一元一次方程

4道初一方程实际问题(用一元一次方程解)

1.小书包=X,大书包=X+1030%×x=20%×(X+10)0.3X=0.2X+20.1X=2X=20X+10=20+10=30答:大书包进价30元,小书包20元。2.甲=X,乙=30-X500X=250×(30-X)500X=7500-250X750X=7500X=1030-X=30-10=20答:甲种制造10天,乙种制造20天3.设先由X人做,后由X+5人做2X+8(X+5)=3/4×802X+8X+40=6010X=20X=2X+5=7答:先由2个人做,再由7个人做。4.(1)设一共去X天80+X=3X2X=80X=40答:当一共去了40天的时候钱一样。(2)设一共去X天80+X<3X80<2XX>40答:当去了40天以上的时候,会员证比较合算。(3)设一共去X天80+X>3X80>2XX<40答:当去了不够40天的时候,会员证比较合算。
可桃可挑2023-07-02 09:36:321

想网上找一些初一数学关于一元一次方程应用题怎么好难啊,请问还能提供些啊!?急需

3X-6X=2 5X+90=180 90Y=80+20
tt白2023-07-02 09:33:457

七年级上一元一次方程应用题归类汇集

.列方程解应用题 小丽的爸爸前年存了年利率为2.25%的二年期定期储蓄,今年到期后,扣除20%的利息税后,所得利息正好为小丽买了一只价值36元的计算器,问小丽爸爸前年存了多少元钱?
善士六合2023-07-02 09:33:435

一元一次方程 求解答思路

A,B两地间的路程为:108km
u投在线2023-07-02 09:16:383

求帮忙。谢谢 一元一次方程

5. 10X=15(X-30) 解得:X=90,故,山高为10*90=900m6. 设:乙的速度为X km/h. 84=(X+X+20)*0.5 解得: X=74 ,故甲乙两车的速度分别为9420km/h和7420km/h。7. 设:无风时飞机在这一航线的平均航速为X km/h。 (24+X)*2.8=(X-24)*3 解得:X=6960,故,两飞机场之间的航程为(24+6960)*2.8=19555.2m8. 设:蓝布料买了X 米. 3X+(138-X)*5=540 解得:X=75,故,蓝布料买了75米,黑布料买了63米.
meira2023-07-01 13:34:122

一元一次方程

解:设第x年小明家需交房款5200元,【120000-30000-5000(x-2)】*0.4%+5000=5200【 90000-5000(x-2)】*0.4%=5200-5000 100000-5000x=200÷0.4% 100000-5000x=50000 x=10答:第10年小明家需交房款5200元。
北营2023-07-01 13:08:222

数学中解一元一次方程应用题的技巧

例:7x+23=100 解: 7x=100-23 7x=77 x=77÷7 x=11 在小学算术中,我们学习了用算术方法解决实际问题的有关知识,那么,一个实际问题能否应用一元一次方程来解决呢?若能解决,怎样解?用一元一次方程解应用题与用算术方法解应用题相比较,它有什么优越性呢? 为了回答上述这几个问题,我们来看下面这个例题. 例1 某数的3倍减2等于某数与4的和,求某数. (首先,用算术方法解,由学生回答,教师板书) 解法1:(4+2)÷(3-1)=3. 答:某数为3. (其次,用代数方法来解,教师引导,学生口述完成) 解法2:设某数为x,则有3x-2=x+4. 解之,得x=3. 答:某数为3. 纵观例1的这两种解法,很明显,算术方法不易思考,而应用设未知数,列出方程并通过解方程求得应用题的解的方法,有一种化难为易之感,这就是我们学习运用一元一次方程解应用题的目的之一. 我们知道方程是一个含有未知数的等式,而等式表示了一个相等关系.因此对于任何一个应用题中提供的条件,应首先从中找出一个相等关系,然后再将这个相等关系表示成方程. 简单的应用:求加数=和—另一个加数 求被减数=差+减数 求减数=被减数-差 求因数=积/另一个因数 求被除数=商*除数 求除数=被除数/商 一般解法: ⒈去分母 方程两边同时乘各分母的最小公倍数。 ⒉去括号 一般先去小括号,在去中括号,最后去大括号。但顺序有时可依据情况而定使计算简便。可根据乘法分配律。 ⒊移项 把方程中含有未知数的项移到方程的另一边,其余各项移到方程的另一边移项时别忘记了要变号。 ⒋合并同类项 将原方程化为ax=b(a≠0)的形式。 ⒌系数化1 方程两边同时除以未知数的系数,得出方程的解。 一元一次方程练习题 基本题型: 一、选择题: 1、下列各式中是一元一次方程的是( ) A. B. C. D. 2、方程 的解是( ) A. B. C. 1 D. -1 3、若关于 的方程 的解满足方程 ,则 的值为( ) A. 10 B. 8 C. D. 4、下列根据等式的性质正确的是( ) A. 由 ,得 B. 由 ,得 C. 由 ,得 D. 由 ,得 5、解方程 时,去分母后,正确结果是( ) A. B. C. C. 6、电视机售价连续两次降价10%,降价后每台电视机的售价为a 元,则该电视机的原价为( ) A. 0.81a 元 B. 1.21a元 C. 元 D. 元 8、某商店卖出两件衣服,每件60元,其中一件赚25%,另一件亏25%,那么这两件衣服卖出后,商店是 ( ) A.不赚不亏 B.赚8元 C.亏8元 D. 赚8元 9、下列方程中,是一元一次方程的是( ) (A) (B) (C) (D) 10、方程 的解是( ) (A) (B) (C) (D) 11、已知等式 ,则下列等式中不一定成立的是( ) (A) (B) (C) (D) 12、方程 的解是 ,则 等于( ) (A) (B) (C) (D) 13、解方程 ,去分母,得( ) (A) (B) (C) (D) 14、下列方程变形中,正确的是( ) (A)方程 ,移项,得 (B)方程 ,去括号,得 (C)方程 ,未知数系数化为1,得 (D)方程 化成 15、儿子今年12岁,父亲今年39岁,( )父亲的年龄是儿子的年龄的4倍. (A)3年后; (B)3年前; (C)9年后; (D)不可能. 16、重庆力帆新感觉足球队训练用的足球是由32块黑白相间的牛皮缝制而成的,其中黑皮可看作正五边形,白皮可看作正六边形,黑、白皮块的数目比为3:5,要求出黑皮、白皮的块数,若设黑皮的块数为 ,则列出的方程正确的是( ) (A) (B) (C) (D) 17、珊瑚中学修建综合楼后,剩有一块长比宽多5m、周长为50m的长方形空地. 为了美化环境,学校决定将它种植成草皮,已知每平方米草皮的种植成本最低是 元,那么种植草皮至少需用( ) (A) 元; (B) 元; (C) 元; (D) 元. 一年期 二年期 三年期 2.25 2.43 2.70 18、银行教育储蓄的年利率如右下表: 小明现正读七年级,今年7月他父母为他在银行存款30000元,以供3年后上高中使用. 要使3年后的收益最大,则小明的父母应该采用( ) (A)直接存一个3年期; (B)先存一个1年期的,1年后将利息和自动转存一个2年期; (C)先存一个1年期的,1年后将利息和自动转存两个1年期; (D)先存一个2年期的,2年后将利息和自动转存一个1年期. 二. 填空题: 1、 ,则 ________. 2、已知 ,则 __________. 3、关于 的方程 的解是3,则 的值为________________. 4、现有一个三位数,其个位数为 ,十位上的数字为 ,百位数上的数字为 ,则这个三位数表示为__________________. 5、甲、乙两班共有学生96名,甲班比乙班多2人,则乙班有____________人. 6、某数的3倍比它的一半大2,若设某数为 ,则列方程为____. 7、当 ___时,代数式 与 的值互为相反数. 8、在公式 中,已知 ,则 ___. 日 一 二 三 四 五 六 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 9、如右图是2003年12月份的日历,现用一长方形在日历中任意框出4个数 ,请用一个等式表示 之间的关系______________. 10、一根内径为3㎝的圆柱形长试管中装满了水,现把试管中的水逐渐滴入一个内径为8㎝、高为1.8㎝的圆柱形玻璃杯中,当玻璃杯装满水时,试管中的水的高度下降了____㎝. 11、国庆期间,“新世纪百货”搞换季打折. 简爽同学以8折的优惠价购买了一件运动服节省16元,那么他购买这件衣服实际用了___元. 12、成渝铁路全长504千米. 一辆快车以90千米/时的速度从重庆出发,1小时后,另有一辆慢车以48千米/时的速度从成都出发,则慢车出发__小时后两车相遇(沿途各车站的停留时间不计). 13、我们小时候听过龟兔赛跑的故事,都知道乌龟最后战胜了小白兔. 如果在第二次赛跑中,小白兔知耻而后勇,在落后乌龟1千米时,以101米/分的速度奋起直追,而乌龟仍然以1米/分的速度爬行,那么小白兔大概需要___分钟就能追上乌龟. 14、一年定期存款的年利率为1.98%,到期取款时须扣除利息的20%作为利息税上缴国库. 假若小颖存一笔一年定期储蓄,到期扣除利息税后实得利息158.4元,那么她存入的人民币是____元 15、52辆车排成两队,每辆车长a米,前后两车间隔3a/2米,车队平均每分钟行50米,这列车队通过长为546米的广场需要的时间是16分钟,则a=__________. 三、解方程: 1、 2、 3、 4、 5、 6、 7、 8、 9、已知 是方程 的根,求代数式 的值. 四、列方程解应用题: 1、敌军在离我军8千米的驻地逃跑,时间是早晨4点,我军于5点出发以每小时10千米的速度追击,结果在7点追上.求敌军逃跑时的速度是多少? 2、期中考查,信息技术课老师限时40分钟要求每位七年级学生打完一篇文章. 已知独立打完同样大小文章,小宝需要50分钟,小贝只需要30分钟. 为了完成任务,小宝打了30分钟后,请求小贝帮助合作,他能在要求的时间打完吗? 3、在学完“有理数的运算”后,实验中学七年级各班各选出5名学生组成一个代表队,在数学方老师的组织下进行一次知识竞赛. 竞赛规则是:每队都分别给出50道题,答对一题得3分,⑴ 如果二班代表队最后得分142分,那么二班代表队回答对了多少道题?⑵ 一班代表队的最后得分能为145分吗?请简要说明理由. 4、某“希望学校”修建了一栋4层的教学大楼,每层楼有6间教室,进出这栋大楼共有3道门(两道大小相同的正门和一道侧门). 安全检查中,对这3道门进行了测试:当同时开启一道正门和一道侧门时,2分钟内可以通过400名学生,若一道正门平均每分钟比一道侧门可多通过40名学生. (1)求平均每分钟一道正门和一道侧门各可以通过多少名学生? (2)检查中发现,紧急情况时因学生拥挤,出门的效率降低20%. 安全检查规定:在紧急情况下全大楼的学生应在5分钟内通过这3道门安全撤离. 假设这栋教学大楼每间教室最多有45名学生,问:建造的这3道门是否符合安全规定?为什么? 5、黑熊妈妈想检测小熊学习“列方程解应用题”的效果,给了小熊19个苹果,要小熊把它们分成4堆. 要求分后,如果再把第一堆增加一倍,第二堆增加一个,第三堆减少两个,第四堆减少一倍后,这4堆苹果的个数又要相同. 小熊捎捎脑袋,该如何分这19个苹果为4堆呢? 6、学校准备拿出2000元资金给22名“希望杯”竞赛获奖学生买奖品,一等奖每人200元奖品,二等奖每人50元奖品,求得到一等奖和二等奖的学生分别是多少人? 7、一家商店将某种商品按成本价提高40%后标价,元旦期间,欲打八折销售,以答谢新老顾客对本商厦的光顾,售价为224元,这件商品的成本价是多少元? 8、甲乙两人从学校到1000米远的展览馆去参观,甲走了5分钟后乙才出发,甲的速度是80米/分,乙的速度是180米/分,问乙多长时间能追上甲?追上甲时离展览馆还有多远? 较高要求: 1、已知 ,那么代数式 的值。 2、(2001年江苏省无锡市中考题)某商场根据市场信息,对商场中现有的两台不同型号的空调进行调价销售,其中一台空调调价后售出可获利10%(相对于进价),另一台空调调价后售出则亏本10%(相对于进价),而这两台空调调价后的售价恰好相同,那么商场把这两台空调调价后售出( ). (A)既不获利也不亏本 (B)可获利1% (C)要亏本2% (D)要亏本1% 3、某开发商按照分期付款的形式售房,小明家购买了一套现价为12万元的新房,购房时需首付(第一年)款3万元,从第二年起,以后每年应付房款为5000元与上一年剩余欠款的利息之和。已知剩余款的年利率为0.4%,问第几年小明家需交房款5200元? 4、某牛奶加工厂现有鲜奶9吨,若在市场上直接销售鲜奶,每吨可获利润500元,若制成酸奶销售,每吨可获利润1200元;若制成奶片销售,每吨可获利润2000元. 方案一:尽可能多的制成奶片,其余直接销售鲜牛奶; 方案二:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成; (1)你认为选择哪种方案获利最多,为什么? (2)本题解出之后,你还能提出哪些问题?若没解出,写出你存在的问题? 5、两辆汽车从同一地点同时出发,沿着同一方向同速直线行驶,每车最多只能带24桶汽油,途中不能用别的油,每桶油可使一辆车前进60公里,两车都必须返回出发地点,但是可以不同时返回,两车相互可借用对方的油。为了使其中一车尽可能地远离出发地点,另一辆车应当在离出发地点多少公里地方返回?离出发地点最远的那辆车一共行驶了多少公里?最后祝你考试成功!!!
左迁2023-07-01 13:08:221

初一上册一元一次方程应用题,20道

一题:十一长假日,弟弟和妈妈从家里出发一同去外婆家,他们走了1小时后,哥哥发现带给外婆的礼品忘在家里,便立刻带上礼品以每小时6千米的速度去追,如果弟弟和妈妈每小时行2千米,他们从家里到外婆家需要1小时45分钟,问哥哥能在弟弟和妈妈到外婆家之前追上他们吗? 第2题:在一次主题为“学会生存”的中学生社会实践活动中,春华同学为了锻炼自己,他通过了解市场行情,以每件6元的价格从批发市场购进若干件印有2008北京奥运标志的文化衫到自由市场去推销,当销售完30件之后,销售金额达到300元,余下的每件降2元,很快推销完毕,此时销售金额达到380元,春华同学在这次活动中或得纯收入多少元? 第3题:一架飞机杂两城之间飞行,风速为每小时24千米,顺风飞行需2小时50分钟,逆风飞行需要3小时。 (1)求无风时飞机飞行速度? (2)求两城之间的距离? 第4题:抗洪抢修施工队甲处有31人,乙处有21人,由于任务的需要,现另调23人去支援,使在甲处施工的人数是在乙处施工人数的2倍,问应调往甲,乙两处各多少人? 第5题:某生产车间有60名工人生产太阳镜,1名工人每天可生产镜片200片或镜架50个。应如何分配工人生产镜片与镜架才能使每天生产的产品配套? 第6——11题:某商场根据市场信息,对商场中现有的两台不同型号的空调进行调价销售,其中一台空调调价后售出可获利10%(相对于进价),另一台空调调价后售出则亏本10%(相对于进价),而这两台空调调价后的售价恰好相同,那么商场把这两台空调调价后售出( ). (A)既不获利也不亏本 (B)可获利1% (C)要亏本2% (D)要亏本1% 3、某开发商按照分期付款的形式售房,小明家购买了一套现价为12万元的新房,购房时需首付(第一年)款3万元,从第二年起,以后每年应付房款为5000元与上一年剩余欠款的利息之和。已知剩余款的年利率为0.4%,问第几年小明家需交房款5200元? 4、某牛奶加工厂现有鲜奶9吨,若在市场上直接销售鲜奶,每吨可获利润500元,若制成酸奶销售,每吨可获利润1200元;若制成奶片销售,每吨可获利润2000元. 方案一:尽可能多的制成奶片,其余直接销售鲜牛奶; 方案二:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成; (1)你认为选择哪种方案获利最多,为什么? (2)本题解出之后,你还能提出哪些问题?若没解出,写出你存在的问题? 5、两辆汽车从同一地点同时出发,沿着同一方向同速直线行驶,每车最多只能带24桶汽油,途中不能用别的油,每桶油可使一辆车前进60公里,两车都必须返回出发地点,但是可以不同时返回,两车相互可借用对方的油。为了使其中一车尽可能地远离出发地点,另一辆车应当在离出发地点多少公里地方返回?离出发地点最远的那辆车一共行驶了多少公里?
u投在线2023-07-01 13:08:221

