对数

如何判断对数函数奇偶性?

利用定义,先判断定义域是否关于原点对称,然后观察以-X代X是否函数值满足奇偶函数的定义。对数型函数的奇偶性判断,一般不仅要利用奇偶性定义而且还有结合对数运算的性质。当然在这之前需看定义域是否关于原点对称。例如判断函数y=ln(1-x)/(1+x)的奇偶性。解析:函数的定义域为(-1,1),关于原点对称。f(-x)=ln(1+x)/(1-x))=ln[(1-x)/(1+x)]^-1=-ln[(1-x)/(1+x)]=f(x)。所以该函数为奇函数。设函数f(x)的定义域D:⑴如果对于函数定义域D内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。⑵如果对于函数定义域D内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。⑶如果对于函数定义域D内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。⑷如果对于函数定义域内的任意一个x,f(-x)=-f(x)或f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。
陶小凡2023-07-28 12:26:341

log以2为底3的对数等于多少

根据换底公式:log2为底9的对数=log3为底9的对数除以log3为底2的对数log3为底2的对数=log3为底2的对数除以log3为底3的对数两者相乘,约分后得log3为底9的对数除以log3为底3的对数=3
余辉2023-07-28 11:20:355

log以2为底3的对数在计算器上怎么按

2 、log、 3 依次按
CarieVinne 2023-07-28 11:20:278

log以2为底根号2为对数,怎么换底

等于1/2将根号2改为2的二分之一次方,再将二分之一提到log的前面
苏州马小云2023-07-28 11:20:252

log以2为底20的对数怎么化简

log2 (20)=log2 (5*4) =log2 (5)
西柚不是西游2023-07-28 11:20:241

log以2为底100的对数等于多少

因为 2^(1/2)=根号2, 所以 log(2)(根号2)=1/2. 因为 10^2=100, 所以 lg100=2. 好好看书!对数的定义要熟. 你只要记 1+1=2,即lg10+lg10=lg100. 2-1=1,即lg100-lg10=lg10. 2*1=2.即2lg10=lg100. 考试的时候写下这三个式子,你就可以得出对数的运算法则了. 根据实例记公式.
人类地板流精华2023-07-28 11:20:241

log2为底2的对数怎么读

log2为底2的对数的读法为log以2为底的2的对数。
NerveM 2023-07-28 11:20:231

log以2为底12的对数是多少

log2(12)=log2(2^2*3)=log2(2^2)+log2(3)=2+log2(3)=2+ 1.5849625007212 = 3.5849625007212
左迁2023-07-28 11:20:231

以2为底的11的对数是多少?

用计算器吧
拌三丝2023-07-28 11:20:215

㏒以2为底6的对数怎么化简

log<2>6=lg6/lg2=2.5850
拌三丝2023-07-28 11:20:203

怎么计算log以2为底的对数?

1、电脑打开Excel表格,然后输入对数公式=log,然后选择第一个LOG。2、点击选择LOG后,就可以看到要输入数值和底数。3、先输入数值,以64为例,然后输入逗号,在输入底数2。3、输入公式后,按回车键。4、就可以得到64以2为底的对数了。
大鱼炖火锅2023-07-28 11:20:181

log2为底2021为对数的值

log2(2021)=10.980857。ln (2021)/ln(2)=10.980857。换底公式为loga (b)=logc (b)/logc(a)。
小白2023-07-28 11:20:161

log以2为底0.002的对数

-2-3log2(5)。0.002=2*10^-3;log2(2*10^-3)=log2(2)+log2(10^-3)=1-3log2(10)=1-3(log2(2)+log2(5))=-2-3log2(5)。公式:log(a)(MN)=log(a)(M)+log(a)(N);log(a)(M^n)=n*log(a)(M)。
LuckySXyd2023-07-28 11:20:141

log2为底5的对数怎么算

log2 5 = x (1)2^x = 5 (2)对一般计算器和数学用表没有以2为底的对数计算或表可用,这时用换底公式:对(2)两边取10进对数,log 2^x = x log 2 = log 5x = log 5 / log 2 ≈ 2.3219
阿啵呲嘚2023-07-28 11:20:141

log以2为底2的对数是什么?

