谁能给我提供几个数学危机的事件
数学的发展史中,并不是那么一帆风顺的,其中历史上曾发生过三大危机,危机的发生促使了数学本生的发展,因此我们应该辨证地看待这三大危机。第一次危机发生在公元前580~568年之间的古希腊,数学家毕达哥拉斯建立了毕达哥拉斯学派。这个学派集宗教、科学和哲学于一体,该学派人数固定,知识保密,所有发明创造都归于学派领袖。当时人们对有理数的认识还很有限,对于无理数的概念更是一无所知,毕达哥拉斯学派所说的数,原来是指整数,他们不把分数看成一种数,而仅看作两个整数之比,他们错误地认为,宇宙间的一切现象都归结为整数或整数之比。该学派的成员希伯索斯根据勾股定理(西方称为毕达哥拉斯定理)通过逻辑推理发现,边长为1的正方形的对角线长度既不是整数,也不是整数的比所能表示。希伯索斯的发现被认为是“荒谬”和违反常识的事。它不仅严重地违背了毕达哥拉斯学派的信条,也冲击了当时希腊人的传统见解。使当时希腊数学家们深感不安,相传希伯索斯因这一发现被投入海中淹死,这就是第一次数学危机。最后,这场危机通过在几何学中引进不可通约量概念而得到解决。两个几何线段,如果存在一个第三线段能同时量尽它们,就称这两个线段是可通约的,否则称为不可通约的。正方形的一边与对角线,就不存在能同时量尽它们的第三线段,因此它们是不可通约的。很显然,只要承认不可通约量的存在使几何量不再受整数的限制,所谓的数学危机也就不复存在了。我认为第一次危机的产生最大的意义导致了无理数地产生,比如说我们现在说的 , 都无法用 来表示,那么我们必须引入新的数来刻画这个问题,这样无理数便产生了,正是有这种思想,当我们将负数开方时,人们引入了虚数i(虚数的产生导致复变函数等学科的产生,并在现代工程技术上得到广泛应用),这使我不得不佩服人类的智慧。但我个人认为第一次危机的真正解决在1872年德国数学家对无理数的严格定义,因为数学是很强调其严格的逻辑与推证性的。第二次数学危机发生在十七世纪。十七世纪微积分诞生后,由于推敲微积分的理论基础问题,数学界出现混乱局面,即第二次数学危机。其实我翻了一下有关数学史的资料,微积分的雏形早在古希腊时期就形成了,阿基米德的逼近法实际上已经掌握了无限小分析的基本要素,直到2100年后,牛顿和莱布尼兹开辟了新的天地——微积分。微积分的主要创始人牛顿在一些典型的推导过程中,第一步用了无穷小量作分母进行除法,当然无穷小量不能为零;第二步牛顿又把无穷小量看作零,去掉那些包含它的项,从而得到所要的公式,在力学和几何学的应用证明了这些公式是正确的,但它的数学推导过程却在逻辑上自相矛盾.焦点是:无穷小量是零还是非零?如果是零,怎么能用它做除数?如果不是零,又怎么能把包含着无穷小量的那些项去掉呢?直到19世纪,柯西详细而有系统地发展了极限理论。柯西认为把无穷小量作为确定的量,即使是零,都说不过去,它会与极限的定义发生矛盾。无穷小量应该是要怎样小就怎样小的量,因此本质上它是变量,而且是以零为极限的量,至此柯西澄清了前人的无穷小的概念,另外Weistrass创立了 极限理论,加上实数理论,集合论的建立,从而把无穷小量从形而上学的束缚中解放出来,第二次数学危机基本解决。而我自己的理解是一个无穷小量,是不是零要看它是运动的还是静止的,如果是静止的,我们当然认为它可以看为零;如果是运动的,比如说1/n,我们说 ,但n个1/n相乘就为1,这就不是无穷小量了,当我们遇到 等情况时,我们可以用洛比达法则反复求导来考查极限,也可以用Taylor展式展开后,一阶一阶的比,我们总会在有限阶比出大小。第三次数学危机发生在1902年,罗素悖论的产生震撼了整个数学界,号称天衣无缝,绝对正确的数学出现了自相矛盾。我从很早以前就读过“理发师悖论”,就是一位理发师给不给自己理发的人理发。那么理发师该不该给自己理发呢?还有大家熟悉的“说谎者悖论”,其大体内容是:一个克里特人说:“所有克里特人说的每一句话都是谎话。”试问这句话是真还是假?从数学上来说,这就是罗素悖论的一个具体例子。