什么叫一元一次方程

在一个方程中,如果只含有一个未知数,且未知数的最高次数是1的整式方程叫做一元一次方程。(linear equation in one) 一般形式:ax+b=0(a、b为常数,a≠0)。一元一次方程只有一个解。 一元一次方程的最终结果(方程的解)是x=a的形式 一元一次方程的“等式的性质1”和“等式的性质2” 1.等式两边同时加或减一个相同数,等式两边相等。(如果a=b,那么a±c=b±c。) 2.等式两边同时乘或除以一个相同数(0除外),或一个整式,等式两边相等。(如果a=b,那么ac=bc。如果a=b,c≠0,那么a/c=b/c。) 解法是通过移项将未知数移到一边,再把常数移到一边(等式基本性质1,注意符号!),然后两边同时除以未知数系数(化系数为1,等式基本性质2),即可得到未知数的值。 例:7x+23=100 解: 7x=100-23 7x=77 x=77÷7 x=11 在小学算术中,我们学习了用算术方法解决实际问题的有关知识,那么,一个实际问题能否应用一元一次方程来解决呢?若能解决,怎样解?用一元一次方程解应用题与用算术方法解应用题相比较,它有什么优越性呢? 为了回答上述这几个问题,我们来看下面这个例题. 例1 某数的3倍减2等于某数与4的和,求某数. (首先,用算术方法解,由学生回答,教师板书) 解法1:(4+2)÷(3-1)=3. 答:某数为3. (其次,用代数方法来解,教师引导,学生口述完成) 解法2:设某数为x,则有3x-2=x+4. 解之,得x=3. 答:某数为3. 纵观例1的这两种解法,很明显,算术方法不易思考,而应用设未知数,列出方程并通过解方程求得应用题的解的方法,有一种化难为易之感,这就是我们学习运用一元一次方程解应用题的目的之一. 我们知道方程是一个含有未知数的等式,而等式表示了一个相等关系.因此对于任何一个应用题中提供的条件,应首先从中找出一个相等关系,然后再将这个相等关系表示成方程. 简单的应用:求加数=和—另一个加数 求被减数=差+减数 求减数=被减数-差 求因数=积/另一个因数 求被除数=商*除数 求除数=被除数/商 一般解法: ⒈去分母 方程两边同时乘各分母的最小公倍数。 ⒉去括号 一般先去小括号,在去中括号,最后去大括号。但顺序有时可依据情况而定使计算简便。可根据乘法分配律。 ⒊移项 把方程中含有未知数的项移到方程的另一边,其余各项移到方程的另一边移项时别忘记了要变号。 ⒋合并同类项 将原方程化为ax=b(a≠0)的形式。 ⒌系数化1 方程两边同时除以未知数的系数,得出方程的解。 一元一次方程练习题 基本题型: 一、选择题: 1、下列各式中是一元一次方程的是( ) A. 5a+4b B.4x+9x C. 5x2+9y2 D. 7a-4b 2、方程3x-2=-5(x-2)的解是( ) A.-1.5 B. 1.5C. 1 D. -1 3、若关于 的方程 的解满足方程 ,则 的值为( ) A. 10 B. 8 C. D. 4、下列根据等式的性质正确的是( ) A. 由 ,得 B. 由 ,得 C. 由 ,得 D. 由 ,得 5、解方程 时,去分母后,正确结果是( ) A. B. C. C. 6 、电视机售价连续两次降价10%,降价后每台电视机的售价为a 元,则该电视机的原价为( ) A. 0.81a 元 B. 1.21a元 C. 1.1a元 D.0.1a 元 8、某商店卖出两件衣服,每件60元,其中一件赚25%,另一件亏25%,那么这两件衣服卖出后,商店是 ( ) A.不赚不亏 B.赚8元 C.亏8元 D. 赚8元 9、下列方程中,是一元一次方程的是( ) (A) (B) (C) (D) 10、方程 的解是( ) (A) (B) (C) (D) 11、已知等式 ,则下列等式中不一定成立的是( ) (A) (B) (C) (D) 12、方程 的解是 ,则 等于( ) (A) (B) (C) (D) 13、解方程 ,去分母,得( ) (A) (B) (C) (D) 14、下列方程变形中,正确的是( ) (A)方程 ,移项,得 (B)方程 ,去括号,得 (C)方程 ,未知数系数化为1,得 (D)方程 化成 15、儿子今年12岁,父亲今年39岁,( )父亲的年龄是儿子的年龄的4倍. (A)3年后; (B)3年前; (C)9年后; (D)不可能. 16、重庆力帆新感觉足球队训练用的足球是由32块黑白相间的牛皮缝制而成的,其中黑皮可看作正五边形,白皮可看作正六边形,黑、白皮块的数目比为3:5,要求出黑皮、白皮的块数,若设黑皮的块数为 ,则列出的方程正确的是( ) (A) (B) (C) (D) 17、珊瑚中学修建综合楼后,剩有一块长比宽多5m、周长为50m的长方形空地. 为了美化环境,学校决定将它种植成草皮,已知每平方米草皮的种植成本最低是 元,那么种植草皮至少需用( ) (A) 元; (B) 元; (C) 元; (D) 元. 一年期 二年期 三年期 2.25 2.43 2.70 18、银行教育储蓄的年利率如右下表: 小明现正读七年级,今年7月他父母为他在银行存款30000元,以供3年后上高中使用. 要使3年后的收益最大,则小明的父母应该采用( ) (A)直接存一个3年期; (B)先存一个1年期的,1年后将利息和自动转存一个2年期; (C)先存一个1年期的,1年后将利息和自动转存两个1年期; (D)先存一个2年期的,2年后将利息和自动转存一个1年期. 二. 填空题: 1、 ,则 ________. 2、已知 ,则 __________. 3、关于 的方程 的解是3,则 的值为________________. 4、现有一个三位数,其个位数为 ,十位上的数字为 ,百位数上的数字为 ,则这个三位数表示为__________________. 5、甲、乙两班共有学生96名,甲班比乙班多2人,则乙班有____________人. 6、某数的3倍比它的一半大2,若设某数为 ,则列方程为____. 7、当 ___时,代数式 与 的值互为相反数. 8、在公式 中,已知 ,则 ___. 日 一 二 三 四 五 六 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 9、如右图是2003年12月份的日历,现用一长方形在日历中任意框出4个数 ,请用一个等式表示 之间的关系______________. 10、一根内径为3㎝的圆柱形长试管中装满了水,现把试管中的水逐渐滴入一个内径为8㎝、高为1.8㎝的圆柱形玻璃杯中,当玻璃杯装满水时,试管中的水的高度下降了____㎝. 11、国庆期间,“新世纪百货”搞换季打折. 简爽同学以8折的优惠价购买了一件运动服节省16元,那么他购买这件衣服实际用了___元. 12、成渝铁路全长504千米. 一辆快车以90千米/时的速度从重庆出发,1小时后,另有一辆慢车以48千米/时的速度从成都出发,则慢车出发__小时后两车相遇(沿途各车站的停留时间不计). 13、我们小时候听过龟兔赛跑的故事,都知道乌龟最后战胜了小白兔. 如果在第二次赛跑中,小白兔知耻而后勇,在落后乌龟1千米时,以101米/分的速度奋起直追,而乌龟仍然以1米/分的速度爬行,那么小白兔大概需要___分钟就能追上乌龟. 14、一年定期存款的年利率为1.98%,到期取款时须扣除利息的20%作为利息税上缴国库. 假若小颖存一笔一年定期储蓄,到期扣除利息税后实得利息158.4元,那么她存入的人民币是____元 15、52辆车排成两队,每辆车长a米,前后两车间隔3a/2米,车队平均每分钟行50米,这列车队通过长为546米的广场需要的时间是16分钟,则a=__________. 三、解方程: 1、 2、 3、 4、 5、 6、 7、 8、 9、已知 是方程 的根,求代数式 的值. 四、列方程解应用题: 1、敌军在离我军8千米的驻地逃跑,时间是早晨4点,我军于5点出发以每小时10千米的速度追击,结果在7点追上.求敌军逃跑时的速度是多少? 2、期中考查,信息技术课老师限时40分钟要求每位七年级学生打完一篇文章. 已知独立打完同样大小文章,小宝需要50分钟,小贝只需要30分钟. 为了完成任务,小宝打了30分钟后,请求小贝帮助合作,他能在要求的时间打完吗? 3、在学完“有理数的运算”后,实验中学七年级各班各选出5名学生组成一个代表队,在数学方老师的组织下进行一次知识竞赛. 竞赛规则是:每队都分别给出50道题,答对一题得3分,⑴ 如果二班代表队最后得分142分,那么二班代表队回答对了多少道题?⑵ 一班代表队的最后得分能为145分吗?请简要说明理由. 4、某“希望学校”修建了一栋4层的教学大楼,每层楼有6间教室,进出这栋大楼共有3道门(两道大小相同的正门和一道侧门). 安全检查中,对这3道门进行了测试:当同时开启一道正门和一道侧门时,2分钟内可以通过400名学生,若一道正门平均每分钟比一道侧门可多通过40名学生. (1)求平均每分钟一道正门和一道侧门各可以通过多少名学生? (2)检查中发现,紧急情况时因学生拥挤,出门的效率降低20%. 安全检查规定:在紧急情况下全大楼的学生应在5分钟内通过这3道门安全撤离. 假设这栋教学大楼每间教室最多有45名学生,问:建造的这3道门是否符合安全规定?为什么? 5、黑熊妈妈想检测小熊学习“列方程解应用题”的效果,给了小熊19个苹果,要小熊把它们分成4堆. 要求分后,如果再把第一堆增加一倍,第二堆增加一个,第三堆减少两个,第四堆减少一倍后,这4堆苹果的个数又要相同. 小熊捎捎脑袋,该如何分这19个苹果为4堆呢? 6、学校准备拿出2000元资金给22名“希望杯”竞赛获奖学生买奖品,一等奖每人200元奖品,二等奖每人50元奖品,求得到一等奖和二等奖的学生分别是多少人? 7、一家商店将某种商品按成本价提高40%后标价,元旦期间,欲打八折销售,以答谢新老顾客对本商厦的光顾,售价为224元,这件商品的成本价是多少元? 8、甲乙两人从学校到1000米远的展览馆去参观,甲走了5分钟后乙才出发,甲的速度是80米/分,乙的速度是180米/分,问乙多长时间能追上甲?追上甲时离展览馆还有多远? 较高要求: 1、已知 ,那么代数式 的值。 2、(2001年江苏省无锡市中考题)某商场根据市场信息,对商场中现有的两台不同型号的空调进行调价销售,其中一台空调调价后售出可获利10%(相对于进价),另一台空调调价后售出则亏本10%(相对于进价),而这两台空调调价后的售价恰好相同,那么商场把这两台空调调价后售出( ). (A)既不获利也不亏本 (B)可获利1% (C)要亏本2% (D)要亏本1% 3、某开发商按照分期付款的形式售房,小明家购买了一套现价为12万元的新房,购房时需首付(第一年)款3万元,从第二年起,以后每年应付房款为5000元与上一年剩余欠款的利息之和。已知剩余款的年利率为0.4%,问第几年小明家需交房款5200元? 4、某牛奶加工厂现有鲜奶9吨,若在市场上直接销售鲜奶,每吨可获利润500元,若制成酸奶销售,每吨可获利润1200元;若制成奶片销售,每吨可获利润2000元. 方案一:尽可能多的制成奶片,其余直接销售鲜牛奶; 方案二:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成; (1)你认为选择哪种方案获利最多,为什么? (2)本题解出之后,你还能提出哪些问题?若没解出,写出你存在的问题? 5、两辆汽车从同一地点同时出发,沿着同一方向同速直线行驶,每车最多只能带24桶汽油,途中不能用别的油,每桶油可使一辆车前进60公里,两车都必须返回出发地点,但是可以不同时返回,两车相互可借用对方的油。为了使其中一车尽可能地远离出发地点,另一辆车应当在离出发地点多少公里地方返回?离出发地点最远的那辆车一共行驶了多少公里?
水元素sl2023-07-01 13:08:211

初一数学复习讲义一元一次方程概念及解方程答案

杀B
wpBeta2023-07-01 13:08:212

什么叫做一元一次方程?

一元一次方程是指只含有一个未知数、未知数的最高次数为1且两边都为整式的等式。一元一次方程只有一个根。一元一次方程可以解决绝大多数的工程问题、行程问题、分配问题、盈亏问题、积分表问题、电话计费问题、数字问题。一元一次方程最早见于约公元前1600年的古埃及时期 。公元820年左右,数学家花拉子米在《对消与还原》一书中提出了“合并同类项”、“移项”的一元一次方程思想。16世纪,数学家韦达创立符号代数之后,提出了方程的移项与同除命题 。1859年,数学家李善兰正式将这类等式译为一元一次方程 。
u投在线2023-07-01 13:08:213

一元一次方程的思考题

第一年付款:30000第二年付款:5000+(120000-30000)*0.4%第三年付款:5000+(120000-30000-5000)*0.4%设第x年需交房款5200元,有5000+[12000-30000-5000(x-2)]*0.4%=5200x=10
西柚不是西游2023-07-01 13:08:211

初中一元一次方程应用题

打开这个网页
小菜G的建站之路2023-07-01 13:08:203

一元一次方程练习题

题呢??
Chen2023-07-01 13:08:203

四年级奥数题一元一次方程6x+10=11x的答案

这不可能是奥林匹克数学
肖振2023-07-01 13:08:1911

一元一次方程应用题及答案

http://wenwen.soso.com/z/q117100523.htmhttp://wenwen.soso.com/z/q117826985.htm那个你看他们都那么高级别 也不在乎这点分奥 就把分给我吧 磕头了……(*^__^*)
北营2023-07-01 13:08:192

大家好:想要一元一次方程的题,题型能全面更好

一个只允许单向通过的窄道口,通常情况下,每分钟可以通过9人,一天,王老师到达道口时,发现由于拥挤,每分钟只能有3人通过,此时,自己前面还有36个人等待通行(假定先到的先行,王老师过道口的时间忽略不计),通过道口后,还需7分钟到达学校。 (1)此时,若绕道而行,要15分钟到达学校,从节省时间考虑,王老师应选择绕道去学校,还是选择通过拥挤的道口去学校? (2)若在王老师等人的维持下,几分钟后,秩序恢复正常(维持秩序期间,每分钟有3人通过道口),结果王老师比拥挤的情况下提前了6分钟通过道口,问维持秩序的时间是多少?
人类地板流精华2023-07-01 13:08:192

帮我找20道一元一次方程的应用题

计算题 0.4(x-0.2)+1.5=0.7x-0.38 x=6 30x-10(10-x)=100 x=5 4(x+2)=5(x-2) x=18 120-4(x+5)=25 x=18.75 15x+863-65x=54 x=16.18 3(x-2)+1=x-(2x-1) x=3/2 11x+64-2x=100-9x x=2 应用题 1、从夏令营到学校,先下山然后走平路,某同学先起自行车以每小时12千米的速度下山,以每小时9千米的速度通过平路,到学校共用了55分钟,他回来的时候以每小时8千米的速度通过平路而以每小时4千米的速度上山回夏令营用了1小时30分,从夏令营到学校有多少千米?? 2、甲列车长120米,车速每小时60千米,乙列车长130千米,两车同向而行,当乙列车头追上甲列车尾后,有经过3分钟两列车离开。求乙列车速度? 3、甲乙两火车,甲列车长120米,乙列车长130米,他们分别以每小时60千米.65千米的速度相向而行,求两车相与后经过多长时间离开?
ardim2023-07-01 13:08:195