y=log以2为底x的对数一个对数函数。写成log2 x。如果ax=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=logaN,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。一般地,函数y=logaX(a>0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。函数性质:值域:实数集R,显然对数函数无界。定点:对数函数的函数图像恒过定点(1,0)。单调性:a>1时,在定义域上为单调增函数。0<a<1时,在定义域上为单调减函数。奇偶性:非奇非偶函数。周期性:不是周期函数。
陶小凡2023-07-28 11:20:131

log以2为底50的对数怎么算

log以2为底50的对数计算:log2=x(1)2^x=50(2)对一般计算器和数学用表没有以2为底的对数计算或表可用。这时用换底公式:对(2)两边取10进对数。log2^x=xlog2=log5x=log5/log2≈2.3219在数学中对数是对求幂的逆运算,正如除法是乘法的逆运算,反之亦然,这意味着一个数字的对数是必须产生另一个固定数字(基数)的指数。 在简单的情况下,乘数中的对数计数因子。更一般来说,乘幂允许将任何正实数提高到任何实际功率,总是产生正的结果,因此可以对于b不等于1的任何两个正实数b和x计算对数。
瑞瑞爱吃桃2023-07-28 11:20:131

log2为底16的对数等于多少

log2为底16的对数等于4。计算步骤如下:log(2)16=log(2)2^4=4log(2)2=4
小白2023-07-28 11:20:131

log以2为底的0.2的对数大概是多少

约等于-2.322,请参考图片。
再也不做站长了2023-07-28 11:20:102

log以2为底4的对数在计算器上怎么按?

计算器上没有直接计算log的,可以通过log(a,b)=lgb/lga的方法来计算,log(2,4)=lg4÷lg2,计算器按键为:lg,4,÷,lg,2,=,得到得数是2
FinCloud2023-07-28 11:20:083

log以2为底π的对数是多少

约等于1.6514。利用计算机按lg(兀)/lg(2)可以得到。
真颛2023-07-28 11:20:053

log以2为底2的对数

简单记法log2,x=lbx类似的有lgx, lnx, 等。具体的数值计算就是指数函数的反运算,例如:2^y=x then y=lbx 2^10=1024 then lb1024=10 lb100≈6.6438562
余辉2023-07-28 11:20:033

来个人解答一下.log以2为底3的对数等于多少

以2为底的,3的对数是1.585,可以用换底公式来计算,log2(3)=lg3/lg2=1.585
hi投2023-07-28 11:20:001

高中对数计算 log200-log2 怎么算

原式=Ig100+lg2-lg2=2
小白2023-07-28 11:19:594

log2为底52!的对数怎么算?

这是你要的答案
苏州马小云2023-07-28 11:19:582

log以2为底x的对数是什么?

log2(x)
Jm-R2023-07-28 11:19:574

log以2为底0.5的对数等于多少

-1
肖振2023-07-28 11:19:559

什么是定义域?对数函数的定义域和指数函数的定义域怎么求?

定义域就是某类型函数,在允许的条件下取值的集合。指数函数的定义域是R,而㏒2x-1或㏒X,D的定义域是确定2X-1>O,或X>O
西柚不是西游2023-07-28 11:02:023

对数函数定义域和值域

对数函数定义域为x >0 值域为R R 代表实数
FinCloud2023-07-28 11:02:022

怎样求对数函数的定义域如这两道题.(1)y

(1)首先作为对数的真数,x>0,再因为对数在分母中,故x不等于1,所以定义域是(0,1)U(1,正无穷),即一切不等于1的正数。(2)首先作为对数的真数,x>0,再因为根号要求log_3(x)>=0,所以x>=1,故定义域为[1,正无穷),即一切大于等于1的正数。对数的作为指数函数的反函数,可以定义如下:log_a(x)=y 当且仅当 a^y=x如果底数a=1,那么a^y=1^y=1,从而只有x=1时,对数才可能有意义,并且此时y可以是任何值。这就与函数的定义不符了,所以要限制底数不为1.
水元素sl2023-07-28 11:02:021

对数函数,定义域为啥必须大于0?

