大数定理

大数定理和大数定律的区别

定义、适用范围。1、大数定律是概率论中讨论随机变量序列的算术平均值向随机变量各数学期望的算术平均值收敛的定律。概率论中用来阐述大量随机现象平均结果的稳定性的理论称为大数定律。二者的定义有很大的区别。2、大数定理适用于概率问题,大数定律适用于函数问题,适用范围有很大的区别。
陶小凡2023-05-26 08:18:391

几个大数定理之间的关系是什么,还有强大数定理的”强”体现在哪?弱大数定理的”弱”体现在哪?

弱体现在结论弱吧。强大数定理的结论更强
韦斯特兰2023-05-22 22:50:073

大数定理是区间估计的理论依据对吗

大数定理是区间估计的理论依据不对。大数定理与区间估计虽然都属于概率统计学的范畴,但是它们解决的问题不同,因此大数定理并不是区间估计的理论依据。大数定理:概率论历史上第一个极限定理属于伯努利,后人称之为“大数定律”。概率论中讨论随机变量序列的算术平均值向随机变量各数学期望的算术平均值收敛的定律。在随机事件的大量重复出现中,往往呈现几乎必然的规律,这个规律就是大数定律。通俗地说,这个定理就是,在试验不变的条件下,重复试验多次,随机事件的频率近似于它的概率。偶然中包含着某种必然。大数定律分为弱大数定律和强大数定律。一种描述当试验次数很大时所呈现的概率性质的定律。但是注意到,大数定律并不是经验规律,而是在一些附加条件上经严格证明了的定理,它是一种自然规律因而通常不叫定理而是大数“定律”。而我们说的大数定理通常是经数学家证明并以数学家名字命名的大数定理,如伯努利大数定理。证明方法:这个大数定律的证明确实有几种不同的方法。最早的证明是由数学大师Kolmogorov给出的。Durrett (2010)的书上用的是Etemadi (1981)的方法,需要截断X,用到现代概率论的知识如Borel-Cantelli引理、Kolmogorov三级数定理、Fubini定理等。
阿啵呲嘚2023-05-22 22:50:071

概率论中大数定理

概率论历史上第一个极限定理属于伯努利,后人称之为“大数定律”。概率论中讨论随机变量序列的算术平均值向常数收敛的定律。概率论与数理统计学的基本定律之一,又称弱大数理论。大数定律(law of large numbers),又称大数定理[1] ,是一种描述当试验次数很大时所呈现的概率性质的定律。但是注意到,虽然通常最常见的称呼是大数“定律”,但是大数定律并不是经验规律,而是严格证明了的定理。有些随机事件无规律可循,但不少是有规律的,这些“有规律的随机事件”在大量重复出现的条件下,往往呈现几乎必然的统计特性,这个规律就是大数定律。确切的说大数定律是以确切的数学形式表达了大量重复出现的随机现象的统计规律性,即频率的稳定性和平均结果的稳定性,并讨论了它们成立的条件。[2] 简单地说,大数定理就是“当试验次数足够多时,事件出现的频率无穷接近于该事件发生的概率”。该描述即贝努利大数定律。
wpBeta2023-05-22 22:50:071

弱大数定理

http://baike.baidu.com/view/21250.htm自己去看看清楚啊,里面太详细了
LuckySXyd2023-05-22 22:50:072

大数定理是一条什么样的定理?

