词语分解 矩的解释 矩 ǔ 画 直角 或方形的工具:矩尺(曲尺)。矩形(长方形)。力矩(物理学上指使物体转动的力乘以到转轴的距离)。 规矩 。 法则, 规则 :循规蹈矩。 部首 :矢; 阵的解释 阵 (阵) è 军队作战时布置的局势:阵线。阵势。 严阵以待 。 战场:阵地。阵亡。冲锋陷阵。 量词, 指事 情或动作 经过 的段落:阵发。阵痛。下了一阵雨。 部首:阝。
再也不做站长了2023-05-24 18:37:461

矩阵的秩怎么求

根据矩阵A的秩的定义求秩,找 A 中不等于 0 的子式的最高阶数。一般当行数与列数都较高时,按定义求秩是很麻烦的。对于行阶梯形矩阵,显然它的秩就等于非零行的行数。因为两个等价的矩阵的秩相等,也可以用初等变换把矩阵化为行阶梯形矩阵。矩阵经初等变换后其秩不变,因而把矩阵用初等变换化为行阶梯形矩阵,行阶梯形矩阵中非零行的行数即为所求矩阵的秩。这是求矩阵秩的一种常用方法。
拌三丝2023-05-24 18:37:461

什么叫矩阵的秩?秩是表示个数?谁的个数呢?

矩阵的秩是指矩阵化成阶梯阵后,未全零行的行数。在n元一次方程组的增广矩阵中,如果矩阵的秩等于增广矩阵的秩,说明方程组有解。如果有解,秩是r,则方程组的解系的基个数为n-r个
NerveM 2023-05-24 18:37:461

怎么求下面矩阵的秩

用初等行变换化为行阶梯形,则阶梯形矩阵中非零行的行数就是矩阵的秩。
西柚不是西游2023-05-24 18:37:462

线性代数 矩阵的秩 怎么求?

通过初等行变换(就是一行的多少倍加的另一行,或行交换,或者某一行乘以一个非零倍数)把矩阵化成行阶梯型(行阶梯形就是任一行从左数第一个非零数的列序数都比上一行的大,形象的说就是形成一个阶梯,)。这样数一下非零行(零行就是全是零的行,非零行就是不全为零的行)的个数就是秩。例如:1 2 3 41 3 4 52 4 5 6第一行乘以负一加的第二行得1 2 3 40 1 1 12 4 5 6再把第一行乘负二加到第三行得1 2 3 40 1 1 10 0 -1 -2现在就满足行阶梯形了因为非零行有3行所以秩为3
Jm-R2023-05-24 18:37:462

矩阵的秩

知识点: A的秩等于A的行秩等于列秩R(A)=2 => A的行秩为2 => A^T的列秩为2 => R(A^T)=2.事实上, R(A) = R(A^T)
小菜G的建站之路2023-05-24 18:37:461

矩阵的秩是什么?

简单的说,是有用解的向量数。 ①比如回答多说:秩是阶梯型矩阵非0行的个数,为什么呢? 因为如果是0行(初等行变换后),0X1+0X2+0X3+0X4+0X5+……=0,对解这个方程没有任何帮助,就不能包括在秩里面。(X为未知数,不是乘号) 同样地,为什么秩是极大线性无关组的个数? 因为一旦线性相关,矩阵就可以将相关的一组中的一行通过初等行变换化为0,那就是无用解了。如:|1 2 3||2 4 6|1X1+2X2+3X3=02X1+4X2+6X3=0你会发现,两个方程其实是一样的,这就是线性相关。我们也可以通过初等行变换来做|1 2 3||2 4 6|r2-r1乘2=0,秩为1 ②从空间角度来说,秩是矩阵占用的维数,比如我们可以用三元一次方程组解出三个未知数,(三个方程三个未知数)那么我们称为满秩。 可以理解成三个未知数分别是X轴,y轴,和Z轴,可以组成三维空间。 但如果无用解存在,其实就不再是三个方程,那么就不满秩,这时候会有引入基础解系。 以上内容只讨论齐次线性方程组,并且并不准确,只适用于初学者。
gitcloud2023-05-24 18:37:461

什么叫矩阵的秩

如果数域F上的m*n矩阵A=(a11,a12...a1n) (a21a22,....a2n) ... (am1,am2....amn)存在一个K阶子式不为零,并且所有的K+1阶子式全为零,则称A的秩为K,记作r(A)=K我刚上大二 这是我们课本上的概念
小白2023-05-24 18:37:469

矩阵的秩是什么?

