排列组合的公式咋计算?
,从n个中取m个排一下,有n(n-1)(n-2)...(n-m+1)种,即n!/(n-m)!,从n个中取m个,相当于不排,就是n!/[(n-m)!m!]北营2023-07-01 13:32:161
用排列组合怎么计算概率?
使用排列组合来计算概率需要以下步骤:1. 确定事件的样本空间,即所有可能发生的结果。2. 确定事件的可能性数,即有几种可能的事件出现的结果。3. 使用排列或组合公式计算事件发生的可能性。4. 将结果除以样本空间的大小,即所有可能的结果数。例如,假设有一副扑克牌,从中抽取5张牌,计算出一副顺子的概率。1. 样本空间为从52张牌中抽取5张的所有可能性,即C(52,5)。2. 顺子的可能性数为10,因为从2到A共有10种顺子的组合。3. 使用组合公式,计算10种顺子的可能性数,即C(10,1)。4. 将10除以C(52,5),即可得到一副顺子出现的概率。阿啵呲嘚2023-07-01 13:32:162
排列组合c怎么算
排列组合c怎么算如下:排列A(n,m)=n×(n-1).(n-m+1)=n!/(n-m)!(n为下标,m为上标,以下同);组合C(n,m)=P(n,m)/P(m,m)=n!/m!(n-m)!排列组合公式a和c计算方法解析排列A(n,m)=n×(n-1).(n-m+1)=n!/(n-m)例如:A(4,2)=4!/2!=4x3=12C(n,m)=P(n,m)/P(m,m)=n!/m!(n-m)!例如:C(4,2)=4!/(2!x2!)=4x3/(2x1)=6(/符号可代表除号也可代表分数的分数线)C的计算:下标的数字乘以上标的数字的个数,且每个数字都要-1.再除以上标的阶乘.如:C53(下标是5,上标是3)=(5X4X3)/3X2X1.3X2X1(也就是3的阶乘)A的计算:跟C的第一步一样.就是不用除以上标的阶乘.如:A=4X3。排列组合的定义排列组合是组合学最基本的概念。所谓排列,就是指从给定个数的元素中取出指定个数的元素进行排序。组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。排列组合的中心问题是研究给定要求的排列和组合可能出现的情况总数。排列组合与古典概率论关系密切。排列组合的发展历程虽然数学始于结绳计数的远古时代,由于那时社会的生产水平的发展尚处于低级阶段,谈不上有什么技巧。随着人们对于数的了解和研究,在形成与数密切相关的数学分支的过程中,如数论、代数、函数论以至泛函的形成与发展,逐步地从数的多样性发现数数的多样性,产生了各种数数的技巧。北境漫步2023-07-01 13:32:161
排列组合怎么算?
排列A(n,m)=n×(n-1).(n-m+1)=n!/(n-m)!(n为下标,m为上标,以下同)组合C(n,m)=P(n,m)/P(m,m) =n!/m!(n-m)!例如:A(4,2)=4!/2!=4*3=12C(4,2)=4!/(2!*2!)=4*3/(2*1)=6排列组合是组合学最基本的概念。所谓排列,就是指从给定个数的元素中取出指定个数的元素进行排序。组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。排列组合的中心问题是研究给定要求的排列和组合可能出现的情况总数。 排列组合与古典概率论关系密切。排列的定义:从n个不同元素中,任取m(m≤n,m与n均为自然数,下同)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 A(n,m)表示。gitcloud2023-07-01 13:32:151
排列组合A几几C几几的,有什么区别,都怎么计算来的?
举个例子,有ABCD4个人选2个人出来参加2项活动,就是A4.2,就是4个里面挑2个出来,要排顺序,AB和BA是不同的结果,计算方法就是,4X3=12,假如ABCD4个人选2个参加活动,AB和BA是一样的,不用排顺序的,就是C4.2,4个人里面选2人,4X3/1X2=6Chen2023-07-01 13:32:137
排列组合公式谁知道,就是c几几的,怎么算
就打成c(n。c(n大写字母c.*m],2)=10种,如c(5,下标n!(n-m).*(n-m+1)/.m))表示从n个元素中取出m个元素的不同的方法数.,上标m;[1*2*,不同的选法有c(5,(这里打不出上下标!/,m)的计算方法是c(n;[1*2]=10..,2)=[5*4]/,m)=n;[m.!]=n*(n-1)*。如从5个人中选2人去开会wpBeta2023-07-01 13:32:132
排列组合怎么算 详解排列组合的计算方法?
1、概率论:排列组合在概率论中用于计算事件发生的可能性。组合的计算方法可以使用以下公式:三、排列组合的应用4、经济学:排列组合在经济学中用于研究市场竞争和产业结构。排列是指从一组元素中取出若干个元素,按照一定的顺序进行排列的方法。例如,从1、3中取出两个元素进行排列,可以得到以下6种排列方式:统计学:排列组合在统计学中用于计算样本空间的大小。瑞瑞爱吃桃2023-07-01 13:32:132
排列组合中A和C怎么算啊
同学,这个问题重在理解A是指排列,排列就像排队一样,对象是有顺序的。C是指组合,组合就像蛋炒饭和饭炒蛋,对象是没有顺序的。由于其意义不同,计算的方法接近:A(x,y)=y!/(y-x)!C(x,y)=y!/【(y-x)!*x!】其中y>=x。深入的理解概念是从逻辑上解决理科问题的好方法,什么是深入呢?看你自己的理解啦。人类地板流精华2023-07-01 13:32:135
排列组合基本公式是怎么算的?比如p43 c43 解答步骤请写得详细点
A_4^3=4*3*2=24C_4^3=A_4^3/3!=4meira2023-07-01 13:32:122
排列组合怎么计算?
排列组合的公式是排列的定义及其计算公式:从n个不同元素中,任取m(m≤n,m与n均为自然数,下同)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 A(n,m)表示。A(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)! 此外规定0!=1(n!表示n(n-1)(n-2)...1,也就是6!=6x5x4x3x2x1组合的定义及其计算公式:从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数。用符号 C(n,m) 表示。C(n,m)=A(n,m)/m!;C(n,m)=C(n,n-m)。(n≥m)其他排列与组合公式 从n个元素中取出m个元素的循环排列数=A(n,m)/m!=n!/m!(n-m)!. n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为 n!/(n1!×n2!×...×nk!). k类元素,每类的个数无限,从中取出m个元素的组合数为C(m+k-1,m)。人类地板流精华2023-07-01 13:32:121
排列组合C怎么求?
排列组合中的C和A计算方法如下:排列:A(n,m)=n×(n-1)...(n-m+1)=n!/(n-m)!(n为下标,m为上标,以下同)组合:C(n,m)=P(n,m)/P(m,m) =n!/m!(n-m)!例如:A(4,2)=4!/2!=4*3=12C(4,2)=4!/(2!*2!)=4*3/(2*1)=6排列组合注意:对于某几个要求相邻的排列组合问题,可将相邻的元素看做一个“元”与其他元素排列,然后对“元”的内部进行排列。注意事项: 对于某几个元素不相邻的排列问题,可先讲其他元素排好,再将不相邻的元素在已排列好的元素之间空隙中及两端插入即可。善士六合2023-07-01 13:32:121
排列组合怎么计算?