罗素在该悖论中所定义的集合R,被几乎所有集合论研究者都认为是在朴素集合论中可以合法存在的集合。事实虽是这样但原因却又是什么呢?这是由于R是集合,若R含有自身作为元素,就有R R,那么从集合的角度就有R R。一个集合真包含它自己,这样的集合显然是不存在的。因为既要R有异于R的元素,又要R与R是相同的,这显然是不可能的。因此,任何集合都必须遵循R R的基本原则, 否则就是不合法的集合。这样看来,罗素悖论中所定义的一切R R的集合,就应该是一切合法集合的集合,也就是所有集合的集合,这就是同类事物包含所有的同类事物,必会引出最大的这类事物。归根结底,R也就是包含一切集合的“最大的集合”了。因此可以明确了,实质上,罗素悖论就是一个以否定形式陈述的最大集合悖论。从此,数学家们就开始为这场危机寻找解决的办法,其中之一是把集合论建立在一组公理之上,以回避悖论。首先进行这个工作的是德国数学家策梅罗,他提出七条公理,建立了一种不会产生悖论的集合论,又经过德国的另一位数学家弗芝克尔的改进,形成了一个无矛盾的集合论公理系统(即所谓ZF公理系统),这场数学危机到此缓和下来。现在,我们通过离散数学的学习,知道集合论主要分为Cantor集合论和Axiomatic集合论,集合是先定义了全集I,空集 ,在经过一系列一元和二元运算而得来得。而在七条公理上建立起来的集合论系统避开了罗素悖论,使现代数学得以发展。meira2023-05-21 22:10:353
三次数学危机是怎么回事
毕达哥拉斯是公元前五世纪古希腊的著名数学家与哲学家。他曾创立了一个合政治、学术、宗教三位一体的神秘主义派别:毕达哥拉斯学派。由毕达哥拉斯提出的著名命题“万物皆数”是该学派的哲学基石。而“一切数均可表成整数或整数之比”则是这一学派的数学信仰。然而,具有戏剧性的是由毕达哥拉斯建立的毕达哥拉斯定理却成了毕达哥拉斯学派数学信仰的“掘墓人”。毕达哥拉斯定理提出后,其学派中的一个成员希帕索斯考虑了一个问题:边长为1的正方形其对角线长度是多少呢?他发现这一长度既不能用整数,也不能用分数表示,而只能用一个新数来表示。希帕索斯的发现导致了数学史上第一个无理数√2 的诞生。小小√2的出现,却在当时的数学界掀起了一场巨大风暴。它直接动摇了毕达哥拉斯学派的数学信仰,使毕达哥拉斯学派为之大为恐慌。实际上,这一伟大发现不但是对毕达哥拉斯学派的致命打击。对于当时所有古希腊人的观念这都是一个极大的冲击。这一结论的悖论性表现在它与常识的冲突上:任何量,在任何精确度的范围内都可以表示成有理数。这不但在希腊当时是人们普遍接受的信仰,就是在今天,测量技术已经高度发展时,这个断言也毫无例外是正确的!可是为我们的经验所确信的,完全符合常识的论断居然被小小的√2的存在而推翻了!这应该是多么违反常识,多么荒谬的事!它简直把以前所知道的事情根本推翻了。更糟糕的是,面对这一荒谬人们竟然毫无办法。这就在当时直接导致了人们认识上的危机,从而导致了西方数学史上一场大的风波,史称“第一次数学危机”。 第二次数学危机导源于微积分工具的使用。伴随着人们科学理论与实践认识的提高,十七世纪几乎在同一时期,微积分这一锐利无比的数学工具为牛顿、莱布尼兹各自独立发现。这一工具一问世,就显示出它的非凡威力。许许多多疑难问题运用这一工具后变得易如翻掌。但是不管是牛顿,还是莱布尼兹所创立的微积分理论都是不严格的。两人的理论都建立在无穷小分析之上,但他们对作为基本概念的无穷小量的理解与运用却是混乱的。因而,从微积分诞生时就遭到了一些人的反对与攻击。其中攻击最猛烈的是英国大主教贝克莱。 罗素悖论与第三次数学危机 十九世纪下半叶,康托尔创立了著名的集合论,在集合论刚产生时,曾遭到许多人的猛烈攻击。但不久这一开创性成果就为广大数学家所接受了,并且获得广泛而高度的赞誉。数学家们发现,从自然数与康托尔集合论出发可建立起整个数学大厦。因而集合论成为现代数学的基石。“一切数学成果可建立在集合论基础上”这一发现使数学家们为之陶醉。