就是二次型对应矩阵的秩。等于二次型非0特征根的个数。一个矩阵A的列秩是A的线性独立的纵列的极大数目。类似地,行秩是A的线性无关的横行的极大数目。如果把矩阵看成一个个行向量或者列向量,秩就是这些行向量或者列向量的秩,也就是极大无关组中所含向量的个数。当r(A)<=n-2时,最高阶非零子式的阶数<=n-2,任何n-1阶子式均为零,而伴随阵中的各元素就是n-1阶子式再加上个正负号,所以伴随阵为0矩阵。当r(A)<=n-1时,最高阶非零子式的阶数<=n-1,所以n-1阶子式有可能不为零,所以伴随阵有可能非零(等号成立时伴随阵必为非零)。扩展资料:n个变量的二次多项式称为二次型,即在一个多项式中,未知数的个数为任意多个,但每一项的次数都为2的多项式。线性代数的重要内容之一,它起源于几何学中二次曲线方程和二次曲面方程化为标准形问题的研究。柯西在别人著作的基础上,着手研究化简变数的二次型问题,并证明了特征方程在直角坐标系的任何变换下不变性。后来,他又证明了n个变数的两个二次型能用同一个线性变换同时化成平方和。双线性形式B的核由正交于V的所有元素组成,而二次形式Q的核由B的核中的有Q(u)=0的所有元素u组成。 如果2是可逆的,则Q和它的相伴双线性形式B有同样的核。双线性形式B被称为非奇异的,如果它的核是0;二次形式Q被称为非奇异的,如果它的核是0。参考资料来源;百度百科——矩阵的秩
善士六合2023-05-24 18:37:451

矩阵的秩

矩阵的列秩和行秩总是相等的,因此它们可以简单地称作矩阵A的秩。通常表示为r(A),rk(A)或rank A。m × n矩阵的秩最大为m和n中的较小者,表示为 min(m,n)。有尽可能大的秩的矩阵被称为有满秩;类似的,否则矩阵是秩不足(或称为“欠秩”)的。[1] 设A是一组向量,定义A的极大无关组中向量的个数为A的秩。定义1. 在m*n矩阵A中,任意决定k行和k列交叉点上的元素构成A的一个k阶子矩阵,此子矩阵的行列式,称为A的一个k阶子式。例如,在阶梯形矩阵中,选定1,3行和3,4列,它们交叉点上的元素所组成的2阶子矩阵的行列式 就是矩阵A的一个2阶子式。定义2. A=(aij)m×n的不为零的子式的最大阶数称为矩阵A的秩,记作rA,或rankA或R(A)。特别规定零矩阵的秩为零。显然rA≤min(m,n) 易得:若A中至少有一个r阶子式不等于零,且在r<min(m,n)时,A中所有的r+1阶子式全为零,则A的秩为r。由定义直接可得n阶可逆矩阵的秩为n,通常又将可逆矩阵称为满秩矩阵, det(A)¹ 0;不满秩矩阵就是奇异矩阵,det(A)=0。由行列式的性质1(1.5[4])知,矩阵A的转置AT的秩与A的秩是一样的。例1. 计算下面矩阵的秩,而A的所有的三阶子式,或有一行为零;或有两行成比例,因而所有的三阶子式全为零,所以rA=2。矩阵的秩引理 设矩阵A=(aij)sxn的列秩等于A的列数n,则A的列秩,秩都等于n。定理 矩阵的行秩,列秩,秩都相等。定理 初等变换不改变矩阵的秩。定理 矩阵的乘积的秩Rab<=min{Ra,Rb};当r(A)<=n-2时,最高阶非零子式的阶数<=n-2,任何n-1阶子式均为零,而伴随阵中的各元素就是n-1阶子式再加上个正负号,所以伴随阵为0矩阵。当r(A)<=n-1时,最高阶非零子式的阶数<=n-1,所以n-1阶子式有可能不为零,所以伴随阵有可能非零(等号成立时伴随阵必为非零)。
Chen2023-05-24 18:37:451

