外尔斯特拉斯的处处连续处处不可导函数
http://libdlm.lib.ntu.edu.tw/cpedia/Content.asp?ID=43498真颛2023-05-20 08:56:508
科学网外尔半金属和拓扑绝缘体的区别
扑绝缘体是一种新的量子态,它的体态存在一个能隙,表现出普通绝缘体的特征;但是在表面上存在贯穿能隙的狄拉克色散形式的表面态,表现出金属的特征。在本论文中,作者主要讨论三种拓扑绝缘体材料及其与之相关的一些新奇量子现象。 首先,详细讨论了PbTe,Bi2Se3,β-Ag2Te这三种拓扑绝缘体材料。证实了在一定厚度的PbTe薄膜中可以实现量子自旋霍尔效应,通过第一性原理计算和模型分析,本文还发现PbTe薄膜的拓扑性质会随着薄膜厚度的变化在平庸和非平庸间振荡。Bi2Se3系列材料是新发现的强拓扑绝缘体,它在T点具有一个狄拉克色散形式的表面态,本文bikbok2023-05-20 08:56:491
什么是外尔斯特拉斯-布尔查诺定理?
下面的定理一般被称为外尔斯特拉斯-布尔查诺定理:任何有界数列必有收敛的子数列。九万里风9 2023-05-20 08:56:491
什么是外尔斯特拉斯-布尔查诺定理?
下面的定理一般被称为外尔斯特拉斯-布尔查诺定理:任何有界数列必有收敛的子数列。北有云溪2023-05-20 08:56:492
外尔的成就
外尔是20世纪上半叶最重要的数学家之一。他的早期工作在分析学方面。其博士论文中把希尔伯特及其学生关于积分方程的工作推广到积分上限为无穷的情形,其后研究奇异特征值问题。外尔在1913年发表的著作《黎曼曲面的概念》,第一次给黎曼曲面奠定了严格的拓扑基础。1915─1933年,他研究与物理有关的数学问题,企图解决引力场与电磁场的统一理论问题,他的工作对以后发展起来的各种场论和广义微分几何学有深远影响。20世纪20年代初,他从一般空间问题进而研究连续群的表示,导致他在1925─1927年最出色的工作,其中包括运用大范围方法研究半单李群的线性表示等。他还把经典有限群的结果扩张到紧群上去,又通过「酉技巧」扩张到非紧的半单群上。他引进的外尔群是数学中的重要工具。量子力学产生后,他首先把群论应用到量子力学中。外尔对哲学始终有浓厚的兴趣。在关于数学基础问题的论战中,他赞同布劳威尔的直觉主义,反对非构造性的存在证明,反对康托的超限数。外尔的主要著作还有《空间,时间,物质》、《连续统》、《群论与量子力学》、《经典群》、《对称》、《数学哲学和自然科学》等。1968年,施普林格出版社出版了《外尔全集》,共4卷 。hi投2023-05-20 08:56:491
夸克光子和其它基本粒子内部构成外尔谐振子模型
简介: 光子由两个外尔谐振子构成,电子由三个外尔谐振子构成,上夸克由5个外尔谐振子构成,下夸克由7个外尔谐振子构成。 所有物质,所有粒子,包括无质量的光子,都是由无质量的、自旋1/2的、有频率、相位、振幅的最简单粒子构成。我把它叫外尔谐振子。 几个外尔谐振子组成一个完整粒子的方式是紧密连接在一起,不用像规范场通过规范玻色子交换,所以从外部看起来像一个点粒子。 外尔谐振子不能单独存在,只能以通过组合成一个粒子的方式出现,类似于夸克禁闭。 外尔谐振子有频率、相位、振幅等基本属性。 粒子具有相同的频率才能产生吸收、发射等规范场内相互作用。 外尔谐振子相位决定了振幅的正负值,一个外尔谐振子和它的反粒子相位数值相同,正负号相反。 外尔谐振子振幅决定了粒子的荷场强度,一对正负外尔谐振子组合成一个粒子,这个粒子的振幅相互抵消为0,呈现为荷中性状态。 电磁场粒子 电磁场主要由光子和电子构成。它们可以用一种统一的外尔谐振子A描述构成。 光子和电子都是有相同频率,有正负荷的外尔谐振子,写作A-和A+。A-带1/3负电荷,A+带1/3正电荷。 