伽罗瓦群

如果想学伽罗瓦群论,要掌握哪些知识?

在高中数学知识的基础上,再学习<<高等代数>>就可以了.
u投在线2023-05-20 08:56:241

近世代数理论基础35:伽罗瓦群及其子群的固定子域

设 为伽罗瓦扩张, 为它的伽罗瓦群, 为 的子群 令 ,即 是在H中任一相对F自同构作用下不变的元所组成的子域,显然有 例: 的6个元中, 是恒等映射 它对应的固定子域 故 , 是2阶子群 易知 类似地, 也都是2阶子群故 易知 故 是一个3阶循环群,且 方程 的3个根为 方程的伽罗瓦群 是这3个根的置换群 若用循环置换表示,并1代表 ,2代表 ,3代表 ,则 , , , , 即 中的偶置换群 易知 的固定子域为 定理:若 是伽罗瓦扩张, ,则 证明:定理:设 为伽罗瓦扩张, , ,则 和 互为逆映射,给出了 和 之间的反序一一对应 注:反序指:若 ,则 ,若 ,则 证明:例: 1.令 表示有 个元的有限域,其中q为素数方幂,将 看作它的子域 的n次扩张 是由 相对 的自同构 生成的n阶循环群 其中 G的任一子群 ,r为n的因子 ,故 当且仅当 ,即子群 对应的固定子域是 2.设p为素数,p次本原单位根 在 上的极小多项式为 g为模p的原根, 是由相对 的自同构 生成的p-1阶循环群G的任一子群 ,其中e是p-1的因子 推论:设 , ,则 , 其中 为由 和 生成的G的子群, 表示域 生成的子域 证明:
可桃可挑2023-05-20 08:56:231

近世代数理论基础43:根式可解与伽罗瓦群

引理:设p为素数, 为p次本原单位根, 是p次循环扩张,则有 ,使 ,故 是根式扩张 证明:引理:设 为域扩张,则 再K上的伽罗瓦群同构于 在F上的伽罗瓦群的子群 证明:引理:设 为有限可分扩张,N为包含E的F上的最小正规扩张(称为E在F上的正规闭包),若 有根式扩张序列,则 也有根式扩张序列 证明:定理:F的特征为0, 且为首1多项式, ,则 在F上根式可解当且仅当 在F上的伽罗瓦群为可解群 证明:
余辉2023-05-20 08:56:231

大学数学,伽罗瓦群(追加50分)

不会,还没学
苏萦2023-05-20 08:56:232

伽罗瓦群理论是错的

伽罗瓦的群论解析:伽罗瓦理论是现代数学的主要发端之一。伽罗瓦理论是用群论的方法来研究代数方程的解的理论。在19世纪末以前,解方程一直是代数学的中心问题。早在古巴比伦时代,人们就会解二次方程。在许多情况下,求解的方法就相当于给出解的公式。
Jm-R2023-05-20 08:56:231

伽罗瓦群理论是错的

是的。为什么说伽罗瓦理论存在错误,因为,只有部分一元三次方程及一元五次方程适合根式解,谁也举不出三个实根的一元三次方程解出第一个能确定大小实根来(虚数无法比较大小),真正用到了方程系数开立方根式运算,只有一个实根的一元三次方程才用到方程系数开立方根运算。也就是说三个实根的方程开立方根起不到降次的目的。总是要有一次三个解选一个解的问题要解决。根式解定义决定了只允许运用方程系数进行有限次加减乘除和乘方或开根式与括号表示,三角函数被排除在外。
wpBeta2023-05-20 08:56:231

伽罗瓦群论原文?

群论是法国数学家伽罗瓦(Galois)的发明。伽罗瓦是一个极具传奇性的人物他用该理论,具体来说是伽罗瓦群,解决了五次方程问题。在此之前柯西(Augustin-Louis Cauchy),阿贝尔(Niels Henrik Abel)等人也对群论作出了贡献。最先产生的是n个文字的一些置换所构成的置换群,它是在研究当时代数学的中心问题即五次以上的一元多项式方程是否可用根式求解的问题时,经由J.-L.拉格朗日、P.鲁菲尼、N.H.阿贝尔和E.伽罗瓦引入和发展,并有成效地用它彻底解决了这个中心问题。某个数域上一元n次多项式方程,它的根之间的某些置换所构成的置换群被定义作该方程的伽罗瓦群,1832年伽罗瓦证明了:一元 n次多项式方程能用根式求解的一个充分必要条件是该方程的伽罗瓦群为“可解群”(见有限群)。由于一般的一元n次方程的伽罗瓦群是n个文字的对称群Sn,而当时Sn不是可解群,所以一般的五次以上一元方程不能用根式求解。伽罗瓦还引入了置换群的同构、正规子群等重要概念。应当指出,A.-L.柯西早在1815年就发表了有关置换群的第一篇论文,并在1844~1846年间对置换群又做了很多工作。至于置换群的系统知识和伽罗瓦用于方程理论的研究,由于伽罗瓦的原稿是他在决斗致死前夕赶写成的,直到后来才在C.若尔当的名著“置换和代数方程专论”中得到很好的介绍和进一步的发展。置换群是最终产生和形成抽象群的第一个最主要的来源。在数论中,拉格朗日和C.F.高斯研究过由具有同一判别式D的二次型类,即,其中a、b、с为整数,x、y 取整数值,且为固定值,对于两个型的"复合"乘法,构成一个交换群。J.W.R.戴德金于1858年和L.克罗内克于1870年在其代数数论的研究中也引进了有限交换群以至有限群。这些是导致抽象群论产生的第二个主要来源。
bikbok2023-05-20 08:56:221