一元一次方程解答题20题

1 地球上面面积约等于陆地面积的29分之71倍,地球的表面积约等于5.1亿平方公里,求地球上陆地面积是多少?(精确到0.1亿平方公里) 设陆地的面积是X X+71/29X=5。1 X=1。479 即陆地的面积是:1。5亿平方公里。 2 内径为90毫米的圆柱形长玻璃杯(已装满水)向一个地面直径为131*131平方毫米,内高为81毫米的长方形铁盒到水,当铁盒装满水时,玻璃杯中水的高度下降多少? 设下降高度是X 下降的水的体积等于铁盒中的水的体积。 3。14*45*45*X=131*131*81 X=218。6 水面下降218。6毫米。 3 内径为120毫米的圆柱形玻璃杯,和内径为300毫米、内高为32毫米的圆柱形玻璃盘可以盛同样多的水,求玻璃杯的内高? 内径为120毫米的圆柱形玻璃杯,和内径为300毫米,内高为32毫米的圆柱形玻璃盘可以盛同样多的水 所以两个容器体积相等 内径为300毫米,内高为32毫米的圆柱形玻璃盘体积 V=π(300/2)^2*32=720000π 设玻璃杯的内高为X 那么 X*π(120/2)^2=720000π X=200毫米 4 将内径为200毫米的圆柱形水桶中的满桶水倒入一个内部长、宽、高分别为300毫米、300毫米、80毫米的长方形铁盒,正好倒满。求圆柱形水桶的水高?(精确到毫米。派取3.14) 设水桶的高是X 3。14*100*100*X=300*300*80 X=229 即水桶的高是229毫米 5 两人水池共储存税40吨,甲池注进水4吨,乙池放水8吨,甲池中水的吨数就与乙池中水的吨数相等。两个水池原来各有水多少吨? 解设乙池原有X吨水,甲为(40-X)吨: X-8=(40-X)+4 X=26 40-26=14(吨) 甲 6 某地下管道由甲工程队单独铺设需要12天,由乙工程队单独修设需要18天。如果有由两个工程队从两端同时想象施工,要多少天可以铺好? 解:设X天可以铺好 1/18X+1/12X=1 2/36X+3/36X=1 5/36X=1 X=1除以5/36 X=1乘以36/5 X=36/5 即要36/5天 7 某数的3倍减2等于某数与4的和,求某数. 解法1:(4+2)÷(3-1)=3. 答:某数为3. 解法2:设某数为x,则有3x-2=x+4. 解之,得x=3. 答:某数为3.一、选择题: 1、下列各式中是一元一次方程的是( ) A. B. C. D. 2、方程 的解是( ) A. B. C. 1 D. -1 3、若关于 的方程 的解满足方程 ,则 的值为( ) A. 10 B. 8 C. D. 4、下列根据等式的性质正确的是( ) A. 由 ,得 B. 由 ,得 C. 由 ,得 D. 由 ,得 5、解方程 时,去分母后,正确结果是( ) A. B. C. C. 6 、电视机售价连续两次降价10%,降价后每台电视机的售价为a 元,则该电视机的原价为( ) A. 0.81a 元 B. 1.21a元 C. 元 D. 元 8、某商店卖出两件衣服,每件60元,其中一件赚25%,另一件亏25%,那么这两件衣服卖出后,商店是 ( ) A.不赚不亏 B.赚8元 C.亏8元 D. 赚8元 9、下列方程中,是一元一次方程的是( ) (A) (B) (C) (D) 10、方程 的解是( ) (A) (B) (C) (D) 11、已知等式 ,则下列等式中不一定成立的是( ) (A) (B) (C) (D) 12、方程 的解是 ,则 等于( ) (A) (B) (C) (D) 13、解方程 ,去分母,得( ) (A) (B) (C) (D) 14、下列方程变形中,正确的是( ) (A)方程 ,移项,得 (B)方程 ,去括号,得 (C)方程 ,未知数系数化为1,得 (D)方程 化成 15、儿子今年12岁,父亲今年39岁,( )父亲的年龄是儿子的年龄的4倍. (A)3年后; (B)3年前; (C)9年后; (D)不可能. 16、重庆力帆新感觉足球队训练用的足球是由32块黑白相间的牛皮缝制而成的,其中黑皮可看作正五边形,白皮可看作正六边形,黑、白皮块的数目比为3:5,要求出黑皮、白皮的块数,若设黑皮的块数为 ,则列出的方程正确的是( ) (A) (B) (C) (D) 17、珊瑚中学修建综合楼后,剩有一块长比宽多5m、周长为50m的长方形空地. 为了美化环境,学校决定将它种植成草皮,已知每平方米草皮的种植成本最低是 元,那么种植草皮至少需用( ) (A) 元; (B) 元; (C) 元; (D) 元. 一年期 二年期 三年期 2.25 2.43 2.70 18、银行教育储蓄的年利率如右下表: 小明现正读七年级,今年7月他父母为他在银行存款30000元,以供3年后上高中使用. 要使3年后的收益最大,则小明的父母应该采用( ) (A)直接存一个3年期; (B)先存一个1年期的,1年后将利息和自动转存一个2年期; (C)先存一个1年期的,1年后将利息和自动转存两个1年期; (D)先存一个2年期的,2年后将利息和自动转存一个1年期. 二. 填空题: 1、 ,则 ________. 2、已知 ,则 __________. 3、关于 的方程 的解是3,则 的值为________________. 4、现有一个三位数,其个位数为 ,十位上的数字为 ,百位数上的数字为 ,则这个三位数表示为__________________. 5、甲、乙两班共有学生96名,甲班比乙班多2人,则乙班有____________人. 6、某数的3倍比它的一半大2,若设某数为 ,则列方程为____. 7、当 ___时,代数式 与 的值互为相反数. 8、在公式 中,已知 ,则 ___. 日 一 二 三 四 五 六 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 9、如右图是2003年12月份的日历,现用一长方形在日历中任意框出4个数 ,请用一个等式表示 之间的关系______________. 10、一根内径为3㎝的圆柱形长试管中装满了水,现把试管中的水逐渐滴入一个内径为8㎝、高为1.8㎝的圆柱形玻璃杯中,当玻璃杯装满水时,试管中的水的高度下降了____㎝. 11、国庆期间,“新世纪百货”搞换季打折. 简爽同学以8折的优惠价购买了一件运动服节省16元,那么他购买这件衣服实际用了___元. 12、成渝铁路全长504千米. 一辆快车以90千米/时的速度从重庆出发,1小时后,另有一辆慢车以48千米/时的速度从成都出发,则慢车出发__小时后两车相遇(沿途各车站的停留时间不计). 13、我们小时候听过龟兔赛跑的故事,都知道乌龟最后战胜了小白兔. 如果在第二次赛跑中,小白兔知耻而后勇,在落后乌龟1千米时,以101米/分的速度奋起直追,而乌龟仍然以1米/分的速度爬行,那么小白兔大概需要___分钟就能追上乌龟. 14、一年定期存款的年利率为1.98%,到期取款时须扣除利息的20%作为利息税上缴国库. 假若小颖存一笔一年定期储蓄,到期扣除利息税后实得利息158.4元,那么她存入的人民币是____元 15、52辆车排成两队,每辆车长a米,前后两车间隔3a/2米,车队平均每分钟行50米,这列车队通过长为546米的广场需要的时间是16分钟,则a=__________. 三、解方程: 1、 2、 3、 4、 5、 6、 7、 8、 9、已知 是方程 的根,求代数式 的值. 四、列方程解应用题: 1、敌军在离我军8千米的驻地逃跑,时间是早晨4点,我军于5点出发以每小时10千米的速度追击,结果在7点追上.求敌军逃跑时的速度是多少? 2、期中考查,信息技术课老师限时40分钟要求每位七年级学生打完一篇文章. 已知独立打完同样大小文章,小宝需要50分钟,小贝只需要30分钟. 为了完成任务,小宝打了30分钟后,请求小贝帮助合作,他能在要求的时间打完吗? 3、在学完“有理数的运算”后,实验中学七年级各班各选出5名学生组成一个代表队,在数学方老师的组织下进行一次知识竞赛. 竞赛规则是:每队都分别给出50道题,答对一题得3分,⑴ 如果二班代表队最后得分142分,那么二班代表队回答对了多少道题?⑵ 一班代表队的最后得分能为145分吗?请简要说明理由. 4、某“希望学校”修建了一栋4层的教学大楼,每层楼有6间教室,进出这栋大楼共有3道门(两道大小相同的正门和一道侧门). 安全检查中,对这3道门进行了测试:当同时开启一道正门和一道侧门时,2分钟内可以通过400名学生,若一道正门平均每分钟比一道侧门可多通过40名学生. (1)求平均每分钟一道正门和一道侧门各可以通过多少名学生? (2)检查中发现,紧急情况时因学生拥挤,出门的效率降低20%. 安全检查规定:在紧急情况下全大楼的学生应在5分钟内通过这3道门安全撤离. 假设这栋教学大楼每间教室最多有45名学生,问:建造的这3道门是否符合安全规定?为什么? 5、黑熊妈妈想检测小熊学习“列方程解应用题”的效果,给了小熊19个苹果,要小熊把它们分成4堆. 要求分后,如果再把第一堆增加一倍,第二堆增加一个,第三堆减少两个,第四堆减少一倍后,这4堆苹果的个数又要相同. 小熊捎捎脑袋,该如何分这19个苹果为4堆呢? 6、学校准备拿出2000元资金给22名“希望杯”竞赛获奖学生买奖品,一等奖每人200元奖品,二等奖每人50元奖品,求得到一等奖和二等奖的学生分别是多少人? 7、一家商店将某种商品按成本价提高40%后标价,元旦期间,欲打八折销售,以答谢新老顾客对本商厦的光顾,售价为224元,这件商品的成本价是多少元? 8、甲乙两人从学校到1000米远的展览馆去参观,甲走了5分钟后乙才出发,甲的速度是80米/分,乙的速度是180米/分,问乙多长时间能追上甲?追上甲时离展览馆还有多远? 较高要求: 1、已知 ,那么代数式 的值。 2、(2001年江苏省无锡市中考题)某商场根据市场信息,对商场中现有的两台不同型号的空调进行调价销售,其中一台空调调价后售出可获利10%(相对于进价),另一台空调调价后售出则亏本10%(相对于进价),而这两台空调调价后的售价恰好相同,那么商场把这两台空调调价后售出( ). (A)既不获利也不亏本 (B)可获利1% (C)要亏本2% (D)要亏本1% 3、某开发商按照分期付款的形式售房,小明家购买了一套现价为12万元的新房,购房时需首付(第一年)款3万元,从第二年起,以后每年应付房款为5000元与上一年剩余欠款的利息之和。已知剩余款的年利率为0.4%,问第几年小明家需交房款5200元? 4、某牛奶加工厂现有鲜奶9吨,若在市场上直接销售鲜奶,每吨可获利润500元,若制成酸奶销售,每吨可获利润1200元;若制成奶片销售,每吨可获利润2000元. 方案一:尽可能多的制成奶片,其余直接销售鲜牛奶; 方案二:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成; (1)你认为选择哪种方案获利最多,为什么? (2)本题解出之后,你还能提出哪些问题?若没解出,写出你存在的问题? 5、两辆汽车从同一地点同时出发,沿着同一方向同速直线行驶,每车最多只能带24桶汽油,途中不能用别的油,每桶油可使一辆车前进60公里,两车都必须返回出发地点,但是可以不同时返回,两车相互可借用对方的油。为了使其中一车尽可能地远离出发地点,另一辆车应当在离出发地点多少公里地方返回?离出发地点最远的那辆车一共行驶了多少公里? (以上应用题,均无答案·)
再也不做站长了2023-07-01 13:08:173

关于一元一次方程和三角形边的奥数题

桃花源记胡他然后
拌三丝2023-07-01 13:08:178

一元一次方程应用题(附答案)

1 地球上面面积约等于陆地面积的29分之71倍,地球的表面积约等于5.1亿平方公里,求地球上陆地面积是多少?(精确到0.1亿平方公里) 设陆地的面积是X X+71/29X=5。1 X=1。479 即陆地的面积是:1。5亿平方公里。 2 内径为90毫米的圆柱形长玻璃杯(已装满水)向一个地面直径为131*131平方毫米,内高为81毫米的长方形铁盒到水,当铁盒装满水时,玻璃杯中水的高度下降多少? 设下降高度是X 下降的水的体积等于铁盒中的水的体积。 3。14*45*45*X=131*131*81 X=218。6 水面下降218。6毫米。 3 内径为120毫米的圆柱形玻璃杯,和内径为300毫米、内高为32毫米的圆柱形玻璃盘可以盛同样多的水,求玻璃杯的内高? 内径为120毫米的圆柱形玻璃杯,和内径为300毫米,内高为32毫米的圆柱形玻璃盘可以盛同样多的水 所以两个容器体积相等 内径为300毫米,内高为32毫米的圆柱形玻璃盘体积 V=π(300/2)^2*32=720000π 设玻璃杯的内高为X 那么 X*π(120/2)^2=720000π X=200毫米 4 将内径为200毫米的圆柱形水桶中的满桶水倒入一个内部长、宽、高分别为300毫米、300毫米、80毫米的长方形铁盒,正好倒满。求圆柱形水桶的水高?(精确到毫米。派取3.14) 设水桶的高是X 3。14*100*100*X=300*300*80 X=229 即水桶的高是229毫米 5 两人水池共储存税40吨,甲池注进水4吨,乙池放水8吨,甲池中水的吨数就与乙池中水的吨数相等。两个水池原来各有水多少吨? 解设乙池原有X吨水,甲为(40-X)吨: X-8=(40-X)+4 X=26 40-26=14(吨) 甲 6 某地下管道由甲工程队单独铺设需要12天,由乙工程队单独修设需要18天。如果有由两个工程队从两端同时想象施工,要多少天可以铺好? 解:设X天可以铺好 1/18X+1/12X=1 2/36X+3/36X=1 5/36X=1 X=1除以5/36 X=1乘以36/5 X=36/5 即要36/5天 某银行设立大学生助学贷款,分3-4年期和5-7年期两种。贷款年利率分别为6.03%和6.21%,贷款利息的50%由国家财政贴补。某大学生预计6年后能一次性偿还1.8万元,问他现在大约可以贷款多少元?(精确到0.1万元)”(用方程解) 解:因为是六年后偿还,所以该大学生是贷5-7年期的,设他现在可贷X万元, 根据题意得: X+0.5×6×6.21%X=1.8 解得: X≈1.5 答:他现在可贷约1.5万元。
拌三丝2023-07-01 13:08:164