光子构成 光子结构为 A-A+ 。 光子自旋为1,无电荷。结构为 A-A+ ,有两个外尔谐振子,自旋同向,正负相抵消,呈电中性。 电子构成 电子结构为 A-A-A-。 电子自旋1/2,带一个单位电荷。它的结构是 A-A-A- ,有三个负荷的外尔谐振子,其中一对自旋方向相反,所以总自旋为1/2。 正电子构成 正电子的结构是 A+A+A+ 。 正电子是电子的反粒子。 弱场粒子 参与弱相互作用的粒子既有带弱荷粒子,也有带电荷粒子。带弱荷的粒子用B描述。 B-带1/3负弱荷,B+带1/3正弱荷。 中微子构成 中微子的自旋是1/2。它的结构是 B-B-B- 。B-是自旋1/2,有1/3弱荷。它有三个负荷的外尔谐振子,其中一对自旋方向相反,总自旋为1/2。结构和电子相似。 中微子的反粒子是反中微子,它的结构是 B+B+B+ 。结构和正电子相似。 W玻色子和Z玻色子都是负责传递弱核力的基本粒子,自旋都是1。 W+粒子构成 W+玻色子的构成是A+A+A+B+B+B+,有6个外尔谐振子。 W+玻色子自旋是1,带1个单位正电荷。它的结构是 A+A+A+B+B+B+ ,总共有6个外尔谐振子。这6个外尔谐振子其中1对自旋方向相同,其它4个自旋方向两两相反,所以总的自旋是1。它带有1个单位正电荷和1个单位正弱荷。 W-粒子构成 W-玻色子的构成是A-A-A-B-B-B-,有6个外尔谐振子。 W-玻色子自旋是1,带1个单位负电荷,是W+玻色子的反粒子。它的结构是 A-A-A-B-B-B- ,总共有6个外尔谐振子,结构和W+玻色子相似。 Z0粒子构成 Z0玻色子的构成是A+A-A+A-B+B-B+B-,有8个外尔谐振子。 Z0玻色子也是负责传递弱核力的基本粒子,它呈电中性,但是质量比W玻色子大,它的结构应该比W玻色子更复杂。它的结构为A+A-A+A-B+B-B+B- ,共8个外尔谐振子,它们的荷成对相反,互相抵消,所以呈电中性和弱中性。其中1对自旋方向相同,其它6个自旋方向两两相反,总自旋是1。 强场粒子 参与强相互作用的粒子都带有色,分为红蓝绿和它们的反色。表明带色荷的外尔谐振子的相位有6种,记为Cr+、Cb+、Cg+、Cr-、Cb-、Cg-。 胶子构成 胶子共有8种。这8种胶子又是由更小的部分组成的。 胶子内部的更小部分是三种色荷与三种反色荷组合共有九种可能, 即 红-反红的内部结构是 Cr+Cr- 蓝-反红的内部结构是 Cb+Cr- 绿-反红的内部结构是 Cg+Cr- 其它几个与此类似。 上夸克构成 上夸克的构成是A+A+B+B+C+,有7个外尔谐振子。 上夸克的电荷为+2/3,所以它的内部结构应该有两个A+。同时它在弱相互作用中与下夸克相互转化,因此应该有B+。它的结构是A+A+B+B+C+,有5个外尔谐振子。反上夸克的结构是A-A-B-B-C-,正负号反过来就可以了。 下夸克构成 下夸克的构成是A-A+A-B-B+B-C,有7个外尔谐振子。 下夸克的电荷为-1/3,但是它的质量比上夸克大,它的内部结构应该更复杂。同时它也参与弱相互作用。它的结构是A-A+A-B-B+B-C,共有7个外尔谐振子。A+A-电荷相互抵消,所以只带有-1/3单位电荷。 把上面构成列举成表格,这样更清晰左迁2023-05-20 08:56:491
今日中科院物理所发现的外尔费米子就是磁单极子吗
请输入您的回答...所发现的北有云溪2023-05-20 08:56:492
外尔的规范场实际是相因子场 对吗
标准差就是1如果你得出各题目分别在哪一个因子,将那几个题目算平均分,平均数就是0,因为是标准分数如果保存为因子得分北境漫步2023-05-20 08:56:482
外尔简介及详细资料
