函数

复合函数求导

f(t)=e^(2t)sin(2t),f"(t)=?解:f "(t)=2e^(2t)sin(2t)+2e^(2t)cos(2t)=2e^(2t)[sin(2t)+cos(2t)].
此后故乡只2023-07-03 11:08:371

复合函数的求导方法是什么?

考点:导数解:复合函数的求导方法利用公式即f"(g(x))=f"(g)g"(x)所以(ex2)"=(ex2)*2x规则:1、设u=g(x),对f(u)求导得:f"(x)=f"(u)*g"(x);2、设u=g(x),a=p(u),对f(a)求导得:f"(x)=f"(a)*p"(u)*g"(x)扩展资料:复合函数的性质由构成它的函数性质所决定,具备如下规律:(1)单调性规律如果函数u=g(x)在区间[m,n]上是单调函数,且函数y=f(u)在区间[g(m),g(n)] (或[g(n),g(m)])上也是单调函数,那么若u=g(x),y=f(u)增减性相同,则复合函数y=f[g(x)]为增函数;若u=g(x),y= f(u)增减性不同,则y=f[g(x)]为减函数。(2)奇偶性规律若函数g(x),f(x),f[g(x)]的定义域都是关于原点对称的,则u=g(x),y=f(u)都是奇函数y=f[g(x)]是奇函数;u=g(x),y=f(u)都是偶函数,或者一奇一偶时,y= f[g(x)]是偶函数。参考资料来源:百度百科-复合函数
北营2023-07-03 11:08:361

复合函数求导公式

复合函数求导公式:①设u=g (x),对f (u)求导得:f" (x)=f" (u)*g" (x);②设u=g (x),a=p (u),对f (a)求导得:f" (x)=f" (a)*p" (u)*g" (x);什么是复合函数:设函数y=f(u)的定义域为Du,值域为Mu,函数u=g(x)的定义域为Dx,值域为Mx,如果MxnDu≠0,那么对于MxnDu内的任意一个x经过u;有唯一确定的y值与之对应,则变量x与y之间通过变量u形成的一种函数关系,这种函数称为复合函数。复合函数怎么求导:总的公式f"[g(x)]=f"(g) Xg"(x),比如说:求1n(x+2)的导函数。[In(x+2)]"=[1/(x+2)][注: 此时将(x+2)看成一个整体的未知数x]X1[注: 1即为(x+2)的导数]。主要方法:先对该函数进行分解,分解成简单函数,然后对各个简单函数求导,最后将求导后的结果相乘,并将中间变量还原为对应的自变量。
meira2023-07-03 11:08:351

复合函数的求导运算

第一步:分解函数。把原函数分解为内、外函数。第二步:求导相乘。内外函数分别求导再相乘。第三步:还原。把外函数中的变量u还原为x的表达式。
meira2023-07-03 11:08:351

复合函数求导公式的过程是怎么推导的?

lim△y/△u=f"(u)根据具有极限的函数与无穷小的关系,有△y/△u=f"(u)+α即△y=(f"(u)+α)△u当△x一>0时lim△y/△x=lim(f"(u)+α)△u/△x=lim(f"(u)+α)lim△u/△x=f"(u)φ"(x)
北有云溪2023-07-03 11:08:343

复合函数求导法则公式

u=φ(x)在点u0可导,y=f(u)在点u0=φ(x0)可导,则复合函数F(x)=f(φ(x))在x0可导,且F"(x0)=f"(u0)φ'(x0)=f"(φ(x0))φ'(x0)。证明:由f(u)在u0可导,由引理必要性,存在一个在点u0连续的函数H(u),使f"(u0)=H(u0),且f(u)-f(u0)=H(u)(u-u0)又由u=φ(x)在x0可导,同理存在一个在点x0连续函数G(x),使φ'(x0)=G(x0),且φ(x)-φ(x0)=G(x)(x-x0)于是就有,f(φ(x))-f(φ(x0))=H(φ(x))(φ(x)-φ(x0))=H(φ(x))G(x)(x-x0)。简介:链式法则(英文chain rule)是微积分中的求导法则,用以求一个复合函数的导数。所谓的复合函数,是指以一个函数作为另一个函数的自变量。如设f(x)=3x, g(x)=3x+3, g(x)就是一个复合函数,并且'()=9。要注意f(x)的自变量x与g(x)的自变量x之间并不等同。链式法则用文字描述,就是"由两个函数凑起来的复合函数,其导数等于里函数代入外函数的值之导数,乘以里边函数的导数。若h(a)=f,则h"(a)=f"g"(x)。链式法则用文字描述,就是"由两个函数凑起来的复合函数,其导数等于里函数代入外函数的值之导数,乘以里边函数的导数。
u投在线2023-07-03 11:08:341

复合函数求导公式 如何求导函数

复合函数如何求导呢?求导公式有哪些呢?下面我整理了一些相关信息,供大家参考! 复合函数怎么求导 总的公式f"[g(x)]=f"(g)×g"(x) 比如说:求ln(x+2)的导函数 [ln(x+2)]"=[1/(x+2)] 【注:此时将(x+2)看成一个整体的未知数x"】 ×1【注:1即为(x+2)的导数】 主要方法:先对该函数进行分解,分解成简单函数,然后对各个简单函数求导,最后将求导后的结果相乘,并将中间变量还原为对应的自变量。 复合函数证明方法 先证明个引理 f(x)在点x0可导的充要条件是在x0的某邻域U(x0)内,存在一个在点x0连续的函数H(x),使f(x)-f(x0)=H(x)(x-x0)从而f"(x0)=H(x0) 证明:设f(x)在x0可导,令 H(x)=[f(x)-f(x0)]/(x-x0),x∈U"(x0)(x0去心邻域);H(x)=f"(x0),x=x0 因lim(x->x0)H(x)=lim(x->x0)[f(x)-f(x0)]/(x-x0)=f"(x0)=H(x0) 所以H(x)在点x0连续,且f(x)-f(x0)=H(x)(x-x0),x∈U(x0) 反之,设存在H(x),x∈U(x0),它在点x0连续,且f(x)-f(x0)=H(x)(x-x0),x∈U(x0) 因存在极限lim(x->x0)H(x)=lim(x->x0)[f(x)-f(x0)]/(x-x0)=lim(x->x0)f"(x)=H(x0) 所以f(x)在点x0可导,且f"(x0)=H(x0) 引理证毕。 设u=φ(x)在点u0可导,y=f(u)在点u0=φ(x0)可导,则复合函数F(x)=f(φ(x))在x0可导,且F"(x0)=f"(u0)φ"(x0)=f"(φ(x0))φ"(x0) 证明:由f(u)在u0可导,由引理必要性,存在一个在点u0连续的函数H(u),使f"(u0)=H(u0),且f(u)-f(u0)=H(u)(u-u0) 又由u=φ(x)在x0可导,同理存在一个在点x0连续函数G(x),使φ"(x0)=G(x0),且φ(x)-φ(x0)=G(x)(x-x0) 于是就有,f(φ(x))-f(φ(x0))=H(φ(x))(φ(x)-φ(x0))=H(φ(x))G(x)(x-x0) 因为φ,G在x0连续,H在u0=φ(x0)连续,因此H(φ(x))G(x)在x0连续,再由引理的充分性可知F(x)在x0可导,且 F"(x0)=f"(u0)φ"(x0)=f"(φ(x0))φ"(x0) 证法二:y=f(u)在点u可导,u=g(x)在点x可导,则复合函数y=f(g(x))在点x0可导,且dy/dx=(dy/du)*(du/dx) 证明:因为y=f(u)在u可导,则lim(Δu->0)Δy/Δu=f"(u)或Δy/Δu=f"(u)+α(lim(Δu->0)α=0) 当Δu≠0,用Δu乘等式两边得,Δy=f"(u)Δu+αΔu 但当Δu=0时,Δy=f(u+Δu)-f(u)=0,故上等式还是成立。 又因为Δx≠0,用Δx除以等式两边,且求Δx->0的极限,得 dy/dx=lim(Δx->0)Δy/Δx=lim(Δx->0)[f"(u)Δu+αΔu]/Δx=f"(u)lim(Δx->0)Δu/Δx+lim(Δx->0)αΔu/Δx 又g(x)在x处连续(因为它可导),故当Δx->0时,有Δu=g(x+Δx)-g(x)->0 则lim(Δx->0)α=0 最终有dy/dx=(dy/du)*(du/dx)
豆豆staR2023-07-03 11:08:331