初中一元一次方程题

1、已知 ,那么代数式 的值。 2、(2001年江苏省无锡市中考题)某商场根据市场信息,对商场中现有的两台不同型号的空调进行调价销售,其中一台空调调价后售出可获利10%(相对于进价),另一台空调调价后售出则亏本10%(相对于进价),而这两台空调调价后的售价恰好相同,那么商场把这两台空调调价后售出( ). (A)既不获利也不亏本 (B)可获利1% (C)要亏本2% (D)要亏本1% 3、某开发商按照分期付款的形式售房,小明家购买了一套现价为12万元的新房,购房时需首付(第一年)款3万元,从第二年起,以后每年应付房款为5000元与上一年剩余欠款的利息之和。已知剩余款的年利率为0.4%,问第几年小明家需交房款5200元? 4、某牛奶加工厂现有鲜奶9吨,若在市场上直接销售鲜奶,每吨可获利润500元,若制成酸奶销售,每吨可获利润1200元;若制成奶片销售,每吨可获利润2000元. 方案一:尽可能多的制成奶片,其余直接销售鲜牛奶; 方案二:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成; (1)你认为选择哪种方案获利最多,为什么? (2)本题解出之后,你还能提出哪些问题?若没解出,写出你存在的问题? 5、两辆汽车从同一地点同时出发,沿着同一方向同速直线行驶,每车最多只能带24桶汽油,途中不能用别的油,每桶油可使一辆车前进60公里,两车都必须返回出发地点,但是可以不同时返回,两车相互可借用对方的油。为了使其中一车尽可能地远离出发地点,另一辆车应当在离出发地点多少公里地方返回?离出发地点最远的那辆车一共行驶了多少公里? (以上应用题,均无答案·)初一数学期末复习练习卷(七)应用题一班别: 学号: 姓名: 一、知识点1、用列方程的方法解决实际问题的一般思路是分析数量关系,列出方程。2、列方程的实质就是用两种不同的方法来表示同一个量。3、列方程解应用题的一般步骤是设未知数,列方程,解方程,求出方程的解。4、实际问题中的数量关系比较隐蔽,关键是审题,弄清问题背景,分析清楚数量关系,特别是找出可以作为列方程依据的相等关系。 ①路程= ②工作总量= ③顺水航速= ,顺水航速= 。④利润= ,利润率= ⑤如果一个两位数十位数字是a,个位数字是b,则这个两位数是: 二、基础练习:1、列方程表示下列语句所表示的等量关系:①某校共有学生1049人,女生占男生的40%,求男生的人数。②两个村共有834人,甲村的人数比乙村的人数的一半还少111人,两村各有多少人?③某汽车和电动车从相距298千米的两地同时出发相对而行,汽车的速度比电动车速度的6倍还多15千米,半小时后相遇。求两车的速度。④某人共用142元买了两种水果共20千克,已知甲种水果每千克8元,乙水果每千克6元,问这两种水果各有多少千克?⑤把一些图书分给某班学生,如果每人4本,则剩余12本,如果每人分5本,则还缺30本,问该班有多少学生?2、列方程解下列应用题:①一台计算机已使用1700小时,预计每月再使用150小时,经过多少个月这太计算机的使用时间达到规定的检修时间2450小时?②用一根长80m的绳子围出一个矩形,使它的宽是长的,长和宽各应是多少?三、典型例题:列方程解下列应用题:1、有一列数,按一定规律排列成,,,,,,……其中某三个相邻数的和是,求这三个数各是多少?2、一轮船航行于两个码头之间,逆水需10小时,顺水需6小时。已知该船在静水中每小时航行12千米,求水流速度和两码头间的距离。 3、一商场把彩电按标价的九折出售,仍可获利20%,如果该彩电的进货价是2400元,那么彩电的标价是多少元? 四、巩固练习:列方程解下列应用题:1、四个连续的奇数的和为32,这四 个数分别是什么? 2、甲仓库储粮35吨 ,乙仓库储粮19吨,现调粮食15吨,应分配给两仓库各多少吨,才能使得甲仓库的粮食数量是乙仓库的两倍?3、学校有电视和幻灯机共90台,已知电视机和幻灯机的台数比为2 :3,求学校有电视机和幻灯机各多少台? 4、在全国足球甲级A组的前11场比赛中,某队保持连续不败,共积23分,按比赛规则,胜一场得3分,平一场得1分,那么该对共胜了多少场? 5、用白铁皮做罐头盒,每张铁皮可制盒身15个,或制盒底42个,一个盒身与两个盒底配成一套罐头盒,现有108张白铁皮,用多少张制盒身,多少张制盒底,可以正好制成整套罐头盒?6、下面是两种移动电话计费方式表 方式一 方式二 月租费 50元/月 0 本地通话费 0.6元/分 0.2元/分 (1) 若某人一个月内在本地通话100分,选择哪一种方式比较合算?(2)若某人一个月内在本地通话150分,选择哪一种方式比较合算?(3)你认为如何选择会更加合算些?五、拓展提升为了鼓励居民节约用水,某市自来水公司对每户月用水量进行计费,每户每月用水量在规定吨数以下的收费标准相同;规定吨数以上的超过部分收费标准相同,以下是小明家1—4月份用水量和交费情况: 月份 1 2 3 4 用水量(吨) 8 10 12 15 费用(元) 16 20 26 35 根据表格中提供的信息,回答以下问题:(1) 求出规定吨数和两种收费标准;(2) 若小明家5月份用水20吨,则应缴多少元?(3)若小明家6月份缴水费29元,则6月份用水多少吨? 1、盒子里有三种颜色的纽扣一共312个,其中红色纽扣的个数比蓝色的3倍还多8个,绿色纽扣的个数比蓝色的少1个,求这三种颜色的纽扣各是多少? 2、一批宿舍,若每间住1人,有10人无处住;若每间住3人,则有10间宿舍无人住,那么这批宿舍有多少间,人有多少个? 3、某个小组中的男女生共15人,若女生减少3人则男生的人数是女生的人数的2倍,问这个小组男女生的人数各为多少? 4、一个两位数,十位上的数字与个位上的数字之和为11,如果把十位上的数字与个位上的数字对调,那么得到的新数就比原数大63,求原来的两位数。 5、小强比他叔叔小30岁,而两年前,小强的年龄是他叔叔的,求小强叔叔今年的年龄。 6、一艘船从A港到B港顺流行驶,用了5小时;从B港返回A港逆流而行,用了7.5小时,已知水流的速度是3千米/时,求船在静水中的速度。 7、一项工程,甲单独做20天完成,乙单独做10天完成,现在由乙先独做几天后,剩下的部分由甲独做,先后共话12天完成,问乙做了几天? 8、某种商品因换季准备打折出售,如果按定价的七五折出售将赔25元,而按定价的九折出售将赚20元,问这种商品的定价是多少? 9、某种品牌电风扇的标价为165元,若降价以九折出售,仍可获利10%(相对于成本价),那么该商品的成本价是多少? 10、在某个月的日历中,圈出一个竖列上相邻的三个日期,如果它们的和为30,那么这三天分别是几号? 11、甲、乙两站相距280千米,一列慢车从甲站出发,每小时行驶60千米,一列快车从乙站 出发,每小时行驶80千米,问: (1)两车同时开出,相向而行,出发后多少小时相遇? (2)两车同时开出,同向而行,如果慢车在前,出发后多少小时快车追上慢车? 附加题:1、甲、乙二人在长为400米的圆形跑道上跑步,已知甲每秒钟跑9米,乙每秒钟跑7米.(1)当两人同时同地背向而行时,经过几秒钟两人首次相遇?(2)两人同时同地同向而行时,经过几秒钟两人首次相遇. 2、某商店购进一种商品,出售时在进价的基础上加了一定的利润,若数量x与售价y 之间的关系如下表(表中售价栏内的0.10是包装费用)。请你观察下表,并回答: 数量 x(单位:千克) 售价y(单位:元) 1 3+0.5+0.1 2 6+1+0.1 3 9+1.5+0.1 4 12+2+0.1 … … (1)写出用数量x表示售价y的关系式。(2)小明的妈妈用56.1元买了多少千克的商品?
墨然殇2023-07-01 13:08:161

有三道数学题不会!谁会啊!用一元一次方程解或用计算方法,知识范围不能超过初一!

你都已经问过一遍了,也已经解决了,你还问我干什么?
墨然殇2023-07-01 13:08:114

解一元一次方程应用题的技巧

例:7x+23=100 解: 7x=100-23 7x=77 x=77÷7 x=11 在小学算术中,我们学习了用算术方法解决实际问题的有关知识,那么,一个实际问题能否应用一元一次方程来解决呢?若能解决,怎样解?用一元一次方程解应用题与用算术方法解应用题相比较,它有什么优越性呢? 为了回答上述这几个问题,我们来看下面这个例题. 例1 某数的3倍减2等于某数与4的和,求某数. (首先,用算术方法解,由学生回答,教师板书) 解法1:(4+2)÷(3-1)=3. 答:某数为3. (其次,用代数方法来解,教师引导,学生口述完成) 解法2:设某数为x,则有3x-2=x+4. 解之,得x=3. 答:某数为3. 纵观例1的这两种解法,很明显,算术方法不易思考,而应用设未知数,列出方程并通过解方程求得应用题的解的方法,有一种化难为易之感,这就是我们学习运用一元一次方程解应用题的目的之一. 我们知道方程是一个含有未知数的等式,而等式表示了一个相等关系.因此对于任何一个应用题中提供的条件,应首先从中找出一个相等关系,然后再将这个相等关系表示成方程. 简单的应用:求加数=和—另一个加数 求被减数=差+减数 求减数=被减数-差 求因数=积/另一个因数 求被除数=商*除数 求除数=被除数/商 一般解法: ⒈去分母 方程两边同时乘各分母的最小公倍数。 ⒉去括号 一般先去小括号,在去中括号,最后去大括号。但顺序有时可依据情况而定使计算简便。可根据乘法分配律。 ⒊移项 把方程中含有未知数的项移到方程的另一边,其余各项移到方程的另一边移项时别忘记了要变号。 ⒋合并同类项 将原方程化为ax=b(a≠0)的形式。 ⒌系数化1 方程两边同时除以未知数的系数,得出方程的解。 一元一次方程练习题 基本题型: 一、选择题: 1、下列各式中是一元一次方程的是( ) A. B. C. D. 2、方程 的解是( ) A. B. C. 1 D. -1 3、若关于 的方程 的解满足方程 ,则 的值为( ) A. 10 B. 8 C. D. 4、下列根据等式的性质正确的是( ) A. 由 ,得 B. 由 ,得 C. 由 ,得 D. 由 ,得 5、解方程 时,去分母后,正确结果是( ) A. B. C. C. 6、电视机售价连续两次降价10%,降价后每台电视机的售价为a 元,则该电视机的原价为( ) A. 0.81a 元 B. 1.21a元 C. 元 D. 元 8、某商店卖出两件衣服,每件60元,其中一件赚25%,另一件亏25%,那么这两件衣服卖出后,商店是 ( ) A.不赚不亏 B.赚8元 C.亏8元 D. 赚8元 9、下列方程中,是一元一次方程的是( ) (A) (B) (C) (D) 10、方程 的解是( ) (A) (B) (C) (D) 11、已知等式 ,则下列等式中不一定成立的是( ) (A) (B) (C) (D) 12、方程 的解是 ,则 等于( ) (A) (B) (C) (D) 13、解方程 ,去分母,得( ) (A) (B) (C) (D) 14、下列方程变形中,正确的是( ) (A)方程 ,移项,得 (B)方程 ,去括号,得 (C)方程 ,未知数系数化为1,得 (D)方程 化成 15、儿子今年12岁,父亲今年39岁,( )父亲的年龄是儿子的年龄的4倍. (A)3年后; (B)3年前; (C)9年后; (D)不可能. 16、重庆力帆新感觉足球队训练用的足球是由32块黑白相间的牛皮缝制而成的,其中黑皮可看作正五边形,白皮可看作正六边形,黑、白皮块的数目比为3:5,要求出黑皮、白皮的块数,若设黑皮的块数为 ,则列出的方程正确的是( ) (A) (B) (C) (D) 17、珊瑚中学修建综合楼后,剩有一块长比宽多5m、周长为50m的长方形空地. 为了美化环境,学校决定将它种植成草皮,已知每平方米草皮的种植成本最低是 元,那么种植草皮至少需用( ) (A) 元; (B) 元; (C) 元; (D) 元. 一年期 二年期 三年期 2.25 2.43 2.70 18、银行教育储蓄的年利率如右下表: 小明现正读七年级,今年7月他父母为他在银行存款30000元,以供3年后上高中使用. 要使3年后的收益最大,则小明的父母应该采用( ) (A)直接存一个3年期; (B)先存一个1年期的,1年后将利息和自动转存一个2年期; (C)先存一个1年期的,1年后将利息和自动转存两个1年期; (D)先存一个2年期的,2年后将利息和自动转存一个1年期. 二. 填空题: 1、 ,则 ________. 2、已知 ,则 __________. 3、关于 的方程 的解是3,则 的值为________________. 4、现有一个三位数,其个位数为 ,十位上的数字为 ,百位数上的数字为 ,则这个三位数表示为__________________. 5、甲、乙两班共有学生96名,甲班比乙班多2人,则乙班有____________人. 6、某数的3倍比它的一半大2,若设某数为 ,则列方程为____. 7、当 ___时,代数式 与 的值互为相反数. 8、在公式 中,已知 ,则 ___. 日 一 二 三 四 五 六 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 9、如右图是2003年12月份的日历,现用一长方形在日历中任意框出4个数 ,请用一个等式表示 之间的关系______________. 10、一根内径为3㎝的圆柱形长试管中装满了水,现把试管中的水逐渐滴入一个内径为8㎝、高为1.8㎝的圆柱形玻璃杯中,当玻璃杯装满水时,试管中的水的高度下降了____㎝. 11、国庆期间,“新世纪百货”搞换季打折. 简爽同学以8折的优惠价购买了一件运动服节省16元,那么他购买这件衣服实际用了___元. 12、成渝铁路全长504千米. 一辆快车以90千米/时的速度从重庆出发,1小时后,另有一辆慢车以48千米/时的速度从成都出发,则慢车出发__小时后两车相遇(沿途各车站的停留时间不计). 13、我们小时候听过龟兔赛跑的故事,都知道乌龟最后战胜了小白兔. 如果在第二次赛跑中,小白兔知耻而后勇,在落后乌龟1千米时,以101米/分的速度奋起直追,而乌龟仍然以1米/分的速度爬行,那么小白兔大概需要___分钟就能追上乌龟. 14、一年定期存款的年利率为1.98%,到期取款时须扣除利息的20%作为利息税上缴国库. 假若小颖存一笔一年定期储蓄,到期扣除利息税后实得利息158.4元,那么她存入的人民币是____元 15、52辆车排成两队,每辆车长a米,前后两车间隔3a/2米,车队平均每分钟行50米,这列车队通过长为546米的广场需要的时间是16分钟,则a=__________. 三、解方程: 1、 2、 3、 4、 5、 6、 7、 8、 9、已知 是方程 的根,求代数式 的值. 四、列方程解应用题: 1、敌军在离我军8千米的驻地逃跑,时间是早晨4点,我军于5点出发以每小时10千米的速度追击,结果在7点追上.求敌军逃跑时的速度是多少? 2、期中考查,信息技术课老师限时40分钟要求每位七年级学生打完一篇文章. 已知独立打完同样大小文章,小宝需要50分钟,小贝只需要30分钟. 为了完成任务,小宝打了30分钟后,请求小贝帮助合作,他能在要求的时间打完吗? 3、在学完“有理数的运算”后,实验中学七年级各班各选出5名学生组成一个代表队,在数学方老师的组织下进行一次知识竞赛. 竞赛规则是:每队都分别给出50道题,答对一题得3分,⑴ 如果二班代表队最后得分142分,那么二班代表队回答对了多少道题?⑵ 一班代表队的最后得分能为145分吗?请简要说明理由. 4、某“希望学校”修建了一栋4层的教学大楼,每层楼有6间教室,进出这栋大楼共有3道门(两道大小相同的正门和一道侧门). 安全检查中,对这3道门进行了测试:当同时开启一道正门和一道侧门时,2分钟内可以通过400名学生,若一道正门平均每分钟比一道侧门可多通过40名学生. (1)求平均每分钟一道正门和一道侧门各可以通过多少名学生? (2)检查中发现,紧急情况时因学生拥挤,出门的效率降低20%. 安全检查规定:在紧急情况下全大楼的学生应在5分钟内通过这3道门安全撤离. 假设这栋教学大楼每间教室最多有45名学生,问:建造的这3道门是否符合安全规定?为什么? 5、黑熊妈妈想检测小熊学习“列方程解应用题”的效果,给了小熊19个苹果,要小熊把它们分成4堆. 要求分后,如果再把第一堆增加一倍,第二堆增加一个,第三堆减少两个,第四堆减少一倍后,这4堆苹果的个数又要相同. 小熊捎捎脑袋,该如何分这19个苹果为4堆呢? 6、学校准备拿出2000元资金给22名“希望杯”竞赛获奖学生买奖品,一等奖每人200元奖品,二等奖每人50元奖品,求得到一等奖和二等奖的学生分别是多少人? 7、一家商店将某种商品按成本价提高40%后标价,元旦期间,欲打八折销售,以答谢新老顾客对本商厦的光顾,售价为224元,这件商品的成本价是多少元? 8、甲乙两人从学校到1000米远的展览馆去参观,甲走了5分钟后乙才出发,甲的速度是80米/分,乙的速度是180米/分,问乙多长时间能追上甲?追上甲时离展览馆还有多远? 较高要求: 1、已知 ,那么代数式 的值。 2、(2001年江苏省无锡市中考题)某商场根据市场信息,对商场中现有的两台不同型号的空调进行调价销售,其中一台空调调价后售出可获利10%(相对于进价),另一台空调调价后售出则亏本10%(相对于进价),而这两台空调调价后的售价恰好相同,那么商场把这两台空调调价后售出( ). (A)既不获利也不亏本 (B)可获利1% (C)要亏本2% (D)要亏本1% 3、某开发商按照分期付款的形式售房,小明家购买了一套现价为12万元的新房,购房时需首付(第一年)款3万元,从第二年起,以后每年应付房款为5000元与上一年剩余欠款的利息之和。已知剩余款的年利率为0.4%,问第几年小明家需交房款5200元? 4、某牛奶加工厂现有鲜奶9吨,若在市场上直接销售鲜奶,每吨可获利润500元,若制成酸奶销售,每吨可获利润1200元;若制成奶片销售,每吨可获利润2000元. 方案一:尽可能多的制成奶片,其余直接销售鲜牛奶; 方案二:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成; (1)你认为选择哪种方案获利最多,为什么? (2)本题解出之后,你还能提出哪些问题?若没解出,写出你存在的问题? 5、两辆汽车从同一地点同时出发,沿着同一方向同速直线行驶,每车最多只能带24桶汽油,途中不能用别的油,每桶油可使一辆车前进60公里,两车都必须返回出发地点,但是可以不同时返回,两车相互可借用对方的油。为了使其中一车尽可能地远离出发地点,另一辆车应当在离出发地点多少公里地方返回?离出发地点最远的那辆车一共行驶了多少公里?最后祝你考试成功!!!
NerveM 2023-07-01 13:08:081