简介 外尔(Hermann Klaus Hugo Weyl,英、德文拼写相同,1885年11月9日─1955年12月8日)是近代的德国数学家。生于汉堡附近的埃尔姆斯霍恩,卒于苏黎世。1904年入哥廷根大学(Universität Göttingen),19岁就有幸成为大数学家希尔伯特的学生 。1905─1906年在慕尼黑大学学习数学、物理、化学。1907年,在希尔伯特的指导下,完成博士论文,1908年获博士学位 。1913年受聘为瑞士苏黎世的联邦工学院教授。1928-1929年间,在美国普林斯顿大学做访问教授。1930年回哥廷根继承希尔伯特的教授席位。1933年任哥廷根数学研究所所长,同年,因不满纳粹分子的行径,出走国外,应聘担任美国普林斯顿高等研究院教授 。1951年退休。 由于数学各学科研究越来越广泛而深入,因而现代已经没有在数学所有领域都通的数学家了,外尔被称为上世纪上半叶出现的最后一位"全能数学家"。 外尔与其师希尔伯特关系深厚。 成就 外尔是20世纪上半叶最重要的数学家之一。他的早期工作在分析学方面。其博士论文中把希尔伯特及其学生关于积分方程的工作推广到积分上限为无穷的情形,其后研究奇异特征值问题。外尔在1913年发表的著作《黎曼曲面的概念》,第一次给黎曼曲面奠定了严格的拓扑基础。1915─1933年,他研究与物理有关的数学问题,企图解决引力场与电磁场的统一理论问题,他的工作对以后发展起来的各种场论和广义微分几何学有深远影响。20世纪20年代初,他从一般空间问题进而研究连续群的表示,导致他在1925─1927年最出色的工作,其中包括运用大范围方法研究半单李群的线性表示等。他还把经典有限群的结果扩张到紧群上去,又通过「酉技巧」扩张到非紧的半单群上。他引进的外尔群是数学中的重要工具。量子力学产生后,他首先把群论套用到量子力学中。外尔对哲学始终有浓厚的兴趣。在关于数学基础问题的论战中,他赞同布劳威尔的直觉主义,反对非构造性的存在证明,反对康托的超限数。外尔的主要著作还有《空间,时间,物质》、《连续统》、《群论与量子力学》、《经典群》、《对称》、《数学哲学和自然科学》等。 1968年,施普林格出版社出版了《外尔全集》,共4卷 。康康map2023-05-20 08:56:471
外尔得过诺贝尔奖吗
没有。外尔(Hermann Weyl,1885年11月9日-1955年12月8日)是近代的德国数学家,20世纪上半叶最重要的数学家之一。1908年获博士学位。1913年受聘为瑞士苏黎世的联邦工学院教授。1930年回哥廷根继承希尔伯特的教授席位。1933年任哥廷根数学研究所所长,同年应聘担任美国普林斯顿高等研究院教授。1951年退休。他的早期工作在分析学方面。1913年发表的著作《黎曼曲面的概念》,第一次给黎曼曲面奠定了严格的拓扑基础。1915─1933年,他研究与物理有关的数学问题,对以后发展起来的各种场论和广义微分几何学有深远影响。gitcloud2023-05-20 08:56:471
德国数学家外尔在苏黎世联邦理工大学交了几年书
德国数学家外尔在苏黎世联邦理工大学教了17年书。德国数学家外尔在1908年获博士学位,1913年受聘为瑞士苏黎世的联邦工学院教授,1930年回哥廷根继承希尔伯特的教授席位,在苏黎世联邦理工大学教了17年书,培养了许多学生。外尔(Hermann Weyl)是近代的德国数学家,20世纪上半叶最重要的数学家之一。拌三丝2023-05-20 08:56:471
大连外尔国际贸易有限公司怎么样
挺好的。大连国际外贸出口有限公司是一个充满生机和蓬勃发展的企业,自创建以来始终坚持“创新,品质,服务,节约,敬业,感恩”12字理念。大连外尔国际贸易有限公司成立于2017年11月17日。gitcloud2023-05-20 08:56:471
外尔电子只是理论电子吗