复合函数的导数怎样求???????

复合函数求导法则如下:一般地,对于函数y=f(u)和u=g(ⅹ)复合而成的函数y=f(g(ⅹ)),它的导数与函数y=f(u),u=g(x)的导数间的关系为yⅹ'=yu'·uⅹ',即y对x的导数等于y对u的导数与u对x导数的乘积。总的公式f"[g(x)]=f"(g)×g"(x)比如说:求ln(x+2)的导函数[ln(x+2)]"=[1/(x+2)] 【注:此时将(x+2)看成一个整体的未知数x"】 ×1【注:1即为(x+2)的导数】复合函数求导的步骤:1、分层:选择中间变量,写出构成它的内,外层函数。2、分别求导:分别求各层函数对相应变量的导数。3、相乘:把上述求导的结果相乘。4、变量回代:把中间变量回代。主要方法:先对该函数进行分解,分解成简单函数,然后对各个简单函数求导,最后将求导后的结果相乘,并将中间变量还原为对应的自变量。例如,复合函数求导。求复合函数的导数注意:1、分解的函数通常为基本初等函数。2、求导时分清是对哪个变量求导。3、计算结果尽量简单。4、对含有三角函数的函数求导,往往需要利用三角恒等变换公式,对函数式进行化简,使函数的种类减少,次数降低,结构尽量简单,从而便于求导。5、分析待求导的函数的运算结构,弄清函数是由哪些基本初等函数通过何种运算而构成的,确定所需的求导公式。
水元素sl2023-07-03 11:08:331

复合函数求导的公式

复合函数导数公式如下:含义:设函数y=f(u)的定义域为Du,值域为Mu,函数u=g(x)的定义域为Dx,值域为Mx,如果 Mx∩Du≠0,那么对于Mx∩Du内的任意一个x经过u;有唯一确定的v值与之对应,则变量x与y之间通过变量u形成的一种函数关系,这种函数称为复合函数。论证说明:f(x)在点x0可导的充要条件是在x0的某邻域U(x0)内,存在一个在点x0连续的函数H(x),使f(x)-f(x0)=H(x)(x-x0)从而f"(x0)=H(x0)。证明:设f(x)在x0可导,令 H(x)=[f(x)-f(x0)]/(x-x0),x∈U"(x0)(x0去心邻域);H(x)=f"(x0),x=x0。因lim(x->x0)H(x)=lim(x->x0)[f(x)-f(x0)]/(x-x0)=f"(x0)=H(x0)。所以H(x)在点x0连续,且f(x)-f(x0)=H(x)(x-x0),x∈U(x0)。反之,设存在H(x),x∈U(x0),它在点x0连续,且f(x)-f(x0)=H(x)(x-x0),x∈U(x0)。因存在极限lim(x->x0)H(x)=lim(x->x0)[f(x)-f(x0)]/(x-x0)=lim(x->x0)f"(x)=H(x0)。所以f(x)在点x0可导,且f"(x0)=H(x0)。引理证毕。延伸论证说明:设u=φ(x)在点u0可导,y=f(u)在点u0=φ(x0)可导,则复合函数F(x)=f(φ(x))在x0可导,且F"(x0)=f"(u0)φ"(x0)=f"(φ(x0))φ"(x0)。证明:由f(u)在u0可导,由引理必要性,存在一个在点u0连续的函数H(u),使f"(u0)=H(u0),且f(u)-f(u0)=H(u)(u-u0)。又由u=φ(x)在x0可导,同理存在一个在点x0连续函数G(x),使φ"(x0)=G(x0),且φ(x)-φ(x0)=G(x)(x-x0)。于是就有,f(φ(x))-f(φ(x0))=H(φ(x))(φ(x)-φ(x0))=H(φ(x))G(x)(x-x0)。因为φ,G在x0连续,H在u0=φ(x0)连续,因此H(φ(x))G(x)在x0连续,再由引理的充分性可知F(x)在x0可导,且F"(x0)=f"(u0)φ"(x0)=f"(φ(x0))φ"(x0)。
Ntou1232023-07-03 11:08:311

复合函数求导

f"(x+y)从形式上看是由对应法则f"自变量u=x+y构成的一个函数。
bikbok2023-07-03 11:08:313

复合函数求导。求解释

复合函数求导法则:两个函数导函数的乘积。例如:f(x)=2x+1,f"(x)=2, g(x)=x^2+4x+4,g"(x)=2x+4那么复合函数:g(f(x))=(2x+1)^2+4(2x+1)+4把(2x+1)看做整体,则g"=2(2x+1)+4然后再求(2x+1)的导函数,为:2于是最后的结果为:2(2(2x+1)+4)=8x+12还有什么不明白的吗?
墨然殇2023-07-03 11:08:311

复合函数怎么求导啊?

先求内层函数的导数,再求外层的导数。举个简单的例子吧!比如要求sin(2x+8)的导数,我们就要先求2x+8的导数,很显然是2。然后再求外层函数的导数,也就是把2x+8设为t,求sint的导数,也就是cost。那么整个函数的导数就是2cost,也就是2cos(2x+8)。
拌三丝2023-07-03 11:08:312

如何判断一个函数是复合函数 求导时要怎么求(请详细一些)

你要先对外函数求导再一步步向内求。
人类地板流精华2023-07-03 11:08:302

什么时候用复合函数求导

ls正解
阿啵呲嘚2023-07-03 11:08:303

复合函数的求导公式是怎样的?