排列组合计算公式如下:1、从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 A(n,m)表示。2、从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数。用符号 C(n,m) 表示。排列就是指从给定个数的元素中取出指定个数的元素进行排序。组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。排列组合的中心问题是研究给定要求的排列和组合可能出现的情况总数。 排列组合与古典概率论关系密切。扩展资料排列组合的发展历程:根据组合学研究与发展的现状,它可以分为如下五个分支:经典组合学、组合设计、组合序、图与超图和组合多面形与最优化。由于组合学所涉及的范围触及到几乎所有数学分支,也许和数学本身一样不大可能建立一种统一的理论。然而,如何在上述的五个分支的基础上建立一些统一的理论,或者从组合学中独立出来形成数学的一些新分支将是对21世纪数学家们提出的一个新的挑战。参考资料:百度百科—排列组合墨然殇2023-07-01 13:32:111
怎样计算排列组合?
排列组合计算公式如下:1、从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 A(n,m)表示。2、从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数。用符号 C(n,m) 表示。排列就是指从给定个数的元素中取出指定个数的元素进行排序。组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。排列组合的中心问题是研究给定要求的排列和组合可能出现的情况总数。 排列组合与古典概率论关系密切。扩展资料排列组合的发展历程:根据组合学研究与发展的现状,它可以分为如下五个分支:经典组合学、组合设计、组合序、图与超图和组合多面形与最优化。由于组合学所涉及的范围触及到几乎所有数学分支,也许和数学本身一样不大可能建立一种统一的理论。然而,如何在上述的五个分支的基础上建立一些统一的理论,或者从组合学中独立出来形成数学的一些新分支将是对21世纪数学家们提出的一个新的挑战。参考资料:百度百科—排列组合韦斯特兰2023-07-01 13:32:111
排列组合的计算公式是什么?
排列组合A(n,m)和的 C(n,m)的计算公式分别如下图所示:排列计算公式 :从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 p(n,m)表示。 p(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(规定0!=1)计算举例如下图所示:扩展资料:1、组合数,是指从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数。2、排列数,就是从n个不同元素中,任取m(m≤n)个元素(被取出的元素各不相同),按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。参考资料:百度百科_排列数公式阿啵呲嘚2023-07-01 13:32:111
排列组合的计算方法是什么?
排列组合计算公式如下:1、从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 A(n,m)表示。2、从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数。用符号 C(n,m) 表示。排列就是指从给定个数的元素中取出指定个数的元素进行排序。组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。排列组合的中心问题是研究给定要求的排列和组合可能出现的情况总数。 排列组合与古典概率论关系密切。扩展资料排列组合的发展历程:根据组合学研究与发展的现状,它可以分为如下五个分支:经典组合学、组合设计、组合序、图与超图和组合多面形与最优化。由于组合学所涉及的范围触及到几乎所有数学分支,也许和数学本身一样不大可能建立一种统一的理论。然而,如何在上述的五个分支的基础上建立一些统一的理论,或者从组合学中独立出来形成数学的一些新分支将是对21世纪数学家们提出的一个新的挑战。参考资料:百度百科—排列组合肖振2023-07-01 13:32:101
c怎么算排列组合
组合数公式C=C(n,m)=A(n,m)/m。组合数公式是指从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合,从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做n个不同元素中取出m个元素的组合数。用符号c(n,m) 表示。组合公式的推导是由排列公式去掉重复的部分而来的,排列公式是建立一个模型,从n个不相同元素中取出m个排成一列(有序),第一个位置可以有n个选择,第二个位置可以有n-1个选择(已经有1个放在前一个位置),则同理可知第三个位置可以有n-2个选择,以此类推第m个位置可以有n-m+1个选择。排列组合例题某城市有4条东西街道和6条南北的街道,街道之间的间距相同,若规定只能向东或向北两个方向沿图中路线前进,则从M到N有多少种不同的走法?分析:对实际背景的分析可以逐层深入:从M到N必须向上走三步,向右走五步,共走八步;每一步是向上还是向右,决定了不同的走法;事实上,当把向上的步骤决定后,剩下的步骤只能向右;从而,任务可叙述为:从八个步骤中选出哪三步是向上走,就可以确定走法数。∴ 本题答案为:C(8,3)=56。大鱼炖火锅2023-07-01 13:32:091
排列组合A几几,C几几的怎么算比如A32?
A(3,2)=3×2,写的时候等号左边3是下标,2是上标,等号右边从下标3开始,连续乘上标2个数字,每个数字都比前面小1。C(3,2)=(3×2)÷(2×1)=3,或者C(3,2)=3!÷2!÷(3-2)!=(3×2)÷(2×1)÷1=3,写的时候等号左边3是下标,2是上标,等号右边的分子从下标3开始,连续乘上标2个数字,每个数字都比前面小1,分母从上标2开始,连续乘上标2个数字,每个数字都比前面小1;或者用上标的阶乘,除以下标的阶乘,再除以上标与下标的差的阶乘。Ntou1232023-07-01 13:32:091
排列组合怎样算
排列:A(m,n)=n(n-1)(n-2)...(n-m+1) 【A(m,n)表示从n个元素中取m个元素按一定次序的排列】。【m---上标,n下标】,A(m,n) ---又成为选排列。A(m,n)=n!/(n-m)!【n!---n的阶乘,即 n*n*n...】。2.A(m,m)=m!【在m个元素中只考虑元素的次序的排列,即全排列】。组合:C(m,n)=A(m,n)/A(m,m)=n!/m!(n-m)!.【从n个元素中取m个元素的组合】C(m,n)=C(n-m,n)【从n个元素中取m个元素的组合=从n个元素中取( n-m)个元素的组合】3.C(m,n+1)=C(m,n)+C(m-1,n)。4. k*C(k,n)=n*C(k-1,n-1)。另外,规定:C(0,n)=1,0!=1。拓展资料:排列组合的计算公式是:排列数,从n个中取m个排一下,有n(n-1)(n-2)...(n-m+1)种,即n/(n-m)组合数,从n个中取m个,相当于不排,就是n/[(n-m)m]。u投在线2023-07-01 13:32:081
排列组合怎么计算
在计算排列组合时,可以使用排列公式和组合公式进行计算。排列是指从给定的n个元素中选取r个元素进行排列,其公式为:P(n,r) = n! / (n-r)!其中,n!表示n的阶乘,即n!= n*(n-1)*(n-2)*...*2*1。组合是指从给定的n个元素中选取r个元素进行组合,其公式为:C(n,r) = n! / (r!(n-r)!)下面以计算排列和组合为例进行说明:例1:计算从8个人中选取3个人进行排列的可能性。解:根据排列公式P(n,r),可以得到:P(8,3) = 8! / (8-3)! = 8! / 5! = (8*7*6*5*4*3*2*1) / (5*4*3*2*1) = 336例2:计算从8个人中选取3个人进行组合的可能性。解:根据组合公式C(n,r),可以得到:C(8,3) = 8! / (3!(8-3)!) = 8! / (3!*5!) = (8*7*6*5*4*3*2*1) / (3*2*1*5*4*3*2*1) = 56排列和组合的计算方法可以直接应用于其他需要计算的情况,只需要将具体的值代入相应的公式即可。韦斯特兰2023-07-01 13:32:082
排列组合的计算公式是怎样的?要详细点的
排列 公式 是 用A来表示的 , 老版教材 是用P的An m(m是上标) =n的阶乘/(n-m)的阶乘组合的公式 是 用C来表示 的http://baike.baidu.com/view/738955.htm排列:从n个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列. 组合:从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从 n个不同元素中取出m个元素的一个组合. 举个例子,从甲乙丙丁 4人中选择3人如果是排列的话,甲乙丙 与 甲丙乙 乙丙甲 乙甲丙 丙甲乙 丙乙甲 是不相同的 ,就是说要考虑先后顺序 A4 (3是上标) =24如果是组合的话,甲乙丙 与 甲丙乙 乙丙甲 乙甲丙 丙甲乙 丙乙甲 都是 甲乙丙这3个人,不考虑先后顺序, C4(3 上标 )4种方法小菜G的建站之路2023-07-01 13:32:081
排列组合的计算方法有哪些?