是。外尔电子被称为“外尔费米子”,但是历经80多年,科学家们一直没有能够找到外尔费米子存在的证据,所以一直只是被当作理论电子看待。韦斯特兰2023-05-20 08:56:471
外尔半金属(Weyl semimetal)
本文主要总结一些关于weyl semimetal的知识,可能有理解不对的地方,会随时修改。 在真空中的电子,由于存在着时间反演和空间反演对称,处于“左手”和“右手”状态的几率总是相等的。如果在某一个特殊体系中, 电子只能处在特定的“左手”或者“右手”状态 ,那时候狄拉克就会从棺材里爬出来,告诉你这样的体系真的是酷毙了。为什么呢?因为这时候会发生 手性反常 (即chiral current不守恒),也就是说在相互平行的磁场和电场作用下,具有特定“手性”的电子会被源源不断地产生出来。这当然看起来挺美。那么能否找到某种特殊的晶体,使得它的电子态只能具有某种特定的“手性”呢?两位理论物理学家Nielsen和Ninomiya早在80年代就从数学上给出了证明,即这是 不可能 的, 任何在周期晶格中运动的粒子,相反手性的外尔费米子态总是成对出现的 。这个结论是数学上的严格结果,称为“No-go”定理,看到这里永远追求新奇物质态的科学家们一定会失望了,但是, 虽然外尔费米子总是成对出现,它们在动量空间却可以被分开 。 Nielsen和Ninomiya进一步指出,在某类晶体中,如果无简并的能带在动量空间某处相交,而交点( 外尔点 )的能量又恰好在 费米能级附近 ,那么这类晶体中电子的低能运动就可以用 外尔方程来描写 ,也可以说在这类晶体中 出现了具有某种“手性”的外尔费米子 ,相应的材料就被称为是 外尔半金属 。在这类材料中,手性相反的外尔点成对出现在不同的k点,在相互平行的电场和磁场驱动下,电子会在“左手”外尔点处不断消失,而在“右手”外尔点处不断涌现,从而形成一种电磁场共同驱动的, 只能沿着磁场方向发生的特殊电子输运模式(?) 。这种输运方式的最终后果,就是 当电流和磁场方向平行时导致很大的负磁阻,这可以看成是“手性”反常在凝聚态物质中的体现 。当然Nielsen和Ninomiya只是证明了外尔费米子态在晶体中是可能出现的,要找出具体实现它的材料就不那么容易了。 Weyl费米子在固体能带结构中广泛存在。但是这些金属的费米面非常复杂,很难将Weyl费米子的贡献分离出来。因此 发现费米面仅仅由Weyl费米子或能带交叉点构成的实际材料成了众多研究者竞相实现的目标 。由于这样的金属态费米面上的态密度为零,因此也被称为 Weyl 半金属。2011年,万贤纲等人通过理论计算提出,烧绿石结构的铱氧化物可能是磁性 Weyl 半金属[7]。同一年,徐刚等人理论预言铁磁尖晶石HgCr2Se4也是Weyl半金属[8]。它们都 破缺时间反演,使得手性相反的Weyl费米子不再重叠 。 除了前面重点介绍的手性反常以外,外尔半金属还有一些其他的奇特物理性质。比如说你可以把贝里曲率看作动量空间的“磁场”,那么外尔点就是一个“磁单极子”,这一点是在2003年被提出的,是我的搭档方忠童鞋的成名作之一(铁磁金属中的Weyl费米子贡献了反常霍尔效应的内禀部分)。此外,外尔半金属还具有非常奇葩的表面态特性,即 由表面态形成的费米面是不连续的一系列线段,称为费米弧(Fermi Arc) 。这些费米弧连接着体内外尔点在表面上的投影点,是外尔半金属的另一个重要特征。 但是,对于实验研究来说,前面提到的两类材料有一个很要命的缺点,即都是磁性材料,总不可避免地存在磁畴,从而使得许多外尔半金属的重要特性,如刚才介绍的 手性反常和费米弧等,很难在实验上被观测到 。因此 发现非磁性的外尔半金属材料 ,成为该领域发展的关键。今年初,我所在的物理所理论室T03组和普林斯顿大学Bernevig教授等人合作,终于一口气找到了四种非磁性的外尔半金属材料,TaAs、TaP、NbAs和NbP(Phys. Rev. X 5, 011029,2015)。