对数函数和指数函数是反函数。指数的值域是大于0,所以对数的定义域大于0。
瑞瑞爱吃桃2023-07-28 11:02:021

log的定义域是什么带你了解对数函数

1、log对数函数是以幂(真数)为自变量,指数为因变量,底数为常量的函数。2、对数函数是6类基本初等函数之一。其中对数的定义:如果ax=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=logaN,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。3、一般地,函数y=logaX(a>0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。其中x是自变量,函数的定义域是(0,+∞),即x>0。它实际上就是指数函数的反函数,可表示为x=ay。因此指数函数里对于a的规定,同样适用于对数函数。
CarieVinne 2023-07-28 11:02:001

什么是定义域?对数函数的定义域和指数函数的定义域怎么求?

指数函数的定义域是r值域是(0,正无穷)对数函数的定义域是(0,正无穷)值域是r以上性质由图像即可看出tsinghua为你解答谢谢采纳~~5星好评~~
墨然殇2023-07-28 11:02:003

对数函数值域为r求x取值范围

有交点时不是等于吗,对数函数的定义域要大于零啊
tt白2023-07-28 11:02:002

对数函数的定义域有什么要求!?

真数大于0,底数大于0且不等于1
北境漫步2023-07-28 11:02:003

对数函数的定义域是(0,+∞)吗?

如图:其中x是自变量,函数的定义域是(0,+∞),即x>0。它实际上就是指数函数的反函数,可表示为x=ay。因此指数函数里对于a的规定,同样适用于对数函数。在实数范围内,负数和零没有对数,log以a为底1的对数为0(a为常数) 恒过点(1,0)。扩展资料函数性质值域:实数集R,显然对数函数无界。定点:对数函数的函数图像恒过定点(1,0)。单调性:a>1时,在定义域上为单调增函数;0<a<1时,在定义域上为单调减函数。奇偶性:非奇非偶函数。性质一般地,如果a(a>0,且a≠1)的b次幂等于N,那么数b叫做以a为底N的对数,记作logaN=b,其中a叫做对数的底数,N叫做真数。底数则要>0且≠1 真数>0。并且,在比较两个函数值时:如果底数一样,真数越大,函数值越大。(a>1时),如果底数一样,真数越小,函数值越大。(0<a<1时)参考资料来源:百度百科-对数函数
水元素sl2023-07-28 11:01:581

对数函数的值域是什么范围?

对数定义域是:对数函数中,其中x自变量的取值范围。一般地,函数y=logaX(a>0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。其中x是自变量,函数的定义域是(0,+∞),即x>0。它实际上就是指数函数的反函数,可表示为x=ay。因此指数函数里对于a的规定,同样适用于对数函数。对数定义域的求法:对数函数y=logax的定义域是{x丨x>0},但如果遇到对数型复合函数的定义域的求解,除了要注意大于0以外,还应注意底数大于0且不等于1,如求函数y=logx(2x-1)的定义域,需同时满足x>0且x≠1,和2x-1>0,得到x>1/2且x≠1,即其定义域为{x丨x>1/2且x≠1}。值域:实数集R,显然对数函数无界;定点:对数函数的函数图像恒过定点(1,0);单调性:a>1时,在定义域上为单调增函数;0<a<1时,在定义域上为单调减函数;奇偶性:非奇非偶函数周期性:不是周期函数。以上内容参考:百度百科-对数函数
凡尘2023-07-28 11:01:581

怎么求对数函数的定义域 如 Y=根号下lg3(4-x)

对数函数要求真数>0,开平方要求被开方数≥0.所以Y=根号下lg3(4-x)的定义域为3(4-x)>0且lg3(4-x)≥0即x<4且3(4-x)≥1x≤11/3
拌三丝2023-07-28 11:01:581

幂函数,指数函数,对数函数,三角函数,反三角函数各自的定义域?

http://zhidao.baidu.com/question/117256612.html
Chen2023-07-28 11:01:573

什么样的函数叫做对数函数?

