矩阵的特征值

分块对称矩阵的特征值

这种结论显然是错的,即使是实对称矩阵也不可能有如此强的结论,况且你的叙述也很不清晰,完全没有讲清楚所谓的“变”是何种变换. 如果你不相信的话先给你一个反例 Hss=[1,2; 2,3], Hsp=[3,4], Hpp=6, Hpd=Hdd=0 如果把Hsp变成[0,5]而别的块不变,特征值肯定不同. 我猜测你试图从正交变换中总结一些性质.只能说Frobenius范数是酉不变范数,但是如果没有更多条件的话不要认为Frobenius范数是Hermite矩阵在酉变换下的全系不变量. 补充: 这次虽然你增加了很强的条件,但仍不足以推出结论,再给你个例子 N=1, Hss=1, Hpp=diag{2,2,2}, Hdd=diag{3,3,3,3,3}, Hsp=[1;0;0] 这些不变,而 Hpd=[0,0,0; 0,0,3; 0,4,0; 0,0,0; 0,0,0] 和 Hpd=[0,0,0; 0,0,5; 0,0,0; 0,0,0; 0,0,0] 得到的特征值不同. 你之所以产生这种猜测,跟你给的矩阵结构有一定关系. A=diag{c_1*I_{k_1}, c_2*I_{k_2}, ..., c_n*I_{k_n}} + L + L" 这里L是相应的下三角块. 如果作用一个与之结构匹配的分块对角酉变换 Q=diag{Q_1, Q_2, ..., Q_n} 自然就有Q"AQ和A的特征值相同,并且Q"AQ的对角块和A相同.我也提过了,Frobenius范数是酉不变范数,L当中的每一块在此变换下变成Q_k"*L_k*Q_{k-1},所以其F-范数不变. 但是绝对不可能反过来说如果L中相应的块F-范数不变就一定保持特征值不变,完全没希望的.
小白2023-06-08 07:32:291

矩阵的秩和矩阵的特征值个数的关系,并证明

“关系: 1、方阵A不满秩等价于A有零特征值。 2、A的秩不小于A的非零特征值的个数。 证明: 定理1:n阶方阵A可相似对角化的充要条件是A有n个线性无关的特征向量。 定理2:设A为n阶实对称矩阵,则A必能相似对角化。 定
北有云溪2023-05-26 13:01:404

矩阵的特征值和特征向量

几乎所有的向量在乘以矩阵 AA 后都会改变方向,某些特殊的向量 xx 和 AxAx 位于同一个方向,它们称之为特征向量。Ax=λxAx=λx数字 λλ 称为特征值。它告诉我们在乘以 AA 后,向量是怎么被拉伸、缩小、反转或者不变的。 λ=0λ=0 意味着特征向量存在于矩阵的零空间中。任意向量都是单位矩阵的特征向量,因为 Ix=xIx=x,其特征值为 1。要计算特征值的话,我们只需要道 det(A−λI)=0det(A−λI)=0 即可。
苏萦2023-05-24 22:50:081

矩阵的加减法对矩阵的特征值有和影响?

有的若A=B+C则λa=λb+λc矩阵相加的新矩阵的特征值等于2个矩阵的特征值相加
北有云溪2023-05-24 22:49:512

矩阵的加减法对矩阵的特征值有和影响?

有的若A=B+C则λa=λb+λc矩阵相加的新矩阵的特征值等于2个矩阵的特征值相加
北有云溪2023-05-24 22:49:511

转置矩阵的特征值是什么?

设矩阵A经过初等行变换之后,化为上三角矩阵B,则A等价于B。矩阵A"经过初等列变换之后,可化为下三角矩阵C,则A"等价于C。相关介绍:矩阵的研究历史悠久,拉丁方阵和幻方在史前年代已有人研究。在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。作为解决线性方程的工具,矩阵也有不短的历史。成书最迟在东汉前期的《九章算术》中,用分离系数法表示线性方程组,得到了其增广矩阵。在消元过程中,使用的把某行乘以某一非零实数、从某行中减去另一行等运算技巧,相当于矩阵的初等变换。但那时并没有现今理解的矩阵概念,虽然它与现有的矩阵形式上相同,但在当时只是作为线性方程组的标准表示与处理方式。矩阵正式作为数学中的研究对象出现,则是在行列式的研究发展起来后。逻辑上,矩阵的概念先于行列式,但在实际的历史上则恰好相反。日本数学家关孝和(1683年)与微积分的发现者之一戈特弗里德·威廉·莱布尼茨(1693年)近乎同时地独立建立了行列式论。其后行列式作为解线性方程组的工具逐步发展。1750年,加布里尔·克拉默发现了克莱姆法则。
Jm-R2023-05-24 18:38:211

为什么两个矩阵的特征值相同迹也相同?