不同于以往的理论方案,这一系列材料能自然合成,无需进行掺杂等细致繁复的调控。更重要的是,这类材料break中心反演但保持时间反演对称,因此没有磁性材料带来的磁畴等复杂性,也可以用角分辨光电子能谱(ARPES)实验来直接观测。 在半金属中,Weyl nodes(touching points)对于小的微扰是robust 的。 不过我们首先需要考虑一下band degeneracy。我们知道symmetry通常会引起band 的degeneracy,比如spin rotation symmetry存在的情况下会出现double degeneracy 的bands。另外一种情况是time reversal symmetry 和inversion symmetry 同时存在的情况下也会出现double degenerate的bands。不过如果只有 存在,那么bands 就是generally nondegenerate的。只有在time reversal inviarant momenta(TRIM)处,也即 处,才有degeneracy,也叫Kramers degeneracy。 proof: 由上面的公式可以知道,体系在 处有一个能量为 的态。 更多关于时间反演对称性的内容可以参考这篇知乎文章: https://zhuanlan.zhihu.com/p/56202739 ) 同样的,对于只存在inversion symmetry,而time reversal symmetry 破缺的情况下,能带也是generally nondegenerate。 当上述这些generally nondegenerate的bands 发生cross 的时候会出现accidental degeneracy,这些touching points就是weyl nodes。 weyl semimetal有三个主要的特性:linear dispersion,fermi arc,chiral anomaly。 关于线性色散不展开讲了,具体参看: https://www.zhihu.com/question/28668638 。下面主要介绍一下fermi arc surface states。 在拓扑绝缘体中,surface states是一个非常重要的概念,当体带打开带隙,我们就会发现带隙中有gapless well-defined surface states,连接gap两端的bulk states。当费米面处于带隙中,体系的物理主要由表面态决定。但是对于weyl semimetal,bulk states也是gapless 的,因此不管你如何调节费米面体带和表面态会同时被切到并贡献(当刚好切到Dirac点时,理论上体带态密度为零可视为无贡献,但实际情况下在Dirac附近热涨落量子涨落等效应明显,体带也不可完全忽略)。这样我们就很难定义weyl semimetal的surface states。北有云溪2023-05-20 08:56:471
科学前沿16: 激光调控外尔准粒子的超快运动
拓扑量子态 和 拓扑量子材料 的理论、实验研究近年来方兴未艾,成为凝聚态物理研究领域的重要前沿。 拓扑序 作为一种全新的 物质分类概念 ,与对称性一样是凝聚态物理中的基础性概念。对拓扑的深刻理解,关系到凝聚态物理研究中的诸多基本问题, 例如量子相的基本电子结构、量子相变以及量子相中的许多无能隙元激发等 。在拓扑材料中,电子、声子以及自旋等多种自由度之间的 耦合 对于理解并调控材料性质有着决定性作用。 光激发 可用于 区分不同的相互作用 并 操控物质状态 ,材料的基本物性、结构相变以及新的量子态信息也会随之获得。