1900年,国际数学家大会上,法国著名数学家庞加莱就曾兴高采烈地宣称:“………借助集合论概念,我们可以建造整个数学大厦……今天,我们可以说绝对的严格性已经达到了……” 康托尔 可是,好景不长。1903年,一个震惊数学界的消息传出:集合论是有漏洞的!这就是英国数学家罗素提出的著名的罗素悖论。 罗素构造了一个集合S:S由一切不是自身元素的集合所组成。然后罗素问:S是否属于S呢?根据排中律,一个元素或者属于某个集合,或者不属于某个集合。因此,对于一个给定的集合,问是否属于它自己是有意义的。但对这个看似合理的问题的回答却会陷入两难境地。如果S属于S,根据S的定义,S就不属于S;反之,如果S不属于S,同样根据定义,S就属于S。无论如何都是矛盾的。 罗素 其实,在罗素之前集合论中就已经发现了悖论。如1897年,布拉利和福尔蒂提出了最大序数悖论。1899年,康托尔自己发现了最大基数悖论。但是,由于这两个悖论都涉及集合中的许多复杂理论,所以只是在数学界揭起了一点小涟漪,未能引起大的注意。罗素悖论则不同。它非常浅显易懂,而且所涉及的只是集合论中最基本的东西。所以,罗素悖论一提出就在当时的数学界与逻辑学界内引起了极大震动。如G.弗雷格在收到罗素介绍这一悖论的信后伤心地说:“一个科学家所遇到的最不合心意的事莫过于是在他的工作即将结束时,其基础崩溃了。罗素先生的一封信正好把我置于这个境地。”戴德金也因此推迟了他的《什么是数的本质和作用》一文的再版。可以说,这一悖论就象在平静的数学水面上投下了一块巨石,而它所引起的巨大反响则导致了第三次数学危机。 危机产生后,数学家纷纷提出自己的解决方案。人们希望能够通过对康托尔的集合论进行改造,通过对集合定义加以限制来排除悖论,这就需要建立新的原则。“这些原则必须足够狭窄,以保证排除一切矛盾;另一方面又必须充分广阔,使康托尔集合论中一切有价值的内容得以保存下来。”1908年,策梅罗在自已这一原则基础上提出第一个公理化集合论体系,后来经其他数学家改进,称为ZF系统。这一公理化集合系统很大程度上弥补了康托尔朴素集合论的缺陷。除ZF系统外,集合论的公理系统还有多种,如诺伊曼等人提出的NBG系统等。公理化集合系统的建立,成功排除了集合论中出现的悖论,从而比较圆满地解决了第三次数学危机。但在另一方面,罗素悖论对数学而言有着更为深刻的影响。它使得数学基础问题第一次以最迫切的需要的姿态摆到数学家面前,导致了数学家对数学基础的研究。而这方面的进一步发展又极其深刻地影响了整个数学。如围绕着数学基础之争,形成了现代数学史上著名的三大数学流派,而各派的工作又都促进了数学的大发展等等。FinCloud2023-05-21 22:10:351
★历史上的三次数学危机分别是什么?~★
毕达哥拉斯是公元前五世纪古希腊的著名数学家与哲学家。他曾创立了一个合政治、学术、宗教三位一体的神秘主义派别:毕达哥拉斯学派。由毕达哥拉斯提出的著名命题“万物皆数”是该学派的哲学基石。而“一切数均可表成整数或整数之比”则是这一学派的数学信仰。然而,具有戏剧性的是由毕达哥拉斯建立的毕达哥拉斯定理却成了毕达哥拉斯学派数学信仰的“掘墓人”。毕达哥拉斯定理提出后,其学派中的一个成员希帕索斯考虑了一个问题:边长为1的正方形其对角线长度是多少呢?他发现这一长度既不能用整数,也不能用分数表示,而只能用一个新数来表示。希帕索斯的发现导致了数学史上第一个无理数√2 的诞生。小小√2的出现,却在当时的数学界掀起了一场巨大风暴。它直接动摇了毕达哥拉斯学派的数学信仰,使毕达哥拉斯学派为之大为恐慌。实际上,这一伟大发现不但是对毕达哥拉斯学派的致命打击。对于当时所有古希腊人的观念这都是一个极大的冲击。这一结论的悖论性表现在它与常识的冲突上:任何量,在任何精确度的范围内都可以表示成有理数。这不但在希腊当时是人们普遍接受的信仰,就是在今天,测量技术已经高度发展时,这个断言也毫无例外是正确的!可是为我们的经验所确信的,完全符合常识的论断居然被小小的√2的存在而推翻了!