矩阵的迹,就等于所有特征值之和。既然,特征值相同,因此特征值之和相等,从而迹相等
NerveM 2023-05-24 18:38:181

两矩阵的特征值相等,这两个矩阵相似吗

两天巨阵的特征值相等则这两个矩阵相似。
左迁2023-05-24 18:38:116

对称半正定矩阵的特征值和特征向量有什么性质

实对称矩阵的特征值都是实数属于不同特征值的特征向量正交k重特征值有k个线性无关的特征向量
苏萦2023-05-24 18:38:032

如何求矩阵的特征值

求矩阵的特征值需要使用以下步骤:1. 用λ表示特征值,将λI-A(I表示单位矩阵)展开,得到λI-A=?λ-a11 -a12 ... -a1n??-a21 λ-a22 ... -a2n??... ... ... ... ... ??-an1 -an2 ... λ-ann?2. 计算行列式 |λI-A|,其中λ为未知数,A为已知矩阵3. 求出行列式的根(即特征值λ)4. 将每个特征值带入λI-A=0,解出对应的特征向量v特征向量v满足(λI-A)v=0,即(λ-A)v=0,其中v≠0。特别的,当λ是非零实数时,由于非零向量与0向量的差仍是非零向量,因此可将0向量约去,此时(λ-A)v=0即(vλ-A)v=0,即Av=λv,此时v就是该矩阵对应于λ的特征向量。注:特征向量没有唯一性,同特征值对应的特征向量可以有很多,但二维矩阵最多有两个线性无关的特征向量。
再也不做站长了2023-05-24 18:38:035

如何求二阶矩阵的特征值?

求二阶矩阵的特征值可以按照以下步骤进行:1. 先写出这个二阶矩阵 A。2. 计算出 A 的行列式 det(A)。3. 解出特征方程 det(A-λI) = 0,其中 λ 是特征值,I 是二阶单位矩阵。4. 求解 λ。特别地,如果 A 是对称矩阵,那么可以通过以下步骤来求解特征值:1. 先写出这个对称矩阵 A。2. 写出特征方程 det(A-λI) = 0,得到 λ2-2λx+1=0 的形式。3. 求解 λ。根据特征方程解出 λ= x ± sqrt(x2-1),其中 x 是 A 的迹 (trace)。
康康map2023-05-24 18:38:032

矩阵的逆的特征值和原矩阵的特征值的关系是什么?怎么证明?是倒数关系么?

是的 看看图片吧
kikcik2023-05-24 18:38:032

2x2矩阵的特征值怎么求

通过求解方程pA(λ)=0来得到。若A是一个n×n矩阵,则pA为n次多项式,因而A最多有n个特征值。反过来,代数基本定理说这个方程刚好有n个根,如果重根也计算在内的话。所有奇数次的多项式必有一个实数根,因此对于奇数n,每个实矩阵至少有一个实特征值。在实矩阵的情形,对于偶数或奇数的n,非实数特征值成共轭对出现。矩阵的特征向量是矩阵理论上的重要概念之一,它有着广泛的应用。数学上,线性变换的特征向量(本征向量)是一个非简并的向量,其方向在该变换下不变。该向量在此变换下缩放的比例称为其特征值(本征值)。 特征值的几何重次是相应特征空间的维数。有限维向量空间上的一个线性变换的谱是其所有特征值的集合。例如,三维空间中的旋转变换的特征向量是沿着旋转轴的一个向量,相应的特征值是1,相应的特征空间包含所有和该轴平行的向量。该特征空间是一个一维空间,因而特征值1的几何重次是1。特征值1是旋转变换的谱中唯一的实特征值。
拌三丝2023-05-24 18:38:021

