On虽为一真类,但<On,<>;具有性质:On的任一非空子类都有最小元。因此,要想证明每一序数都具有性质φ,即可应用超限归纳原理:对于任给的一序数β,若每一比β小的序数α都具有性质φ则β亦具有性质φ,那么对所有的序数都具有性质φ。在定义序数运算(加、乘、幂)时,需要用超限递归定理:若G是一运算,则有一运算F,使得对每一序数α,都有F(α)=G(α)。而这一定理的证明要用到替换公理。有了替换公理还可以得到极限序数ω+ω的存在性。如果先将正整数从小排到大,再把非正整数从大排到小而成一序列:1,2,3,…,0,-1,-2,…。从而全体整数就良序了,其序型即为ω+ω。事实上,任一良序集〈ω,<;〉,都有惟一的序数α使得〈w,<;〉序同构于〈α,∈〉。因此,就可以把良序集按序同构来分类,并将同属于一类的称为具有同一序型的良序集。而序数就可定义作为同构的良序集的代表。依此,可以定义序数的运算。例如,序数的加法可以定义如下:若α,β为序数,γ为极限序数β+0=β,β+s(α)=s(β+α),β+γ(β+α),即用关于α的超限归纳原理来定义β+α。同样地可以定义序数的积β.α和幂βα,以及相应的运算性质,如结合律等。 可以证明:替换公理是独立于其他公理的。
mlhxueli
2023-05-19 20:16:251