这应该是多么违反常识,多么荒谬的事!它简直把以前所知道的事情根本推翻了。更糟糕的是,面对这一荒谬人们竟然毫无办法。这就在当时直接导致了人们认识上的危机,从而导致了西方数学史上一场大的风波,史称“第一次数学危机”。 第二次数学危机导源于微积分工具的使用。伴随着人们科学理论与实践认识的提高,十七世纪几乎在同一时期,微积分这一锐利无比的数学工具为牛顿、莱布尼兹各自独立发现。这一工具一问世,就显示出它的非凡威力。许许多多疑难问题运用这一工具后变得易如翻掌。但是不管是牛顿,还是莱布尼兹所创立的微积分理论都是不严格的。两人的理论都建立在无穷小分析之上,但他们对作为基本概念的无穷小量的理解与运用却是混乱的。因而,从微积分诞生时就遭到了一些人的反对与攻击。其中攻击最猛烈的是英国大主教贝克莱。 罗素悖论与第三次数学危机 十九世纪下半叶,康托尔创立了著名的集合论,在集合论刚产生时,曾遭到许多人的猛烈攻击。但不久这一开创性成果就为广大数学家所接受了,并且获得广泛而高度的赞誉。数学家们发现,从自然数与康托尔集合论出发可建立起整个数学大厦。因而集合论成为现代数学的基石。“一切数学成果可建立在集合论基础上”这一发现使数学家们为之陶醉。1900年,国际数学家大会上,法国著名数学家庞加莱就曾兴高采烈地宣称:“………借助集合论概念,我们可以建造整个数学大厦……今天,我们可以说绝对的严格性已经达到了……” 康托尔 可是,好景不长。1903年,一个震惊数学界的消息传出:集合论是有漏洞的!这就是英国数学家罗素提出的著名的罗素悖论。 罗素构造了一个集合S:S由一切不是自身元素的集合所组成。然后罗素问:S是否属于S呢?根据排中律,一个元素或者属于某个集合,或者不属于某个集合。因此,对于一个给定的集合,问是否属于它自己是有意义的。但对这个看似合理的问题的回答却会陷入两难境地。如果S属于S,根据S的定义,S就不属于S;反之,如果S不属于S,同样根据定义,S就属于S。无论如何都是矛盾的。 罗素 其实,在罗素之前集合论中就已经发现了悖论。如1897年,布拉利和福尔蒂提出了最大序数悖论。1899年,康托尔自己发现了最大基数悖论。但是,由于这两个悖论都涉及集合中的许多复杂理论,所以只是在数学界揭起了一点小涟漪,未能引起大的注意。罗素悖论则不同。它非常浅显易懂,而且所涉及的只是集合论中最基本的东西。所以,罗素悖论一提出就在当时的数学界与逻辑学界内引起了极大震动。如G.弗雷格在收到罗素介绍这一悖论的信后伤心地说:“一个科学家所遇到的最不合心意的事莫过于是在他的工作即将结束时,其基础崩溃了。罗素先生的一封信正好把我置于这个境地。”戴德金也因此推迟了他的《什么是数的本质和作用》一文的再版。可以说,这一悖论就象在平静的数学水面上投下了一块巨石,而它所引起的巨大反响则导致了第三次数学危机。 危机产生后,数学家纷纷提出自己的解决方案。人们希望能够通过对康托尔的集合论进行改造,通过对集合定义加以限制来排除悖论,这就需要建立新的原则。“这些原则必须足够狭窄,以保证排除一切矛盾;另一方面又必须充分广阔,使康托尔集合论中一切有价值的内容得以保存下来。”1908年,策梅罗在自已这一原则基础上提出第一个公理化集合论体系,后来经其他数学家改进,称为ZF系统。这一公理化集合系统很大程度上弥补了康托尔朴素集合论的缺陷。除ZF系统外,集合论的公理系统还有多种,如诺伊曼等人提出的NBG系统等。公理化集合系统的建立,成功排除了集合论中出现的悖论,从而比较圆满地解决了第三次数学危机。但在另一方面,罗素悖论对数学而言有着更为深刻的影响。它使得数学基础问题第一次以最迫切的需要的姿态摆到数学家面前,导致了数学家对数学基础的研究。而这方面的进一步发展又极其深刻地影响了整个数学。如围绕着数学基础之争,形成了现代数学史上著名的三大数学流派,而各派的工作又都促进了数学的大发展等等。康康map2023-05-21 22:10:352
第三次数学危机是什么?