排列组合计算方法如下:排列也可以表示成P排列A(n,m)=n×(n-1).(n-m+1)=n!/(n-m)!(n为下标,m为上标,以下同)组合C(n,m)=P(n,m)/P(m,m) =n!/m!(n-m)!;例如:A(4,2)=4!/2!=4*3=12C(4,2)=4!/(2!*2!)=4*3/(2*1)=6概率中的C和P区别:1、表示不同C表示组合方法,比如有3个人甲乙丙,抽出2个人去参加活动的方法有C(3,2)=3种,分别是甲乙、甲丙、乙丙,这个不具有顺序性,只有组合的方法。P表示排列方法,表示一些物体按顺序排列起来,总共的方法是多少。2、性质不同公式P是指排列,从N个元素取R个进行排列(即排序)。公式C是指组合,从N个元素取R个,不进行排列(即不排序)。扩展资料排列组合的难点:1、从千差万别的实际问题中抽象出几种特定的数学模型,需要较强的抽象思维能力;2、限制条件有时比较隐晦,需要我们对问题中的关键性词(特别是逻辑关联词和量词)准确理解;3、计算手段简单,与旧知识联系少,但选择正确合理的计算方案时需要的思维量较大;4、计算方案是否正确,往往不可用直观方法来检验,要求我们搞清概念、原理,并具有较强的分析能力。康康map2023-07-01 13:32:071
排列组合的算法和阶乘的公式
从5个不同的小球里任取三个,共有多少种取法? 属于组合问题,C(3,5)=(5*4*3)/(3*2*1)=10种 从数字1、2、3、4、5中任取三个数组成一个新的三位数,共可组成多少个不同的三位数? 属于排列问题,方法一,P(3,5)=5*4*3=60个 方法二,C(3,5)*P(3,3)=10*6=60个 “!”表示阶乘,5!=5*4*3*2*1=120,3!=3*2*1=6北境漫步2023-07-01 13:15:041
排列组合的算法和阶乘的公式
36的阶乘是这样子表示的36!=1*2*3*……*34*35*36你用上面那个除以35那么35是不是就是约掉啦?那么就变成1*2*3*……*31*32*33*34*36把36单独写出来左边1到34还是齐全的对不对?那么它就是34的阶乘所以答案是36(34!)(*可省略)瑞瑞爱吃桃2023-07-01 13:14:572
排列组合的算法和阶乘的公式
从5个不同的小球里任取三个,共有多少种取法? 属于组合问题,C(3,5)=(5*4*3)/(3*2*1)=10种 从数字1、2、3、4、5中任取三个数组成一个新的三位数,共可组成多少个不同的三位数? 属于排列问题,方法一,P(3,5)=5*4*3=60个 方法二,C(3,5)*P(3,3)=10*6=60个 “!”表示阶乘,5!=5*4*3*2*1=120,3!=3*2*1=6余辉2023-07-01 13:14:561
排列组合的算法和阶乘的公式
Chen2023-07-01 13:14:421
一道数学题(排列组合)
2^6-1=63种每个焊点都有脱落和不脱落两种可能,所以一共有2^6=64种。其中都不脱落的那一种情况不在所求范围,所以所求为64-1=63苏州马小云2023-06-30 08:46:462
排列组合
多做多练 自然而然就能学好 多做点题规律就出来了 最好买本重难点手册看 对自己和很有帮助 里边的题都懂了的话就不会再有问题了铁血嘟嘟2023-06-30 08:46:454
排列组合,6人分乘两辆汽车,每辆最多坐4人,为什么C63*C33时要除以A22,而C64*C22或C62*C44时不需要
因为此两辆汽车不加区分,所以ABCDEF6人中选ABC3人坐甲车与选DEF选甲车从选法上看似乎是两种不同的选法,但因为甲乙两车不加区分,所以这二种是本质相同的选法。所以就C63*C33/2;而另一方案二车分别坐4人和2人,则不存在此问题,所以C64*C22或C62*C44时不需要除以2。所以,排列组合,6人分乘两辆汽车,每辆最多坐4人,共有C63*C33/2+64*C22种方案。真颛2023-06-30 08:46:371
排列组合C19C82C73C64的结果是多少 RT 急.
C19C82C73C64 =9*(8*7/2!)(7*6*5/3!)(6*5*4*3/4!) =9*4*7*7*5*5*3 =4*27*49*25 =27*49*100 =132300北境漫步2023-06-30 08:46:281
排列组合C19C82C73C64的结果是多少
C19C82C73C64=9*(8*7/2!)(7*6*5/3!)(6*5*4*3/4!)=9*4*7*7*5*5*3=4*27*49*25=27*49*100=132300CarieVinne 2023-06-30 08:46:281
c16 4怎么算 排列组合
根据排列组合的计算公式可知 C(16,14)=C(16,16-14) =C(16,2) =16×15/2! =120Chen2023-06-30 08:46:261
数学中的排列组合问题:要有具体的算式C62=C64=?P62=?P64=?
15 30 360阿啵呲嘚2023-06-30 08:46:233
排列组合,6人分乘两辆汽车,每辆最多坐4人,为什么C63*C33时要除以A22,而C64*C22或C62*C44时不需要
arsenal0729已经答得很好了。你6选4时就不存在重复了。FinCloud2023-06-30 08:46:173
关于排列组合的一个小问题
见面如下解答gitcloud2023-06-30 08:46:132
排列组合的c64等于多少
就是C62 6*5/2=15拌三丝2023-06-30 08:46:121
排列组合的c64等于多少
15无尘剑 2023-06-30 08:46:115
易语言排列组合问题!
牛掰啊 真心牛掰啊 牛掰到爆了啊豆豆staR2023-06-10 09:13:072
在编辑规范中,排列组合中的公式表达中P和C用正体还是斜体?希望有根据的回答解释,谢谢!