复合函数导数公式如下:含义:设函数y=f(u)的定义域为Du,值域为Mu,函数u=g(x)的定义域为Dx,值域为Mx,如果 Mx∩Du≠0,那么对于Mx∩Du内的任意一个x经过u;有唯一确定的v值与之对应,则变量x与y之间通过变量u形成的一种函数关系,这种函数称为复合函数。论证说明:f(x)在点x0可导的充要条件是在x0的某邻域U(x0)内,存在一个在点x0连续的函数H(x),使f(x)-f(x0)=H(x)(x-x0)从而f"(x0)=H(x0)。证明:设f(x)在x0可导,令 H(x)=[f(x)-f(x0)]/(x-x0),x∈U"(x0)(x0去心邻域);H(x)=f"(x0),x=x0。因lim(x->x0)H(x)=lim(x->x0)[f(x)-f(x0)]/(x-x0)=f"(x0)=H(x0)。所以H(x)在点x0连续,且f(x)-f(x0)=H(x)(x-x0),x∈U(x0)。反之,设存在H(x),x∈U(x0),它在点x0连续,且f(x)-f(x0)=H(x)(x-x0),x∈U(x0)。因存在极限lim(x->x0)H(x)=lim(x->x0)[f(x)-f(x0)]/(x-x0)=lim(x->x0)f"(x)=H(x0)。所以f(x)在点x0可导,且f"(x0)=H(x0)。引理证毕。延伸论证说明:设u=φ(x)在点u0可导,y=f(u)在点u0=φ(x0)可导,则复合函数F(x)=f(φ(x))在x0可导,且F"(x0)=f"(u0)φ"(x0)=f"(φ(x0))φ"(x0)。证明:由f(u)在u0可导,由引理必要性,存在一个在点u0连续的函数H(u),使f"(u0)=H(u0),且f(u)-f(u0)=H(u)(u-u0)。又由u=φ(x)在x0可导,同理存在一个在点x0连续函数G(x),使φ"(x0)=G(x0),且φ(x)-φ(x0)=G(x)(x-x0)。于是就有,f(φ(x))-f(φ(x0))=H(φ(x))(φ(x)-φ(x0))=H(φ(x))G(x)(x-x0)。因为φ,G在x0连续,H在u0=φ(x0)连续,因此H(φ(x))G(x)在x0连续,再由引理的充分性可知F(x)在x0可导,且F"(x0)=f"(u0)φ"(x0)=f"(φ(x0))φ"(x0)。
黑桃花2023-07-03 11:08:291

复合函数求导

根据我所学的高数,您的问法我是不能理解的。复合函数求导就是简单的整体求导,然后是被复合的函数求导,这两次求导是乘积关系,这样就可以了。而您问的分数型是怎么理解的。
hi投2023-07-03 11:08:283

复合函数怎么求导啊

记住复合函数的求导f(g(x))导数为f"(g(x))*g"(x)那么这里的f(x)=e^ax求导得到f"(x)=a*e^ax
NerveM 2023-07-03 11:08:282

复合函数求导.

复合函数求导法则:两个函数导函数的乘积. 例如:f(x)=2x+1,f"(x)=2,g(x)=x^2+4x+4,g"(x)=2x+4 那么复合函数: g(f(x))=(2x+1)^2+4(2x+1)+4 把(2x+1)看做整体,则g"=2(2x+1)+4 然后再求(2x+1)的导函数,为:2 于是最后的结果为:2(2(2x+1)+4)=8x+12 还有什么不明白的吗?
hi投2023-07-03 11:08:281

复合函数求导公式什么 复合函数怎么求导

1、复合函数求导公式:①设u=g(x),对f(u)求导得:f(x)=f(u)*g(x),设u=g(x),a=p(u),对f(a)求导得:f(x)=f(a)*p(u)*g(x)。 2、设函数y=f(u)的定义域为Du,值域为Mu,函数u=g(x)的定义域为Dx,值域为Mx,如果 Mx∩Du≠?,那么对于Mx∩Du内的任意一个x经过u,有唯一确定的y值与之对应,则变量x与y 之间通过变量u形成的一种函数关系,记为: y=f[g(x)],其中x称为自变量,u为中间变量,y为因变量(即函数)。
Ntou1232023-07-03 11:08:281

复合函数求导,怎么求,能不能举一些例题?难度中等的,也不要太简单的。

就是逐层往里面求我先举两个例子吧,有什么不会的支持追问
豆豆staR2023-07-03 11:08:282

函数subtotal的用法

函数subtotal的用法如下:1、计算。subtotal函数是Excel中的一个常用函数,它可以帮助用户快速计算某一列或某一行的总和。首先,打开Excel,在需要计算的单元格中输入函数=subtotal(9,A1:A10),其中9代表求和,A1:A10代表要计算的范围,可以根据实际情况调整。之后,按下回车键,就可以计算出A1:A10的总和。此外,subtotal函数还可以用来计算某一行的总和,只需要将函数中的A1:A10改为B1:F1,就可以计算出B1:F1的总和。2、计算单元格。函数概念含有三个要素:定义域A、值域C和对应法则F。另外,subtotal函数还可以用来计算某一列中某些单元格的总和,只需要在函数中加入一个参数。函数的介绍:1、函数是计算机程序中的一种基本结构,它是一段可重复使用的代码,用于完成特定的任务。函数可以接受输入参数,执行特定的操作,然后返回结果。在编程中,函数可以提高代码的可读性、可维护性和可重用性,从而提高程序的效率和质量。2、函数通常由以下几个部分组成:函数可以分为内置函数和自定义函数两种类型。内置函数是编程语言提供的一些常用函数,如数学函数、字符串函数、日期函数等,可以直接调用使用。3、自定义函数是由程序员自己编写的函数,根据需要实现特定的功能,可以根据具体需求进行设计和实现。在编程中,函数的使用可以大大提高代码的效率和质量,减少代码的冗余和重复,提高代码的可读性和可维护性。
gitcloud2023-07-03 11:08:231

