大数定律又称大数法则、大数率。 在一个随机事件中,随着试验次数的增加,事件发生的频率趋于一个稳定值;同时,在对物理量的测量实践中,测定值的算术平均也具有稳定性。概率论历史上第一个极限定理属于伯努利,后人称之为“大数定律”。概率论中讨论随机变量序列的算术平均值向常数收敛的定律。概率论与数理统计学的基本定律之一。又称弱大数理论。大数定律(law of large numbers),是一类描述当试验次数很大时所呈现的概率性质的定律。 有些随机事件无规律可循,但不少却是有规律的,这些“有规律的随机事件”在大量重复出现的条件下,往往呈现几乎必然的统计特性,这个规律就是大数定律。 通俗地说,这个定理就是,在试验不变的条件下,重复试验多次,随机事件的频率近似于它的概率。比如,我们向上抛一枚硬币,硬币落下后哪一面朝上本来是偶然的,但当我们上抛硬币的次数足够多后,达到上万次甚至几十万几百万次以后,我们就会发现,硬币每一面向上的次数约占总次数的二分之一。这种情况下,偶然中包含着必然。必然的规律与特性在大量的样本中得以体现。 简单地说,大数定理就是“当试验次数足够多时,事件发生的频率无穷接近于该事件发生的概率” 大数定理简介 我们知道,单凭理性计算,有限次重复博弈,是解决个体理性与集体 理性之间矛盾的。无限重复又如何呢?且听我细细道来。 在无限重复中,行为规则可以用自动机来代表,于是不同行为规则的 相争,便成了机器与机器的角斗。假设甲和乙玩无限重复的囚犯博弈。甲 相信《美德的起源》一书作者的教导,认定仁厚忠恕既高尚又有效,于是 以它为策略。乙信奉理性流氓主义,崇尚实力和实利,于是以流氓主义为 策略。这样,二人间的博弈,就可以看作恕道机器与流氓机器的争斗。根 据上一贴中列出的框图,我们可以推演出各个回合双方的行为如下: 第一回合,甲仁厚玩合作H,乙宰客玩欺骗D; 第二回合,甲报复玩欺骗D,乙仍然宰客玩欺骗D; 第三回合,甲仍报复玩欺骗D,乙发现甲并非傻客,于是玩合作H; 第四回合,甲原谅乙,玩合作H;乙却因甲上次不合作,回头玩欺骗D宰客; …… 如此等等。采用我们上贴里的报偿表,整个结果序列如下图所示: 循 环 循 环 循 环 ┌───┐ ┌───┐ ┌───┐ ↓ ↓ ↓ ↓ ↓ ↓ 行为:甲 H D D H D D H D D 乙 D D H D D H D D H 报偿:甲 0 2 6 0 2 6 0 2 6 乙 6 2 0 6 2 0 6 2 0 …… 请注意,此序列呈现一个有趣的规律:就是每三个一组,不断循环重 复。于是我们很容易算出,博弈各方平均每个回合的报偿有多少 只要 取相继三个回合,作个简单平均就够了。甲得到(0+2+6)/ 3 = 2.67,乙得到(6+2+0)/ 3=2.67。显然,两者平分秋色,不相上下,谁也不比谁差,谁也不比谁强。 这种循环重复并不是特例。可以证明,有限自动机玩无限重复博弈, 其结果最终都会变成循环重复序列。于是,利用类似的办法,我们可以针 对上贴中列出的七种策略,算出每一对策略相博所产生的的平均报偿。这 些报偿可以写成一个7×7博弈矩阵,如下表所示(其中一些略去了小数, 这不影响下面的讨论): 乙 傻客 恶棍 冷血 恕道 侠义 流氓 摇摆 ·---------------------------· 傻客 |4,4|0,6|4,4|4,4|4,4|0,6|0,6| |---+---+---+---+---+---+---| 恶棍|6,0|②,②|2,2|2,2|2,2|3,1|2,2| |---+---+---+---+---+---+---| 冷血|4,4|2,2|④,④|④,④|2,2|3,1|2,2| |---+---+---+---+---+---+---| 