大数定律又称大数法则、大数率。 在一个随机事件中,随着试验次数的增加,事件发生的频率趋于一个稳定值;同时,在对物理量的测量实践中,测定值的算术平均也具有稳定性。概率论历史上第一个极限定理属于伯努利,后人称之为“大数定律”。概率论中讨论随机变量序列的算术平均值向常数收敛的定律。概率论与数理统计学的基本定律之一。又称弱大数理论。大数定律(law of large numbers),是一类描述当试验次数很大时所呈现的概率性质的定律。  有些随机事件无规律可循,但不少却是有规律的,这些“有规律的随机事件”在大量重复出现的条件下,往往呈现几乎必然的统计特性,这个规律就是大数定律。  通俗地说,这个定理就是,在试验不变的条件下,重复试验多次,随机事件的频率近似于它的概率。比如,我们向上抛一枚硬币,硬币落下后哪一面朝上本来是偶然的,但当我们上抛硬币的次数足够多后,达到上万次甚至几十万几百万次以后,我们就会发现,硬币每一面向上的次数约占总次数的二分之一。这种情况下,偶然中包含着必然。必然的规律与特性在大量的样本中得以体现。  简单地说,大数定理就是“当试验次数足够多时,事件发生的频率无穷接近于该事件发生的概率”  大数定理简介  我们知道,单凭理性计算,有限次重复博弈,是解决个体理性与集体 理性之间矛盾的。无限重复又如何呢?且听我细细道来。   在无限重复中,行为规则可以用自动机来代表,于是不同行为规则的 相争,便成了机器与机器的角斗。假设甲和乙玩无限重复的囚犯博弈。甲 相信《美德的起源》一书作者的教导,认定仁厚忠恕既高尚又有效,于是 以它为策略。乙信奉理性流氓主义,崇尚实力和实利,于是以流氓主义为 策略。这样,二人间的博弈,就可以看作恕道机器与流氓机器的争斗。根 据上一贴中列出的框图,我们可以推演出各个回合双方的行为如下: 第一回合,甲仁厚玩合作H,乙宰客玩欺骗D; 第二回合,甲报复玩欺骗D,乙仍然宰客玩欺骗D; 第三回合,甲仍报复玩欺骗D,乙发现甲并非傻客,于是玩合作H; 第四回合,甲原谅乙,玩合作H;乙却因甲上次不合作,回头玩欺骗D宰客; …… 如此等等。采用我们上贴里的报偿表,整个结果序列如下图所示:   循 环 循 环 循 环  ┌───┐ ┌───┐ ┌───┐  ↓ ↓ ↓ ↓ ↓ ↓   行为:甲 H D D H D D H D D   乙 D D H D D H D D H   报偿:甲 0 2 6 0 2 6 0 2 6   乙 6 2 0 6 2 0 6 2 0   …… 请注意,此序列呈现一个有趣的规律:就是每三个一组,不断循环重 复。于是我们很容易算出,博弈各方平均每个回合的报偿有多少 只要 取相继三个回合,作个简单平均就够了。甲得到(0+2+6)/ 3 = 2.67,乙得到(6+2+0)/ 3=2.67。显然,两者平分秋色,不相上下,谁也不比谁差,谁也不比谁强。   这种循环重复并不是特例。可以证明,有限自动机玩无限重复博弈, 其结果最终都会变成循环重复序列。于是,利用类似的办法,我们可以针 对上贴中列出的七种策略,算出每一对策略相博所产生的的平均报偿。这 些报偿可以写成一个7×7博弈矩阵,如下表所示(其中一些略去了小数, 这不影响下面的讨论):   乙  傻客 恶棍 冷血 恕道 侠义 流氓 摇摆 ·---------------------------· 傻客 |4,4|0,6|4,4|4,4|4,4|0,6|0,6| |---+---+---+---+---+---+---| 恶棍|6,0|②,②|2,2|2,2|2,2|3,1|2,2| |---+---+---+---+---+---+---| 冷血|4,4|2,2|④,④|④,④|2,2|3,1|2,2| |---+---+---+---+---+---+---| 恕道|4,4|2,2|④,④|④,④|3,3|2,2|2,2| 甲 |---+---+---+---+---+---+---| 侠义|4,4|2,2|2,2|3,3|2,2|2,2|2,2| |---+---+---+---+---+---+---| 流氓|6,0|1,3|1,3|2,2|2,2|④,④|2,4| |---+---+---+---+---+---+---| 摇摆|6,0|2,2|2,2|2,2|2,2|4,2|③,③| ·---------------------------·  上面这个表里面,有带圈数字的格子都是平衡点。比如,乙玩恶棍策 略时,甲无论玩什么,都不比当恶棍带来的好处更多,顶多不致受损而已。 因此,甲乙双方都当恶棍,次次都玩欺骗,便是重复囚犯博弈的平衡点之 一,此时各方的报偿与一次性博弈相同,都是2。   观察一下上面这个表,我们会发现它有多个平衡点。非重复博弈中的 均衡点,恶棍对恶棍,双方永远玩欺骗,仍然是无限重复博弈的均衡点。 无条件合作的傻客策略,仍然不是重复博弈的均衡点理性的人,决不会当傻客。更重要的是,重复博弈引进了许多新的平衡点,其中有不少平衡点, 可以实现合作报偿(4,4)。 这包括恕道策略对恕道策略,恕道策略对冷血 策略,冷血策略对冷血策略,流氓策略对流氓策略等,都可以维持双方的 合作。以流氓对流氓为例:第一回合,双方耍流氓互宰,发现对方不是好 惹的之后,双方转入合作心态,此后一直维持合作,这样无限次重复,其 平均报偿都是4。   事实上,存在这无穷多对有限自动机策略,可以成为无限重复博弈的 平衡点,并同时实现双方的合作。这就是有名的“大众定理(Folk Theorem)”, 又译作“无名氏定理”。它之得名,是由于重复博弈促进合作的思想,早 就有很多人提出,以致无法追溯到其原创者,于是以“无名氏”名之。   大众定理说明了行为规则的多样性:有无穷多种行为规则可以支持合 作行为。在正常的平衡状态中,可观察到的行为可以完全相同的,此即博 弈双方相互合作,不玩欺骗。但其背后的行为规则却可能大不相同合作,可以是由于双方都信奉仁厚的恕道主义,也可能是因为双方都是理性 流氓,还可能是因为双方都一冷血报复作威胁。这些行为规则上的区别, 在正常的平衡状态中,是看不出来的,只有在非正常情况下,或在与外人 的交往中,才会表现出来。   为说明此点,设想有两个相互隔离的社会:一个形成了理性流氓式的 行为规则,一个形成仁厚恕道的行为规则,他们各自内部都能维持相互合 作,这形成了社会的正常状态。外人但凭观察这两个社会中人们的正常行 为,看不出他们有什么区别。现在假设两个社会打破隔离,相互接触,会 产生甚么情况?两套行为规则间会出现激烈的冲突!初次接触,流氓主义者将把对方当傻客,大宰其客。恕道主义者假设 对方是好人,选择合作,只是在吃了亏之后,才以回宰其客相回报。流氓 主义者见对方回宰,以为对方也是跟自己一样的流氓,于是转向合作心态, 同时预期对方也选择合作。但恕道主义者根据“以直报怨”的原则,仍然 以宰客回报对方上次的欺骗。流氓主义者一看对方不合作,怒从心起,于 是报之以宰客,如此循环往复,双方永远无法达成合作。   行为规则的冲突,类似于人文学科里常说的文化冲突。由于行为规则 反映了人们对各自行为的稳定预期,一些博弈论者把不同的行为规则解释 为不同的文化信仰,应当是不无道理的。我觉得,重复博弈理论,为我们 科学理解许多文化现象,打开了大门。   正是由于行为规则本身的多样性和复杂性,所以我对成朴文章中过分 抬高“一报还一报(tit for tat)”单一规则,将之推崇为 美德的起源,始终抱有疑虑。
康康map2023-05-22 22:50:063