三角函数的所有公式

自己点开
meira2023-07-03 11:03:182

三角函数公式

三角函数公式 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) = (tanA+tanB)/(1-tanAtanB) tan(A-B) = (tanA-tanB)/(1+tanAtanB) cot(A+B) = (cotAcotB-1)/(cotB+cotA) cot(A-B) = (cotAcotB+1)/(cotB-cotA) 倍角公式 tan2A = 2tanA/(1-tan^2 A) Sin2A=2SinA?CosA Cos2A = Cos^2 A--Sin^2 A =2Cos^2 A—1 =1—2sin^2 A 三倍角公式 sin3A = 3sinA-4(sinA)^3; cos3A = 4(cosA)^3 -3cosA tan3a = tan a ? tan(π/3+a)? tan(π/3-a) 半角公式 sin(A/2) = √{(1--cosA)/2} cos(A/2) = √{(1+cosA)/2} tan(A/2) = √{(1--cosA)/(1+cosA)} cot(A/2) = √{(1+cosA)/(1-cosA)} tan(A/2) = (1--cosA)/sinA=sinA/(1+cosA) 和差化积 sin(a)+sin(b) = 2sin[(a+b)/2]cos[(a-b)/2] sin(a)-sin(b) = 2cos[(a+b)/2]sin[(a-b)/2] cos(a)+cos(b) = 2cos[(a+b)/2]cos[(a-b)/2] cos(a)-cos(b) = -2sin[(a+b)/2]sin[(a-b)/2] tanA+tanB=sin(A+B)/cosAcosB 积化和差 sin(a)sin(b) = -1/2*[cos(a+b)-cos(a-b)] cos(a)cos(b) = 1/2*[cos(a+b)+cos(a-b)] sin(a)cos(b) = 1/2*[sin(a+b)+sin(a-b)] cos(a)sin(b) = 1/2*[sin(a+b)-sin(a-b)] 诱导公式 sin(-a) = -sin(a) cos(-a) = cos(a) sin(π/2-a) = cos(a) cos(π/2-a) = sin(a) sin(π/2+a) = cos(a) cos(π/2+a) = -sin(a) sin(π-a) = sin(a) cos(π-a) = -cos(a) sin(π+a) = -sin(a) cos(π+a) = -cos(a) tgA=tanA = sinA/cosA 万能公式 sin(a) = [2tan(a/2)] / {1+[tan(a/2)]^2} cos(a) = {1-[tan(a/2)]^2} / {1+[tan(a/2)]^2} tan(a) = [2tan(a/2)]/{1-[tan(a/2)]^2} 其它公式 a?sin(a)+b?cos(a) = [√(a^2+b^2)]*sin(a+c) [其中,tan(c)=b/a] a?sin(a)-b?cos(a) = [√(a^2+b^2)]*cos(a-c) [其中,tan(c)=a/b] 1+sin(a) = [sin(a/2)+cos(a/2)]^2; 1-sin(a) = [sin(a/2)-cos(a/2)]^2;; 其他非重点三角函数 csc(a) = 1/sin(a) sec(a) = 1/cos(a) 双曲函数 sinh(a) = [e^a-e^(-a)]/2 cosh(a) = [e^a+e^(-a)]/2 tg h(a) = sin h(a)/cos h(a) 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)= sinα cos(2kπ+α)= cosα tan(2kπ+α)= tanα cot(2kπ+α)= cotα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin(π+α)= -sinα cos(π+α)= -cosα tan(π+α)= tanα cot(π+α)= cotα 公式三: 任意角α与 -α的三角函数值之间的关系: sin(-α)= -sinα cos(-α)= cosα tan(-α)= -tanα cot(-α)= -cotα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin(π-α)= sinα cos(π-α)= -cosα tan(π-α)= -tanα cot(π-α)= -cotα 公式五: 利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系: sin(2π-α)= -sinα cos(2π-α)= cosα tan(2π-α)= -tanα cot(2π-α)= -cotα 公式六: π/2±α及3π/2±α与α的三角函数值之间的关系: sin(π/2+α)= cosα cos(π/2+α)= -sinα
陶小凡2023-07-03 11:03:171

一元二次函数的配方公式是什么?

阿啵呲嘚2023-07-03 11:03:112

二次函数配方步骤

1.转化: 将此一元二次方程化为ax^2+bx+c=0的形式(即一元二次方程的一般形式)化为一般形式   2.移项: 常数项移到等式右边   3.系数化1: 二次项系数化为1   4.配方: 等号左右两边同时加上一次项系数一半的平方   5.求解: 用直接开平方法求解 整理 (即可得到原方程的根)   代数式表示方法:注(^2是平方的意思.)   ax^2+bx+c=a(x+b/2a)^2+(4ac-b^2)/4a=a[(x+m)^2-n^2]=a(x+m+n)*(x+m-n)   例:解方程2x^2+4=6x   1. 2x^2-6x+4=0   2. x^2-3x+2=0   3. x^2-3x=-2   4. x^2-3x+2.25=0.25 (+2.25:加上3一半的平方,同时-2也要加上3一半的平方让等式两边相等)   5. (x-1.5)^2=0.25 (a^2+2b+1=0 即 (a+1)^2=0)   6. x-1.5=±0.5   7. x1=2   x2=1 (一元二次方程通常有两个解,X1 X2)编辑本段二次函数配方法技巧  y=ax&sup要的一项,往往在解决方程,不等式,函数中需用,下面详细说明:   首先,明确的是配方法就是将关于两个数(或代数式,但这两一定是平方式),写成(a+b)平方的形式或(a-b)平方的形式: 将(a+b)平方的展开得 (a+b)^2=a^2+2ab+b^2 所以要配成(a+b)平方的形式就必须要有a^2,2ab,b^2 则选定你要配的对象后(就是a^2和b^2,这就是核心,一定要有这两个对象,否则无法使用配方公式),就进行添加和去增,例如: 原式为a^2+ b^2 解: a^2+ b^2 = a^2+ b^2 +2ab-2ab = ( a^2+ b^2 +2ab)-2ab = (a+b)^2-2ab 再例: 原式为a^2+ 2b^2 解: a^2+2b^2 = a^2+ b^2 + b^2 +2ab-2ab = ( a^2+ b^2 +2ab)-2ab+ b^2 = (a+b)^2-2ab+ b^2 这就是配方法了, 附注:a或b前若有系数,则看成a或b的一部分, 例如:4a^2看成(2a)^2 9b^2看成(a^29b^2)
阿啵呲嘚2023-07-03 11:03:111

三角函数的配方公式?

应该是降低指数,最后和差化积吧?
人类地板流精华2023-07-03 11:03:061

请问二次函数配方公式是什么

23/12=【3(x2-x/3)+2】-【3(x-1/6)2】所得第一个【】内是原式;第二个【】是配成的完全平方数,但是为了配成完全平方数,你会多加了一部分常数,最后要减去这部分常数,才能等于原式!本题中,多加的常数就是23/12,所以要减去!
gitcloud2023-07-03 11:03:061

三角函数公式总结

三角函数公式 两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA � cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) 倍角公式 tan2A=2tanA/[1-(tanA)^2] cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2 sin2A=2sinA*cosA 三倍角公式 sin3a=3sina-4(sina)^3 cos3a=4(cosa)^3-3cosa tan3a=tana*tan(π/3+a)*tan(π/3-a)诱导公式sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαsin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαsin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαsin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαsin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαsin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanα
九万里风9 2023-07-03 11:03:052

课本上有 所有初等函数在他们任何定义区间内是连续的,但初等函数在定义域内不一定连续。

在“定义区间”的百度百科词条中可以看出定义区间不包含孤立的点。所提问中的所说的函数定义域为无数个孤立的点组合,而这些点并不构成定义区间,所以提问中的课本结论上半句并不适用(因为此函数并不存在定义区间);而对于下半句而言,因为定义域为无数个单点所构成 ,所以不连续,符合“初等函数在定义域内不一定连续”结论。
u投在线2023-07-03 11:01:525

一切初等函数在其定义域上都有原函数对吗?