求下列矩阵的特征值。

答案为2、4、0。解题过程如下:1. A的行列式等于A的全部特征值之积所以 |A| = -1*1*2 = -22. 若a是可逆矩阵A的特征值, 则 |A|/a 是A*的特征值所以A*的特征值为 2,-2,-1所以|A*| = 2*(-2)*(-1) = 4.注: 当然也可用伴随矩阵的行列式性质 |A*| = |A|^(n-1) = |A|^2 = (-2)^2 = 4.3. 若a是可逆矩阵A的特征值, 则对多项式g(x), g(a)是g(A)的特征值这里 g(x) = x^2-2x+1, g(A)=A^2-2A+E所以 g(A)=A^2-2A+E 的特征值为 g(-1),g(1),g(2), 即 4,0,1所以 |A^2-2A+E| = 4*0*1 = 0特征值是线性代数中的一个重要概念。在数学、物理学、化学、计算机等领域有着广泛的应用。设 A 是n阶方阵,如果存在数m和非零n维列向量 x,使得 Ax=mx 成立,则称 m 是A的一个特征值(characteristic value)或本征值(eigenvalue)。非零n维列向量x称为矩阵A的属于(对应于)特征值m的特征向量或本征向量。扩展资料求矩阵的全部特征值和特征向量的方法如下:第一步:计算的特征多项式;第二步:求出特征方程的全部根,即为的全部特征值;第三步:对于的每一个特征值,求出齐次线性方程组:的一个基础解系,则的属于特征值的全部特征向量是(其中是不全为零的任意实数).[注]:若是的属于的特征向量,则也是对应于的特征向量,因而特征向量不能由特征值惟一确定.反之,不同特征值对应的特征向量不会相等。
此后故乡只2023-05-24 18:38:021

矩阵的特征值

设A是n阶方阵,如果存在数m和非零n维列向量 x,使得 Ax=mx 成立,则称 m 是矩阵A的一个特征值或本征值。式Ax=λx也可写成( A-λE)X=0。这是n个未知数n个方程的齐次线性方程组,它有非零解的充分必要条件是系数行列式| A-λE|=0。相关内容:矩阵特征值性质1:若λ是可逆阵A的一个特征根,x为对应的特征向量,则1/λ 是A的逆的一个特征根,x仍为对应的特征向量。性质2:若 λ是方阵A的一个特征根,x为对应的特征向量,则λ 的m次方是A的m次方的一个特征根,x仍为对应的特征向量。性质3:设λ1,λ2,…,λm是方阵A的互不相同的特征值。xj是属于λi的特征向量( i=1,2,…,m),则x1,x2,…,xm线性无关,即不相同特征值的特征向量线性无关。
hi投2023-05-24 18:38:021

矩阵的特征值是什么意思?