线性代数,求矩阵的秩,怎么做?求过程

用初等行变换化为行阶梯形,有多少个非零行,矩阵的秩就是多少。
小白2023-05-24 18:37:454

矩阵的秩怎么求

在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数目。类似地,行秩是A的线性无关的横行的极大数目。通俗一点说,如果把矩阵看成一个个行向量或者列向量,秩就是这些行向量或者列向量的秩,也就是极大无关组中所含向量的个数。 求矩阵秩的方法 用向量组的秩定义 矩阵的秩=行向量组的秩=列向量组的秩 用非零子式定义 矩阵的秩等于矩阵的最高阶非零子式的阶 单纯计算矩阵的秩时,可用初等行变换把矩阵化成梯形,梯矩阵中非零行数就是矩阵的秩 矩阵的秩的变化规律 (1)转置后秩不变 (2)r(A)<=min(m,n),A是m*n型矩阵 (3)r(kA)=r(A),k不等于0 (4)r(A)=0<=>A=0 (5)r(A+B)<=r(A)+r(B) (6)r(AB)<=min(r(A),r(B)) (7)r(A)+r(B)-n<=r(AB) (8)P、Q为可逆矩阵,则r(PAQ)=r(A) (9)n阶方阵A,若|A|=0,则r(A)<n,否则r(A)=n (10)若Ax=B有解,则r(A)=r(A,B) (11)若A~B,则人r(A)=r(B) (12)若所有n阶子式为零,则r(A)<t(t为A的逆序数) (13)A中若有S阶非零子式,则r(A)>=S
meira2023-05-24 18:37:451

矩阵的秩是什么?请举例说明 我不太懂

秩是一个数,并且是一个自然数,只能取 0,1,2,3,4,当我们说一个矩阵的秩是几的时候,我们到底在说什么?矩阵中的任意一个r阶子式不为0,且任意的r+1阶子式为0,则阶数r就叫作该矩阵的秩。就是对一个矩阵,存在某个r阶行列式,值不为0,这个r阶行列式就是对一个矩阵你画r条横线,r条竖线,这个横竖线交叉的元素构成了一个新的数表,这个数表的行列式就叫作这个矩阵的r阶子式。如果把矩阵进行初等行变换,将矩阵变换为一个行阶梯形矩阵后,那么行阶梯形矩阵的非0行就是这个矩阵的秩。这是通过运算的角度来给出的矩阵的秩的定义,对矩阵进行初等行变换后得到的行阶梯形矩阵的非0行的个数。扩展资料定理:矩阵的行秩,列秩,秩都相等。定理:初等变换不改变矩阵的秩。定理:矩阵的乘积的秩Rab<=min{Ra,Rb};引理:设矩阵A=(aij)sxn的列秩等于A的列数n,则A的列秩,秩都等于n。当r(A)<=n-2时,最高阶非零子式的阶数<=n-2,任何n-1阶子式均为零,而伴随阵中的各元素就是n-1阶子式再加上个正负号,所以伴随阵为0矩阵。当r(A)<=n-1时,最高阶非零子式的阶数<=n-1,所以n-1阶子式有可能不为零,所以伴随阵有可能非零(等号成立时伴随阵必为非零。)参考资料来源:百度百科-矩阵的秩
无尘剑 2023-05-24 18:37:451

矩阵的秩是什么意思 矩阵的秩介绍

1、矩阵的秩是线性代数中的一个概念。在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数。通常表示为r(A),rk(A)或rankA。 2、在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数目。类似地,行秩是A的线性无关的横行的极大数目。通俗一点说, 3、如果把矩阵看成一个个行向量或者列向量,秩就是这些行向量或者列向量的秩,也就是极大无关组中所含向量的个数。
北有云溪2023-05-24 18:37:451

如何快速求一个矩阵的秩?详细方法是什么?