恕道|4,4|2,2|④,④|④,④|3,3|2,2|2,2| 甲 |---+---+---+---+---+---+---| 侠义|4,4|2,2|2,2|3,3|2,2|2,2|2,2| |---+---+---+---+---+---+---| 流氓|6,0|1,3|1,3|2,2|2,2|④,④|2,4| |---+---+---+---+---+---+---| 摇摆|6,0|2,2|2,2|2,2|2,2|4,2|③,③| ·---------------------------· 上面这个表里面,有带圈数字的格子都是平衡点。比如,乙玩恶棍策 略时,甲无论玩什么,都不比当恶棍带来的好处更多,顶多不致受损而已。 因此,甲乙双方都当恶棍,次次都玩欺骗,便是重复囚犯博弈的平衡点之 一,此时各方的报偿与一次性博弈相同,都是2。 观察一下上面这个表,我们会发现它有多个平衡点。非重复博弈中的 均衡点,恶棍对恶棍,双方永远玩欺骗,仍然是无限重复博弈的均衡点。 无条件合作的傻客策略,仍然不是重复博弈的均衡点理性的人,决不会当傻客。更重要的是,重复博弈引进了许多新的平衡点,其中有不少平衡点, 可以实现合作报偿(4,4)。 这包括恕道策略对恕道策略,恕道策略对冷血 策略,冷血策略对冷血策略,流氓策略对流氓策略等,都可以维持双方的 合作。以流氓对流氓为例:第一回合,双方耍流氓互宰,发现对方不是好 惹的之后,双方转入合作心态,此后一直维持合作,这样无限次重复,其 平均报偿都是4。 事实上,存在这无穷多对有限自动机策略,可以成为无限重复博弈的 平衡点,并同时实现双方的合作。这就是有名的“大众定理(Folk Theorem)”, 又译作“无名氏定理”。它之得名,是由于重复博弈促进合作的思想,早 就有很多人提出,以致无法追溯到其原创者,于是以“无名氏”名之。 大众定理说明了行为规则的多样性:有无穷多种行为规则可以支持合 作行为。在正常的平衡状态中,可观察到的行为可以完全相同的,此即博 弈双方相互合作,不玩欺骗。但其背后的行为规则却可能大不相同合作,可以是由于双方都信奉仁厚的恕道主义,也可能是因为双方都是理性 流氓,还可能是因为双方都一冷血报复作威胁。这些行为规则上的区别, 在正常的平衡状态中,是看不出来的,只有在非正常情况下,或在与外人 的交往中,才会表现出来。 为说明此点,设想有两个相互隔离的社会:一个形成了理性流氓式的 行为规则,一个形成仁厚恕道的行为规则,他们各自内部都能维持相互合 作,这形成了社会的正常状态。外人但凭观察这两个社会中人们的正常行 为,看不出他们有什么区别。现在假设两个社会打破隔离,相互接触,会 产生甚么情况?两套行为规则间会出现激烈的冲突!初次接触,流氓主义者将把对方当傻客,大宰其客。恕道主义者假设 对方是好人,选择合作,只是在吃了亏之后,才以回宰其客相回报。流氓 主义者见对方回宰,以为对方也是跟自己一样的流氓,于是转向合作心态, 同时预期对方也选择合作。但恕道主义者根据“以直报怨”的原则,仍然 以宰客回报对方上次的欺骗。流氓主义者一看对方不合作,怒从心起,于 是报之以宰客,如此循环往复,双方永远无法达成合作。 行为规则的冲突,类似于人文学科里常说的文化冲突。由于行为规则 反映了人们对各自行为的稳定预期,一些博弈论者把不同的行为规则解释 为不同的文化信仰,应当是不无道理的。我觉得,重复博弈理论,为我们 科学理解许多文化现象,打开了大门。 正是由于行为规则本身的多样性和复杂性,所以我对成朴文章中过分 抬高“一报还一报(tit for tat)”单一规则,将之推崇为 美德的起源,始终抱有疑虑。
康康map2023-05-22 22:50:063