初一数学上一元一次方程500道

你疯了。
北境漫步2023-07-01 13:03:572

初一数学题:(一元一次方程,必须要用方程!!!)某商店有两种书包,每个小书包比大书包的进价少10元

x*20%=(x-10)*30%
bikbok2023-07-01 13:03:536

一个多边形除了一个内角之外,其余内角之和为2670度,求这个内角的大小(用一元一次方程解答)

这里假设,边数为n,所求的内角大小为x度根据多边形内角合公式:该多边形所有内角之和=180*(n-2)=2670+x于是x=180n-3030又因 0<x<180,也就是0<180n-3030<180,得16.83<n<17.83,n为整数,故n=17代入第一个式子得x=30这个内角大小为30度
肖振2023-07-01 13:03:141

若关于x的一元一次方程mx=3-2x有整数解,则整数m的值为

mx=3-2x; (m+2)x=3; x=3/(m+2); m+2=±1或±3; m=-2±1或-2±3; m的整数解为-3,-1,-5或1
gitcloud2023-07-01 12:59:141

若关于x的一元一次方程ax+3x=2的解是x=1,求a的值

把x=1代进去,就是1a+3=2,所以1a=-1,a的值=-1
韦斯特兰2023-07-01 12:59:132

若a,b为定值,关于X的一元一次方程2ka/3-x-bx/6=2,无论k为何值是他的解总是x=1,求ab的解。

x=1代入(2k+a)/3-(1-bk)/6=2两边乘64k+2a-1+bk=12(b+4)k=13-2a当b+4=0且13-2a=0时恒成立所以a=13/2,b=-4,ab=13/2*-4=-26
北有云溪2023-07-01 12:59:083

若关于x的一元一次方程2Xᵃ⁻ᵇ+aX=8的解是X=2,则ab=?

分情况讨论:①a=b时,X=2代入原方程,2+2a=8,则a=3,b=3ab=9②a≠b,且a≠0时,X=2代入原方程,2x2(a-b)次方+2a=8,则a-b=1,4+2a=8,a=2,b=1ab=2③a≠b,a=0时,X=2代入原方程,2x2(-b)次方+0=8即2(-b)次方=4,b=-2则ab=0
凡尘2023-07-01 12:59:031

若关于x的一元一次方程x=mx-5=0有正整数解,求整数m的值

m=-4或m=0
拌三丝2023-07-01 12:58:583

(2)若关于x的一元一次方程 3x=a-ab(a≠o) 是德强方程,且它的解为x=a,求a、b的值?

a是关于x的一元一次方程 3x=a-ab(a≠o)的解,所以3a=a-ab,整理得a(2+b)=0,a≠0,所以2+b=0,b=-2.
苏萦2023-07-01 12:58:581

15.若关于x的一元一次方程 x-2=3x+k的 2019 解为?

将解x=2019代入原方程:2019-2=3*2019+kk=-4040
大鱼炖火锅2023-07-01 12:58:581

若关于x的一元一次方程ax+3=x+7的解是正数解则整数a的值为什么?

ax+3=x+7(a-1)x=4x=4/(a-1)因为Ⅹ为正整数,那么a-1可能为1,或2或4,即a可能为2或3或5。
Jm-R2023-07-01 12:58:541

若关于 x 的方程(2k+1) x +3=0是一元一次方程, 解,则 k的取值范围是多少?

因为关于x的方程(2k+1)x+3=0是一元一次方程,所以未知数x的系数不能是零,根据条件,得2k+1≠0,即k≠-1/2,所以k的取值范围是k≠-1/2
gitcloud2023-07-01 12:58:521

从甲地到乙地的路有一段平路与一段上坡路用一元一次方程如何解

题目就这些,有条件吗
CarieVinne 2023-06-30 09:17:134

初1上册解一元一次方程计算题127道

2x+1=24x-2=8
九万里风9 2023-06-30 09:06:394

某商场进价800元商品按标价1折出售。仍获利百分之10则该商品标价多少?一元一次方程

解:设,标价为x元0.1x=800(1+10%)x=8800答,该商品标价为8800元商场够心黑的啊,哈哈希望对你有帮助,有疑问请追问
韦斯特兰2023-06-30 09:05:011

初中一年级一元一次方程所有问题的练习题

求题
小菜G的建站之路2023-06-30 08:50:443

初一数学一元一次方程解答题(带答案,2道)

89X-49X=160
FinCloud2023-06-30 08:50:321

用一元一次方程解决应用题(急死)

1 0.75X+25=0.9X-20 X=3002 0.9X=2400*(1+20%) X=3200
北境漫步2023-06-30 08:50:315

列一元一次方程

设标价是X元,进价0.9X-20元0.75X+25=0.9X-200.15X=45X=3000.9X-20=270-20=250答:标价是300元,进价250元
陶小凡2023-06-30 08:50:303

这道题我不会教教我!必须用一元一次方程解!

0.75xX+25=0.9xX-20
阿啵呲嘚2023-06-30 08:50:264

求一些初一上,数学一元一次方程的应用题

f
瑞瑞爱吃桃2023-06-30 08:50:263

初一数学一元一次方程应用题20道有答案的,急

甲、乙、丙三种货物共有167吨,甲种货物比乙种货物的2倍少5吨,丙种货物比甲种货物的 多3吨,求甲、乙、丙三种货物各多少吨? 2、有蔬菜地975公顷,种植青菜、西红柿和芹菜,其中青菜和西红柿的面积比是3︰2,种西红柿和芹菜的面积比是5︰7,三种蔬菜各种的面积是多少公顷? 3、甲、乙、丙三村集资140万元办学,经协商甲、乙、丙三村的投资之比是5:2:3.问他们应各投资多少万元? 4、建筑工人在施工中,使用一中混凝土,是由水、水泥、黄沙、碎石搅拌而成的,这四种原料的重量的比是0.7:1:2:4.7,搅拌这种混凝土2100千克,分别需要水、水泥、黄沙、碎石多少千克? 5、小名出去旅游四天,已知四天日期之和为65,求这四天分别是哪几日? 6、小华在日历上任意找出一个数,发现它连同上、下、左、右的共5个数的和为85,请求出小华找的数. 7日历上同一竖列上3日,日期之和为75,第一个日期是几号? 用 方 程 解 决 问 题(2) ---------调配问题 1、x09甲车队有15辆汽车,乙车队有28辆汽车,现调来10辆汽车分给两个车队,使甲车队车数比乙车队车数的一半多2辆,应分配到甲乙两车队各多少辆车? 2、x09某班女生人数比男生的 还少2人,如果女生增加3人,男生减少3人,那么女生人数等于男生人数的 ,那问男、女生各多少人? 3、x09某车间有工人85人,平均每人每天可加工大齿轮16个或小齿轮10人,又知二个大齿轮和三个小齿轮配套一套,问应如何安排劳力使生产的产品刚好成套? 4、x09某同学做数学题,如果每小时做5题,就可以在预定时间完成,当他做完10题后,解题效率提高了60%,因而不但提前3小时完成,而还多做了6道,问原计划做几题?几小时完成? 5、x09小丽在水果店花18元,买了苹果和橘子共6千克,已知苹果每千克3.2元,橘子每千克2.6元,小丽买了苹果和橘子各多少千克? 6、x09甲仓库有煤200吨,乙仓库有煤80吨,如果甲仓库每天运出15吨,乙仓库每天运进25吨,问多少天后两仓库存煤相等? 7、x09两个水池共贮有水50吨,甲池用去水5吨,乙池注进水8吨后,这时甲池的水比乙池的水少3吨,甲、乙水池原来各有水多少吨? 8、x09某队有55人,每人每天平均挖土2.5方或运土3方,为合理安排劳力,使挖出的土及时运走,应如何分配挖土和运土人数? 用 方 程 解 决 问 题(3) ---------盈亏问题工作量与折扣问题 1.x09用化肥若干千克给一块麦田施肥,每亩用6千克,还差17千克;每亩用5千克,还多3千克,这块麦田有多少亩? 2.x09毕业生在礼堂入座,1条长凳坐3人,有25人坐不下;1条长凳坐4人,正好空出4条长凳,则共有多少名毕业生?长凳有多少条? 3.x09将一批货物装入一批箱子中,如果每箱装10件,还剩下6件;如果每箱装13件,那么有一只箱子只装1件,这批货物和箱子各有多少? 4.x09有一次数学竞赛共20题,规定做对一题得5分,做错或不做的题每题扣2分,小景得了86分,问小景对了几题? 5.修一条路,A队单独修完要20天,B队单独修完要12天.现在A队单独修4天后,A、B两队合修还需多少天才能完成? 6.某人看一本书,第一天看20页,第二天看整本书的14 ,第三天看整本书的13 ,第四天看了整本书的25 刚好看完.问这本书一共有多少页? 7.某种大衣,先安成本提高提高50%标价,再以8折出售,结果获利80元.这件大衣的成本是多少元? 8.某种衣服因换季打折销售,每件衣服如果按标价的5折出售将亏60元;而如果按标价的8折出售将赚120元.问这件衣服的标价和成本各是多少元? 9、某商品因换季准备打折出售,如果按定价的七五折出售将赔25元,而按定价的九折出售将赚20元,问这种商品的定价是多少元? 用 方 程 解 决 问 题(4) ---------行程问题 1.甲、已两个车站相距168千米,一列慢车从甲站开出,速度为36千米/小时,一列快车从乙站开出,速度为48千米/小时. (1)两列火车同时开出,相向而行,多少小时相遇? (2)慢车先开1小时,相向而行,快车开几小时与慢车相遇? 2.甲、乙两人从同地出发前往某地.甲步行,每小时走4公里,甲走了16公里后,乙骑自行车以每小时12公里的速度追赶甲,问乙出发后,几小时能追上甲? 3.甲、乙两人练习50米短距离赛跑,甲每秒钟跑7米,乙每秒钟跑6.5米. (1)几秒后,甲在乙前面2米? (2)如果甲让乙先跑4米,几秒可追上乙? 5.x09小名与小美家相距1.8千米,有一天,小名与小美同时从各自家里出发,向对方家走去,小名家的狗和小名一起出发,小狗先跑去和小美相遇,又立刻回头跑向小名,又立刻跑向小美…一直在小名与小美之间跑动.已知小名50米/分,小美40米/分,小名家的狗150米/分,求小名与小美相遇时,小狗一共跑了多少米? 6.x09甲、乙两人在400米的环行形跑道上练习跑步,甲每秒跑5.5米,乙每秒跑4.5米. (1)x09乙先跑10米,甲再和乙同地、同向出发,还要多长时间首次相遇? (2)x09乙先跑10米,甲再和乙同地,背向出发,还要多长时间首次相遇? (3)x09甲、乙同时同地同向出发,经过多长时间二人首次相遇? (4)x09甲先跑10米,乙再和甲同地、同向出发,还要多长时间首次相遇? 7、一艘船在两个码头之间航行,水流速度是3千米每小时,顺水航行需要2小时,逆水航行需要3小时,求两码头的之间的距离? 8、甲、乙两人在一条长400米的环形跑道上跑步,如果同向跑,每隔 分钟相遇一次,如果反向跑,则每隔40秒相遇一次,已知甲比乙跑的快,求甲、乙两人的速度? 9、甲、乙两人骑自行车,同时从相距65千米两地相向而行,甲的速度为17.5千米每小时,乙的速度为15千米每小时,经过了几小时两人相距32.5千米? 10、汽车以每小时72千米的速度在公路上行使,开车向寂静的山谷,驾驶员按一声喇叭,4秒后听到回声,这时汽车里山谷有多远?(声音的速度为340米每秒) 用 方 程 解 决 问 题(5) ---------其他问题 1、x09脑录入一篇1 800字的文章,小明需要的时间为30分,小红需要的时间为45分.现在是11:10,如果小明和小红合作,能在11:30前录完吗?请你说明理由. 2、学校组织师生看电影.学生950人,教师27人.影剧院售票处写着: 请你设计一种你认为最省钱的购票方案,算出购票一共需要多少钱? 3某商店经商一种商品,由于进货价降低5%,出售价不变,使得利润率有m%提高到(m+6)%,求m的值? 4、某校初一举办数学竞赛,有80人报名参加,竞赛结果总平均成绩为63分,及格学校平均成绩为72分,不及格学生平均成绩为48分,求这次竞赛的及格率? 5、有一个三位数,它的个位数字为比百位数大1,十位数字比个位树字的一半少1,如果把个位数字当成百位数字,百位数字当成了十位数字,十位数字当成了个位数字,那么所得的新数与原数之和为1611,原来的三位数是多少? 6、一个六位数的个位数上的数字是2,如果把他个位上的数字2移到首位,其他的数字顺序都不变,所得新数是原数的 ,求原来的六位数好吗? 7、大红,小红过年收到的压岁钱共1000元,大红把他的压岁钱按一年期教育储蓄存入银行,年利率为1.98%,免收利息税;小红把他的压岁钱买了月利率为2.15‰的债券,但要交纳20%的利息税,一年后两人的到的收益恰好相等,两人压岁钱个是多少钱? 8、用一个底面为20cm×20cm的长方体容器(已装满水)向一个长、宽、高分别是16cm,10cm和5cm的长方体铁盒内倒水.当铁盒装满水时,长方体容器中水的高度下降多少? 9、某种商品进价为800元,出售时标价为1200无,后来由于该商品积压,商店准备声气相打折出售,但要保持利润率为5%,则应打几折出售? 10、有一个伿允许单向通过的窄道口,通常情况下,每分种可以通过9人,一天,王老师到达道口,此时,自己前面还有36个人等待通过(假定先到的先过,王老师过道口的时间忽略不计),通过道口,还需7分钟到达学校. (1)x09此时,若绕道而行,要15分钟到达学校,从节省时间考虑,王老师应选择绕道去学校,还是选择是通过拥挤的道口去学校? (2)x09若在王老师等人的维持下几分钟后,秩序恢复正常(维持秩序期间,每分钟若有3人通过道口),结果王老师比拥挤情况下提前6分钟通过道口问维持秩序的时间是多少? 11试根据以下情境找出问题,并讨论 某班组织去风景区去春游,大部分同学乘公共汽车前往,平均速度为24千米每小时,四名负责后勤的同学晚半小时从校车出发,速度为60千米/时,两批人同时到达山脚下,到达后发现乘坐缆车上山费用较大,且不能浏览沿途风景,于是大家商定大部队步行上山,四名后勤改为先遣队,乘缆车上山,做好到山顶举行活动的准备,缆车速度是步行的3倍,步行同学中途在一个景点逗留了10分钟,到达山顶时比先遣队晚了半小时. 1.设甲种货物x吨 则乙种货物(x+5)/2 丙种货物0.5x+3 x+(x+5)/2+0.5x+3=167 2x=161.5 x=80.75甲 (x+5)/2=42.875乙种 0.5x+3=43.375丙种 2.设番茄的面积为x,则青菜的面积为3/2x,芹菜的面积为7/5x,然后 3/2x+x+7/5x=975 x=250 青菜250*3/2=375 芹菜250*7/5=350 3.设甲、乙、丙三村各投资是5x,2x,3x万元 5x+2x+3x=140 10x=140 x=14 甲村投资14×5=70万元 乙村投资14×2=28万元 丙村投资14×3=42万元 4.需要水泥重量为x,则水是0.7x,黄沙2x,碎石4.7x,然后 0.7x+x+2x+4.7x=2100 8.4x=2100 x=250 250*0.7=175【水】 250*2=500【黄沙】 250*4.7=1175【碎石】 5.设这四天中的第二天的数字为x, 则另外几天的数字分别为:x-1,x+1,x+2,根据题意,得: x-1+x+x+1+x+2=65 4x=65-2 x=15.75 因为日历中的数全是正整数,而15.75是小数, 所以这四天的和不能是65. 6.设中间的数为X,则上,下,左,右的数分别为(X-7),(X+7),(X-1),(X+1), 由题意得(X-7)+(X+7)+(X-1)+(X+1)+X=85, 所以5X=85, 所以X=17, 即小华找的数为17 7.不可能是75的,一般日历竖列相差7天,算出第一天是18日,但是这样的话,最后一个日子就是32日了,可惜一个月最多31天.所以如你所说的话,日期之和最高为72,最低为24,超出这个范围就不可能了. 除非不按7天来排. 8.设应分配到甲车队X辆车,乙车队10-X辆车15+X=(1/2)(28+10-X)+215+X=19-(1/2)X+2(3/2)X=6X=4应分配乙车队10-4=6辆车 9.设男生人数为X;女生人数为Y 则Y=2/3X-2 X=3/2+3 又Y+3=7/9(X-3) 带入则:X=30 Y=18 10.设应该安排X人生产大齿轮,则应安排85-X人生产小齿轮 16X:[10*(85-X)]=2:3 16X:(850-10X)=2:3 3*16X=2(850-10X) 48X=1700-20X 68X=1700 X=25 85-X =85-25 =60 11.设原计划X小时完成.5X=10+5*(1+60%)*(X-2-3)-6解得X=12.答:原计划做5*12=60题,12小时完成. 12.设买了苹果x千克和橘子y千克 x+y=6 3.2x+2.6y=18 解得x=4,y=2 13.设x天后两仓库存煤相等.可列等式 200-15x=80+25x 40x=120 x=3 14.设甲有x吨,乙有50-x吨. 据题意得:x-5+3=50-x+8 x-2=58-x 2x=60 x=30 50-30=20 15.挖土:55÷(2.5+3)×3=30 运土:55-30=25 16.20亩,6x-17=5x+3解得x=20亩 17.设长凳有x条 3x+25=4(x-4) x=29 3x+25=112 人 19.设有x箱 13(x-1)+1=10x+6 解得x=6 货物有6*10+6=66 20.设错X题,对20-X题 20*5-86=(5+2)X X=2 20-2=18题
北境漫步2023-06-30 08:50:231