目前, 深入理解光场驱动下拓扑材料宏观行为与其微观原子结构、电子性质的关联 已经成为众多研究人员的目标。 图1. a. 手性符号为正(χ=+1)的Weyl点在圆偏振光下的手性选择定则; b . χ=+1的Weyl点在线偏振光下由于原子轨道对称性导致的选择性激发。 拓扑材料的光电响应行为与其 微观电子结构 密切相关。特别的,对于拓扑半金属来说, 能带交叉点附近的载流子激发对体系波函数特征高度敏感 。对拓扑半金属中非线性光学现象的研究不仅可以帮助我们更深入地理解系统激发态的物理性质,并且有望将这些效应用于光学器件的制造和太阳能电池的设计,为未来潜在的实际应用提供了可能。例如,外尔(Weyl)半金属中, 吸收一个圆偏振光的光子将导致自旋的翻转 ,为了满足角动量守恒,沿着圆偏振光传播的方向, Weyl锥两侧的电子激发将呈不对称分布 ,该规律称为 手性选择定则 (图1)。 对拓扑材料非线性光学现象的理论研究通常采用 将 材料基态性质计算和对称性分析相结合 的方法 ,然而,这样的处理方法存在明显的 缺陷 。首先, 缺少被激发载流子在动量空间及实空间的实时动力学信息,无法建立与时间分辨实验探测手段的直接对比 。其次, 无法考虑电子-声子及光子-声子之间的耦合 。而这对于某些相变过程的发生至关重要。此外,这种基于 微扰论 的理论分析 无法处理强光场下的物理过程 。基于第一性原理的 含时密度泛函分子动力学(TDDFT-MD)模拟 能够很好地解决以上问题。 近期,中国科学院物理研究所/北京凝聚态物理国家研究中心表面物理国家重点实验室SF10组的博士后关梦雪和博士生王恩(共同第一作者),在孟胜研究员的指导下,与北京理工大学孙家涛教授合作,利用自主开发的激发态动力学模拟软件TDAP,系统地研究了 第二类外尔半金属WTe2中准粒子激发对超快激光的响应特征 。 图2. a. Td -WTe2的原子结构示意图; b . 费米面附近的能带结构。 c . 沿着布里渊区高对称线分布的能带结构及原子轨道的相对贡献。箭头①及②分别代表靠近或远离Weyl点的激发; d . 沿着Γ-X方向能带结构的放大。 研究表明,在Weyl点附近存在由原子轨道对称性及跃迁选择定则所决定的 载流子的选择性激发 ,与通常手性激发的自旋选择定则大为不同的是,其激发路径可以通过 改变线偏振光的极化方向 及 光子能量 加以控制(图2)。 载流子的不对称激发将在实空间诱导出不同方向的光电流 ,从而影响体系的层 间滑移的方向 和 对称性特征 。由于WTe2的拓扑性质,例如Weyl点的数目及其在动量空间中的分离程度等,高度依赖于体系的对称性(图3), 载流子的不对称激发将带来Weyl准粒子在动量空间的不同变化行为,以及体系拓扑性质的相应改变 。因此,本工作同时为 光致拓扑相变 提供了清晰的相图(图4)。 图3. a-b, 线偏振光极化方向沿着晶体a轴及b轴的层间相对运动;插图为相应的运动模式。 c . 理论模拟与实验观测的比较。 d-e . 体系的对称性演化及 kz =0 平面内两个最邻近Weyl点的位置、数目及分离程度。 图4 . Td -WTe2中光致拓扑相变对线偏振光光子能量(ℏω)及极化方向(θ)的依赖相图。 相关成果近日发表在《自然通讯》(Nature Communications 12 , 1885 (2021)) 上。该工作得到了 科技 部重点研发计划、国家自然科学基金委和中国科学院战略性先导专项(B类)的资助。作者感谢与伦斯勒理工学院张绳百教授的有益讨论。 相关工作链接: http://www.iop.cas.cn/xwzx/kydt/202109/P020210902584524722434.pdfmlhxueli 2023-05-20 08:56:471
磁性外尔半金属,在拓扑和自旋电子学之间架起了桥梁
