五次方程

五次方程 超几何函数

您好。五次方程是一种最高次数为五次的多项式方程。专指只含一个未知数的五次方程。
再也不做站长了2023-05-24 07:48:441

一般的一元五次方程为什么无公式法求解?

自己察!
西柚不是西游2023-05-20 08:56:262

我已找到一元五次方程的求根公式了

根据 Galois理论,每种方程对应一个伽罗瓦群,这个方程可解,当且仅当这个群可解,而当n大于等于5时,这个群一般是不可解的,这个问题多年前就被证明了。一元五次方程是没有求根公式的,因为它对应的伽罗瓦群不可解。这是某一年的菲尔斯奖。不可能随便说说就解决的。用伽罗瓦理论还可以解决几何三大难题,化圆为方,二体积问题,还有三等分角问题
FinCloud2023-05-20 08:56:261

一元五次方程为什么没有求根公式

一元五次方程是没有求根公式的,因为它对应的伽罗瓦群不可解。求一元五次方程的根式解曾困扰数学家三百余年,阿贝尔和伽罗瓦的工作证明了一般一元五次方程没有根式解。1930 年华罗庚《苏家驹之代数的五次方程式解法不能 成立之理由》一文,是对试图推翻阿贝尔和伽罗瓦证明的一种反驳,也是华罗庚的成名之作。 最近国内学者声称“破解”了一元五次方程。这种“破解”,仅限于一元五次方程根的数值求解。6 世纪,在意大利数学家塔塔利亚(Tartaglia)、卡尔达诺(Cardano)、费拉利(Ferrari)等人的努力下,用根式求解三次方程与四次方程的方法终获解决。这样,利用代数符号,无论是二次方程、三次方程还是四次方程,都能通过根式求出它的一般解。于是,数学家们开始寻找一元五次方程的公式解法。虽屡遭挫折,但人们相信,五次方程的解就隐藏在某个角落。在随后三百多年,破解五次方程成了数学中最迷人的挑战之一,很多数学家和数学爱好者,都把它作为检验自己才能的试金石。可是毫无例外,他们都失败了。五次及以上方程的根式解虽然没有找到,人们却积累了很多的经验和知识,特别值得一提的是法国数学家拉格朗日(Lagrange)。1770 年,拉格朗日发表了《关于代数方程解的思考》,他讨论了人们所熟知的解二、三、四次方程的一切方法,并且指出这些成功解法所根据的情况对于五次以及更高次的方程是不可能发生的。拉格朗日试图得出这种不可能性的证明,然而,经过顽强的努力之后,拉格朗日不得不坦言这个问题“好像是在向人类的智慧挑战”。
墨然殇2023-05-20 08:56:261

一元五次方程求解

铁血嘟嘟2023-05-20 08:56:254

求一元五次方程无根式解的证明过程

112
康康map2023-05-20 08:56:253

一般一元五次方程有求根公式吗?