初一算术题100题 一元一次方程100题

算数题???
阿啵呲嘚2023-06-30 08:50:132

关于一元一次方程的题(帮忙解一下)

1、5有时间在完善吧
西柚不是西游2023-06-30 08:50:093

4道数学题,拜托用一元一次方程解,好的话我加分?

1.解:设定价为x元,根据题意,建立方程 0.75x+25=0.9x-20 0.15x=45 x=300 答:这种商品的定价是300元 2.解:设常数x,则有甲班计划植树5x棵,乙班假话植树4x棵,根据题意,建立方程 5x*(1+20%)+4x*(1+15%)=212 6x+4.6x=212 10.6x=212 x=20 甲班实际植树5*20*(1+20%)=120(棵) 乙班实际植树212-120=92(棵) 3.解:设原来花的时间为x小时,根据题意,建立方程 30x=(30*(1+30%)+1)*(2x/3+30/60) 30x=80x/3+20 90x=80x+60 10x=60 x=6 所以AB两地的距离为30*6=180千米 4.解:设预定时间为x小时,根据题意,建立方程 5x=5*(x/3)+20*(2x/3-2) 15x=5x+40x-120 120=30x x=4 家离学校的距离为5*4=20千米,7,4道数学题,拜托用一元一次方程解,好的话我加分 1.某种商品因换季准备打折出售,如果按定价的七五折出售将赔25元,而按定价的九折出售将赚20元,问这种商品的定价是多少元? 2.甲、乙两个班级参加植树活动,按计划两班所植树棵数之比为5:4,其结果甲比计划多植了20%,乙比计划多植了15%,两个班级一共植树212棵,求甲乙两个班实际植多少棵? 3.甲以每小时30千米的速度由A地去B地,如果每小时增加的速度是原速度的30%还多1千米,则甲花了原来时间的三分之二又30分钟到达B地,则A、B两地间的距离是多少千米? 4.一个学生用每小时5千米的速度前进,可以及时返回家,走了全程三分之一,他搭上了速度是每小时20千米的汽车,因此比预定时间早2小时到家,求他家距离学校多少千米? 记得留下过程哈
小菜G的建站之路2023-06-30 08:50:081

初一数学解一元一次方程【合并同类项与移项】练习题30道

- -。。很多练习书上有。。
FinCloud2023-06-27 09:12:213

一元一次方程的解的概念

例谈《二元一次方程组》中数学思想方法的渗透四川营山金华希望小学校 屠欣 数学思想方法是从数学内容中提炼出来的数学学科的精髓,是将数学知识转化为数学能力的桥梁。初中数学思想方法教育,是培养和提高学生素质的重要内容。新的《课程标准》突出强调:“在教学中,应当引导学生在学好概念的基础上掌握数学的规律(包括法则、性质、公式、公理、定理、数学思想和方法)。”因此,开展数学思想方法教育应作为新课改中所必须把握的教学要求。二元一次方程组的解法,实质上是运用数学转化思想,把二元一次方程组转化为一元一次方程来解决的。具体转化的方法是运用“代入消元法”或“加减消元法”,达到把二元一次方程组中的“二个未知数”消去一个未知数,得到一元一次方程,实现了化“未知”为“已知”,进而解决的。这里蕴涵了丰富的数学思想方法,我在教学中向学生逐步渗透。下面举例说明: 一、灵活运用代入法,巧妙求值:代入法是在解二元一次方程组时,通过把方程组中的一个方程变形为用含一个未知数的数学式表示另一个未知数的形式,然后再把它代入到另一个方程中,从而达到消去一个未知数的目的,得到一个一元一次方程,进而解决。借助此思想方法可以解决常规求定值问题。 例1.若5x-6y=0,且xy≠0,则的值等于 。 解. 由5x-6y=0得:5x=6y,把5x=6y代入得解。 反思:此题巧妙借助代入法可轻松解决。变式练习:若2x-3y=0,且xy≠0,则的值等于 例2. 若4x+3y+5=0,则3(8y-x)-5(x+6y-2)的值等于_________; 分析:通过审题容易知道,可以先将3(8y-x)-5(x+6y-2)化简得-8x-6y+10,再利用整体代入或部分代入易求出其值。解:∵4x+3y+5=0,∴4x+3y=-53(8y-x)-5(x+6y-2)= 24 y-3x-5x-30y+10=-8x-6y+10=-2(4x+3y)+10=-2×(-5)+10=20反思:此题也可以由4x+3y+5=0得x=-,在代入求值。二、巧妙运用加减法,快速求值: 加减法是通过把方程组中的某一个未知数的系数变为相同或相反数,然后,运用两个方程相加或相减,即某一个未知数的系数变为相同时用减法;某一个未知数的系数变为相反数时用加法,从而达到消去一个未知数的目的,得到一个一元一次方程,进而解决。另外在求值题中合理运用加减法,可以收到事半功倍的效果。例3. 若2x+3y=16,且3x+2y=19,则 .分析:若直接把2x+3y=16和3x+2y=19联立解方程组,在把解代入求值,运算量较大,且易出错;如果认真分析所求值式,可考虑利用加减法很快求得x+y和x-y的值,于是此题迎刃而解.解:由题意得:由1+2得:5x+5y=35x+y=5由2-1得:x-y=3所以x=4,y=1 注:此题若看作关于x、y的二元一次方程组先求x、y的值,再代入计算就显得非常繁琐,若巧妙运用“加减法”基本思想方法,就会收到奇效。三、化“未知”为 “已知”,渗透转化.线性方程组的解法;矩阵特征值与特征向量的计算;非线性方程与非线性方程组的迭代解法;插值与逼近;数值积分;常微分方程初值问题的数值解法和偏微分方程的差分解法。内容丰富,系统性强,其深广度适合工学硕士生的培养要求。本书语言简练、流畅,数值例子和习题非常丰富。含字母系数的一元一次方程 教学目标 1.使学生理解和掌握含有字母系数的一元一次方程及其解法; 2.理解公式变形的意义并掌握公式变形的方法; 3.提高学生的运算和推理能力.教育重点和难点 重点:含有字母系数的一元一次方程和解法. 难点:字母系数的条件的运用和公式变形.教学过程设计 一、导入新课 问:什么叫方程?什么叫一元一次方程? 答:含有未知数的等式叫做方程,含有一个未知数,并且未知数的次数是1的方程叫做一元一次方程. 例 解方程2x-1 3-10x+1 6=2x+1 4-1 解 去分母,方程两边都乘以12,得 4(2x-1)-2(10x+1)=3(2x+1)-12, 去括号,得 8x-4-20x-2=6x+3-12 移项,得 8x-20x-6x=3-12+4+2, 合并同类项,得 -18x=-3, 方程两边都除以-18,得 x=3 18 ,即 x=1 6. 二、新课 1.含字母系数的一元一次方程的解法. 我们把一元一次方程用一般的形式表示为 ax=b (a≠0), 其中x表示未知数,a和b是用字母表示的已知数,对未知数x来说,字母a是x的系数,叫做字母系数,字母b是常数项. 如果一元一次方程中的系数用字母来表示,那么这个方程就叫做含有字母系数的一元一次方程. 以后如果没有特别说明,在含有字母系数的方程中,一般用a,b,c等表示已知数,用x,y,z等表示未知数. 含字母系数的一元一次方程的解法与只含有数字系数的一元一次方程的解法相同.按照解一元一次方程的步骤,最后转化为ax=b(a≠0)的形式.这里应注意的是,用含有字母的式子去乘或除方程的两边,这个式子的值不能等于零.如(m-2)x=3,必须当m-2≠0时,即m≠2时,才有x=3 m-2 .这是含有字母系数的方程和只含有数字系数的方程的重要区别. 例1 解方程ax+b2=bx+a2(a≠b). 分析:这个方程中的字母a,b都是已知数,x是未知数,是一个含有字母系数的一元一次方程.这里给出的条件a≠b,是使方程有解的关键,在解方程的过程中要运用这个条件. 解 移项,得 ax-bx=a2-b2, 合并同类项,得 (a-b)x=a2-b2. 因为a≠b,所以a-b≠0.方程两边都除以a-b,得 x=a2-b2 a-b=(a+b)(a-b) a-b, 所以 x=a+b. 指出: (1)题中给出a≠b,在解方程过程中,保证了用不等于零的式子a-b去除方程的两边后所得的方程的解是原方程的解; (2)如果方程的解是分式形式时,一般要化成最简分式或整式. 例2 x-b a=2-x-a b(a+b≠0). 观察方程结构的特点,请说出解方程的思路. 答:这个方程中含有分式,可先去分母,把方程转化成含有字母系数的一元一次方程的一般形式.在方程变形中,要应用已知条件a+b≠0. 解 去分母,方程两边都乘以ab得 b(x-b)=2ab-a(x-a), 去括号,得 bx-b2=2ab-ax+a2,移项,得 ax+bx=a2+2ab+b2 合并同类项,得 (a+b)x=(a+b)2. 因为a+b≠0,所以x=a+b. 指出:ab≠0是一个隐含条件,这是因为字母a,b分别是方程中的两个分式的分母,因此a≠0,b≠0,所以ab≠0. 例3 解关于x的方程 a2+(x-1)ax+3a=6x+2(a≠2,a≠-3). 解 把方程变形为,得 a2x-a2+ax+3a=6x+2, 移项,合并同类项,得 a2x+ax-6x=a2-3a+2, (a2+a-6)x=a2-3a+2, (a+3)(a-2)x=(a-1)(a-2). 因为a≠2,a=-3,所以a+3≠0,a-2≠0.方程两边都除以(a+3)(a-2),得 x=a-1 a+3. 2.公式变形. 在物理课中我们学习了很多物理公式,如果q表示燃烧值,m表示燃料的质量,那么完全燃烧这些燃料产生的热量W,三者之间的关系为W=qm,又如,用Q表示通过异体横截面的电量,用t表示时间,用I表示通过导体电流的大小,三者之间的关系为I=Qt.在这个公式中,如果用I和t来表示Q,也就是已知I和t,求Q,就得到Q=It;如果用I和Q来表示t,也就是已知I和Q,,求t,就得到t=QI. 像上面这样,把一个公式从一种形式变换成另一种形式,叫做公式变形. 把公式中的某一个字母作为未知量,其它的字母作为已知量,求未知量,就是解含字母系数数的方程.也就是说,公式变形实际就是解含有字母系数的方程.公式变形不但在数学,而且在物理和化学等学科中非常重要,我们要熟练掌握公式变形的技能. 例4 在公式υ=υo+at中,已知υ,υo,a,且a≠0,求t. 分析:已知υ,υo和a,求t,也就是把υ,υo和a作为已知量,解关于未知量t的字母系数的方程. 解 移项,得 υ-υ0=at. 因为a≠0,方程两边都除以a,得 t=υ-υo a. 例5 在梯形面积公式s=12(a+b)h中,已知a,b,h为正数. (1)用s,a,b表示h;(2)用S,b,h表示a.问:(1)和(2)中哪些是已知量?哪些是未知量;答:(1)中S,a,b是已知量,h是未知量;(2)中s,b,h都是知已量,a是未知量. 解 (1)方程两边都乘以2,得 2s=(a+b)h. 因为a与b都是正数,所以a≠0,b≠0,即a+b≠0,方程两边都除以a+b,得 h=2sa+b. (2)方程两边都乘以2,得 2s=(a+b)h, 整理,得 ah=2s-bh. 因为h为正数,所以h≠0,方程两边都除以h,得 a=2s-bh h. 指出:题是解关于h的方程,(a+b)可看作是未知量h的系数,在运算中(a+b)h不要展开. 三、课堂练习 1.解下列关于x的方程: (1)3a+4x=7x-5b; (2)xa-b=xb-a(a≠b); (3)m2(x-n)=n2(x-m)(m2≠n2); (4)ab+xa=xb-ba(a≠b); (5)a2x+2=a(x+2)(a≠0,a≠1). 2.填空: (1)已知y=rx+b r≠0,则x=_______; (2)已知F=ma,a≠0,则m=_________; (3)已知ax+by=c,a≠0,则x=_______. 3.以下公式中的字母都不等于零. (1)求出公式m=pn+2中的n; (2)已知xa+1b=1m,求x; (3)在公式S=a+b2h中,求a; (4)在公式S=υot+12t2x中,求x. 答案: 1.(1)x=3a+5b 3; (2)x=ab; (3)x=mn m+n; (4)x=a2+b2 a-b (5)x=2a. 2.(1)x=y-b r; (2)m=Fa; (3)x=c-by a.3.(1)n=p-2m m; (2)x=ab-am bm; (3)a=2s-bh h; (4)x=2s-2υott2. 四、小结 1.含字母系数的一元一次方程与只含有数字系数的一元一次方程的解法相同,但应特别注意,用含有字母的式子去乘或除方程的两边时,这个式子的值不能为零.我们所举的例题及课堂练习的题目中所给出的条件,都保证了这一点. 2.对于公式变形,首先要弄清公式中哪些是已知量,哪个是未知量.把已知量作为字母系数,求未知量的过程就是解关于字母系数的方程的过程. 五、作业 1.解下列关于x的方程 (1)(m2+n2)x=m2-n2+2mnx(m-n≠0); (2)(x-a)2-(x-b)2=2a2-2b2 (a-b≠0); (3)x+xm=m(m≠-1); (4)xb+b=xa+a(a≠b); (5)m+nx m+n=a+bx a+b(mb≠na). 2.在公式M=D-d 2l中,所有的字母都不等于零. (1)已知M,l ,d求D; (2)已知M,l D,求d. 3.在公式S=12n[a1+(n-1)d]中,所有的字母都是正数,而且n为大于1的整数,求d. 答案: 1.(1)x=m+n m-n; (2)x=-a+b 2; (3)x=m2 m+1; (4)x=ab; (5)x=1. 2.(1)D=2lM+d; (2)d=D-2lM. 3.d=2S-na1 n(n-1). 课堂数学设计说明 1.学生对含有字母系数的方程的认识和解法以及公式变形,接受起来有一定困难.含字母系数的方程与只含数字系数的方程的关系,是一般与特殊的关系,当含有字母系数的方程中的字母给出特定的数字时,就是只含数字系数的方程.所以在教学设计中是从复习解只含数字系数的一元一次方程入手,过渡到讨论含字母系数的一元一次方程的解法和公式变形,体现了遵循学生从具体到抽象,从特殊到一般的思维方式和认识事物的规律. 2.在代数教学中应注意渗透推理因素.在解含有字母系数的一元一次方程和公式变形的过程中,引导学生注意所给题中的已知条件是什么,在方程变形中要正确运用题中的已知条件.如在解方程中,常用含有字母的式子乘(或除)方程的两边,并要论述如何根据已知条件,保证这个式子的值不等于零,从中有意识地训练和提高学生的逻辑推理能力,把代数运算和推理蜜切结合.
苏萦2023-06-27 09:12:207