大数定理有什么意义

  概率论历史上第一个极限定理属于伯努利,后人称之为“大数定律”。概率论中讨论随机变量序列的算术平均值向随机变量各数学期望的算术平均值收敛的定律。   在随机事件的大量重复出现中,往往呈现几乎必然的规律,这个规律就是大数定律。通俗地说,这个定理就是,在试验不变的条件下,重复试验多次,随机事件的频率近似于它的概率。偶然中包含着某种必然。   大数定律分为弱大数定律和强大数定律。
Chen2023-05-22 22:50:051

考研大数定理考了几次

考研大数定理至今只考过三次。切比雪夫不等式、大数定律和中心极限定理。这不是考试的重点,至今只考过三次。所以主要掌握它们的条件和结论即可。
瑞瑞爱吃桃2023-05-22 22:50:051

大数定理的中心思想

大数定理的中心思想:在一个随机事件中,随着试验次数的增加,事件发生的频率趋于一个稳定值。大数定律又称大数法则或者大数率,是一个概率论的定律,概率论历史上第一个极限定理属于伯努利,后人称之为“大数定律”。概率论中讨论随机变量序列的算术平均值向随机变量各数学期望的算术平均值收敛的定律。在随机事件的大量重复出现中,往往呈现几乎必然的规律,这个规律就是大数定律。通俗地说,这个定理就是,在试验不变的条件下,重复试验多次,随机事件的频率近似于它的概率。偶然中包含着某种必然。大数定律分为弱大数定律和强大数定律。大数定律,是一种描述当宏孝试验次数很大时所呈现的概率性质的定律。但是注意到,大数定律并蔽喊稿不是经验规律,而是在一些附加条件上经严格证明了的定理,它是一种自然规律因而通常不叫定理而是大数“定律”。而我们说的大数定理通常是经数学家证明并以数学家渗哗名字命名的大数定理,如伯努利大数定理。大数定理在抽样调查中的意义与作用:1、大数定理为抽样调查奠定了理论基础。随机变量总体的平均数往往是未知的,我们可以从这个总体中抽取少量单位作为样本,计算样本平均数,推断总体平均数。2、大数定理是我们通过偶然现象揭示必然性、规律性的工具。大数定理是自然现象和社会经济现象的客观法则,体现了辩证唯物主义关于偶然性是必然性表现形式的这一原理,使我们可以抽取某个随机样本来科学地推断总体的全貌,从偶然性中揭示必然性,掌握总体事物的发展规律性,用以指导我们的抽样调查工作。
阿啵呲嘚2023-05-22 22:50:051

什么是大数定理?有什么意义?

大数定律又称大数法则、大数率。在一个随机事件中,随着试验次数的增加,事件发生的频率趋于一个稳定值;同时,在对物理量的测量实践中,大量测定值的算术平均也具有稳定性。在数理统计中,一般有三个定理,贝努利定理和辛钦定理,如:反映算术平均值和频率的稳定性。当n很大时,算术平均值接近数学期望;频率以概率收敛于事件的概率
肖振2023-05-20 08:56:221

大数定理的意义?

在相同条件下进行大量重复实验时,当次数无穷大N个随机变量的平均值的稳定性,解决随机现象的统计规律。那个数学系的人怎么听课的,嘿嘿
黑桃花2023-05-20 08:56:213