我在教材中看到的大多都是正体,不过最近发现好像国外更倾向于用一个大括号()中间放上下两个数来表示组合数C肖振2023-06-10 07:58:222
3个变量3个变量排列组合叫什么方法
12*7*2=168ardim2023-06-09 08:09:281
哪位有排列组合概率方面的公式
1.排列及计算公式 从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 p(n,m)表示.p(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(规定0!=1).2.组合及计算公式 从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号 c(n,m) 表示.c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m); 3.其他排列与组合公式 从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!.n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为 n!/(n1!*n2!*...*nk!).k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m).排列(Pnm(n为下标,m为上标)) Pnm=n×(n-1).(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标) =n!;0!=1;Pn1(n为下标1为上标)=n 组合(Cnm(n为下标,m为上标)) Cnm=Pnm/Pmm ;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标) =1 ;Cn1(n为下标1为上标)=n;Cnm=Cnn-mgitcloud2023-05-23 12:57:542
排列组合的发展历程
排列组合是一门数学分支,是研究有限元素的选择排列和组合形式的方法。它的发展可追溯到古希腊的数学家欧几里得。以下是排列组合的发展历程的概述:1. 古希腊数学家欧几里得在其著作《几何原本》中,首次提出了排列组合问题。他考虑了对于一组元素,有多少种不同的排列方式。2. 17世纪,古英国学者伯努利提出了二项式定理,即(a+b)^n的展开式中,各项系数所构成的二项式系数表。3. 18世纪,古法国数学家蒲丰首次系统地将排列组合发展成独立学科,并将其定名为“组合学”。4. 19世纪,中法双方数学家大量发表文章,推进了排列组合的研究。古法国数学家皮卡尔在他的著作《组合学与无限理论》中,详细介绍了排列组合的研究进展。5. 20世纪,排列组合被视为完整的数学分支,并被广泛应用于各个领域,如统计学、信息论、计算机科学等。总体而言,排列组合的发展历程在数学史上占据了重要地位。随着时代的发展,排列组合不断被应用于各个领域,并为人们提供了解决问题的有效途径。肖振2023-05-23 12:57:442
排列组合基础知识请赐教
排列组合排列组合是组合学最基本的概念。所谓排列,就是指从给定个数的元素中取出指定个数的元素进行排序。组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。排列组合的中心问题是研究给定要求的排列和组合可能出现的情况总数。 排列组合与古典概率论关系密切。虽然数学始于结绳计数的远古时代,由于那时社会的生产水平的发展尚处于低级阶段,谈不上有什么技巧。随着人们对于数的了解和研究,在形成与数密切相关的数学分支的过程中,如数论、代数、函数论以至泛函的形成与发展,逐步地从数的多样性发现数数的多样性,产生了各种数数的技巧。同时,人们对数有了深入的了解和研究,在形成与形密切相关的各种数学分支的过程中,如几何学、拓扑学以至范畴论的形成与发展,逐步地从形的多样性也发现了数形的多样性,产生了各种数形的技巧。近代的集合论、数理逻辑等反映了潜在的数与形之间的结合。而现代的代数拓扑和代数几何等则将数与形密切地联系在一起了。这些,对于以数的技巧为中心课题的近代组合学的形成与发展都产生了而且还将会继续产生深刻的影响。由此观之,组合学与其他数学分支有着必然的密切联系。它的一些研究内容与方法来自各个分支也应用于各个分支。当然,组合学与其他数学分支一样也有其独特的研究问题与方法,它源于人们对于客观世界中存在的数与形及其关系的发现和认识。例如,中国古代的《易经》中用十个天干和十二个地支以六十为周期来记载月和年,以及在洛书河图中关于幻方的记载,是人们至今所了解的最早发现的组合问题甚或是架构语境学。于11和12世纪间,贾宪就发现了二项式系数,杨辉将它整理记载在他的《续古抉奇法》一书中。这就是中国通常称的杨辉三角。事实上,于12世纪印度的婆什迦罗第二也发现了这种组合数。13世纪波斯的哲学家曾讲授过此类三角。而在西方,布莱士·帕斯卡发现这个三角形是在17世纪中期。这个三角形在其他数学分支的应用也是屡见不鲜的。同时,帕斯卡和费马均发现了许多与概率论有关的经典组合学的结果。因此,西方人认为组合学开始于17世纪。组合学一词是德国数学家莱布尼茨在数学的意义下首次应用。也许,在那时他已经预感到了其将来的蓬勃发展。然而只有到了18世纪欧拉所处时代,组合学才可以说开始了作为一门科学的发展,因为那时,他解决了柯尼斯堡七桥问题,发现了多面体(首先是凸多面体,即平面图的情形)的顶点数、边数和面数之间的简单关系,被人们称为欧拉公式。甚至,当今人们所称的哈密顿圈的首创者也应该是欧拉。这些不但使欧拉成为组合学的一个重要组成部分——图论而且也成为占据现代数学舞台中心的拓扑学发展的先驱。同时,他对导致当今组合学中的另一个重要组成部分——组合设计中的拉丁方的研究所提出的猜想,人们称为欧拉猜想, 直到1959年才得到完全的解决。于19世纪初,高斯提出的组合系数,今称高斯系数,在经典组合学中也占有重要地位。同时,他还研究过平面上的闭曲线的相交问题,由此所提出的猜想称为高斯猜想,它直到20世纪才得到解决。这个问题不仅贡献于拓扑学,而且也贡献于组合学中图论的发展。同在19世纪,由乔治·布尔发现且被当今人们称为布尔代数的分支已经成为组合学中序理论的基石。当然,在这一时期,人们还研究其他许多组合问题,它们中的大多数是娱乐性的。20世纪初期,庞加莱联系多面体问题发展了组合学的概念与方法,导致了近代拓扑学从组合拓扑学到代数拓扑学的发展。于20世纪的中、后期,组合学发展之迅速也许是人们意想不到的。首先,于1920年费希尔(Fisher,R.A.)和耶茨(Yates,F.)发展了实验设计的统计理论,其结果导致后来的信息论,特别是编码理论的形成与发展.于1939年,坎托罗维奇发现了线性规划问题并提出解乘数法。于1947年丹齐克(Dantzig,G.B.)给出了一般的线性规划模型和理论,他所创立的单纯形方法奠定了这一理论的基础,阐明了其解集的组合结构。直到今天它仍然是应用得最广泛的数学方法之一。这些又导致以网络流为代表的运筹学中的一系列问题的形成与发展。开拓了人们目前称为组合最优化的一个组合学的新分支。在20世纪50年代,中国也发现并解决了一类称为运输问题的线性规划的图上作业法,它与一般的网络流理论确有异曲同工之妙。在此基础上又出现了国际上通称的中国邮递员问题。另一方面,自1940年以来,生于英国的塔特在解决拼方问题中取得了一系列有关图论的结果,这些不仅开辟了现今图论发展的许多新研究领域,而且对于20世纪30年代,惠特尼提出的拟阵论以及人们称之为组合几何的发展都起到了核心的推动作用。应该特别提到的是在这一时期,随着电子技术和计算机科学的发展愈来愈显示出组合学的潜在力量。同时,也为组合学的发展提出了许多新的研究课题。