100道初一上册数学一元一次方程计算题

别想些有的没的了,正经学习才是正事!想练的话去买本习题好了。
kikcik2023-06-27 09:12:182

一元一次方程一元一次方程练习题

1、一元一次方程公式是什么?2、一元一次方程是什么?3、什么叫一元一次方程?4、什么叫做一元一次方程?5、什么是一元一次方程一元一次方程公式是什么?对于x的一元一次方程是:ax+b=0(a≠0),其求根公式为:x=-b/a。一元一次方程几种解法:1、去分母:在观察方程的构成后,在方程左右两边乘以各分母的最小公倍数。2、去括号:仔细观察方程后,先去掉方程中的小括号,再去掉中括号,最后去掉大括号。3、移项:把方程中含有未知数的项全部都移到方程的另外一边,剩余的几项则全部移动到方程的另一边。4、合并同类项:通过合并方程中相同的几项,把方程化成ax=b(a≠0)的形式。5、把系数化成1:通过方程两边都除以未知数的系数a,使得x前面的系数变成1,从而得到方程的解。一元一次方程的应用:一元一次方程可以解决绝大多数的工程问题、行程问题、分配问题、盈亏问题、积分表问题、电话计费问题、数字问题。如果仅使用算术,部分问题解决起来可能异常复杂,难以理解。而一元一次方程模型的建立,将能从实际问题中寻找等量关系,抽象成一元一次方程可解决的数学问题。如在初等数学范围内证明“0.9的循环等于1”之类的问题。通过验证一元一次方程解的合理性,达到解释和解决生活问题的目的,从一定程度上解决了一部分生产、生活中的问题。一元一次方程是什么?只含有1个未知数、未知数的最高次数为1,且两边都为整式的等式[必须满足含有未知数、是等式、两边是整式]叫做一元一次方程一元一次方程的表示:ax+b=0,其中a≠0例如3x+5=11是一元一次方程3x+5不是一元一次方程,因为不是等式3×2+5=11不是一元一次方程,因为没有未知数x分之1+5=11不是一元一次方程,因为等式两边不是整式3x_+5=11不是一元一次方程,因为最高项的次数不是1解一元一次方程的一般步骤是:去分母:在方程两边都乘以各分母的最小公倍数.去括号:先去小括号,再去中括号,最后去大括号.移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边.合并同类项:把方程化成ax[+c]=b(a≠0)的形式.系数化成1:在方程两边都除以未知数的系数a,得到方程的解x=b[-c]/a例如3x+5=11解[一定要写]:3x+5-5=11-53x=63x÷3=6÷3x=2解一元一次方程应用题8种常用公式①和、差、倍、分问题,即两数和=较大的数+较小的数,较大的数=较小的数×倍数±增(或减)数;②行程类问题,即路程=速度×时间;③工程问题,即工作量=工作效率×工作时间;④浓度问题,即溶质质量=溶液质量×浓度;⑤分配问题,即调配前后总量不变,调配后双方有新的倍比关系;⑥等积问题,即变形前后的质量(或体积)不变;⑦数字问题,即有若个位上数字为a,十位上的数字为b,百位上的数字为c,则这三位数可表示为100c+10b+a;⑧经济问题,即利息=本金×利率×期数;本息和=本金+利息=本金+本金×利率×期数;税后利息=本金×利率×期数×(1-利息税率);商品的利润=商品的售价-商品的进价;商品的利润率=利润×100%.望采纳什么叫一元一次方程?只含有一个未知数,且未知数的高次数是1,等号两面都是整式,这样的方程叫做一元一次方程。其一般形式是:一元一次方程最早见于约公元前1600年的古埃及时期。公元820年左右,数学家花拉子米在《对消与还原》一书中提出了“合并同类项”、“移项”的一元一次方程思想。16世纪,数学家韦达创立符号代数之后,提出了方程的移项与同除命题。1859年,数学家李善兰正式将这类等式译为一元一次方程。扩展资料:解一元一次方程有五步,即去分母、去括号、移项、合并同类项、系数化为1,所有步骤都根据整式和等式的性质进行。以解方程为例:1、去分母,得:2、去括号,得:3、移项,得:4、合并同类项,得:5、系数化为1,得:参考资料来源:百度百科-一元一次方程什么叫做一元一次方程?在一个方程中,如果只含有一个未知数一元一次方程,且未知数一元一次方程的最高次数是1的整式方程叫做一元一次方程。(linear equation in one)一般形式:ax+b=0(a、b为常数,a≠0)。一元一次方程只有一个解。一元一次方程的最终结果(方程的解)是x=a的形式一元一次方程的“等式的性质1”和“等式的性质2”1.等式两边同时加或减一个相同数,等式两边相等。(如果a=b,那么a±c=b±c。) 2.等式两边同时乘或除以一个相同数(0除外),或一个整式,等式两边相等。(如果a=b,那么ac=bc。如果a=b,c≠0,那么a/c=b/c。)解法是通过移项将未知数移到一边,再把常数移到一边(等式基本性质1,注意符号!),然后两边同时除以未知数系数(化系数为1,等式基本性质2),即可得到未知数的值。例:7x+23=100解: 7x=100-237x=77x=77÷7x=11在小学算术中,我们学习了用算术方法解决实际问题的有关知识,那么,一个实际问题能否应用一元一次方程来解决呢?若能解决,怎样解?用一元一次方程解应用题与用算术方法解应用题相比较,它有什么优越性呢?为了回答上述这几个问题,我们来看下面这个例题.例1 某数的3倍减2等于某数与4的和,求某数.(首先,用算术方法解,由学生回答,教师板书)解法1:(4+2)÷(3-1)=3.答:某数为3.(其次,用代数方法来解,教师引导,学生口述完成)解法2:设某数为x,则有3x-2=x+4.解之,得x=3.答:某数为3.纵观例1的这两种解法,很明显,算术方法不易思考,而应用设未知数,列出方程并通过解方程求得应用题的解的方法,有一种化难为易之感,这就是我们学习运用一元一次方程解应用题的目的之一.我们知道方程是一个含有未知数的等式,而等式表示了一个相等关系.因此对于任何一个应用题中提供的条件,应首先从中找出一个相等关系,然后再将这个相等关系表示成方程.简单的应用:求加数=和—另一个加数求被减数=差+减数求减数=被减数-差求因数=积/另一个因数求被除数=商*除数求除数=被除数/商一般解法:⒈去分母 方程两边同时乘各分母的最小公倍数。⒉去括号 一般先去小括号,在去中括号,最后去大括号。但顺序有时可依据情况而定使计算简便。可根据乘法分配律。⒊移项 把方程中含有未知数的项移到方程的另一边,其余各项移到方程的另一边移项时别忘记了要变号。⒋合并同类项 将原方程化为ax=b(a≠0)的形式。⒌系数化1 方程两边同时除以未知数的系数,得出方程的解。一元一次方程练习题基本题型:一、选择题:1、下列各式中是一元一次方程的是( )A. 5a+4b B.4x+9x C. 5x2+9y2 D. 7a-4b2、方程3x-2=-5(x-2)的解是( )A.-1.5 B. 1.5C. 1 D. -13、若关于 的方程 的解满足方程 ,则 的值为( )A. 10 B. 8 C. D. 4、下列根据等式的性质正确的是( )A. 由 ,得 B. 由 ,得 C. 由 ,得 D. 由 ,得 5、解方程 时,去分母后,正确结果是( )A. B. C. C. 6 、电视机售价连续两次降价10%,降价后每台电视机的售价为a 元,则该电视机的原价为( )A. 0.81a 元 B. 1.21a元 C. 1.1a元 D.0.1a 元8、某商店卖出两件衣服,每件60元,其中一件赚25%,另一件亏25%,那么这两件衣服卖出后,商店是 ( )A.不赚不亏 B.赚8元 C.亏8元 D. 赚8元9、下列方程中,是一元一次方程的是( )(A) (B) (C) (D) 10、方程 的解是( )(A) (B) (C) (D) 11、已知等式 ,则下列等式中不一定成立的是( )(A) (B) (C) (D) 12、方程 的解是 ,则 等于( )(A) (B) (C) (D) 13、解方程 ,去分母,得( )(A) (B) (C) (D) 14、下列方程变形中,正确的是( )(A)方程 ,移项,得 (B)方程 ,去括号,得 (C)方程 ,未知数系数化为1,得 (D)方程 化成 15、儿子今年12岁,父亲今年39岁,( )父亲的年龄是儿子的年龄的4倍.(A)3年后; (B)3年前; (C)9年后; (D)不可能.16、重庆力帆新感觉足球队训练用的足球是由32块黑白相间的牛皮缝制而成的,其中黑皮可看作正五边形,白皮可看作正六边形,黑、白皮块的数目比为3:5,要求出黑皮、白皮的块数,若设黑皮的块数为 ,则列出的方程正确的是( )(A) (B) (C) (D) 17、珊瑚中学修建综合楼后,剩有一块长比宽多5m、周长为50m的长方形空地. 为了美化环境,学校决定将它种植成草皮,已知每平方米草皮的种植成本最低是 元,那么种植草皮至少需用( )(A) 元; (B) 元; (C) 元; (D) 元.一年期 二年期 三年期2.25 2.43 2.7018、银行教育储蓄的年利率如右下表:小明现正读七年级,今年7月他父母为他在银行存款30000元,以供3年后上高中使用. 要使3年后的收益最大,则小明的父母应该采用( )(A)直接存一个3年期;(B)先存一个1年期的,1年后将利息和自动转存一个2年期;(C)先存一个1年期的,1年后将利息和自动转存两个1年期;(D)先存一个2年期的,2年后将利息和自动转存一个1年期.二. 填空题:1、 ,则 ________.2、已知 ,则 __________.3、关于 的方程 的解是3,则 的值为________________.4、现有一个三位数,其个位数为 ,十位上的数字为 ,百位数上的数字为 ,则这个三位数表示为__________________.5、甲、乙两班共有学生96名,甲班比乙班多2人,则乙班有____________人. 6、某数的3倍比它的一半大2,若设某数为 ,则列方程为____.7、当 ___时,代数式 与 的值互为相反数.8、在公式 中,已知 ,则 ___.日 一 二 三 四 五 六1 2 3 4 5 67 8 9 10 11 12 1314 15 16 17 18 19 2021 22 23 24 25 26 2728 29 30 31 9、如右图是2003年12月份的日历,现用一长方形在日历中任意框出4个数,请用一个等式表示 之间的关系______________.10、一根内径为3_的圆柱形长试管中装满了水,现把试管中的水逐渐滴入一个内径为8_、高为1.8_的圆柱形玻璃杯中,当玻璃杯装满水时,试管中的水的高度下降了_____.11、国庆期间,“新世纪百货”搞换季打折. 简爽同学以8折的优惠价购买了一件运动服节省16元,那么他购买这件衣服实际用了___元.12、成渝铁路全长504千米. 一辆快车以90千米/时的速度从重庆出发,1小时后,另有一辆慢车以48千米/时的速度从成都出发,则慢车出发__小时后两车相遇(沿途各车站的停留时间不计).13、我们小时候听过龟兔赛跑的故事,都知道乌龟最后战胜了小白兔. 如果在第二次赛跑中,小白兔知耻而后勇,在落后乌龟1千米时,以101米/分的速度奋起直追,而乌龟仍然以1米/分的速度爬行,那么小白兔大概需要___分钟就能追上乌龟.14、一年定期存款的年利率为1.98%,到期取款时须扣除利息的20%作为利息税上缴国库. 假若小颖存一笔一年定期储蓄,到期扣除利息税后实得利息158.4元,那么她存入的人民币是____元15、52辆车排成两队,每辆车长a米,前后两车间隔3a/2米,车队平均每分钟行50米,这列车队通过长为546米的广场需要的时间是16分钟,则a=__________.三、解方程:1、 2、 3、 4、 5、 6、 7、 8、 9、已知 是方程 的根,求代数式 的值.四、列方程解应用题:1、敌军在离我军8千米的驻地逃跑,时间是早晨4点,我军于5点出发以每小时10千米的速度追击,结果在7点追上.求敌军逃跑时的速度是多少?2、期中考查,信息技术课老师限时40分钟要求每位七年级学生打完一篇文章. 已知独立打完同样大小文章,小宝需要50分钟,小贝只需要30分钟. 为了完成任务,小宝打了30分钟后,请求小贝帮助合作,他能在要求的时间打完吗?3、在学完“有理数的运算”后,实验中学七年级各班各选出5名学生组成一个代表队,在数学方老师的组织下进行一次知识竞赛. 竞赛规则是:每队都分别给出50道题,答对一题得3分,⑴ 如果二班代表队最后得分142分,那么二班代表队回答对了多少道题?⑵ 一班代表队的最后得分能为145分吗?请简要说明理由.4、某“希望学校”修建了一栋4层的教学大楼,每层楼有6间教室,进出这栋大楼共有3道门(两道大小相同的正门和一道侧门). 安全检查中,对这3道门进行了测试:当同时开启一道正门和一道侧门时,2分钟内可以通过400名学生,若一道正门平均每分钟比一道侧门可多通过40名学生.(1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?(2)检查中发现,紧急情况时因学生拥挤,出门的效率降低20%. 安全检查规定:在紧急情况下全大楼的学生应在5分钟内通过这3道门安全撤离. 假设这栋教学大楼每间教室最多有45名学生,问:建造的这3道门是否符合安全规定?为什么?5、黑熊妈妈想检测小熊学习“列方程解应用题”的效果,给了小熊19个苹果,要小熊把它们分成4堆. 要求分后,如果再把第一堆增加一倍,第二堆增加一个,第三堆减少两个,第四堆减少一倍后,这4堆苹果的个数又要相同. 小熊捎捎脑袋,该如何分这19个苹果为4堆呢?6、学校准备拿出2000元资金给22名“希望杯”竞赛获奖学生买奖品,一等奖每人200元奖品,二等奖每人50元奖品,求得到一等奖和二等奖的学生分别是多少人?7、一家商店将某种商品按成本价提高40%后标价,元旦期间,欲打八折销售,以答谢新老顾客对本商厦的光顾,售价为224元,这件商品的成本价是多少元?8、甲乙两人从学校到1000米远的展览馆去参观,甲走了5分钟后乙才出发,甲的速度是80米/分,乙的速度是180米/分,问乙多长时间能追上甲?追上甲时离展览馆还有多远?较高要求:1、已知 ,那么代数式 的值。2、(2001年江苏省无锡市中考题)某商场根据市场信息,对商场中现有的两台不同型号的空调进行调价销售,其中一台空调调价后售出可获利10%(相对于进价),另一台空调调价后售出则亏本10%(相对于进价),而这两台空调调价后的售价恰好相同,那么商场把这两台空调调价后售出( ).(A)既不获利也不亏本 (B)可获利1% (C)要亏本2% (D)要亏本1%3、某开发商按照分期付款的形式售房,小明家购买了一套现价为12万元的新房,购房时需首付(第一年)款3万元,从第二年起,以后每年应付房款为5000元与上一年剩余欠款的利息之和。已知剩余款的年利率为0.4%,问第几年小明家需交房款5200元?4、某牛奶加工厂现有鲜奶9吨,若在市场上直接销售鲜奶,每吨可获利润500元,若制成酸奶销售,每吨可获利润1200元;若制成奶片销售,每吨可获利润2000元.方案一:尽可能多的制成奶片,其余直接销售鲜牛奶;方案二:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成;(1)你认为选择哪种方案获利最多,为什么?(2)本题解出之后,你还能提出哪些问题?若没解出,写出你存在的问题?5、两辆汽车从同一地点同时出发,沿着同一方向同速直线行驶,每车最多只能带24桶汽油,途中不能用别的油,每桶油可使一辆车前进60公里,两车都必须返回出发地点,但是可以不同时返回,两车相互可借用对方的油。为了使其中一车尽可能地远离出发地点,另一辆车应当在离出发地点多少公里地方返回?离出发地点最远的那辆车一共行驶了多少公里?什么是一元一次方程 一元一次方程指只含有一个未知数、未知数的最高次数为1且两边都为整式的等式。一元一次方程只有一个根。一元一次方程可以解决绝大多数的工程问题、行程问题、分配问题、盈亏问题、积分表问题、电话计费问题、数字问题。一元一次方程解法 1、去分母:在方程两边都乘以各分母的最小公倍数; 2、去括号:先去小括号,再去中括号,最后去大括号; 3、移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边;移项要变号 4、合并同类项:把方程化成ax=b(a≠0)的形式; 5、系数化成1。一元一次方程的历史 一元一次方程最早见于约公元前1600年的古埃及时期。公元820年左右,数学家花拉子米在《对消与还原》一书中提出了“合并同类项”、“移项”的一元一次方程思想。16世纪,数学家韦达创立符号代数之后,提出了方程的移项与同除命题。1859年,数学家李善兰正式将这类等式译为一元一次方程。
北有云溪2023-06-27 09:12:151