悖论的产生---第三次数学危机数学史上的第三次危机,是由1897年的突然冲击而出现的,到现在,从整体来看,还没有解决到令人满意的程度。这次危机是由于在康托的一般集合理论的边缘发现悖论造成的。由于集合概念已经渗透到众多的数学分支,并且实际上集合论成了数学的基础,因此集合论中悖论的发现自然地引起了对数学的整个基本结构的有效性的怀疑。1897年,福尔蒂揭示了集合论中的第一个悖论。两年后,康托发现了很相似的悖论。1902年,罗素又发现了一个悖论,它除了涉及集合概念本身外不涉及别的概念。罗素悖论曾被以多种形式通俗化。其中最著名的是罗素于1919年给出的,它涉及到某村理发师的困境。理发师宣布了这样一条原则:他给所有不给自己刮脸的人刮脸,并且,只给村里这样的人刮脸。当人们试图回答下列疑问时,就认识到了这种情况的悖论性质:“理发师是否自己给自己刮脸?”如果他不给自己刮脸,那么他按原则就该为自己刮脸;如果他给自己刮脸,那么他就不符合他的原则。罗素悖论使整个数学大厦动摇了。无怪乎弗雷格在收到罗素的信之后,在他刚要出版的《算术的基本法则》第2卷末尾写道:“一位科学家不会碰到比这更难堪的事情了,即在工作完成之时,它的基础垮掉了,当本书等待印出的时候,罗素先生的一封信把我置于这种境地”。于是终结了近12年的刻苦钻研。承认无穷集合,承认无穷基数,就好像一切灾难都出来了,这就是第三次数学危机的实质。尽管悖论可以消除,矛盾可以解决,然而数学的确定性却在一步一步地丧失。现代公理集合论的大堆公理,简直难说孰真孰假,可是又不能把它们都消除掉,它们跟整个数学是血肉相连的。所以,第三次危机表面上解决了,实质上更深刻地以其它形式延续着。瑞瑞爱吃桃2023-05-21 22:10:349
简述数学史上的三次数学危机及其对数学发展的影响
数学悖论与三次数学危机 陈基耿 摘要:数学发展从来不是完全直线式的,而是常常出现悖论。 历史上一连串的 数学悖论动摇了人们对数学可靠性的信仰,数学史上曾经发生了三次数学危机。 数学悖论的产生和危机的出现,不单给数学带来麻烦和失望,更重要的是给数学的发展带来新的生机和希望,促进了数学的繁荣。 危机产生、解决、又产生的无穷反复过程,不断推动着数学的发展,这个过程也是数学思想获得重要发展的过程。 关键词:数学悖论;数学危机;毕达哥拉斯悖论;贝克莱悖论;罗素悖论 数学历来被视为严格、和谐、精确的学科,纵观数学发展史,数学发展从来不是完全直线式的,他的体系不是永远和谐的,而常常出现悖论。 悖论是指在某一一定的理论体系的基础上,根据合理的推理原则,推出了两个互相矛盾的命题,或者是证明了这样一个复合命题,它表现为两个互相矛盾的命题的等价式[1]。 数学悖论在数学理论中的发展是一件严重的事,因为它直接导致了人们对于相应理论的怀疑,而如果一个悖论所涉及的面十分广泛的话,甚至涉及到整个学科的基础时,这种怀疑情绪又可能发展成为普遍的危机感,特别是一些重要悖论的产生自然引起人们对数学基础的怀疑以及对数学可靠性信仰的动摇。 数学史上曾经发生过三次数学危机,每次都是由一两个典型的数学悖论引起的。 本文回顾了历史上发生的三次数学危机,重点介绍了三次数学危机对数学发展的重要作用。 1毕达哥拉斯悖论与第一次数学危机 1.1第一次数学危机的内容 公元前六世纪,在古希腊学术界占统治地位的毕达哥拉斯学派,其思想在当时被认为是绝对权威的真理,毕达哥拉斯学派倡导的是一种称为“唯数论”的哲学观点,他们认为宇宙的本质就是数的和谐[2]。 他们认为万物皆数,而数只有两种,就是正整数和可通约的数(即分数,两个整数的比), 除此之外不再有别的数,即是说世界上只有整数或分数。 毕达哥拉斯学派在数学上的一项重大贡献是证明了毕达哥拉斯定理[3],也就是我们所说的勾股定理。 勾股定理指出直角三角形三边应有如下关系,即a2=b2+c2,a和b分别代表直角三角形的两条直角边,c表示斜边。 然而不久毕达哥拉斯学派的一个学生希伯斯很快便发现了这个论断的问题。 他发现边长相等的正方形其对角线长并不能用整数或整数之比来表示。 