从方程的根式解法发展过程来看,早在古巴比伦数学和印度数学的记载中,他们就能够用根式求解一元二次方程ax2+bx+c=0,给出的解相当于+,,这是对系数函数求平方根。接着古希腊人和古东方人又解决了某些特殊的三次数字方程,但没有得到三次方程的一般解法。这个问题直到文艺复兴的极盛期(即16世纪初)才由意大利人解决。他们对一般的三次方程x3+ax2+bx+c=0,由卡丹公式解出根 x= + ,其中p = ba2,q = a3,显然它是由系数的函数开三次方所得。同一时期,意大利人费尔拉里又求解出一般四次方程x4+ax3+bx2+cx+d=0的根是由系数的函数开四次方所得。 用根式求解四次或四次以下方程的问题在16世纪已获得圆满解决,但是在以后的几个世纪里,探寻五次和五次以上方程的一般公式解法却一直没有得到结果。1770年前后,法国数学家拉格朗日转变代数的思维方法,提出方程根的排列与置换理论是解代数方程的关键所在,并利用拉格朗日预解式方法,即利用1的任意n次单位根 ( n =1)引进了预解式x1+ x2+ 2x3+…+ n-1xn,详细分析了二、三、四次方程的根式解法。他的工作有力地促进了代数方程论的进步。但是他的这种方法却不能对一般五次方程作根式解,于是他怀疑五次方程无根式解。并且他在寻求一般n次方程的代数解法时也遭失败,从而认识到一般的四次以上代数方程不可能有根式解。他的这种思维方法和研究根的置换方法给后人以启示。 1799年,鲁菲尼证明了五次以上方程的预解式不可能是四次以下的,从而转证五次以上方程是不可用根式求解的,但他的证明不完善。同年,德国数学家高斯开辟了一个新方法,在证明代数基本理论时,他不去计算一个根,而是证明它的存在。随后,他又着手探讨高次方程的具体解法。在1801年,他解决了分圆方程xp-1=0(p为质数)可用根式求解,这表明并非所有高次方程不能用根式求解。因此,可用根式求解的是所有高次方程还是部分高次方程的问题需进一步查明。 随后,挪威数学家阿贝尔开始解决这个问题。1824年到1826年,阿贝尔着手考察可用根式求解的方程的根具有什么性质,于是他修正了鲁菲尼证明中的缺陷,严格证明:如果一个方程可以根式求解,则出现在根的表达式中的每个根式都可表示成方程的根和某些单位根的有理数。并且利用这个定理又证明出了阿贝尔定理:一般高于四次的方程不可能代数地求解。接着他进一步思考哪些特殊的高次方程才可用根式解的问题。在高斯分圆方程可解性理论的基础上,他解决了任意次的一类特殊方程的可解性问题,发现这类特殊方程的特点是一个方程的全部根都是其中一个根(假设为x)的有理函数,并且任意两个根q1(x)与q2(x)满足q1q2(x)=q2q1(x),q1,q2为有理函数。现在称这种方程为阿贝尔方程。其实在对阿贝尔方程的研究中已经涉及到了群的一些思想和特殊结果,只是阿贝尔没能意识到,也没有明确地构造方程根的置换集合(因为若方程所有的根都用根x1来表示成有理函数qj(x1),j=1,2,3,…,n,当用另一个根xi代替x1时,其中1〈i≤n ,那么qj(xi)是以不同顺序排列的原方程的根,j=1,2,…,n。