例如,以大规模和超大规模集成电路设计为中心的计算机辅助设计提出了层出不穷的问题。其中一些问题的研究与发展正在形成一种新的几何,人们称之为组合计算几何。关于算法复杂性的究,自1961年库克(Cook,S.A.)提出NP完全性理论以来,已经将这一思想渗透到组合学的各个分支以至数学和计算机科学中的一些分支。近20年来,用组合学中的方法已经解决了一些即使在整个数学领域也是具有挑战性的难题。例如,范·德·瓦尔登于1926年提出的关于双随机矩阵积和式猜想的证明;希伍德于1890年提出的曲面地图着色猜想的解决;著名的四色定理的计算机验证和扭结问题的新组合不变量发现等。在数学中已经或正在形成着诸如组合拓扑、组合几何、组合数论、组合矩阵论、组合群论等与组合学密切相关的交叉学科。此外,组合学也正在渗透到其他自然科学以及社会科学的各个方面,例如,物理学、力学、化学、生物学、遗传学、心理学以及经济学、管理学甚至政治学等。根据组合学研究与发展的现状,它可以分为如下五个分支:经典组合学、组合设计、组合序、图与超图和组合多面形与最优化.由于组合学所涉及的范围触及到几乎所有数学分支,也许和数学本身一样不大可能建立一种统一的理论.然而,如何在上述的五个分支的基础上建立一些统一的理论,或者从组合学中独立出来形成数学的一些新分支将是对21世纪数学家们提出的一个新的挑战。在中国当代的数学家中,较早地在组合学中的不同方面作出过贡献的有 华罗庚、 吴文俊、 柯召、 万哲先、 张里千和 陆家羲等.其中,万哲先和他领导的研究组在有限几何方面的系统工作不仅对于组合设计而且对于图的对称性的研究都有影响.陆家羲的有关不交斯坦纳三元系大集的一系列的文章不仅解决了组合设计方面的一个难题,而且他所创立的方法对于其后的研究者也产生了和正产生着积极的作用。此外,在八卦中,亦运用到了排列组合。排列的定义:从n个不同元素中,任取m(m≤n,m与n均为自然数,下同)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 A(n,m)表示。计算公式: 此外规定0!=1(n!表示n(n-1)(n-2)...1,也就是6!=6x5x4x3x2x1 组合的定义:从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数。用符号 C(n,m) 表示。计算公式:基本计数原理⑴加法原理和分类计数法⒈加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+m3+…+mn种不同方法。⒉第一类办法的方法属于集合A1,第二类办法的方法属于集合A2,……,第n类办法的方法属于集合An,那么完成这件事的方法属于集合A1UA2U…UAn。⒊分类的要求 :每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)。⑵乘法原理和分步计数法⒈ 乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×m3×…×mn种不同的方法。⒉合理分步的要求任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同。3.与后来的离散型随机变量也有密切相关。下面给出一些例题:【例1】 从1、2、3、……、20这二十个数中任取三个不同的数组成等差数列,这样的不同等差数列有多少个?分析:首先要把复杂的生活背景或其它数学背景转化为一个明确的排列组合问题。设a,b,c成等差,∴ 2b=a+c,可知b由a,c决定,又∵ 2b是偶数,∴ a,c同奇或同偶,即:分别从1,3,5,……,19或2,4,6,8,……,20这十个数中选出两个数进行排列,由此就可确定等差数列,A(10,2)*2=90*2,因而本题为180。【例2】 某城市有4条东西街道和6条南北的街道,街道之间的间距相同,若规定只能向东或向北两个方向沿图中路线前进,则从M到N有多少种不同的走法?分析:对实际背景的分析可以逐层深入:(一)从M到N必须向上走三步,向右走五步,共走八步;(二)每一步是向上还是向右,决定了不同的走法;(三)事实上,当把向上的步骤决定后,剩下的步骤只能向右;从而,任务可叙述为:从八个步骤中选出哪三步是向上走,就可以确定走法数。∴ 本题答案为:C(8,3)=56。分析分析是分类还是分步,是排列还是组合注意加法原理与乘法原理的特点,分析是分类还是分步,是排列还是组合。【例3】在一块并排的10垄田地中,选择二垄分别种植A,B两种作物,每种种植一垄,为有利于作物生长,要求A,B两种作物的间隔不少于6垄,不同的选法共有多少种?分析:条件中“要求A、B两种作物的间隔不少于6垄”这个条件不容易用一个包含排列数,组合数的式子表示,因而采取分类的方法。第一类:A在第一垄,B有3种选择;第二类:A在第二垄,B有2种选择;第三类:A在第三垄,B有1种选择,同理A、B位置互换 ,共12种。【例4】从6双不同颜色的手套中任取4只,其中恰好有一双同色的取法有多少种?(A)240 (B)180 (C)120 (D)60分析:显然本题应分步解决。(一)从6双中选出一双同色的手套,有6种方法;(二)从剩下的十只手套中任选一只,有10种方法。(三)从除前所涉及的两双手套之外的八只手套中任选一只,有8种方法;(四)由于选取与顺序无关,因(二)(三)中的选法重复一次,因而共240种。或分步⑴从6双中选出一双同色的手套,有C(6,1)=6种方法⑵从剩下的5双手套中任选两双,有C(5,2)=10种方法⑶从两双中手套中分别各拿一只手套,有C(2,1)×C(2,1)=4种方法。同样得出共⑴×⑵×⑶=240种。【例5】.身高互不相同的6个人排成2横行3纵列,在第一行的每一个人都比他同列的身后的人个子矮,则所有不同的排法种数为_______。分析:每一纵列中的两人只要选定,则他们只有一种站位方法,因而每一纵列的排队方法只与人的选法有关系,共有三纵列,从而有C(6,2)×C(4,2)×C(2,2)=90种。【例6】在11名工人中,有5人只能当钳工,4人只能当车工,另外2人能当钳工也能当车工。现从11人中选出4人当钳工,4人当车工,问共有多少种不同的选法?分析:采用加法原理首先要做到分类不重不漏,如何做到这一点?分类的标准必须前后统一。以两个全能的工人为分类的对象,考虑以他们当中有几个去当钳工为分类标准。第一类:这两个人都去当钳工,C(2,2)×C(5,2)×C(4,4)=10种;第二类:这两个人都去当车工,C(5,4)×C(2,2)×C(4,2)=30种;第三类:这两人既不去当钳工,也不去当车工C(5,4)×C(4,4)=5种。第四类:这两个人一个去当钳工、一个去当车工,C(2,1)×C(5,3)×C(4,3)=80种;第五类:这两个人一个去当钳工、另一个不去当车工,C(2,1)×C(5,3)×C(4,4)=20种;第六类:这两个人一个去当车工、另一个不去当钳工,C(5,4)×C(2,1)×C(4,3)=40种;因而共有185种。【例7】现有印着0,1,3,5,7,9的六张卡片,如果允许9可以作6用,那么从中任意抽出三张可以组成多少个不同的三位数?分析:有同学认为只要把0,1,3,5,7,9的排法数乘以2即为所求,但实际上抽出的三个数中有9的话才可能用6替换,因而必须分类。抽出的三数含0,含9,有32种方法;抽出的三数含0不含9,有24种方法;抽出的三数含9不含0,有72种方法;抽出的三数不含9也不含0,有24种方法。因此共有32+24+72+24=152种方法。【例8】停车场划一排12个停车位置,今有8辆车需要停放,要求空车位连在一起,不同的停车方法有多少种?分析:把空车位看成一个元素,和8辆车共九个元素排列,因而共有A(9,9)=362880种停车方法。