对的,因为都是连续函数,所以可积
wpBeta2023-07-03 11:01:522

初等函数是不是只有连续性,而没有可导性

分段函数不一定是初等函数这句话是对的。因为初等函数是指五种基本函数经有限次的运算或复合而来。而分段函数甚至可以每一个分段上使用超越函数。一切初等函数在其「定义区间」内都是连续的。定义区间,顾名思义,在某个区间上的函数都是有定义的。孤立的点构不成区间。“初等函数在其定义区间内可导”这句话是错的。y=|x|=√(x^2),这是一个初等函数,定义区间为(-∞,+∞),但在x=0处是不可导的。高等数学中提到初等函数在定义区间(不是定义域)一定连续,函数如果在某些孤立的点有定义,那么这些点是在其定义域内的,但是这些孤立的点是不在其定义区间内的。总结就是:基本初等函数在其定义域内连续;初等函数在其定义区间内连续。初等函数简介:由幂函数(power function)、指数函数(exponential function)、对数函数(logarithmic function)、三角函数(trigonometric function)。反三角函数(inverse trigonometric function)与常数经过有限次的有理运算(加、减、乘、除、有理数次乘方、有理数次开方)
Jm-R2023-07-03 11:01:521

f(x)为初等函数则在其定义区间内必可积吗?

不一定. 比如y=1/x,(0,1)有定义,但(0,1)上其积分为无穷,不可积.
豆豆staR2023-07-03 11:01:521

初等函数在定义区间内一定可导吗

那个最佳回答者没学过高数吧
hi投2023-07-03 11:01:515

初等函数y=f(x)在其定义域[a,b]上一定( ).A.连续 B.可导 C.可微 D.可积

【答案】:AD选A,D.B与C等价,反例可以用y=√x^2=|x|(0≤x≤1)说明.
此后故乡只2023-07-03 11:01:511

初等函数在定义域内一定有极限吗

初等函数在定义域内一定有极限。根据查询相关资料显示:初等函数在定义域内一定有极限经过有限次的加减乘除和复合而得的函数,就是初等函数。也就是能够用手写出来由一个式子表达的,合理的函数,就是初等函数,故初等函数在定义域内一定有极限。
bikbok2023-07-03 11:01:511

初等函数在其定义域内都是可导可微连续的吗?

怎么说呢? 初等函数在他们任何定义区间内是连续的。 但是不代表初等函数的定义域是连续的。 对于y=√(cosx-1)来说,其间断的缘故是定义域不连续。它不存在任何定义域区间,它的每个定义域区间都是一个单独的点。所以也可以说这个函数不是在定...
bikbok2023-07-03 11:01:511

分段单调递增函数一定是单调递增函数吗?下列证明有什么错误????

可定不是。比如函数f(X)=-1X.它是分段递增函数,但不是单调递增函数。x取b而f(x)在这一点不连续呢
九万里风9 2023-07-03 11:01:502

高数中,”初等函数在其定义域内的任一区间上都是连续的“

还是成立的只不过对于初学者来说,定义的连续性都是在区间上给出的,故教材上给出这样叙述的定理举个例子:函数f=(1-x^2)^(1/2)+(x^2-1)^(1/2)定义域只有两个孤立的点,但它是初等函数。你不好讨论它在定义域的连续性,因为极限都没法写。但是随着学习的深入,连续的定义会得到扩展,到那时这个定理中区间就可以改成定义域了。
ardim2023-07-03 11:01:501

初等函数在定义域内一定可导?

没什么回事
ardim2023-07-03 11:01:502

如何判断函数的不可导点?

不可导点判断:初等函数在其定义域内均可导,一般可根据导数定义去判断,即在某点处左导数等于右导数。函数的条件是在定义域内必须是连续的,可导函数都是连续的,但是连续函数不一定是可导函数。例如:y=|x|,在x=0上不可导,即使这个函数是连续的,但是lim,y"=1,limy"=-1两个值不相等,所以不是可导函数。函数不可导点四种情况:1、无定义:无定义的点,没有导数存在。2、不连续:不连续知的点,或称为离散点,导数不存在。3、不光道滑:连续点,但是此点为尖尖点,左右两边的斜率不一样,也就是导数不一样,不可导。4、导数值为∞:有定义,连续、光滑,但是斜率是无穷大。
左迁2023-07-03 11:01:491

初等函数在其定义域内处处连续为什么是错的? 网上许多人说是对的?求详解?

是这个样子的~在定义域内处处连续必须是错误的~理由如下:来看个函数f(x)=根号下(sinx-1) 那么该函数的定义域为x=1/2 π+ 2k π 为一系列孤立的点~此函数除这些点外都无定义,所以更别说连续了~ 因此只能说初等函数在定义区间内连续~ 而不能说在定义域内连续~
北营2023-07-03 11:01:493

初等函数在其定义域内是连续的,那么他对应的导函数和原函数连续吗

这句话不正确!应该是初等函数在其定义区间内连续。值得注意‘定义域"和‘定义区间"不是一回事!我也是的一的,做一份卷子时也被我做做了哈哈…
水元素sl2023-07-03 11:01:492

初等函数在其定义域上都存在反函数. A.错误 B.正确

A 只有单调函数才存在反函数
LuckySXyd2023-07-03 11:01:491

一切初等函数在其区间内都是连续的吗?

分段函数不一定是初等函数这句话是对的。因为初等函数是指五种基本函数经有限次的运算或复合而来。而分段函数甚至可以每一个分段上使用超越函数。一切初等函数在其「定义区间」内都是连续的。定义区间,顾名思义,在某个区间上的函数都是有定义的。孤立的点构不成区间。“初等函数在其定义区间内可导”这句话是错的。y=|x|=√(x^2),这是一个初等函数,定义区间为(-∞,+∞),但在x=0处是不可导的。高等数学中提到初等函数在定义区间(不是定义域)一定连续,函数如果在某些孤立的点有定义,那么这些点是在其定义域内的,但是这些孤立的点是不在其定义区间内的。总结就是:基本初等函数在其定义域内连续;初等函数在其定义区间内连续。初等函数简介:由幂函数(power function)、指数函数(exponential function)、对数函数(logarithmic function)、三角函数(trigonometric function)。反三角函数(inverse trigonometric function)与常数经过有限次的有理运算(加、减、乘、除、有理数次乘方、有理数次开方)
tt白2023-07-03 11:01:491

初等函数连续的条件是什么?

初等函数在定义域内不一定连续。初等函数在其定义区间连续,而函数的定义区间与函数的定义域并不完全相同,因为函数的定义域有时是由一些离散的点及一些区间构成的,对于定义域的这些孤立的点,根本谈不上函数的连续问题,而只能在定义域的区间上讨论连续性,这些区间,我们称之为函数的定义区间,初等函数在其定义域的区间(即定义区间)上是连续的。连续函数的相关定理:1、闭区间上的连续函数在该区间上一定有界。2、闭区间上的连续函数在该区间上一定能取得最大值和最小值。证明:利用确界原理:非空有上(下)界的点集必有上(下)确界。3、若f(a)=A,f(b)=B,且A≠B。则对A、B之间的任意实数C,在开区间(a,b)上至少有一点c,使f(c)=C。闭区间上的连续函数在该区间上必定取得最大值和最小值之间的一切数值。4、闭区间上的连续函数在该区间上一致连续。所谓一致连续是指,对任意ε>0(无论其多么小),总存在正数δ,当区间I上任意两个数x1、x2满足|x1-x2|<δ时,有|f(x1)-f(x2)|<ε,就称f(x)在I上是一致连续的。
余辉2023-07-03 11:01:491

初等函数在定义域内一定可导?