假设正方形边长为1,并设其对角线长为d,依勾股定理应有d2=12+12=2,即d2=2,那么d是多少呢?显然d不是整数,那它必是两整数之比。 希伯斯花了很多时间来寻找这两个整数之比,结果没找着,反而找到了两数不可通约性的证明[4],用反证法证明如下:设Rt△ABC,两直角边为a=b,则由勾股定理有c2=2a2,设已将a和c中的公约数约去,即a、c已经互素,于是c为偶数,a为奇数,不妨令c=2m,则有(2m)2=2a2,a2=2m2,于是a为偶数,这与前面已证a为奇数矛盾。 这一发现历史上称为毕达哥拉斯悖论。 1.2第一次数学危机的影响 毕达哥拉斯悖论的出现,对毕达哥拉斯学派产生了沉重的打击,“数即万物”的世界观被极大的动摇了,有理数的尊崇地位也受到了挑战,因此也影响到了整个数学的基础,使数学界产生了极度的思想混乱,历史上称之为第一次数学危机。 第一次数学危机的影响是巨大的,它极大的推动了数学及其相关学科的发展。 首先,第一次数学危机让人们第一次认识到了无理数的存在,无理数从此诞生了,之后,许多数学家正式研究了无理数,给出了无理数的严格定义,提出了一个含有有理数和无理数的新的数类——实数,并建立了完整的实数理论[5],为数学分析的发展奠定了基础。 再者,第一次数学危机表明,直觉和经验不一定靠得住,推理证明才是可靠的,从此希腊人开始重视演绎推理,并由此建立了几何公理体系。 欧氏几何就是人们为了消除矛盾,解除危机,在这时候应运而生的[6]。 第一次数学危机极大地促进了几何学的发展,使几何学在此后两千年间成为几乎是全部严密数学的基础,这不能不说是数学思想史上的一次巨大革命。 2贝克莱悖论与第二次数学危机 2.1第二次数学危机的内容 公元17世纪,牛顿和莱布尼兹创立了微积分,微积分能提示和解释许多自然现象,它在自然科学的理论研究和实际应用中的重要作用引起人们高度的重视。 然而,因为微积分才刚刚建立起来,这时的微积分只有方法,没有严密的理论作为基础,许多地方存在漏洞,还不能自圆其说。 例如牛顿当时是这样求函数y=xn的导数的[7]:(x+△x)n=xn+n•xn-1•△x+[n(n+1)/2]•xn-2•(△x)2+……+(△x)n,然后用自变量的增量△x除以函数的增量△y ,△y/△x=[(x+△x)n-xn ]/△x=n•xn-1+[n(n-1)/2] •xn-2•△x+……+n•x•(△x)n-2+(△x)n-1,最后,扔掉其中含有无穷小量△x的项,即得函数y=xn的导数为y′=nxn-1。 对于牛顿对导数求导过程的论述,哲学家贝克莱很快发现了其中的问题,他一针见血的指出:先用△x为除数除以△y,说明△x不等于零,而后又扔掉含有△x的项,则又说明△x等于零,这岂不是自相矛盾吗?因此贝克莱嘲弄无穷小是“逝去的量的鬼魂”,他认为微积分是依靠双重的错误得到了正确的结果,说微积分的推导是“分明的诡辩”。 [8]这就是著名的“贝克莱悖论”。 确实,这种在同一问题的讨论中,将所谓的无穷小量有时作为0,有时又异于0的做法,不得不让人怀疑。 无穷小量究竟是不是零?无穷小及其分析是否合理?贝克莱悖论的出现危及到了微积分的基础,引起了数学界长达两个多世纪的论战,从而形成了数学发展史中的第二次危机。 2.2第二次数学危机的影响[8] 第二次数学危机的出现,迫使数学家们不得不认真对待无穷小量△x,为了克服由此引起思维上的混乱,解决这一危机,无数人投入大量的劳动。 在初期,经过欧拉、拉格朗日等人的努力,微积分取得了一些进展;从19世纪开始为彻底解决微积分的基础问题,柯西、外尔斯特拉斯等人进行了微积分理论的严格化工作。 微积分内在的根本矛盾,就是怎样用数学的和逻辑的方法来表现无穷小,从而表现与无穷小紧密相关的微积分的本质。 在解决使无穷小数学化的问题上,出现了罗比达公理:一个量增加或减少与之相比是无穷小的另一个量,则可认为它保持不变。 而柯西采用的ε-δ方法刻画无穷小,把无穷小定义为以0为极限的变量,沿用到今,无穷小被极限代替了。 