初一数学解一元一次方程【合并同类项与移项】练习题30道含答案

1)-3x=3-x/9 移项,-3x+x/9=3合并同类项,-26x/9=3系数化为1 ,x=-27/26(2)6y-3/4=4y+5/4 移项,6y-4y=3/4+5/4合并同类项,2y=2系数化为1,y=1(3)3x+4=x/3 移项,3x-x/3=-4合并同类项,8x/3=-4系数化为1, x=-3/2(4)-2x=2-x/6移项,-2x+x/6=2合并同类项,-11x/6=2系数化为1, x=-12/11(5)2.5y+10y=6.5y-3 移项,2.5y+10y-6.5y=-3合并同类项,6y=-3系数化为1,y=-1/2(6)1/2x-1=2/3x+3/2移项,1/2x-2/3x=1+3/2合并同类项,-x/6=5/2系数化为1,x=-15 (7)0.5x-0.7=6.5-1.3x移项,0.5x+1.3x=6.5+0.7合并同类项,1.8x=7.2系数化为1, x=4 .(8) 3x+5=4x+1解:(4-3)x=5-1 x=4 (9) 9-3y=5y+5解: (5+3)y=9-5 8y=4 y=1/2 (10) 3x=5x-4 解:(5-3)x=-4 x=-4
FinCloud2023-06-27 09:12:101

初一数学解一元一次方程【合并同类项与移项】练习题30道含答案 急需!!!!!!

题目?。。。。
LuckySXyd2023-06-27 09:12:103

说出下列定义:①数轴 ②一元一次方程

数轴:   规定了原点,正方向和单位长度的直线叫数轴.所有的实数都可以用数轴上的点来表示.也可以用数轴来比较两个实数的大小.   画一条水平直线,在直线上取一点表示0(叫做原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到右面的数轴.所以原点、单位长度、正方向是数轴的三要素. 利用数轴可以比较有理数的大小,数轴上从左往右的点表示的数就是按从小到大的顺序. 一元一次方程: 只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数是1,这样的方程叫做一元一次方程,通常形式是ax+b=0(a,b为常数,且a≠0).   通过化简,只含有一个未知数,且含有未知数的最高次项的次数是一的等式,叫一元一次方程.通常形式是ax+b=0(a,b为常数,且a≠0).一元一次方程属于整式方程,即方程两边都是整式.一元指方程仅含有一个未知数,一次指未知数的次数为1,且未知数的系数不为0.我们将ax+b=0(其中x是未知数,a、b是已知数,并且a≠0)叫一元一次方程的标准形式.这里a是未知数的系数,b是常数,x的次数必须是1.即一元一次方程必须同时满足4个条件:(1)它是等式;(2)分母中不含有未知数;(3)未知数最高次项为1; (4)含未知数的项的系数不为0.
西柚不是西游2023-06-27 08:33:561

解一元一次方程-合并同类项与移项的定义是什么?

等式的性质1 等式两边相加或相减同一个数或式子,结果仍相等。
NerveM 2023-06-26 09:29:542

如何使用excel计算出一元一次方程的结果?

先来看看用Excel求解一元一次方程的方法新建一个Excel文档,使用A1单元格放置未知数x,先什么都不填,使这个单元格保持空白。将x的系数10填入A3单元格,将等号左边的常数项-10填入B3单元格,把等号右边的常数项110填入C3单元格。将这些数填好后,在单元格D3中输入方程式左边的公式“=$A$1*A3+B3”,按一下回车键,这是可以看到D3单元格中会显示-10,由于A1单元格中现在没有数据,按0处理。 打开工具菜单,选择单变量求解选项,会弹出单变量求解对话框。目标单元格中默认输入了D3,这个单元格表示方程式等号左边的内容,在目标值后面的输入框中,输入110,也就是方程右边的值点击可变单元格输入框后面的按钮,在Excel工作表中选择表示未知数x的单元格A1。 再单击输入框后面的按钮,回到单变量求解对话框单击确定按钮现在方程的解x的值12已经填在A1单元格中了同时还弹出了单变量求解状态对话框怎么样?这就是用Excel求解一元一次方程的操作步骤,还挺简单的吧!你可以把这个文件存为一个模板文件以后解一元一次方程的时候打开这个文件替换相应位置的数字就可以了。
FinCloud2023-06-11 09:17:081

在EXCEL中我用单变量解一元一次方程结果值没出来却出现了#VALUE!这是怎么回事呀谁能帮助我解决这个问题

邮件已送,运用宏代码写的,请将你excel的宏开关打开。如有其它问题,请hi我
Chen2023-06-10 08:43:211

在EXCEL中我用单变量解一元一次方程结果值没出来却出现了#VALUE!这是怎么回事呀谁能帮助我解决这个问题

不会
善士六合2023-06-10 08:43:212

关于百分比的一元一次方程数学问题

设男生的平均分是X,则女生的平均分是[1+10%]XX[1+10%]+[1+10%]X*1=88*[1+1+10%]X=84男生的平均分是84分女生的是84*1.1=92.4分
Jm-R2023-05-29 09:45:351

关于折扣与利润 百分数的应用题 用一元一次方程解答

解:设刚才这件衣服,他卖了x美元;则这件衣服的进价是[x/(1+10℅)]美元;如果把进价压低10℅后,进价是[(1-10℅)×x/(1+10℅)]美元,再加上20℅的利润出售,卖价是(1+20℅)×[(1-10℅)×x/(1+10℅)]美元;25美分=(25/100)美元,根据题意,有方程:x-(1+20℅)×[(1-10℅)×x/(1+10℅)]=25/100x-1.2×0.9×x/1.1=0.25x-(54x/55)=0.25x/55=0.25x=55×0.25x=13.75答:刚才这件衣服,他卖了13.75美元。
Chen2023-05-27 09:52:451

一元一次方程中的“移项”有什么原则吗?

方程中移项的原则是“如果把方程中的某一项由等号的一侧移动到另一侧,则此项的正负性(正负号)也随之改变”【即 由正变负或由负变正】这样说很抽象,我给你举一个例子你就懂了:方程 2x-5=-3x+10如果把等号右边的-3x移动到等号的左边,那-3x就要变成+3x;同样,如果把左边的-5移动到右边,那么-5就要变成+5.原方程经过移项处理,得到2x+3x=10+55x=15x=3然而,为什么方程在移项时要变号呢?其实,方程移项过程中的变号并不是什么定理,而是人们在运算过程中总结的经验.还拿 2x-5=-3x+10来说解方程的全过程其实是一直在运用等式的原始定义,就像这么2x-5=-3x+10(2x-5)+5=(-3x+10)+52x=-3x+152x+3x=-3x+3x+155x=15x=3看到了吧?其实这才是解方程移项的最科学的解释——就是“方程两边都在添数”(这样说通俗一点,但绝对是不准确的说法,仅在你目前学习的知识范围内适用),只是后来人们发现,运算起来,按照移项的方式比较快捷,所以才以这些过程为基础,研究了移项的法则.
bikbok2023-05-22 18:13:411

一元一次方程中移项该怎么移,有没有什么法则

把方程两边都加上(或减去)同一个数或同一个整式,就相当于把方程中的某些项改变符号后,从方程的一边移到另一边,这样的变形叫做移项.注意:“移项""是指将方程的某一项从等号的左边移到右边或从右边移到左边,移项时要先变号后移项。“移项”四点通一、何谓移项例1解方程5x+2=7x-8.为了使方程化为ax=b的形式,我们就要把同类项合并,但它们又不在等号的同侧,如何合并?不妨我们利用等式的基本性质,在方程的两边都减去2,然后在方程的两边都减去7x,这样就得到:5x-7x=-8-2,然后再合并同类项就可以了.这里的2就改变符号移到了方程的右边,7x就改变符号移到了方程的左边,这种变形相当于把方程中的某一项改变符号后,从方程的一边移到另一边,这种变形叫做移项.我们还是先看上面的引例:解方程5x+2=7x-8.分析:为了使方程化为ax=b的形式,未知项可以移到方程的左边,已知项可以移到方程的右边,或者把未知项可以移到方程的右边,而把已知项移到方程的左边,于是我们根据移项的法则,可以得到下面两种解法.解法1:移项,得5x-7x=-8-2,合并同类项,得-2x=-10,系数化1,得:x=5.解法2:移项,得2+8=7x-5x,合并同类项,得10=2x,系数化1,得:x=5.(最后,口算验根.)比较一下两种解法,未知项移动的方向不同,但都能把方程化为最简形式ax=b,进而求出方程的解.例2解方程6-2x=5-3x.解:移项,得-2x+3x=5-6,合并同类项,得x=-1.总结:通过以上两个例子,我们看到:移项要变号!不移的项不得变号,移项时,左右两边先写原来不移的项,再写移来的项,希望同学们注意!
黑桃花2023-05-22 18:13:401

一元一次方程移项是什么?

一元一次方程移项意思:把方程两边都加上(或减去)同一个数或同一个整式,就相当于把方程中的某些项改变符号后,从方程的一边移到另一边,这样的变形叫做移项。方程移项原则:当把一个数从等号的一边移到另一边去的时候,要把这个数原来前面的运算符号改成和它相反的运算符号,比如“+”变成“—”,或是“×”变成“÷”。移项的注意事项1、移项是为了使方程化为ax=b的形式,就要把同类项合并。在移项的过程中不要漏写某一项,去括号后方程两边共有六项,移项后还应是六项。2、移项的根据“”移项的原理就是根据等式的基本性质1,在方程的两边都加上(或减去)同一个代数式。一般情况下,以等号为界,把含有未知数的项都移到等号的左边,把不含未知数的项都移到等号的右边。3、怎样进行移项“”未知项可以移到方程的左边,已知项可以移到方程的右边。4、移项要变号,不移的项不得变号,移项时,左右两边先写原来不移的项,再写移来的项。
铁血嘟嘟2023-05-22 18:13:391

一元一次方程的移项怎么移,最好有例子

移项变号比如a+b-c=d+e-f如果要把a移到右边去之前a前边是+即+a那么移到右边就得变成-即-a移后得b-c=d+e-f-a如果要把-c也移过去那么-c变号后就是+c移后得b=d+e-f-a+c移动项原理的等式两边同时加减一个同样大小的数则等式依然成立移a的时候可以看作是等式两边同时减去a移c的时候可以看作是等式两边同时加上c
gitcloud2023-05-22 18:13:372

一元一次方程的移项怎么移,最好有例子

把方程两边都加上(或减去)同一个数或同一个整式,就相当于把方程中的某些项改变符号后,从方程的一边移到另一边,这样的变形叫做移项.注意:“移项”是指将方程的某一项从等号的左边移到右边或从右边移到左边,移项时要先变号后移项.例:x+3=4把左边的正3移到右边就是负3x=4-3x=1或:x+3=4两边都减3,x+3-3=4-3x=1
Jm-R2023-05-22 18:13:371

一元一次方程6种解法

一元一次方程6种解法是一般方法、求根公式法、去括号法、约分方法、比例性质法、图像法。一、一般方法1、去分母:去分母是指等式两边同时乘以分母的最小公倍数。2、去括号:括号前是“+",把括号和它前面的"+”去掉后,原括号里各项的符号都不改变。括号前是”-",把括号和它前面的"-“去掉后,原括号里各项的符号都要改变。3、移项:把方程两边都加上同一个数或同一个整式,就相当于把方程中的某些项改变符号后,从方程的一边移到另一边,这样的变形叫做移项。4、合并同类项:通过合并同类项把一元一次方程式化为最简单的形式:ax=b。5、系数化为1:设方程经过恒等变形后最终成为 ax=b 型,那么过程ax=b→x=b/a叫做系数化为1。二、求根公式法对于关于x的一元一次方程ax+b=0,其求根公式为:x=-b/a。三、去括号方法1、方程两边同时乘以一个数,去掉方程的括号。2、移项。3、合并同类项。4、系数化为1。四、约分方法五、比例性质法根据比例的基本性质,去括号,移项,合并同类项,系数化为1。六、图像法对于关于x的一元一次方程ax+b=0,可以通过做出一次函数f(x)=ax+b来解决。一元一次方程ax+b=0的根就是它所对应的一次函数f(x)=ax+b函数值为0时,自变量x的值,即一次函数图像与x轴交点的横坐标。
wpBeta2023-05-20 17:38:001

丢番图的一生(用一元一次方程解)

请你把题目打出来,虽然我对这题目有一点影响,但我包括其他网友都不可能记题目.所以麻烦你把题目打出来,我记得答案好像是84岁.
大鱼炖火锅2023-05-19 20:16:392

丢番图的一生(用一元一次方程解)

设丢番图的年龄为X岁 (x-4)-(x/6+x/12+x/7+5)=x/2 解得x=84 所以丢番图的年龄为84岁
CarieVinne 2023-05-19 20:16:381

希腊数学家丢番图 速度 一元一次方程,不能解,直接设的结婚年龄的速度速度 !!高分啊!

活了x年(1/6+1/12+1/7+1/2)x+5+4=x所以x=84 (1/6+1/12+1/7)x=33所以33岁结婚
苏萦2023-05-19 20:16:365
 首页 上一页  1 2 3 4