要快速求一个矩阵的秩当然是使用初等行变换的方法也就是进行矩阵行的化简在通过化简得到最简矩阵之后其矩阵的非零行数就是这个矩阵的秩即行秩是A的线性无关的横行的极大数目
Ntou1232023-05-24 18:37:452

什么是矩阵的秩

化成阶梯形,有多少个非零就有多少秩
瑞瑞爱吃桃2023-05-24 18:37:454

线性代数中对矩阵的秩如何理解?

首先利用行阶梯形会求秩,这是比较简单的,行阶梯形非零行的行数就是秩,然后当为满秩的时候,即非零行数等于矩阵的列数(或等于向量组中向量的个数),相当于N个方程N个未知数,定有唯一解。若不是满秩矩阵,则相当于N个未知数n(小于N)个方程,肯定会有无穷个解,也就是所谓的通解的问题。
阿啵呲嘚2023-05-24 18:37:451

如何求矩阵的秩?

AB与n阶单位矩阵En构造分块矩阵 |AB O| |O En| A分乘下面两块矩阵加到上面两块矩阵,有 |AB A| |0 En| 右边两块矩阵分乘-B加到左边两块矩阵,有 |0 A   | |-B En| 所以,r(AB)+n=r(第一个矩阵)=r(最后一个矩阵)>=r(A)+r(B) 即r(A)+r(B)-n<=r(AB)向左转|向右转扩展资料矩阵的秩以r表示,在线性代数中,一个矩阵A的列秩是 A的线性无关的纵列的极大数目
Jm-R2023-05-24 18:37:451

矩阵的秩是怎么定义的,以及为什么要这么定义

秩,就是看有多少,不多余的向量。在初等行变换中,消去的行,就是与其他向量线性相关的行剩下的就是全是线性无关的。因此,秩表示线性无关的行或列的个数。行列式等于零,意味着,矩阵不是满秩。其中有一行,系数可以变成零。系数为o,而k*0=0,0可以线性表示任何数,因此一定是线性相关。
人类地板流精华2023-05-24 18:37:445

矩阵的秩是什么?