后来外尔斯特拉斯又把它明确化,给出了极限的严格定义,建立了极限理论,这样就使微积分建立在极限基础之上了。 极限的ε-δ定义就是用静态的ε-δ刻画动态极限,用有 *** 来描述无限性过程,它是从有限到无限的桥梁和路标,它表现了有限与无限的关系,使微积分朝科学化、数学化前进了一大步。 极限理论的建立加速了微积分的发展,它不仅在数学上,而且在认识论上也有重大的意义。 后来在考查极限理论的基础中,经过代德金、康托尔、海涅、外尔斯特拉斯和巴门赫等人的努力,产生了实数理论;在考查实数理论的基础时,康托尔又创立了 *** 论。 这样有了极限理论、实数理论和 *** 论三大理论后,微积分才算建立在比较稳固和完美的基础之上了,从而结束了二百多年的纷乱争论局面,进而开辟了下一个世纪的函数论的发展道路。 3罗素悖论与第三次数学危机 3.1第三次数学危机的内容 在前两次数学危机解决后不到30年即19世纪70年代,德国数学家康托尔创立了 *** 论, *** 论是数学上最具革命性的理论,初衷是为整个数学大厦奠定坚实的基础。 1900年,在巴黎召开的国际数学家会议上,法国大数学家庞加莱兴奋的宣布[9]:“我们可以说,现在数学已经达到了绝对的严格。”然而,正当人们为 *** 论的诞生而欢欣鼓舞之时,一串串数学悖论却冒了出来,又搅得数学家心里忐忑不安,其中英国数学家罗素1902年提出的悖论影响最大,“罗素悖论”的内容是这样的:设 *** B是一切不以自身为元素的 *** 所组成的 *** ,问:B是否属于B?若B属于B,则B是B的元素,于是B不属于自身,即B不属于B;反之,若B不属于B,则B不是B的元素,于是B属于自己,即B属于B。 这样,利用 *** 的概念,罗素导出了—— *** B不属于B当且仅当 *** B属于B时成立的悖论。 之后,罗素本人还提出了罗素悖论的通俗版本,即理发师悖论[10]。 理发师宣布了这样一条原则:他只为村子里不给自己刮胡子的人刮胡子。 那么现在的问题是,理发师的胡子应该由谁来刮?。 如果他自己给自己刮胡子,那么他就是村子里给自己刮胡子的人,根据他的原则,他就不应给自己刮胡子;如果他不给自己刮胡子,那么他就是村子里不给自己刮胡子的人,那么又按他的原则他就该为自己刮胡子。 同样有产生了这样的悖论:理发师给自己刮胡子当且仅当理发师不给自己刮胡子。 这就是历史上著名的罗素悖论。 罗素悖论的出现,动摇了数学的基础,震撼了整个数学界,导致了第三次数学危机。 3.2第三次数学危机的影响 罗素悖论的出现,动摇了本来作为整个数学大厦的基础—— *** 论,自然引起人们对数学基本结构有效性的怀疑。 罗素悖论的高明之处,还在于它只是用了 *** 的概念本身,而并不涉及其它概念而得出来的,使人们更是无从下手解决。 罗素悖论导致的第三次数学危机,使数学家们面临着极大的困难。 数学家弗雷格在他刚要出版的《论数学基础》卷二末尾就写道[11]:“对一位科学家来说,没有一件比下列事实更令人扫兴:当他工作刚刚完成的时候,它的一块基石崩塌下来了。 在本书的印刷快要完成时,罗素先生给我的一封信就使我陷入这种境地。”可见第三次数学危机使人们面临多么尴尬的境地。 然而科学面前没有人会回避,数学家们立即投入到了消除悖论的工作中,值得庆幸的是,产生罗素悖论的根源很快被找到了,原来康托尔提出 *** 论时对“ *** ”的概念没有做必要的限制,以至于可以构造“一切 *** 的集体”这种过大的 *** 而产生了悖论。 为了从根本上消除 *** 论中出现的各种悖论,特别是罗素悖论,许多数学家进行了不懈的努力。 如以罗素为主要代表的逻辑主义学派[12],提出了类型论以及后来的曲折理论、限制大小理论、非类理论和分支理论,这些理论都对消除悖论起到了一定的作用;而最重要的是德国数学家策梅罗提出的 *** 论的公理化,策梅罗认为,适当的公理体系可以限制 *** 的概念,从逻辑上保证 *** 的纯粹性,他首次提出了 *** 论公理系统,后经费兰克尔、冯•诺伊曼等人的补充形成了一个完整的 *** 论公理体系(ZFC系统)[5],在ZFC系统中,“ *** ”和“属于”是两个不加定义的原始概念,另外还有十条公理。 