  “初等函数在定义域内一定可导”这句话是错的,很容易举出例子,如你的    f(x)=x^(1/3),是初等函数,但其在x=0不可导(实际上有无穷导数);而初等函数    y=√(x^2)=|x|在x=0就真的不可导。顺便提一句,“基本初等函数在定义域内可导”,“初等函数在定义域内连续”是正确的。
无尘剑 2023-07-03 11:01:481

初等函数在定义域内是否一定可导?

初等函数在其定义域内应该处处可导是对的
西柚不是西游2023-07-03 11:01:481

基本初等函数在定义域内都是可导的吗 是基本初等函数

问题补充:不要说绝对值函数,那是分段函数,不属于初等函数
wpBeta2023-07-03 11:01:483

函数在区间内的连续性一定在区间内么?

是错的,应该是初等函数在其定义区间内是连续的,定义区间是指包含在定义域内的区间。但是基本初等函数在其定义域内连续是正确的说法。初等函数在其定义区间内连续,而函数的定义区间与函数的定义域并不完全相同,因为函数的定义域有时是由一些离散的点及一些区间构成的,对于定义域内的这些孤立的点,根本谈不上函数的连续问题,而只能在定义域内的区间上讨论连续性。这些区间,我们称之为函数的定义区间。初等函数在其定义域内的区间(即定义区间)上是连续的。扩展资料连续函数的性质:1、在某点连续的有限个函数经有限次和、差、积、商(分母不为0) 运算,结果仍是一个在该点连续的函数。2、连续单调递增 (递减)函数的反函数,也连续单调递增 (递减)。3、连续函数的复合函数是连续的。4、一个函数在某点连续的充要条件是它在该点左右都连续。
善士六合2023-07-03 11:01:481

怎么判断是右连续函数还是左连续函数

我们用文字来叙述单侧连续的概念。若函数在某点的左极限存在且等于该点的函数值,则。若函数在某点的右极限存在且等于该点的函数值,则函数在该点右连续。单侧连续的几何意义:通俗地说,函数在点x0左连续,该点x0对应函数曲线上的点M(x0,f(x0)),同时点M与左边紧邻的函数曲线天衣无缝地连在一起,没有任何间隔。同理,理解右连续。如函数y=x在区间[-1,1]在点x=-1右连续,在x=1左连续。又如函数y=|x|/x在x=0处即不左连续也不右连续。如图。
凡尘2023-07-03 11:01:481

怎么判断一个函数几阶可导

先看几个定义: (1)连续点的定义是:如果函数在某一邻域内有定义,且x->x。时limf(x)=f(x。),就称x。为f(x)的连续点。 一个推论,即y=f(x)在x。处连续等价于y=f(x)在x。处既左连续又右连续,也等价于y=f(x)在x。处左、右极限都等于f(x。)。【这就包括了函数连续必须同时满足三个条件:函数在x。处有定义;x->x。极限limf(x)存在;x->x。时limf(x)=f(x。)】 初等函数在其定义域内是连续的。 (2)连续函数:函数f(x)在其定义域内的每一点都连续,则称函数f(x)为连续函数。 根据定理有:函数可导必然连续;不连续必然不可导。
黑桃花2023-07-03 11:01:481

初等函数在其定义域内是否一定可导?

不一定,可导一定连续,但是,连续不一定可导
再也不做站长了2023-07-03 11:01:472

初等函数在定义域内有原函数,这句话对么?

对的 原函数的存在性:连续函数必有原函数. 可见,初等函数在其定义域内有原函数;
善士六合2023-07-03 11:01:461

初等函数在其定义域内一定可导,对么

我错了我悔过数学家经过一个一个证明 分别把每个初等函数导数算法都列了出来从而证明了他们在定义域内一定可导elementary function 最常用的一类函数,包括常数函数、幂函数、指数函数、对数函数、三角函数、反三角函数,以及由这些函数经过有限次四则运算或函数的复合而得的所有函数。① 常数函数。对定义域中的一切x对应的函 数值都取某个固定常数 的函数。②幂函数。形如y=xa的函数,式中a为不等于零的常数 。③指数函数。形如y=ax的函数,式中a为不等于1的正常数。④对 数函数。指 数函数的反函数,记作y=log a x,式中a为不等于1的正常数。指数函数与对数函数之间成 立关系式,loga ax=x。⑤ 三角函数 。即正弦函数y=sinx ,余弦函数y=cosx ,正切函数y=tgx,余切函数y=ctgx ,正割函数y=secx,余割 函数y=cscx(见 三角学)。⑥反三 角函数。三角函数 的反函数 ——反正弦函数y = arc sinx ,反 余 弦函数 y=arc cosx (-1≤x≤1,0≤y≤π) ,反 正 切 函数 y=arc tgx , 反余切函数 y = arc ctgx(-∞ <x<+∞ ,θ<y<π ) 等 。 以上这些函数常统称为基本初等函数。一个初等函数,除了可以用初等解析式表示以外,往往 还有其他表示形式,例如 ,三角函数 y=sinx 可以用无穷级数表为 初等函数可以按照解析表达式分类为: 初等函数是最先被研究的一类函数,它与人类的生产和生活密切相关,并且应用广泛。为了方便,人们编制了各种函数表,如平方表、开方表、对数表、三角函数表等。
左迁2023-07-03 11:01:461

并且初等函数在其定义域内应该处处可导?

初等函数在其定义域内应该处处可导是对的初等函数在其定义域内应该处处连续不对
hi投2023-07-03 11:01:461

初等函数在其定义域内一定可导吗?若不是,请举出反例

看反例x∧(1/3)一切尽在不言中
凡尘2023-07-03 11:01:462

初等函数都是连续的吗

所有基本初等函数在其定义域内都是连续的。连续函数的其他性质:1、在某点连续的有限个函数经有限次和、差、积、商(分母不为0)运算,结果仍是一个在该点连续的函数。2、连续单调递增(递减)函数的反函数,也连续单调递增(递减)。3、连续函数的复合函数是连续的。4、一个函数在某点连续的充要条件是它在该点左右都连续。5、闭区间上的连续函数在该区间上一定有界,闭区间上的连续函数在该区间上一定能取得最大值和最小值。
u投在线2023-07-03 11:01:462

初等函数在其定义域内是否一定可导?