【例9】六人站成一排,求⑴甲、乙既不在排头也不在排尾的排法数⑵甲不在排头,乙不在排尾,且甲乙不相邻的排法数分析:⑴按照先排出首位和末尾再排中间四位分步计数第一步:排出首位和末尾、因为甲乙不在首位和末尾,那么首位和末尾实在其它四位数选出两位进行排列、一共有A(4,2)=12种;第二步:由于六个元素中已经有两位排在首位和末尾,因此中间四位是把剩下的四位元素进行顺序排列,共A(4,4)=24种;根据乘法原理得即不再排头也不在排尾数共12×24=288种。⑵第一类:甲在排尾,乙在排头,有A(4,4)种方法。第二类:甲在排尾,乙不在排头,有3×A(4,4)种方法。第三类:乙在排头,甲不在排尾,有3×A(4,4)种方法。第四类:甲不在排尾也不在排头,乙不在排头也不在排尾,有6×A(4,4)种方法(排除相邻)。共A(4,4)+3×A(4,4)+3×A(4,4)+6×A(4,4)=312种。【例10】对某件产品的6件不同正品和4件不同次品进行一一测试,至区分出所有次品为止。若所有次品恰好在第五次测试时被全部发现,则这样的测试方法有多少种可能?分析:本题意指第五次测试的产品一定是次品,并且是最后一个次品,因而第五次测试应算是特殊位置了,分步完成。第一步:第五次测试的有C(4,1)种可能;第二步:前四次有一件正品有C(6,1)中可能。第三步:前四次有A(4,4)种可能。∴ 共有576种可能。【例11】8人排成一队⑴甲乙必须相邻⑵甲乙不相邻⑶甲乙必须相邻且与丙不相邻⑷甲乙必须相邻,丙丁必须相邻⑸甲乙不相邻,丙丁不相邻分析:⑴甲乙必须相邻,就是把甲乙 捆绑(甲乙可交换) 和7人排列A(7,7)×A(2,2)⑵甲乙不相邻,A(8,8)-A(7,7)×2。或A(6,6)×A(7,2)⑶甲乙必须相邻且与丙不相邻,先求甲乙必须相邻且与丙相邻A(6,6)×2×2甲乙必须相邻且与丙不相邻A(7,7)×2-A(6,6)×2×2⑷甲乙必须相邻,丙丁必须相邻A(6,6)×2×2⑸甲乙不相邻,丙丁不相邻,A(8,8)-A(7,7)×2×2+A(6,6)×2×2【例12】某人射击8枪,命中4枪,恰好有三枪连续命中,有多少种不同的情况?分析:∵ 连续命中的三枪与单独命中的一枪不能相邻,因而这是一个插空问题。另外没有命中的之间没有区别,不必计数。即在四发空枪之间形成的5个空中选出2个的排列,即A(5,2)。【例13】 马路上有编号为l,2,3,……,10 十个路灯,为节约用电又看清路面,可以把其中的三只灯关掉,但不能同时关掉相邻的两只或三只,在两端的灯也不能关掉的情况下,求满足条件的关灯方法共有多少种?分析:即关掉的灯不能相邻,也不能在两端。又因为灯与灯之间没有区别,因而问题为在7盏亮着的灯形成的不包含两端的6个空中选出3个空放置熄灭的灯。∴ 共C(6,3)=20种方法。方法二:把其中的3只灯关掉总情况有C(8,3)种关掉相邻的三只有C(6,1)种关掉相邻的两只有2*C(7,2)-12种所以满足条件的关灯方法有:C(8,3)-C(6,1)-[2*C(7,2)-12]=56-6-(42-12)=20种【例14】三行三列共九个点,以这些点为顶点可组成多少个三角形?分析:有些问题正面求解有一定困难,可以采用间接法。所求问题的方法数=任意三个点的组合数-共线三点的方法数,∴ 共76种。【例15】正方体8个顶点中取出4个,可组成多少个四面体?分析:所求问题的方法数=任意选四点的组合数-共面四点的方法数,∴ 共C(8,4)-12=70-12=58个。【例16】1,2,3,……,9中取出两个分别作为对数的底数和真数,可组成多少个不同数值的对数?分析:由于底数不能为1。⑴当1选上时,1必为真数,∴ 有一种情况。⑵当不选1时,从2--9中任取两个分别作为底数,真数,共A(8,2)=56,其中log2为底4=log3为底9,log4为底2=log9为底3,log2为底3=log4为底9,log3为底2=log9为底4.因而一共有56-4+1=53个。【例17】 六人排成一排,要求甲在乙的前面,(不一定相邻),共有多少种不同的方法? 如果要求甲乙丙按从左到右依次排列呢?分析:(一)实际上,甲在乙的前面和甲在乙的后面两种情况对称,具有相同的排法数。因而有A(6,6)/2=360种。(二)先考虑六人全排列A(6,6)种;其次甲乙丙三人实际上只能按照一种顺序站位,因而前面的排法数重复了A(3,3)种, ∴ 有A(6,6)/A(3,3)=120种。【例18】5男4女排成一排,要求男生必须按从高到矮的顺序,共有多少种不同的方法?分析:(一)首先不考虑男生的站位要求,共A(9,9)种;男生从左至右按从高到矮的顺序,只有一种站法,因而上述站法重复了A(5,5)次。因而有A(9,9,)/A(5,5,)=9×8×7×6=3024种若男生从右至左按从高到矮的顺序,只有一种站法, 同理也有3024种,综上,有6048种。(二)按照插空的方式进行思考。第一步:4个女生先在9个位置中选择4个,为A(9,4)种方式;第二步:男生站剩下的位置,因为必须从高到矮的顺序,没有规定方向,所以有2种;综上,总的站法数有A(9,4)×2=6048种。【例19】 三个相同的红球和两个不同的白球排成一行,共有多少种不同的方法?分析:先认为三个红球互不相同,共A(5,5)=120种方法。而由于三个红球所占位置相同的情况下,共A(3,3)=6变化,因而共A(5,5)/A(3,3)=20种。公式P是指排列,从N个元素取R个进行排列(即排序)。(P是旧用法,教材上多用A,Arrangement)公式C是指组合,从N个元素取R个,不进行排列(即不排序)。挡板的使用【例20】10个名额分配到八个班,每班至少一个名额,问有多少种不同的分配方法?分析:把10个名额看成十个元素,在这十个元素之间形成的九个空中,选出七个位置放置档板,则每一种放置方式就相当于一种分配方式。因而共36种。区别与联系所有的排列都可以看作是先取组合,再做全排列;同样,组合如补充一个阶段(排序)可转化为排列问题。【例21】用数字0,1,2,3,4,5组成没有重复数字的四位数,⑴可组成多少个不同的四位数?⑵可组成多少个不同的四位偶数⑶可组成多少个能被3整除的四位数?分析:⑴有A(6,4)-A(5,3)=300个。⑵分为两类:0在末位,则有A(5,3)=60种:0不在末位,则有C(2,1)×A(5,3)-C(2,1)×A(4,2)=96种。∴ 共60+96=156种。⑶先把四个相加能被3整除的四个数从小到大列举出来,即先选0,1,2,30,1,3,50,2,3,40,3,4,51,2,4,5它们排列出来的数一定可以被3整除,再排列,有:4×[A(4,4)-A(3,3)]+A(4,4)=96种。分组问题【例22】 5名学生分配到4个不同的科技小组参加活动,每个科技小组至少有一名学生参加,则分配方法共有多少种?分析:(一)先把5个学生分成二人,一人,一人,一人各一组。其中涉及到平均分成四组,有C(5,3)=10种分组方法。可以看成4个板三个板不空的隔板法。(二)再考虑分配到四个不同的科技小组,有A(4,4)=24种,由(一)(二)可知,共10×24=240种。几何问题【例23】某区有7条南北向街道,5条东西向街道(如右图)⑴图中共有多少个矩形?⑵从A点到B点最近的走法有多少种?分析:⑴在7条竖线中任选2条,5条横线中任选2条,这样4条线可组成1个矩形,故可组成矩形C(7,2)·C(5,2)=210个⑵每条东西向的街道被分成4段,每条南北向的街道被分成6段,从A到B最短的走法,无论怎样走,一定包括10段,其中6段方向相同,另外4段方向相同,每种走法,即是从10段中选出6段,这6段是走东西方向的,共有C(10,6)=C(10,4)=210种走法(同样可以从10段中选出4段走南北方向,每一种选法即是1种走法)。所以共有210种走法。北境漫步2023-05-23 12:57:421
10选4有多少种排列组合?