想象一下这样一个世界:电力可以毫无损失地流过电网,或者世界上所有的数据都可以存储在云中,而不需要发电站。这似乎难以想象,但随着一种具有神奇特性的新材料家族的发现,通往这样一个梦想的道路已经打开。这些材料(磁性Weyl(外尔)半金属)天生是量子的,但在拓扑和自旋电子学的两个世界之间架起了桥梁。拓扑材料表现出奇怪的性质,包括没有任何能量损失的超快电子。另一方面,磁性材料对于我们的日常生活必不可少,从电动车的磁铁到每个硬盘驱动器中的自旋电子设备。磁性Weyl半金属(WSM)的概念曾在空气中出现,但真正的生活材料,现在由德累斯顿MPI CPfS主任Claudia Felser团队在两种截然不同的化合物中实现-Co2MnGa和Co3Sn2S2。为了找到这些非同寻常的材料,Felser团队扫描了材料数据库,并提出了一份有希望的候选名单。通过对Co2MnGa和Co3Sn2S2的电子结构研究,证明了这些材料是磁性Weyl半金属。来自MPI CPfS的Claudia Felser团队和MPI微观结构物理Stuart Parkin团队的科学家Halle:与普林斯顿的M.Zahid Hasan的团队,牛津大学的Ylin Chen的团队,以及魏茨曼科学研究所的Haim Bedenkopf团队合作。在发表在《科学》期刊上的三篇论文中,实验证实了磁性Weyl半金属 Fermions在这两种材料中的存在。首次利用角分辨光电子能谱(ARPES)和扫描隧道显微镜(STM)实验,观察到时间反转对称性破缺的磁性Weyl半金属态,这是通过在MPI CPfS生长的高质量单晶得以实现。磁性Weyl半金属的发现是朝着实现高温量子和自旋电子效应迈出的一大步。Halle Max Planck微结构物理研究所总经理Stuart Parkin说:这两种材料分别属于高度可调谐的Heusler和Shandite家族,是未来各种自旋电子和磁光技术应用的理想平台,用于数据存储、信息处理以及能量转换系统中的应用。Co2MnGa和Co3Sn2S2中的磁性拓扑态,对反常量子输运效应的起源起着至关重要的作用,这是由于它们的拓扑态具有很强的Berry曲率。利用Weyl节点线和节点带结构,Co2MnGa和Co3Sn2S2是目前已知仅有两个同时具有大反常霍尔电导率和反常霍尔角的材料实例。材料具有高阶温度、清晰的拓扑带结构、低电荷载流子密度和强电磁响应的天然优势。通过磁性Weyl半金属的量子限制来设计一种具有高温量子反常霍尔效应(QAHE)的材料,并将其集成到量子器件中是下一步的研究目标。磁性Weyl半金属的发现是实现室温QAHE的一大步,也是新能量转换概念“量子反常霍尔效应”的基础,量子反常霍尔效应能够通过固有自旋极化的手性边缘态实现无耗散传输。在室温下实现QAHE将是革命性的,因为它克服了当今许多基于数据的技术限制,这些技术受到电子散射引起的巨大功率损失影响,这将为新一代低能耗量子电子和自旋电子设备铺平道路。善士六合2023-05-20 08:56:471
外尔费米子与铁磁自旋波共舞研究获进展
外尔半金属的费米面有且仅有孤立的能带交叉点构成,因而其低能激发的准粒子可以用描述外尔费米子的外尔方程来刻画,具有外尔费米子的零质量、确定手性等特征。虽然自由粒子形式的外尔费米子至今未能被实验确认,但在外尔半金属中却能够实现外尔费米子形式的准粒子,这为研究外尔费米子的行为提供了新途径。固体中的外尔费米子准粒子还具有不同于真空中真实粒子的独特物理性质和新奇现象,譬如费米弧和手性反常导致的磁阻效应、内禀反常霍尔效应、三维量子霍尔效应等。因此,首个非磁性外尔半金属TaAs家族材料的发现具有重要科学意义,推动了外尔半金属的研究进展。另一类破坏时间反演对称性的磁性外尔半金属在近期也得到了材料实现和密切研究。 