什么叫矩阵的秩 将矩阵做初等行变换后,非零行的个数叫行秩 将其进行初等列变换后,非零列的个数叫列秩 矩阵的秩是方阵经过初等行变换或者列变换后的行秩或列秩 什么是矩阵的秩 您的查询字词都已标明如下:矩阵的秩 (点击查询词,可以跳到它在文中首次出现的位置)(百度和网页hstc.edu/....7.doc的作者无关,不对其内容负责。百度快照谨为网络故障时之索引,不代表被搜索网站的即时页面。) -------------------------------------------------------------------------------- 6.7 矩阵的秩 齐次线性方程组的解空间 教学目的: 1. 掌握矩阵的秩和它的行空间,叮空间维数之间的关系. 2. 准确地确定齐次线性方程组解空间维数. 3. 熟练地求出齐次线性方程组基础解系及非齐次线性方程式组的任意解. 教学内容: 1. 阵的秩的几何意义. 设给了数域F上一个m*n矩阵 A= 矩阵A的每一行可以看成F的一个向量,叫做A的行向量.A的每一列可以看成F的一个向量,叫做A的列向量,令a,...,a是A的列向量,这里 a=(a,a,...,a),I=1,...,m. 由a,a,...,a所生成的F的子空间£(a,a,..., a)叫做矩阵A的行空间.类似的,由A的n个列向量所生成的F的子空间叫做A的列空间. 当m≠n时,矩阵A的行空间和列空间是不同的向量空间的子空间, 引理6.7.1 设A是一个n*m矩阵 如果B=PA,P是一个N阶可逆矩阵,那么B与A有相同的行空间. 如果C=AQ,Q是一个n阶可逆矩阵,那么C与A有相同的列空间. 证:我们只证明(I),因为(ii)的证明完全类似. A=(a)mn, P=(p)mm,B=(b)mn. 令{a1,a2…am}是A的行向量,{b1,b2,…,bm}是B的行向量.B的第I行等于P的第I行等于P的第P的第I行右乘以矩阵A: bi=(bi1,bi2…,bin)=(pi1,pi2,…pim)A=pi1a1+pi2a2,…+pimam, 所以B的每一个行向量都是A的行向量的线性组合,但P可逆,所以A=P-1B.因此A的每一个行向量都是B的行向量的线性组合,这样,向时组{a1,a2,…,am}与{b1,b2,…,bm}等价,所以它们生成Fn的同一子空间. 我们知道,对于任意一个m*n矩阵A,总存在m阶可逆矩阵P和n阶可逆矩阵Q,使 (1) PAQ= 这里r等于A的秩,两边各乘以Q得 PA=Q 右端乘积中后m-r行的元素都是零,而前r 行就是Q-1的前r行.由于Q-1可逆,所以它的行向量线性无关因而它的前r行也线性无关.于是PA的行空间的维数等于r.由引理6.7.1,A的行间的维数等于r ,另一方面,将等式(1)左乘以P-1得 AQ= P 由此看出,AQ的列空间的维数等于r,从而A的列空间的维数也等于r,这样就证明了 定理6.7.2 一个矩阵的行空间的维数等于列空间的维数,等于这个矩阵的秩. 由于这一事实,我们也把一个矩阵的秩定义为它的行向量组的极大无关组所含向量的个数;也定义为它的列向量组极大无关组所含向里的个数. 数域F上线性方程组有解的充要条件是它的系数矩阵与增广矩阵有相同的秩. 线性方程组的解的结构:设 a11x1+a12x2+…a1nxn=0 a21x1+a22x2+…a2nxn=0 (3) ......>> 矩阵的秩和其伴随矩阵的秩有什么关系? 设A是n阶矩阵,A*是A的伴随矩阵,两者的秩的关系如下: r(A*) = n, 若r(A)=n r(A*)=1, 若r(A)=n-1; r(A*)=0,若r(A) 证明如下所示: 若秩r(A)=n,说明行列式|A|≠0,说明|A*|≠0,所以这时候r(A*)=n; 若秩r(A) 若秩r(A)=n-1,说明,行列式|A|=0,但是矩阵A中存在n-1阶子式不为0,对此有: AA*=|A|E=0 从而r(A)+r(A*)小于或等于n,也就是r(A*)小于或等于1,又因为A中存在n-1阶子式不为0,所以Aij≠0,得r(A*)大于或等于1,所以最后等于1. 矩阵的维数和矩阵的秩有什么区别 矩阵的维数就是矩阵的秩,但是一般在线性空间中才多提到维数。 矩阵的秩是什么 麻烦讲得通俗易懂 10分 就他妈是方程的个数,你平常解方程怎么解的,是不是就把两个方程相互加减啊,有的时候你把方程相加减最后你会发现有一对甚至更多的方程是一样的,这些一样的方程就等价于一个方程,然后加上其他的那些乱七八糟的方程,就是秩 向量的秩是什么 单一的向量没有秩 只有矩阵有秩 矩阵的秩本质上来说是矩阵行空间和列空间的维数 因为同一个矩阵行空间和列空间的维数是相同的所以统称为秩
韦斯特兰2023-05-24 18:37:441

什么叫矩阵的秩?

矩阵A的秩与A的伴随矩阵的秩的关系:1、如果 A 满秩,则 A* 满秩;2、如果 A 秩是 n-1,则 A* 秩为1;3、如果 A 秩 < n-1,则 A* 秩为 0 。(也就是 A* = 0 矩阵)矩阵满秩,R(A)=n,那么R(A-1)=n,矩阵的逆的秩与原矩阵秩相等,而且初等变换不改变矩阵的秩,A*=|A|A-1,R(A*)=n。扩展资料:当矩阵是大于等于二阶时:主对角元素是将原矩阵该元素所在行列去掉再求行列式,非主对角元素是原矩阵该元素的共轭位置的元素去掉所在行列求行列式乘以x、y,为该元素的共轭位置的元素的行和列的序号,序号从1开始。当矩阵的阶数等于一阶时,伴随矩阵为一阶单位方阵。二阶矩阵的求法口诀:主对角线元素互换,副对角线元素变号 。
真颛2023-05-24 18:37:441

矩阵的秩?

秩为2说明做完初等变换后有一行可以化为零,即有两行是成比例的,步骤如下:
瑞瑞爱吃桃2023-05-24 18:37:443

什么叫矩阵的秩?