实际上应说根xi=q1(xi),q2(xi),…,qn(xi)是根x1,x2,…,xn的一个置换),而仅仅考虑可交换性q1q2(x)=q2q1(x)来证明方程只要满足这种性质,便可简化为低次的辅助方程,辅助方程可依次用根式求解。 阿贝尔解决了构造任意次数的代数可解的方程的问题,却没能解决判定已知方程是否可用根式求解的问题。法国数学家伽罗瓦正是处在这样的背景下,开始接手阿贝尔未竞的事业。伽罗瓦在证明不存在一个五次或高于五次的方程的一般根式解法时,与拉格朗日相同,也从方程根的置换入手。当他系统地研究了方程根的排列置换性质后,提出了一些确定的准则以判定一个已知方程的解是否能通过根式找到,然而这些方法恰好导致他去考虑一种称之为“群”的元素集合的抽象代数理论。在1831年的论文中,伽罗瓦首次提出了“群”这一术语,把具有封闭性的置换的集合称为群,首次定义了置换群的概念。他认为了解置换群是解决方程理论的关键,方程是一个其对称性可用群的性质描述的系统。他从此开始把方程论问题转化为群论的问题来解决,直接研究群论。他引入了不少有关群论的新概念,从而也产生了他自己的伽罗瓦群论,因此后人都称他为群论的创始人。 对有理系数的n次方程 x+axn-1+a2xn-2+…+an-1x+an=0 (1) 假设它的n个根x1,x2,…,xn的每一个变换叫做一个置换,n个根共有n!个可能的置换,它们的集合关于置换的乘法构成一个群,是根的置换群。方程的可解性可以在根的置换群的某些性质中有所反映,于是伽罗瓦把代数方程可解性问题转化为与相关的置换群及其子群性质的分析问题。现在把与方程联系起的置换群(它表现了方程的对称性质)称为伽罗瓦群,它是在某方程系数域中的群。一个方程的伽罗瓦群是对于每一个其函数值为有理数的关于根的多项式函数都满足这个要求的最大置换群,也可以说成对于任一个取有理数值的关于根的多项式函数,伽罗瓦群中的每个置换都使这函数的值不变。伽罗瓦创立群论是为了应用于方程论,但他并不局限于此,而是把群论进行了推广,作用于其他研究领域。可惜的是,伽罗瓦群论的理论毕竟太深奥,对十九世纪初的人们来说是很难理解的,连当时的数学大师都不能理解他的数学思想和他的工作的实质,以至他的论文得不到发表。更不幸的是伽罗瓦在二十一岁时便因一场愚蠢的决斗而早逝,我们不得不为这位天才感到惋惜。到十九世纪六十年代,他的理论才终于为人们所理解和接受。 伽罗瓦群理论被公认为十九世纪最杰出的数学成就之一。他给方程可解性问题提供了全面而透彻的解答,解决了困扰数学家们长达数百年之久的问题。伽罗瓦群论还给出了判断几何图形能否用直尺和圆规作图的一般判别法,圆满解决了三等分任意角或倍立方体的问题都是不可解的。最重要的是,群论开辟了全新的研究领域,以结构研究代替计算,把从偏重计算研究的思维方式转变为用结构观念研究的思维方式,并把数学运算归类,使群论迅速发展成为一门崭新的数学分支,对近世代数的形成和发展产生了巨大影响。同时这种理论对于物理学、化学的发展,甚至对于二十世纪结构主义哲学的产生和发展都发生了巨大的影响
黑桃花2023-05-20 08:56:251