特征根:特征根法也可用于通过数列的递推公式(即差分方程,必须为线性)求通项公式,其本质与微分方程相同。 称为二阶齐次线性差分方程:  加权的特征方程。特征向量:A为n阶矩阵,若数λ和n维非0列向量x满足Ax=λx,那么数λ称为A的特征值,x称为A的对应于特征值λ的特征向量。式Ax=λx也可写成( A-λE)x=0,并且|λE-A|叫做A 的特征多项式。当特征多项式等于0的时候,称为A的特征方程,特征方程是一个齐次线性方程组,求解特征值的过程其实就是求解特征方程的解。令|A-λE|=0,求出λ值。A是n阶矩阵,Ax=λx,则x为特征向量,λ为特征值。一旦找到两两互不相同的特征值λ,相应的特征向量可以通过求解方程(A – λI) v = 0 得到,其中v为待求特征向量,I为单位阵。当特征值出现重根时,如λ1=λ2,此时,特征向量v1的求解方法为(A-λ1I)v1=0,v2为(A-λ2I)v2=v1,依次递推。没有实特征值的一个矩阵的例子是顺时针旋转90度。扩展资料:矩阵的特征向量是矩阵理论上的重要概念之一,它有着广泛的应用。数学上,线性变换的特征向量(本征向量)是一个非简并的向量,其方向在该变换下不变。该向量在此变换下缩放的比例称为其特征值(本征值)。一个线性变换通常可以由其特征值和特征向量完全描述。特征空间是相同特征值的特征向量的集合。“特征”一词来自德语的eigen。1904年希尔伯特首先在这个意义下使用了这个词,更早亥尔姆霍尔兹也在相关意义下使用过该词。eigen一词可翻译为”自身的”、“特定于……的”、“有特征的”、或者“个体的”,这显示了特征值对于定义特定的线性变换的重要性。从数学上看,如果向量v与变换A满足Av=λv,则称向量v是变换A的一个特征向量,λ是相应的特征值。这一等式被称作“特征值方程”。假设它是一个线性变换,那么v可以由其所在向量空间的一组基表示为:其中vi是向量在基向量上的投影(即坐标),这里假设向量空间为n 维。由此,可以直接以坐标向量表示。利用基向量,线性变换也可以用一个简单的矩阵乘法表示。上述的特征值方程可以表示为:但是,有时候用矩阵形式写下特征值方程是不自然甚或不可能的。例如在向量空间是无穷维的时候,上述的弦的情况就是一例。取决于变换和它所作用的空间的性质,有时将特征值方程表示为一组微分方程更好。若是一个微分算子,其特征向量通常称为该微分算子的特征函数。例如,微分本身是一个线性变换因为(若M和N是可微函数,而a和b是常数)考虑对于时间t的微分。其特征函数满足如下特征值方程:其中λ是该函数所对应的特征值。这样一个时间的函数,如果λ = 0,它就不变,如果λ为正,它就按比例增长,如果λ是负的,它就按比例衰减。例如,理想化的兔子的总数在兔子更多的地方繁殖更快,从而满足一个正λ的特征值方程。特征根法是数学中解常系数线性微分方程的一种通用方法。特征根法也可用于通过数列的递推公式(即差分方程,必须为线性)求通项公式,其本质与微分方程相同。例如 称为二阶齐次线性差分方程: 加权的特征方程。参考资料:百度百科-特征根法 百度百科-特征向量
水元素sl2023-05-24 18:38:011

线性代数::一矩阵与其转置矩阵的特征值是否相同??????急。。。为什么???、

是的 在复数域存在可逆矩阵P 使得 P^(-1)AP=上三角矩阵 对角线元素为A的特征值 两端取转置有 P`A`(P`)^(-1)=下三角矩阵 对角线元素为A`的特征值
左迁2023-05-24 18:38:014

矩阵的特征值是如何求出来的?

求n阶矩阵A的特征值的基本方法:根据定义可改写为关系式,为单位矩阵(其形式为主对角线元素为λ- ,其余元素乘以-1)。要求向量具有非零解,即求齐次线性方程组有非零解的值。即要求行列式。 解次行列式获得的值即为矩阵A的特征值。将此值回代入原式求得相应的,即为输入这个行列式的特征向量。具体操作以右图为例。  定义1设是一个阶方阵(即使一个n*n的矩阵),是一个数,如果方程(1)存在非零解向量,则称为的一个特征值,相应的非零解向量称为属于特征值的特征向量.(1)式也可写成,(2)这是个未知数个方程的齐次线性方程组,它有非零解的充分必要条件是系数行列式, (3)即 上式是以为未知数的一元次方程,称为方阵的特征方程.其左端是的次多项式,记作,称为方阵的特征多项式.===显然,的特征值就是特征方程的解.特征方程在复数范围内恒有解,其个数为方程的次数(重根按重数计算),因此,阶矩阵有个特征值.设阶矩阵的特征值为由多项式的根与系数之间的关系,不难证明(Ⅰ)(Ⅱ)若为的一个特征值,则一定是方程的根,因此又称特征根,若为方程的重根,则称为的重特征根.方程的每一个非零解向量都是相应于的特征向量,于是我们可以得到求矩阵的全部特征值和特征向量的方法如下:第一步:计算的特征多项式;第二步:求出特征方程的全部根,即为的全部特征值;第三步:对于的每一个特征值,求出齐次线性方程组:的一个基础解系,则的属于特征值的全部特征向量是(其中是不全为零的任意实数).[注]:若是的属于的特征向量,则也是对应于的特征向量,因而特征向量不能由特征值惟一确定.反之,不同特征值对应的特征向量不会相等,亦即一个特征向量只能属于一个特征值.由以上讨论可知,对于方阵的每一个特征值,我们都可以求出其全部的特征向量.但对于属于不同特征值的特征向量,它们之间存在什么关系呢?这一问题的讨论在对角化理论中有很重要的作用.对此我们给出以下结论:定理1 属于不同特征值的特征向量一定线性无关.
北境漫步2023-05-24 18:38:001