ZFC系统的建立,使各种矛盾得到回避,从而消除了罗素悖论为代表的一系列 *** 悖论,第三次数学危机也随之销声匿迹了。 尽管悖论消除了,但数学的确定性却在一步一步丧失,现代公理 *** 论一大堆公理是在很难说孰真孰假,可是又不能把它们一古脑消除掉,它们跟整个数学是血肉相连的,所以第三次危机表面上解决了,实质上更深刻地以其它形式延续[7]。 为了消除第三次数学危机,数理逻辑也取得了很大发展,证明论、模型论和递归论相继诞生,出现了数学基础理论、类型论和多值逻辑等。 可以说第三次数学危机大大促进了数学基础研究及数理逻辑的现代性,而且也因此直接造成了数学哲学研究的“黄金时代”。 4结语 历史上的三次数学危机,给人们带来了极大的麻烦,危机的产生使人们认识到了现有理论的缺陷,科学中悖论的产生常常预示着人类的认识将进入一个新阶段,所以悖论是科学发展的产物,又是科学发展源泉之一。 第一次数学危机使人们发现无理数,建立了完整的实数理论,欧氏几何也应运而生并建立了几何公理体系;第二次数学危机的出现,直接导致了极限理论、实数理论和 *** 论三大理论的产生和完善,使微积分建立在稳固且完美的基础之上;第三次数学危机,使 *** 论成为一个完整的 *** 论公理体系(ZFC系统),促进了数学基础研究及数理逻辑的现代性。 数学发展的历史表明对数学基础的深入研究、悖论的出现和危机的相对解决有着十分密切的关系,每一次危机的消除都会给数学带来许多新内容、新认识,甚至是革命性的变化,使数学体系达到新的和谐,数学理论得到进一步深化和发展。 悖论的存在反映了数学概念、原理在一定历史阶段会存在很多矛盾,导致人们的怀疑,产生危机感,然而事物就是在不断产生矛盾和解决矛盾中逐渐发展完善起来的,旧的矛盾解决了,新的矛盾还会产生,而就是在其过程中,人们便不断积累了新的认识、新的知识,发展了新的理论。 数学家对悖论的研究和解决促进了数学的繁荣和发展,数学中悖论的产生和危机的出现,不单是给数学带来麻烦和失望,更重要的是给数学的发展带来新的生机和希望。 数学中悖论和危机的历史也说明了这一点:已有的悖论和危机消除了,又产生新的悖论和危机。 但是人的认识是发展的,悖论或危机迟早都能获得解决。 “产生悖论和危机,然后努力解决它们,而后又产生新的悖论和危机。”这是一个无穷反复的过程,也就不断推动着数学的发展,这个过程也是数学思想获得重要发展的过程。 参考文献: [1] 师琼,王保红.悖论及其意义[J]. *** 山西省委党校学报,2005,28(4):76~78. [2] 赵院娥,乔淑莉.悖论及其对数学发展的影响[J].延安大学学报(自然科学版),2004,2(1):21~25. [3] 李春兰.试论数学史上的第一次危机及其影响[J].内蒙古师范大学学报(教育科学版),2006,19(1):88~90. [4] 梁伟.试析悖论与数学史上三次危机及其方法论意义[J].科技资讯,2005,(27):187~188. [5] 王方汉.历史上的三次数学危机[J].数学通报,2002,(5):42~43. [6] 胡作玄.第三次数学危机[M].四川:四川人民出版社,1985,1~108. [7] 黄燕玲,代贤军.悖论对数学发展的影响[J].河池师专学报,2003, 23(4):62~64. [8] 周勇.第2次数学危机的影响和启示[J].数学通讯,2005,(13):47. [9] 王庚.数学怪论[A].数学文化与数学教育——数学文化报告集[C].北京:科学出版社,2004.13~25. [10] 兰林世.三次数学危机与悖论[J].集宁师专学报,2003,25(4):47~49. [11] 王风春.数学史上的三次危机[J].上海中学数学,2004,(6):42~43. [12] 张怀德.数学危机与数学发展[J].甘肃高师学报,2004,9(2):60~62.人类地板流精华2023-05-20 08:56:511