10选4有 A(10,4) = 10*9*8*7 = 5040 种排列 A-J 10个字母 选出4个字母有 5040种 可能排列,10选4有 C(10,4) = 210 种组合拌三丝2023-05-23 12:57:422
排列组合公式怎么算?
排列组合计算公式如下:1、从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 A(n,m)表示。2、从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数。用符号 C(n,m) 表示。排列就是指从给定个数的元素中取出指定个数的元素进行排序。组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。排列组合的中心问题是研究给定要求的排列和组合可能出现的情况总数。 排列组合与古典概率论关系密切。扩展资料排列组合的发展历程:根据组合学研究与发展的现状,它可以分为如下五个分支:经典组合学、组合设计、组合序、图与超图和组合多面形与最优化。由于组合学所涉及的范围触及到几乎所有数学分支,也许和数学本身一样不大可能建立一种统一的理论。然而,如何在上述的五个分支的基础上建立一些统一的理论,或者从组合学中独立出来形成数学的一些新分支将是对21世纪数学家们提出的一个新的挑战。参考资料:百度百科—排列组合无尘剑 2023-05-22 07:48:041
排列组合的区别
排列与组合的共同点是都从n个不同的元素中,任取m个元素, 而两者的不同点是: 1、排列是按照一定的顺序排成一列,强调顺序性。 2、组合是不一定按照顺序组成一组。强调组合性 因此,“有序”与“无序”是区别排列与组合的重要标志。小白2023-05-22 07:48:041
怎样进行排列组合计算?
排列组合的计算公式:排列A(n,m)=n×(n-1)。(n-m+1)=n!/(n-m)!(n为下标,m为上标,以下同)。组合C(n,m)=P(n,m)/P(m,m) =n!/m!(n-m)!例如:A(4,2)=4!/2!=4*3=12C(4,2)=4!/(2!*2!)=4*3/(2*1)=6除法运算1、除以一个不等于零的数,等于乘这个数的倒数。2、两数相除,同号得正,异号得负,并把绝对值相除。零除以任意一个不等于零的数,都得零。注意:零不能做除数和分母。有理数的除法与乘法是互逆运算。大鱼炖火锅2023-05-22 07:48:041
排列组合的区别在哪?
排列要考虑先后顺序北境漫步2023-05-22 07:48:048
排列组合怎样计算?
排列组合计算公式如下:1、从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 A(n,m)表示。2、从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数。用符号 C(n,m) 表示。排列就是指从给定个数的元素中取出指定个数的元素进行排序。组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。排列组合的中心问题是研究给定要求的排列和组合可能出现的情况总数。 排列组合与古典概率论关系密切。扩展资料排列组合的发展历程:根据组合学研究与发展的现状,它可以分为如下五个分支:经典组合学、组合设计、组合序、图与超图和组合多面形与最优化。由于组合学所涉及的范围触及到几乎所有数学分支,也许和数学本身一样不大可能建立一种统一的理论。然而,如何在上述的五个分支的基础上建立一些统一的理论,或者从组合学中独立出来形成数学的一些新分支将是对21世纪数学家们提出的一个新的挑战。参考资料:百度百科—排列组合北有云溪2023-05-22 07:48:041
排列组合怎么理解
就是指从给定个数的元素中取出指定个数的元素进行排序。组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。 排列的定义及其计算公式:从n个不同元素中,任取m(m≤n)个元素按照一 定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 A(n,m)表示。 A(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)! 此外规定0!=1 组合的定义及其计算公式:从n个不同元素中,任取m(m≤n)个元素并成一组, 叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数。用符号 C(n,m) 表示。韦斯特兰2023-05-22 07:48:041
排列组合怎么判断
需要考虑顺序就是排列,不需要考虑顺序就是组合 排列与组合的共同点是从n个不同的元素中,任取m(m≤n)个元素,而不同点是排列是按照一定的顺序排成一列,组合是不管顺序并成一组,因此“有序”与“无序”是区别排列与组合的重要标志. 从n个人里任意找出m个人,让他们任意排成一行,问有多少种不同的队形,这是求排列。从n个人里任意找出m个人,令他们组合成一个组,问有多少种不同的组,这是求组合。左迁2023-05-22 07:48:041
一共有几种排列组合?
共有5种组合,用高中数学解是C[5,4]=5。用小学数学解是5个数分成2组,第一组有4个数,第二组有1个数,也就是说当第二组的1个数确定后,第一组数随着确定下来。由于第二组数共有5种组合,所以第一组数也有5种组合。例如12345五个数,四个为1组。第二组为1时候,第一组就有2345。第二组为2的时候,第一组就是1345。以此类推……。扩展资料:排列组合的难点1、从千差万别的实际问题中抽象出几种特定的数学模型,需要较强的抽象思维能力;2、限制条件有时比较隐晦,需要我们对问题中的关键性词(特别是逻辑关联词和量词)准确理解;3、计算手段简单,与旧知识联系少,但选择正确合理的计算方案时需要的思维量较大。排列组合计算方法如下:排列A(n,m)=n×(n-1).(n-m+1)=n!/(n-m)!(n为下标,m为上标,以下同)组合C(n,m)=P(n,m)/P(m,m) =n!/m!(n-m)!;例如:A(4,2)=4!/2!=4*3=12C(4,2)=4!/(2!*2!)=4*3/(2*1)=6Jm-R2023-05-22 07:48:031
排列组合的公式是什么
排列:A(n,m)=n×(n-1)...(n-m+1)=n!/(n-m)!(n为下标,m为上标,以下同)组合:C(n,m)=P(n,m)/P(m,m) =n!/m!(n-m)!例如:A(4,2)=4!/2!=4*3=12C(4,2)=4!/(2!*2!)=4*3/(2*1)=6扩展资料:排列组合的基本计数原理:1、加法原理和分类计数法加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法。那么完成这件事共有N=m1+m2+m3+…+mn种不同方法。第一类办法的方法属于集合A1,第二类办法的方法属于集合A2,……,第n类办法的方法属于集合An,那么完成这件事的方法属于集合A1UA2U…UAn。分类的要求 :每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)。2、乘法原理和分步计数法乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×m3×…×mn种不同的方法。合理分步的要求:任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同。与后来的离散型随机变量也有密切相关。铁血嘟嘟2023-05-22 07:48:031
排列组合怎么区分?