如何理解矩阵的特征值和特征向量

矩阵特征向量是置换相抵下的不变量,,,简单点说就是一个线性变换作用在向量上,可以把矩阵看作那个线性变换的线性算子,,,这个作用不改变这个向量的方向,只改变这个向量的大小,而特征值就是那个改变的倍数,,,,特征值在控制理论中有广泛的应用,,,因为它的性质非常好,,,,,,
陶小凡2023-05-24 18:38:002

实对称矩阵的特征值和特征向量各有什么特殊性质?

实对称矩阵的特征值都是实数属于不同特征值的特征向量正交k重特征值有k个线性无关的特征向量
大鱼炖火锅2023-05-24 18:37:591

矩阵可逆条件下矩阵的特征值和特征向量怎样判断呢?

当A可逆时, 若 λ是A的特征值, α 是A的属于特征值λ的特征向量;则 |A| / λ 是 A*的特征值, α 仍是A*的属于特征值 |A| / λ 的特征向量。设A是n阶方阵,如果数λ和n维非零列向量x使关系式Ax=λx成立,那么这样的数λ称为矩阵A特征值,非零向量x称为A的对应于特征值λ的特征向量。式Ax=λx也可写成( A-λE)X=0。这是n个未知数n个方程的齐次线性方程组,它有非零解的充分必要条件是系数行列式| A-λE|=0。设A是数域P上的一个n阶矩阵,λ是一个未知量,称为A的特征多项式,记¦(λ)=|λE-A|,是一个P上的关于λ的n次多项式,E是单位矩阵。¦(λ)=|λE-A|=λ+a1λ+…+an= 0是一个n次代数方程,称为A的特征方程。特征方程¦(λ)=|λE-A|=0的根(如:λ0)称为A的特征根(或特征值)。n次代数方程在复数域内有且仅有n个根,而在实数域内不一定有根,因此特征根的多少和有无,不仅与A有关,与数域P也有关。以A的特征值λ0代入(λE-A)X=θ,得方程组(λ0E-A)X=θ,是一个齐次方程组,称为A的关于λ0的特征方程组。因为|λ0E-A|=0,(λ0E-A)X=θ必存在非零解  ,  称为A的属于λ0的特征向量。所有λ0的特征向量全体构成了λ0的特征向量空间。 扩展资料:性质1:n阶方阵A=(aij)的所有特征根为λ1,λ2,…,λn(包括重根),则:性质2:若λ是可逆阵A的一个特征根,x为对应的特征向量,则1/λ 是A的逆的一个特征根,x仍为对应的特征向量。性质3:若 λ是方阵A的一个特征根,x为对应的特征向量,则λ 的m次方是A的m次方的一个特征根,x仍为对应的特征向量。性质4:设λ1,λ2,…,λm是方阵A的互不相同的特征值。xj是属于λi的特征向量( i=1,2,…,m),则x1,x2,…,xm线性无关,即不相同特征值的特征向量线性无关。如将特征值的取值扩展到复数领域,则一个广义特征值有如下形式:Aν=λBν其中A和B为矩阵。其广义特征值(第二种意义)λ 可以通过求解方程(A-λB)ν=0,得到det(A-λB)=0(其中det即行列式)构成形如A-λB的矩阵的集合。其中特征值中存在的复数项,称为一个“丛(pencil)”。若B可逆,则原关系式可以写作  ,也即标准的特征值问题。当B为非可逆矩阵(无法进行逆变换)时,广义特征值问题应该以其原始表述来求解。如果A和B是实对称矩阵,则特征值为实数。这在上面的第二种等价关系式表述中并不明显,因为  A矩阵未必是对称的。参考资料:百度百科——矩阵特征值
无尘剑 2023-05-24 18:37:581

矩阵的特征值和特征向量是什么?