楼上对初等函数阐述得很详细,可惜美中不足的是对函数连续与可导的关系没弄清楚,可导函数一定连续,但连续函数却不一定可导.举个简单的例子:y=√(x^2)=|x|,显然y=|x|是初等函数,并且y=|x|在定义域内连续,但y=|x|在x=0处却不可导.因此初等函数在其定义域内不一定可导
meira2023-07-03 11:01:462

什么是初等函数定义区间和定义域?

综述:范围不同。定义域:一个使得函数有意义的所有的自变量的范围,端点要考虑在内。定义区间只是定义域中的一个范围。是定义域的一个子集。举个最简单的例子y=x,定义域是R,我要求在区间[0,5]上的y的值,那么这个区间[0,5]就叫定义区间。用法:高等数学中提到初等函数在定义区间(不是定义域)一定连续,函数如果在某些孤立的点有定义,那么这些点是在其定义域内的,但是这些孤立的点是不在其定义区间内的。总结就是:基本初等函数在其定义域内连续;初等函数在其定义区间内连续。参考资料来源:百度百科-定义区间
FinCloud2023-07-03 11:01:461

初等函数在其定义域内一定可导,对么

不对。x开平方,x=0在定义域内,但不可导。
真颛2023-07-03 11:01:452

初等函数在其定义域内均是连续可导的吗??!!!

楼上对初等函数阐述得很详细,可惜美中不足的是对函数连续与可导的关系没弄清楚,可导函数一定连续,但连续函数却不一定可导.举个简单的例子:y=√(x^2)=|x|,显然y=|x|是初等函数,并且y=|x|在定义域内连续,但y=|x|在x=0处却不可导.因此初等函数在其定义域内不一定可导
可桃可挑2023-07-03 11:01:451

初等函数在定义域内一定连续吗?

初等函数在定义域内不一定连续。初等函数在其定义区间连续,而函数的定义区间与函数的定义域并不完全相同,因为函数的定义域有时是由一些离散的点及一些区间构成的。对于定义域的这些孤立的点,根本谈不上函数的连续问题,而只能在定义域的区间上讨论连续性,这些区间,我们称之为函数的定义区间,初等函数在其定义域的区间(即定义区间)上是连续的。简介在数学中,连续是函数的一种属性。直观上来说,连续的函数就是当输入值的变化足够小的时候,输出的变化也会随之足够小的函数。如果输入值的某种微小的变化会产生输出值的一个突然的跳跃甚至无法定义,则这个函数被称为是不连续的函数(或者说具有不连续性)。
mlhxueli 2023-07-03 11:01:451

初等函数在定义域内一定连续吗?

初等函数在定义域内不一定连续。初等函数在其定义区间连续,而函数的定义区间与函数的定义域并不完全相同,因为函数的定义域有时是由一些离散的点及一些区间构成的,对于定义域的这些孤立的点,根本谈不上函数的连续问题,而只能在定义域的区间上讨论连续性,这些区间,我们称之为函数的定义区间,初等函数在其定义域的区间(即定义区间)上是连续的。连续函数的相关定理:1、闭区间上的连续函数在该区间上一定有界。2、闭区间上的连续函数在该区间上一定能取得最大值和最小值。证明:利用确界原理:非空有上(下)界的点集必有上(下)确界。3、若f(a)=A,f(b)=B,且A≠B。则对A、B之间的任意实数C,在开区间(a,b)上至少有一点c,使f(c)=C。闭区间上的连续函数在该区间上必定取得最大值和最小值之间的一切数值。4、闭区间上的连续函数在该区间上一致连续。所谓一致连续是指,对任意ε>0(无论其多么小),总存在正数δ,当区间I上任意两个数x1、x2满足|x1-x2|<δ时,有|f(x1)-f(x2)|<ε,就称f(x)在I上是一致连续的。
陶小凡2023-07-03 11:01:451

初等函数在其定义域内必连续。()

初等函数在其定义域内必连续。() A.正确B.错误正确答案:B
Jm-R2023-07-03 11:01:451

一切初等函数在其定义区间都是连续的

一切初等函数在其定义域内都是连续的. 函数在定义域内连续不一定处处可导, 但是可导一定连续.
阿啵呲嘚2023-07-03 11:01:452

初等函数在定义区间内连续?

可能你的理解有误初等函数是在定义域内连续即如果定义域是一个连续的区间,则在这个区间内连续而这里定义域本身是一个一个的点,那就谈不上连续了
北境漫步2023-07-03 11:01:452

初等函数在定义域内一定连续吗?

初等函数在定义域内不一定连续。初等函数在其定义区间连续,而函数的定义区间与函数的定义域并不完全相同,因为函数的定义域有时是由一些离散的点及一些区间构成的,对于定义域的这些孤立的点,根本谈不上函数的连续问题,而只能在定义域的区间上讨论连续性,这些区间,我们称之为函数的定义区间,初等函数在其定义域的区间(即定义区间)上是连续的。连续函数的相关定理:1、闭区间上的连续函数在该区间上一定有界。2、闭区间上的连续函数在该区间上一定能取得最大值和最小值。证明:利用确界原理:非空有上(下)界的点集必有上(下)确界。3、若f(a)=A,f(b)=B,且A≠B。则对A、B之间的任意实数C,在开区间(a,b)上至少有一点c,使f(c)=C。闭区间上的连续函数在该区间上必定取得最大值和最小值之间的一切数值。4、闭区间上的连续函数在该区间上一致连续。所谓一致连续是指,对任意ε>0(无论其多么小),总存在正数δ,当区间I上任意两个数x1、x2满足|x1-x2|<δ时,有|f(x1)-f(x2)|<ε,就称f(x)在I上是一致连续的。
FinCloud2023-07-03 11:01:441

初等函数在定义域内有原函数, 这句话对么???

对的原函数的存在性: 连续函数必有原函数. 可见, 初等函数在其定义域内有原函数;
墨然殇2023-07-03 11:01:441

“初等函数在其定义区间内可导”这句话对吗?

分段函数不一定是初等函数这句话是对的。因为初等函数是指五种基本函数经有限次的运算或复合而来。而分段函数甚至可以每一个分段上使用超越函数。一切初等函数在其「定义区间」内都是连续的。定义区间,顾名思义,在某个区间上的函数都是有定义的。孤立的点构不成区间。“初等函数在其定义区间内可导”这句话是错的。y=|x|=√(x^2),这是一个初等函数,定义区间为(-∞,+∞),但在x=0处是不可导的。高等数学中提到初等函数在定义区间(不是定义域)一定连续,函数如果在某些孤立的点有定义,那么这些点是在其定义域内的,但是这些孤立的点是不在其定义区间内的。总结就是:基本初等函数在其定义域内连续;初等函数在其定义区间内连续。初等函数简介:由幂函数(power function)、指数函数(exponential function)、对数函数(logarithmic function)、三角函数(trigonometric function)。反三角函数(inverse trigonometric function)与常数经过有限次的有理运算(加、减、乘、除、有理数次乘方、有理数次开方)
FinCloud2023-07-03 11:01:431

初等函数在其定义域内一定可导吗?

不一定
tt白2023-07-03 11:01:434

初等函数在定义区间内必定连续对吗?