急求四次方程求根公式(要完整的过程)还有五次方程无求根公式的证明过程

方程两边同时除以最高次项的系数可得 x^4+bx^3+cx^2+dx+e=0 (1) 移项可得 x^4+bx^3=-cx^2-dx-e (2) 两边同时加上(1/2bx)^2 ,可将(2)式左边配成完全平方,方程成为 (x^2+1/2bx)^2=(1/4b^2-c)x^2-dx-e (3) 在(3)式两边同时加上(x^2+1/2bx)y+1/4y^2 可得 [(x^2+1/2bx)+1/2y]^2= (1/4b^2-c+y)x^2+(1/2by-d)x+1/4y^2-e (4) (4)式中的y是一个参数。当(4)式中的x为原方程的根时,不论y取什么值,(4)式都应成立。特别,如果所取的y值使(4)式右边关于x的二次三项式也能变成一个完全平方式,则对(4)对两边同时开方可以得到次数较低的方程。 为了使(4)式右边关于x的二次三项式也能变成一个完全平方式,只需使它的判别式变成0,即 (1/2by-d)^2-4(1/4b^2-c+y)(1/4y^2-e)=0 (5) 这是关于y的一元三次方程,可以通过塔塔利亚公式来求出y应取的实数值。 把由(5)式求出的y值代入(4)式后,(4)式的两边都成为完全平方,两边开方,可以得到两个关于x的一元二次方程。解这两个一元二次方程,就可以得出原方程的四个根。 费拉里发现的上述解法的创造性及巧妙之处在于:第一次配方得到(3)式后引进参数y,并再次配方把(3)式的左边配成含有参数y的完全平方,即得到(4)式,再利用(5)式使(4)的右边也成为完全平方,从而把一个一元四次方程的求解问题化成了一个一元三次方程及两个一元二次方程的求解问题。 五次方程无求根公式的证明过程 很复杂 一般人看不懂 如下:从方程的根式解法发展过程来看,早在古巴比伦数学和印度数学的记载中,他们就能够用根式求解一元二次方程ax2+bx+c=0,给出的解相当于+,,这是对系数函数求平方根。接着古希腊人和古东方人又解决了某些特殊的三次数字方程,但没有得到三次方程的一般解法。这个问题直到文艺复兴的极盛期(即16世纪初)才由意大利人解决。他们对一般的三次方程x3+ax2+bx+c=0,由卡丹公式解出根 x= + ,其中p = ba2,q = a3,显然它是由系数的函数开三次方所得。同一时期,意大利人费尔拉里又求解出一般四次方程x4+ax3+bx2+cx+d=0的根是由系数的函数开四次方所得。 用根式求解四次或四次以下方程的问题在16世纪已获得圆满解决,但是在以后的几个世纪里,探寻五次和五次以上方程的一般公式解法却一直没有得到结果。1770年前后,法国数学家拉格朗日转变代数的思维方法,提出方程根的排列与置换理论是解代数方程的关键所在,并利用拉格朗日预解式方法,即利用1的任意n次单位根 ( n =1)引进了预解式x1+ x2+ 2x3+…+ n-1xn,详细分析了二、三、四次方程的根式解法。他的工作有力地促进了代数方程论的进步。但是他的这种方法却不能对一般五次方程作根式解,于是他怀疑五次方程无根式解。并且他在寻求一般n次方程的代数解法时也遭失败,从而认识到一般的四次以上代数方程不可能有根式解。他的这种思维方法和研究根的置换方法给后人以启示。 1799年,鲁菲尼证明了五次以上方程的预解式不可能是四次以下的,从而转证五次以上方程是不可用根式求解的,但他的证明不完善。同年,德国数学家高斯开辟了一个新方法,在证明代数基本理论时,他不去计算一个根,而是证明它的存在。随后,他又着手探讨高次方程的具体解法。在1801年,他解决了分圆方程xp-1=0(p为质数)可用根式求解,这表明并非所有高次方程不能用根式求解。因此,可用根式求解的是所有高次方程还是部分高次方程的问题需进一步查明。 随后,挪威数学家阿贝尔开始解决这个问题。1824年到1826年,阿贝尔着手考察可用根式求解的方程的根具有什么性质,于是他修正了鲁菲尼证明中的缺陷,严格证明:如果一个方程可以根式求解,则出现在根的表达式中的每个根式都可表示成方程的根和某些单位根的有理数。并且利用这个定理又证明出了阿贝尔定理:一般高于四次的方程不可能代数地求解。接着他进一步思考哪些特殊的高次方程才可用根式解的问题。在高斯分圆方程可解性理论的基础上,他解决了任意次的一类特殊方程的可解性问题,发现这类特殊方程的特点是一个方程的全部根都是其中一个根(假设为x)的有理函数,并且任意两个根q1(x)与q2(x)满足q1q2(x)=q2q1(x),q1,q2为有理函数。