|A| = 1 · 2 · 3 = 6A* = |A|A^(-1) = 6A^(-1)(A*)^2 + E = 36A^(-2) + E 的特征值分别是36 · 1^2 + 1 = 3736 / 2^2 + 1 = 10 36 / 3^2 + 1 = 5 最大特征值 37简介矩阵A为n阶方阵,若存在n阶矩阵B,使得矩阵A、B的乘积为单位阵,则称A为可逆阵,B为A的逆矩阵。若方阵的逆阵存在,则称为可逆矩阵或非奇异矩阵,且其逆矩阵唯一。
无尘剑 2023-05-24 18:37:572

求下列矩阵的特征值和特征向量{0 0 0 1} {0 0 1 0} {0 1 0 0}{0 0 0 1}

设矩阵A的特征值为λ那么|A-λE|=-λ 0 0 10 -λ 1 00 1 -λ 01 0 0 -λ r1+r4 *λ ,r2+r3 *λ=0 0 0 1-λ^20 0 1-λ^2 00 1 -λ 01 0 0 -λ解得1-λ^2=0即λ=1或 -1即矩阵有2重特征值特征值1和-1λ=1时,A-E=-1 0 0 10 -1 1 00 1 -1 01 0 0 -1 r1+r4,r2+r3,交换行次序~1 0 0 -10 1 -1 00 0 0 00 0 0 0得到特征向量(0,1,1,0)^T和(1,0,0,1)^Tλ=-1时,A+E=1 0 0 10 1 1 00 1 1 01 0 0 1 r4-r1,r3-r2~1 0 0 10 1 1 00 0 0 00 0 0 0得到特征向量(0,1,-1,0)^T和(1,0,0,-1)^T
水元素sl2023-05-23 19:24:113

一个矩阵的特征值和它的奇异值有什么关系

设 A 是n阶方阵,如果存在数m和非零n维列向量 x,使得 Ax=mx 成立,则称 m 是A的一个特征值(characteristic value)或本征值(eigenvalue)。非零n维列向量x称为矩阵A的属于(对应于)特征值m的特征向量或本征向量,简称A的特征向量或A的本征向量。2求矩阵特征值的方法Ax=mx,等价于求m,使得(mE-A)x=0,其中E是单位矩阵,0为零矩阵。|mE-A|=0,求得的m值即为A的特征值。|mE-A| 是一个n次多项式,它的全部根就是n阶方阵A的全部特征值,这些根有可能相重复,也有可能是复数。如果n阶矩阵A的全部特征值为m1 m2 ... mn,则|A|=m1*m2*...*mn同时矩阵A的迹是特征值之和:tr(A)=m1+m2+m3+…+mn[1]如果n阶矩阵A满足矩阵多项式方程g(A)=0, 则矩阵A的特征值m一定满足条件g(m)=0;特征值m可以通过解方程g(m)=0求得。如果您觉得正确或者采纳的话,麻烦给我好评哦,谢谢。
再也不做站长了2023-05-23 19:24:112

matlab怎么计算矩阵的特征值和特征向量

[V, D]=eig(A)
bikbok2023-05-23 19:24:106

3×3矩阵的特征值怎么求

3×3矩阵的特征值怎么求:不要想成是高阶方程求特征值基本上就是因式分解按第3列展开得到(2-λ)[(-1-λ)(3-λ)+4]=(2-λ)(λ^2-2λ+1)当然就是(2-λ)(1-λ)^2”矩阵的特征值是线性代数里面的一个重要内容,无论是期末考试还是考研都是一个重点。
此后故乡只2023-05-23 19:24:101

请教问题,大型稀疏矩阵的特征值分解

【知识点】若矩阵A的特征值为λ1,λ2,...,λn,那么|A|=λ1·λ2·...·λn【解答】|A|=1×2×...×n=n!设A的特征值为λ,对于的特征向量为α。则Aα=λα那么(A²-A)α=A²α-Aα=λ²α-λα=(λ²-λ)α所以A²-A的特征值为λ²-λ,对应的特征向量为αA²-A的特征值为0,2,6,...,n²-n【评注】对于A的多项式,其特征值为对应的特征多项式。线性代数包括行列式、矩阵、线性方程组、向量空间与线性变换、特征值和特征向量、矩阵的对角化,二次型及应用问题等内容。
tt白2023-05-23 19:24:091

c++编程求矩阵的特征值,特征向量和特征值分解

想想特征向量的原始定义Ax= cx,你就恍然大悟了,看到了吗?cx是方阵A对向量x进行变换后的结果,但显然cx和x的方向相同),而且x是特征向量的话,ax也是特征向量(a是标 量且不为零),所以所谓的特征向量不是一个向量而是一个向量族, 另外,特征值只不过反映了特征向量在变换时的伸缩倍数而已
Chen2023-05-23 19:24:091

矩阵的特征值分解和奇异值分解有什么不同

阿萨德点点滴滴点点滴滴
余辉2023-05-22 22:49:354

如何求矩阵的特征值和特征向量?