问题一:排列组合的区别在哪? 排列与元素的顺序有关,组合与顺序无关.如231与213是两个排列,2+3+1的和与2+1+3的和是一个组合. (一)两个基本原理是排列和组合的基础 (1)加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+m3+…+mn种不同方法. (2)乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×m3×…×mn种不同的方法. 这里要注意区分两个原理,要做一件事,完成它若是有n类办法,是分类问题,第一类中的方法都是独立的,因此用加法原理;做一件事,需要分n个步骤,步与步之间是连续的,只有将分成的若干个互相联系的步骤,依次相继完成,这件事才算完成,因此用乘法原理. 这样完成一件事的分“类”和“步”是有本质区别的,因此也将两个原理区分开来. (二)排列和排列数 (1)排列:从n个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列. 从排列的意义可知,如果两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序必须完全相同,这就告诉了我们如何判断两个排列是否相同的方法. (2)排列数公式:从n个不同元素中取出m(m≤n)个元素的所有排列 当m=n时,为全排列Pnn=n(n-1)(n-1)…3・2・1=n! (三)组合和组合数 (1)组合:从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从 n个不同元素中取出m个元素的一个组合. 从组合的定义知,如果两个组合中的元素完全相同,不管元素的顺序如何,都是相同的组合;只有当两个组合中的元素不完全相同时,才是不同的组合. (2)组合数:从n个不同元素中取出m(m≤n)个元素的所有组合的个 这里要注意排列和组合的区别和联系,从n个不同元素中,任取m(m≤n)个元素,“按照一定的顺序排成一列”与“不管怎样的顺序并成一组”这是有本质区别的. 求采纳 问题二:排列和组合怎么区别? 看问题是否和顺序有关。有关就是排列,无关就是组合。 排列:比如说排队问题甲乙两人排队,先排甲,那么站法是甲乙阀先排乙,那么站法乙甲,是两种不同的排法,和先排还是后排的顺序有关,所以是A(2,2)=2种 组合:从甲乙两个球中选2个,无论先取甲,在是先取乙,取到的两个球都是甲和乙两个球,和先后取的顺序无关,所以是C(2,2)=1种 问题三:排列组合A几几C几几的,有什么区别,都怎么计算来的? 我们来举个例子,有ABCD4个人选2个人出来参加2项活动,就是A4.2,就是4个里面挑2个出来,要排顺序,AB和BA是不同的结果,计算方法就是,4X3=12,假如ABCD4个人选2个参加活动,AB和BA是一样的,不用排顺序的,就是C4.2,4个人里面选2人,4X3/1X2=6 问题四:数学中的排列和组合怎么区别 所谓的排列是指从给定个数的元素中取出指定个数的元素再进行排序。组合就是指从给定个数的元素中仅仅在取出指定个数的元素,不考虑排序。排列组合的中心问题是研究给定要求的排列和组合可能出现的情况总数。 从n个人里任意找出m(m大鱼炖火锅2023-05-22 07:48:031
排列组合的公式是什么?
C54=C51=5或者C54=(5*4*3*2)/(4*3*2*1)=5是排列组合的相关公式,意思是:有5个不同元素,分成4组,有几种分法:C54=(5*4*3*2)/4!=5注:n!=n*(n-1)*(n-2)*……2*1扩展资料:排列的定义:从n个不同元素中,任取m(m≤n,m与n均为自然数,下同)个不同的元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数。组合的定义:从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数。用符号 C(n,m) 表示。参考资料来源:百度百科-排列组合善士六合2023-05-22 07:48:021
排列组合怎么计算?
计算方式如下:C(r,n)是“组合”,从n个数据中选出r个,C(r,n)=n!/[r!(n-r)!]A(r,n)是“选排列”,从n个数据中选出r个,并且对这r个数据进行排列顺序,A(r,n)=n!/(n-r)!A(3,2)=A(3,1)=(3x2x1)/1=6C(3,2)=C(3,1)=(3x2)/(2x1)=3扩展资料:排列有两种定义,但计算方法只有一种,凡是符合这两种定义的都用这种方法计算。定义的前提条件是m≦n,m与n均为自然数。1、从n个不同元素中,任取m个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。2、从n个不同元素中,取出m个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数。3、用具体的例子来理解上面的定义:4种颜色按不同颜色,进行排列,有多少种排列方法,如果是6种颜色呢。从6种颜色中取出4种进行排列呢。解:A(4,4)=4x(4-1)x(4-2)x(4-3)x(4-4+1)=4x1x2x3x1=24。A(6,6)=6x5x4x3x2x1=720。A(6,4)=6!/(6-4)!=(6x5x4x3x2x1)/2=360。参考资料:百度百科:排列组合陶小凡2023-05-22 07:48:021
排列组合到底怎么算?
C52=5*4/1*2=20/2=10meira2023-05-22 07:48:027
排列组合中的大括号是什么意思
表示集合。如{1,2,3}表示集合中有3个元素,分别是1,2,3凡尘2023-05-22 07:47:542
排列组合是什么
排列组合是组合学最基本的概念。所谓排列,就是指从给定个数的元素中取出指定个数的元素进行排序。组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。排列组合的中心问题是研究给定要求的排列和组合可能出现的情况总数。mlhxueli 2023-05-17 07:52:402
排列组合中的组合计算公式是什么?
1、排列组合中,组合的计算公式为:2、计算举例:扩展资料:一个正整数的阶乘,是所有小于及等于该数的正整数的积,并且0的阶乘为1。自然数n的阶乘写作n!。1808年,基斯顿·卡曼引进这个表示法。亦即n!=1×2×3×...×n。阶乘亦可以递归方式定义:0!=1,n!=(n-1)!×n。当 m 是自然数时,表示不超过 m 且与 m 有相同奇偶性的所有正整数的乘积。如下图所示:参考资料:百度百科_排列组合 百度百科_阶乘苏萦2023-05-16 22:46:391
排列组合共有多少种?
1000种。3个数字的排列组合,如 000,001,002....999这样的方式,百位可以选0到9,10个数字,十位可以选可以选0到9,10个数字,个位可以选0到9,10个数字。所以总共种类是10×10×10总共1000种。扩展资料:排列、组合、二项式定理公式口诀:加法乘法两原理,贯穿始终的法则。与序无关是组合,要求有序是排列。两个公式两性质,两种思想和方法。归纳出排列组合,应用问题须转化。排列组合在一起,先选后排是常理。特殊元素和位置,首先注意多考虑。不重不漏多思考,捆绑插空是技巧。排列组合恒等式,定义证明建模试。关于二项式定理,中国杨辉三角形。两条性质两公式,函数赋值变换式。参考资料:百度百科——排列组合bikbok2023-05-16 22:46:371
排列组合是什么?
排列有顺序之分,组合没有顺序之分比如1,2,3三个数进行排列组合,排列有:123, 132, 213, 231, 312, 321共6种而组合只有一种,就是123人类地板流精华2023-05-16 22:46:372
排列组合,数列的公式是什么?
等差数列a(n)=a1+(n-1)d,等比数列a(n)=a1*q^(n-1),排列组合,你可以给出一个具体的例子吗?很乐意为您解答tt白2023-05-16 00:01:571