是错的,应该是初等函数在其定义区间内是连续的,定义区间是指包含在定义域内的区间。但是基本初等函数在其定义域内连续是正确的说法。初等函数在其定义区间内连续,而函数的定义区间与函数的定义域并不完全相同,因为函数的定义域有时是由一些离散的点及一些区间构成的,对于定义域内的这些孤立的点,根本谈不上函数的连续问题,而只能在定义域内的区间上讨论连续性。这些区间,我们称之为函数的定义区间。初等函数在其定义域内的区间(即定义区间)上是连续的。扩展资料连续函数的性质:1、在某点连续的有限个函数经有限次和、差、积、商(分母不为0) 运算,结果仍是一个在该点连续的函数。2、连续单调递增 (递减)函数的反函数,也连续单调递增 (递减)。3、连续函数的复合函数是连续的。4、一个函数在某点连续的充要条件是它在该点左右都连续。
Ntou1232023-07-03 11:01:431

初等函数在其定义域内处处连续为什么是错的

初等函数在其定义域内不是处处连续,比如说是个分段函数,我没办法画图给你看,不染很清楚的。
gitcloud2023-07-03 11:01:422

基本初等函数在其定义域内都是连续的吗?

应该是初等函数在其定义区间内是连续的,定义区间是包含在定义域内的区间。初等函数在其定义区间连续,而函数的定义区间与函数的定义域并不完全相同,因为函数的定义域有时是由一些离散的点及一些区间构成的;对于定义域的这些孤立的点,根本谈不上函数的连续问题,而只能在定义域的区间上讨论连续性,这些区间,我们称之为函数的定义区间,初等函数在其定义域的区间(即定义区间)上是连续的。扩展资料:设函数f(x)在区间X上有定义,如果存在M>0,对于一切属于区间X上的x,恒有|f(x)|≤M,则称f(x)在区间X上有界,否则称f(x)在区间上无界。设函数f(x)的定义域为D,区间I包含于D,如果对于区间上任意两点x1及x2,当x1<x2时,恒有f(x1)<f(x2),则称函数f(x)在区间I上是单调递增的;如果对于区间I上任意两点x1及x2,当x1<x2时,恒有f(x1)>f(x2),则称函数f(x)在区间I上是单调递减的。单调递增和单调递减的函数统称为单调函数。
瑞瑞爱吃桃2023-07-03 11:01:421

初等函数在定义域内一定连续吗?

初等函数在定义域内不一定连续。初等函数在其定义区间连续,而函数的定义区间与函数的定义域并不完全相同,因为函数的定义域有时是由一些离散的点及一些区间构成的;对于定义域的这些孤立的点,根本谈不上函数的连续问题,而只能在定义域的区间上讨论连续性,这些区间,我们称之为函数的定义区间,初等函数在其定义域的区间(即定义区间)上是连续的。证明方法设函数f(x)在区间X上有定义,如果存在M>0,对于一切属于区间X上的x,恒有|f(x)|≤M,则称f(x)在区间X上有界,否则称f(x)在区间上无界。设函数f(x)的定义域为D,区间I包含于D,如果对于区间上任意两点x1及x2,当x1<x2时,恒有f(x1)<f(x2),则称函数f(x)在区间I上是单调递增的。如果对于区间I上任意两点x1及x2,当x1<x2时,恒有f(x1)>f(x2),则称函数f(x)在区间I上是单调递减的。单调递增和单调递减的函数统称为单调函数。
gitcloud2023-07-03 11:01:421

初等函数在定义域内一定连续吗?

这道题的答案是正确的,因为在它的定义域内。这个函数,这个初等函数一定是连续的,他举的这个函数x分之一。X等于零,这个点就不在它的定义域内。
Jm-R2023-07-03 11:01:423

能否说初等函数在其定义域内是连续的

不能
Chen2023-07-03 11:01:426

初等函数在其定义域内一定可导,对么?

我错了我悔过数学家经过一个一个证明 分别把每个初等函数导数算法都列了出来从而证明了他们在定义域内一定可导elementary function 最常用的一类函数,包括常数函数、幂函数、指数函数、对数函数、三角函数、反三角函数,以及由这些函数经过有限次四则运算或函数的复合而得的所有函数。① 常数函数。对定义域中的一切x对应的函 数值都取某个固定常数 的函数。②幂函数。形如y=xa的函数,式中a为不等于零的常数 。③指数函数。形如y=ax的函数,式中a为不等于1的正常数。④对 数函数。指 数函数的反函数,记作y=log a x,式中a为不等于1的正常数。指数函数与对数函数之间成 立关系式,loga ax=x。⑤ 三角函数 。即正弦函数y=sinx ,余弦函数y=cosx ,正切函数y=tgx,余切函数y=ctgx ,正割函数y=secx,余割 函数y=cscx(见 三角学)。⑥反三 角函数。三角函数 的反函数 ——反正弦函数y = arc sinx ,反 余 弦函数 y=arc cosx (-1≤x≤1,0≤y≤π) ,反 正 切 函数 y=arc tgx , 反余切函数 y = arc ctgx(-∞ <x<+∞ ,θ<y<π ) 等 。 以上这些函数常统称为基本初等函数。一个初等函数,除了可以用初等解析式表示以外,往往 还有其他表示形式,例如 ,三角函数 y=sinx 可以用无穷级数表为 初等函数可以按照解析表达式分类为: 初等函数是最先被研究的一类函数,它与人类的生产和生活密切相关,并且应用广泛。为了方便,人们编制了各种函数表,如平方表、开方表、对数表、三角函数表等。
水元素sl2023-07-03 11:01:422

初等函数在其定义区间内必

首先要搞清题中几个概念: 初等函数:是指由常数和五类基本初等函数通过有限次四则运算及有限次复合而成的且可以用一个式子表示的函数; 定义域:函数自变量可取值的数集; 定义区间:函数自变量在数轴上可取值的一个范围.区间有有限区间、无限区间、开区间、闭区间、半开区间之分,区间也是数集的一种,孤立点不是区间. 了解了以上概念,上述题判断就容易了. 1,正确.这是初等函数的基本性质; 2,错误.定义域可能是孤点,在孤点没有连续性可言.例如y=根号(1-x^2)根号(x^2-1)定义域只有x=1; 3,错误.例如y=立方根x在x=0处不可导; 4,正确.初等函数在其定义区间内都存在原函数,虽然它们的原函数不一定都是初等函数.
阿啵呲嘚2023-07-03 11:01:412

初等函数在定义域内是否一定可导?

我是学数学的,我们的教科书上说这个是错误的,我们的老师也强调了好多次了!是~~~~~~~~
北境漫步2023-07-03 11:01:416

分段函数一定不是初等函数吗?

也不一定,因为有些分段函数虽然形式强是分段来表示的,但实际上可以合并成一个解析式,例如:y=2-x,x<=1;x,x>1就可以合并成一个式子
人类地板流精华2023-07-03 11:01:414
 首页 上一页  32 33 34 35 36 37 38 39 40 41 42  下一页  尾页