特征值是方阵的一种特殊性质,是数,与方阵本身相关。计算特征值的方法如下:1. 假设A是n阶方阵,其特征值为λ,特征向量为x;2. 因为特征向量与特征值相关,即Ax=λx,移项可得到(A-λE)x=0,其中E为n阶单位矩阵;3. 对于非零解,方程(A-λE)x=0有解当且仅当方程系数矩阵(A-λE)的行列式det(A-λE)=0;4. 解出方程det(A-λE)=0的解λ1,λ2,…,λn,即为矩阵A的n个特征值;5. 对于每个特征值λi,求解其对应的特征向量xi,即求解方程(A-λiE)xi=0,得到n个线性无关的特征向量。特征值和特征向量的计算是矩阵分析和线性代数中的重要概念,广泛应用于数学、物理学、工程学等领域。
陶小凡2023-05-22 22:49:311

矩阵的特征值和特征向量怎么算的?

题:矩阵a=0001001001001000求矩阵a的特征值与特征向量。解:特征矩阵te-a=t00-10t-100-1t0-100t|te-a|=(tt-1)^2注:这个可以用第一列进行代数余子式展开,看容易看出解来。也可以用第二三行用二阶子式及其余子式的乘积来计算,也很方便。于是其特征值有四个,分别是1,1,-1,-1特征矩阵te-a的四个解向量,就是相应的特征向量。略。
meira2023-05-22 22:49:311

幂等矩阵的特征值是多少

设A是幂等矩阵,则 A^2 = A. 设λ是A的特征值,则 λ^2-λ 是A^2-A的特征值. 而A^2-A=0,零矩阵的特征值只有0 所以 λ^2-λ = 0. 所以 λ(λ-1) = 0. 所以λ=0或λ=1. 即A特征值是0或1. 即幂等矩阵的特征值是0或1.
苏萦2023-05-22 07:47:591

幂等矩阵的特征值是多少

设A是幂等矩阵, 则 A^2 = A.设λ是A的特征值, 则 λ^2-λ 是A^2-A的特征值.而A^2-A=0, 零矩阵的特征值只有0所以 λ^2-λ = 0.所以 λ(λ-1) = 0.所以λ=0或λ=1.即A特征值是0或1.即幂等矩阵的特征值是0或1.满意请采纳^_^
黑桃花2023-05-22 07:47:572