首个实验确认的磁性外尔半金属Co3Sn2S2于2018年被提出,并被相关谱学实验证实。目前,Co3Sn2S2已经成为磁性拓扑物理前沿研究的一个重要平台。Co3Sn2S2属于Shandite化合物,其中Co原子构成层状kagome结构,具有c方向极化的面外铁磁序,磁矩强度为0.3 μB/Co,居里温度约为175 K。能带拓扑结构中,有三对外尔费米点靠近费米能级(图1)。由于外尔费米子可当作是动量空间的赝磁场——贝利曲率的磁单极子,它们将影响实空间中电子的运动,譬如产生内禀反常霍尔效应等。拓扑效应主导的内禀反常霍尔电导能抵御材料缺陷和外部热扰动的破坏,具有很高的稳定性,有利于量子器件的应用。在磁性外尔半金属中,内禀反常霍尔电导与一对手性相反的外尔费米子在动量空间的间距基本成正比,并与外尔费米子到费米能级的远近有关。磁性状态的变化能够影响电子结构,进而使得外尔费米子的位置和能量产生变化。可以预想,当材料中有序排列的磁矩因集体运动产生自旋波时,内部的外尔费米子也将随之被扰动,从而使得反常霍尔电导受到影响。反过来说,外尔费米子作为动量空间的磁单极子,借助系统的自旋-轨道耦合效应,其中的自旋波色散也将受其影响,体现为材料中自旋波的刚度(或斜率)和能隙的温度依赖行为与外尔费米子有内在关联(图2)。 近日,中国科学院物理研究所/北京凝聚态物理国家研究中心研究人员等利用非弹性中子散射精细测量了Co3Sn2S2单晶的低能自旋波,并用唯象理论模型分析了其自旋相互作用和自旋波能隙的温度依赖关系等。他们发现,不同于材料的准二维晶体结构,其铁磁自旋波在低温下具有明显的三维特征,即在ab面内和c方向均存在不同程度的色散(图3),表明该体系具有三维磁交换作用,且层间强度是层内的一半。类似的色散延续到高温顺磁态中,表明了体系具有中等程度的三维自旋关联效应。数值计算结果很好地印证了这一结论,并估算出与实验值接近的居里温度和自旋波刚度,其磁各向异性能约为0.6 meV。然而,高精度的中子散射测量表明,在4 K温度下,自旋波能隙完全打开,高达2.3 meV。详细的温度依赖关系表明,自旋波能隙并不完全服从铁磁序参量的行为,而必须充分考虑反常霍尔电导的影响,体现了外尔费米子与自旋波的相互影响(图4)。此前,在SrRuO3中的研究表明非单调温度依赖自旋波刚度和能隙与反常霍尔电导率行为很类似,但是该材料尚未有关于外尔费米子的确凿谱学证据。而在其他一些磁性拓扑半金属候选材料中,自旋波与拓扑费米子是否存在耦合仍存有较大争议。该研究不仅给出了磁性外尔半金属Co3Sn2S2中的磁性相互作用参数等关键信息,而且明确表明电子拓扑态与自旋动力学之间存在互相影响,这为理解磁性拓扑材料提供了物理基础,并以此启发了该材料体系拓扑物态调控的可能思路。 上述研究工作发表在SCIENCE CHINA Physics, Mechanics & Astronomy上。 以上中子散射实验在澳大利亚中子散射中心Taipan和Sika两台三轴谱仪上完成。该研究工作得到了国家自然科学基金、北京市自然科学基金、国家重点研发计划、中科院战略性先导 科技 专项(B类)、中科院青年促进会等项目的支持。 图1. (a)Co3Sn2S2的晶体结构和铁磁结构。(b) 外尔费米子在动量空间位置。 图2. 外尔费米子与自旋波共舞 图3.Co3Sn2S2的自旋波在ab面(H方向)和c方向(L方向)的色散。 图4. Co3Sn2S2的自旋波能隙及其随温度的演化,其中虚线为参照铁磁序参量拟合结果(b=0),红色空心点为考虑反常霍尔电导贡献之后的数据拟合结果(b≠0)。铁血嘟嘟2023-05-20 08:56:471
维吾尔语:穆乃外尔是什么意思?
文字是: مۇنەۋۋەر 是个名字,而且是优秀的意思善士六合2023-05-20 08:56:471