现在称这种方程为阿贝尔方程。其实在对阿贝尔方程的研究中已经涉及到了群的一些思想和特殊结果,只是阿贝尔没能意识到,也没有明确地构造方程根的置换集合(因为若方程所有的根都用根x1来表示成有理函数qj(x1),j=1,2,3,…,n,当用另一个根xi代替x1时,其中1〈i≤n ,那么qj(xi)是以不同顺序排列的原方程的根,j=1,2,…,n。实际上应说根xi=q1(xi),q2(xi),…,qn(xi)是根x1,x2,…,xn的一个置换),而仅仅考虑可交换性q1q2(x)=q2q1(x)来证明方程只要满足这种性质,便可简化为低次的辅助方程,辅助方程可依次用根式求解。 阿贝尔解决了构造任意次数的代数可解的方程的问题,却没能解决判定已知方程是否可用根式求解的问题。法国数学家伽罗瓦正是处在这样的背景下,开始接手阿贝尔未竞的事业。伽罗瓦在证明不存在一个五次或高于五次的方程的一般根式解法时,与拉格朗日相同,也从方程根的置换入手。当他系统地研究了方程根的排列置换性质后,提出了一些确定的准则以判定一个已知方程的解是否能通过根式找到,然而这些方法恰好导致他去考虑一种称之为“群”的元素集合的抽象代数理论。在1831年的论文中,伽罗瓦首次提出了“群”这一术语,把具有封闭性的置换的集合称为群,首次定义了置换群的概念。他认为了解置换群是解决方程理论的关键,方程是一个其对称性可用群的性质描述的系统。他从此开始把方程论问题转化为群论的问题来解决,直接研究群论。他引入了不少有关群论的新概念,从而也产生了他自己的伽罗瓦群论,因此后人都称他为群论的创始人。 对有理系数的n次方程 x+axn-1+a2xn-2+…+an-1x+an=0 (1) 假设它的n个根x1,x2,…,xn的每一个变换叫做一个置换,n个根共有n!个可能的置换,它们的集合关于置换的乘法构成一个群,是根的置换群。方程的可解性可以在根的置换群的某些性质中有所反映,于是伽罗瓦把代数方程可解性问题转化为与相关的置换群及其子群性质的分析问题。现在把与方程联系起的置换群(它表现了方程的对称性质)称为伽罗瓦群,它是在某方程系数域中的群。一个方程的伽罗瓦群是对于每一个其函数值为有理数的关于根的多项式函数都满足这个要求的最大置换群,也可以说成对于任一个取有理数值的关于根的多项式函数,伽罗瓦群中的每个置换都使这函数的值不变。伽罗瓦创立群论是为了应用于方程论,但他并不局限于此,而是把群论进行了推广,作用于其他研究领域。可惜的是,伽罗瓦群论的理论毕竟太深奥,对十九世纪初的人们来说是很难理解的,连当时的数学大师都不能理解他的数学思想和他的工作的实质,以至他的论文得不到发表。更不幸的是伽罗瓦在二十一岁时便因一场愚蠢的决斗而早逝,我们不得不为这位天才感到惋惜。到十九世纪六十年代,他的理论才终于为人们所理解和接受。 伽罗瓦群理论被公认为十九世纪最杰出的数学成就之一。他给方程可解性问题提供了全面而透彻的解答,解决了困扰数学家们长达数百年之久的问题。伽罗瓦群论还给出了判断几何图形能否用直尺和圆规作图的一般判别法,圆满解决了三等分任意角或倍立方体的问题都是不可解的。最重要的是,群论开辟了全新的研究领域,以结构研究代替计算,把从偏重计算研究的思维方式转变为用结构观念研究的思维方式,并把数学运算归类,使群论迅速发展成为一门崭新的数学分支,对近世代数的形成和发展产生了巨大影响。同时这种理论对于物理学、化学的发展,甚至对于二十世纪结构主义哲学的产生和发展都发生了巨大的影响
无尘剑 2023-05-20 08:56:251

用群证明五次方程详细

伽罗瓦 将群运用于方程理论 1)首先说明每个方程都有自身的一个伽罗瓦群(代表方程的对称性质) 伽罗瓦群就是方程假定解的最大置换群,它使解的某种组合不变 由代数基本定理知n次方程有n个解 伽罗瓦证明了对于任意次数n,总能找到n次方程,其伽罗瓦群就是 n次置换群Sn 2)定义正规子群,正规子群指子群中任一元素满足母群中一个元素左乘 它,并由其逆元右乘它得出子群的一个元素组成的群 定义指数(母群的阶被最大正规子群的阶所除) 3)伽罗瓦证明了一个方程要有公式解,方程必须有特定类型的伽罗瓦群, 即其有解,若最大正规子群产生的每一个单独的指数是一个素数,则伽 罗瓦群有解(有解表示方程可以降次) 而一般五次及五次以上方程是由于若最大正规子群产生的每一个单独 的指数不是一个素数,则伽罗瓦群不可解 那个一元三次方程应该是成立的 (等式右边括号内=应为+)
阿啵呲嘚2023-05-20 08:56:231