求矩阵的特征值和特征向量

矩阵的研究历史悠久,拉丁方阵和幻方在史前年代已有人研究。作为解决线性方程的工具,矩阵也有不短的历史。成书最迟在东汉前期的《九章算术》中,用分离系数法表示线性方程组,得到了其增广矩阵。在消元过程中,使用的把某行乘以某一非零实数、从某行中减去另一行等运算技巧,相当于矩阵的初等变换。但那时并没有现今理解的矩阵概念,虽然它与现有的矩阵形式上相同,但在当时只是作为线性方程组的标准表示与处理方式。矩阵正式作为数学中的研究对象出现,则是在行列式的研究发展起来后。逻辑上,矩阵的概念先于行列式,但在实际的历史上则恰好相反。日本数学家关孝和(1683年)与微积分的发现者之一戈特弗里德·威廉·莱布尼茨(1693年)近乎同时地独立建立了行列式论。其后行列式作为解线性方程组的工具逐步发展。1750年,加布里尔·克拉默发现了克莱姆法则。[1]矩阵的现代概念在19世纪逐渐形成。1800年代,高斯和威廉·若尔当建立了高斯—若尔当消去法。1844年,德国数学家费迪南·艾森斯坦(F.Eisenstein)讨论了“变换”(矩阵)及其乘积。1850年,英国数学家詹姆斯·约瑟夫·西尔维斯特(James Joseph Sylvester)首先使用矩阵一词。[2]英国数学家凯利被公认为矩阵论的奠基人。他开始将矩阵作为独立的数学对象研究时,许多与矩阵有关的性质已经在行列式的研究中被发现了,这也使得凯利认为矩阵的引进是十分自然的。他说:“我决然不是通过四元数而获得矩阵概念的;它或是直接从行列式的概念而来,或是作为一个表达线性方程组的方便方法而来的。”他从1858年开始,发表了《矩阵论的研究报告》等一系列关于矩阵的专门论文,研究了矩阵的运算律、矩阵的逆以及转置和特征多项式方程。凯利还提出了凯莱-哈密尔顿定理,并验证了3×3矩阵的情况,又说进一步的证明是不必要的。哈密尔顿证明了4×4矩阵的情况,而一般情况下的证明是德国数学家弗罗贝尼乌斯(F.G.Frohenius)于1898年给出的。[1]1854年时法国数学家埃尔米特(C.Hermite)使用了“正交矩阵”这一术语,但他的正式定义直到1878年才由费罗贝尼乌斯发表。1879年,费罗贝尼乌斯引入矩阵秩的概念。至此,矩阵的体系基本上建立起来了。无限维矩阵的研究始于1884年。庞加莱在两篇不严谨地使用了无限维矩阵和行列式理论的文章后开始了对这一方面的专门研究。1906年,希尔伯特引入无限二次型(相当于无限维矩阵)对积分方程进行研究,极大地促进了无限维矩阵的研究。在此基础上,施密茨、赫林格和特普利茨发展出算子理论,而无限维矩阵成为了研究函数空间算子的有力工具。[3]矩阵的概念最早在1922年见于中文。1922年,程廷熙在一篇介绍文章中将矩阵译为“纵横阵”。1925年,科学名词审查会算学名词审查组在《科学》第十卷第四期刊登的审定名词表中,矩阵被翻译为“矩阵式”,方块矩阵翻译为“方阵式”,而各类矩阵如“正交矩阵”、“伴随矩阵”中的“矩阵”则被翻译为“方阵”。1935年,中国数学会审查后,中华民国教育部审定的《数学名词》(并“通令全国各院校一律遵用,以昭划一”)中,“矩阵”作为译名首次出现。1938年,曹惠群在接受科学名词审查会委托就数学名词加以校订的《算学名词汇编》中,认为应当的译名是“长方阵”。中华人民共和国成立后编订的《数学名词》中,则将译名定为“(矩)阵”。1993年,中国自然科学名词审定委员会公布的《数学名词》中,“矩阵”被定为正式译名,并沿用至今。
黑桃花2023-05-20 08:57:132

若当标准型与矩阵的特征值和特征向量有什么关系

■ 举例: A为(3×3)矩阵,故有3个特征值。对λ1(单根) → 求出特征向量p1;对λ2=λ3(二重根),设代数重数2﹥几何重数1,∴特征向量矩阵有一列0向量,由此判定该特征向量矩阵不可逆,矩阵相似变换等式(P逆)AP=Λ不成立,A不可能化简为对角阵Λ。我们退一步而求其次,A不能化简为对角阵,但可求出简单程度仅次于Λ的Jordan矩阵。现求特征向量p2及广义特征向量ξ3,令相似变换矩阵 G=( p1、p2、ξ3 ) 。于是有 (G逆).A.G=J ( J是Jordan矩阵 )。一般将对角阵Λ视为若当阵J之特例。这些知识在《线性系统理论》求解电路一阶线性微分方程组有实际应用。■ 广义特征向量怎么求?答: ①求对应λ2(=λ3)齐次方程组通解 ,设通解 (即特征向量) 为p2。②将特征向量视为常数项写入原方程组,求非齐次方程组之解,现令解为ξ3,ξ3 即所谓广义特征向量。MMA求解方法: 写出增广矩阵,用RowReduce命令化为行最简形,化简后常数项即变为方程组之解 ξ3。
北境漫步2023-05-20 08:57:131

求埃尔米特(Hermitian)矩阵的特征值和特征向量的C语言程序

搜一下:求埃尔米特(Hermitian)矩阵的特征值和特征向量的C语言程序
人类地板流精华2023-05-20 08:56:032