矩阵的行向量组或者列向量组中的极大线性无关组中向量个数
阿啵呲嘚2023-05-24 18:37:442

什么叫矩阵的秩

如果数域F上的m*n矩阵A=(a11,a12...a1n) (a21a22,....a2n) ... (am1,am2....amn)存在一个K阶子式不为零,并且所有的K+1阶子式全为零,则称A的秩为K,记作r(A)=K我刚上大二 这是我们课本上的概念
Jm-R2023-05-24 18:37:449

矩阵的秩是什么意思啊?

AB与n阶单位矩阵En构造分块矩阵|AB O||O En|A分乘下面两块矩阵加到上面两块矩阵,有|AB A||0 En|右边两块矩阵分乘-B加到左边两块矩阵,有|0 A   ||-B En|所以,r(AB)+n=r(第一个矩阵)=r(最后一个矩阵)>=r(A)+r(B)即r(A)+r(B)-n<=r(AB)特别规定零矩阵的秩为零。A=(aij)m×n的不为零的子式的最大阶数称为矩阵A的秩,记作rA,或rankA或R(A)。显然rA≤min(m,n) 易得:若A中至少有一个r阶子式不等于零,且在r<min(m,n)时,A中所有的r+1阶子式全为零,则A的秩为r。由定义直接可得n阶可逆矩阵的秩为n,通常又将可逆矩阵称为满秩矩阵, det(A)≠0;不满秩矩阵就是奇异矩阵,det(A)=0。由行列式的性质知,矩阵A的转置AT的秩与A的秩是一样的,即rank(A)=rank(AT)。
墨然殇2023-05-24 18:37:441

什么是矩阵的秩

矩阵的秩一般有2种方式定义1. 用向量组的秩定义矩阵的秩 = 行向量组的秩 = 列向量组的秩2. 用非零子式定义矩阵的秩等于矩阵的最高阶非零子式的阶单纯计算矩阵的秩时, 可用初等行变换把矩阵化成梯形梯矩阵中非零行数就是矩阵的秩
Chen2023-05-24 18:37:443

矩阵的秩是什么?

AB与n阶单位矩阵En构造分块矩阵 |AB O| |O En| A分乘下面两块矩阵加到上面两块矩阵,有 |AB A| |0 En| 右边两块矩阵分乘-B加到左边两块矩阵,有 |0 A   | |-B En| 所以,r(AB)+n=r(第一个矩阵)=r(最后一个矩阵)>=r(A)+r(B) 即r(A)+r(B)-n<=r(AB)扩展资料矩阵的秩以r表示,在线性代数中,一个矩阵A的列秩是 A的线性无关的纵列的极大数目。只有零矩阵有秩 0 A的秩最大为 min(m,n) f是单射,当且仅当 A有秩 n(在这种情况下,我们称 A有“满列秩”)。f是满射,当且仅当 A有秩 m(在这种情况下,我们称 A有“满行秩”)。在方块矩阵A(就是 m= n) 的情况下,则 A是可逆的,当且仅当 A有秩 n(也就是 A有满秩)。如果 B是任何 n× k矩阵,则 AB的秩最大为 A的秩和 B的秩的小者。即:秩(AB)≤min(秩(A)参考资料百度百科-秩
铁血嘟嘟2023-05-24 18:37:441

什么是矩阵的秩

行列式的秩如下:对于行列式来说,非零子式的最高阶数就是它的秩。矩阵的秩用来表示一种矩阵结构,表示矩阵的某些行能否被其他行代替。在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数目。类似地,行秩是A的线性无关的横行的极大数目。行列式的特点:行列式A中某行用同一数k乘,其结果等于kA。行列式A等于其转置行列式AT(AT的第i行为A的第i列)。若n阶行列式|αij|中某行(或列),行列式则|αij|是两个行列式的和,这两个行列式的第i行(或列),一个是b1,b2,…,bn;另一个是с1,с2,…,сn;其余各行(或列)上的元与|αij|的完全一样。
瑞瑞爱吃桃2023-05-24 18:37:441
 首页 上一页  1 2 3  下一页  尾页