矩阵的对角化

矩阵的对角化和若尔当标准型有什么意义

特征值互异时,矩阵A的相似变换可转为纯对角阵(Λ)。特征值既有异根也有重根时,矩阵A的相似变换一般为若当块对角阵(J)。若当块矩阵是广义的对角阵,包含了特殊情形的纯对角阵Λ。若当块对角阵可用于数学上求解一阶微分方程组。对微分方程组的系数矩阵求特征值,特征代数方程往往既有异根亦有重根,所以对系数矩阵相似变换得到若当块对角阵(J),然后求指数若当矩阵 e^(J·t),再求标准基解矩阵 e^(At)=S· e^(J·t)· (S逆),最终求出一阶微分方程组的函数解。从更普遍意义理解,矩阵对角化就是若当块对角化。一阶微分方程组(状态变量法)在时域动态电路中有较多物理应用。
瑞瑞爱吃桃2023-05-20 08:57:122