对数函数的定义域是:对数函数的真数g(x)>0;对数函数的底数f(x)>0,且f(x)≠1。一般地,函数y=logaX(a>0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。其中x是自变量,函数的定义域是(0,+∞),即x>0。它实际上就是指数函数的反函数,可表示为x=ay。因此指数函数里对于a的规定,同样适用于对数函数。相关性质:对数函数的一般形式为 y=㏒ax,它实际上就是指数函数的反函数(图象关于直线y=x对称的两函数互为反函数),可表示为x=ay。因此指数函数里对于a的规定(a>0且a≠1),右图给出对于不同大小a所表示的函数图形:关于X轴对称、当a>1时,a越大,图像越靠近x轴、当0<a<1时,a越小,图像越靠近x轴。可以看到,对数函数的图形只不过是指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。
小菜G的建站之路2023-07-28 11:01:571

对数函数的概念

对数的定义:一般地,如果ax=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=logaN,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。一般地,函数y=logax(a>0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。其中x是自变量,函数的定义域是(0,+∞),即x>0。它实际上就是指数函数的反函数,可表示为x=ay。因此指数函[1]数里对于a的规定,同样适用于对数函数。“log”是拉丁文logarithm(对数)的缩写,读作:[英][lɔɡ][美][lɔɡ, lɑɡ]。
mlhxueli 2023-07-28 11:01:571

指数函数,对数函数求定义域、值域的一般思路

在做题之前要注意a的取值、要注意所得值是否在所给范围里、最好画个图像
gitcloud2023-07-28 11:01:552

对数函数的定义域是什么

基本性质:1、a^(log(a)(b))=b2、log(a)(a^b)=b3、log(a)(MN)=log(a)(M)+log(a)(N);4、log(a)(M÷N)=log(a)(M)-log(a)(N);5、log(a)(M^n)=nlog(a)(M)6、log(a^n)M=1/nlog(a)(M)其他性质:1、换底公式log(a)(N)=log(b)(N)÷log(b)(a)2、log(a)(b)=1/log(b)(a)3、对数函数的图像都过(1,0)点。4、对于y=log(a)(n)函数当0<a1时,图像上显示函数为(0,+∞)单增,随着a的增大,图像逐渐以(1.0)点为轴逆时针转动,但不超过X=1.5。与其他函数与反函数之间图像关系相同,对数函数和指数函数的图像关于直线y=x对称。对数函数性质定义域求解:对数函数y=logax 的定义域是{x 丨x>0},但如果遇到对数型复合函数的定义域的求解,除了要注意大于0以外,还应注意底数大于0且不等于1,如求函数y=logx(2x-1)的定义域,需同时满足x>0且x≠1和2x-1>0 ,得到x>1/2且x≠1,即其定义域为 {x 丨x>1/2且x≠1}值域:实数集R,显然对数函数无界;定点:对数函数的函数图像恒过定点(1,0);单调性:a>1时,在定义域上为单调增函数;0<a<1时,在定义域上为单调减函数;奇偶性:非奇非偶函数周期性:不是周期函数对称性:无最值:无零点:x=1
北有云溪2023-07-28 11:01:551

对数函数的定义域,值域是怎么求的

要知道对数函数的定义域范围,一般是真数>0
墨然殇2023-07-28 11:01:552

如何求对数函数,指数函数的值域,定义域

先说定义域,在对数函数指数函数中定义域一般只有两种情况,一种是根号下要大于等于零;还有一种情况是分母不为零(这两种出现在复合函数中的比较多)还有一种,就是底数不为零,不过这一般与对数函数指数函数无关.然后是值域,值域的话就要结合情况来了,如果是复合函数的话,一般也有两种情况,一种是指数函数或对数函数被包含在里面的(如y=根号(2^x)),遇到这种情况就要先求指数函数或对数函数的值域,在去考虑"最外层"函数的值域,然后把它们结合起来,第二种情况与第一种情况相反,我就不多说了,相信凭你的智商是能把它解决的,我现在要去做作业了......另,这纯属我自己的经验,也是我老师教给我的~
陶小凡2023-07-28 11:01:551

对数函数的定义域是什么意思?

求对数函数定义域,令真数大于0,求出变量的取值范围即可
康康map2023-07-28 11:01:532

对数函数指数函数定义域,值域求法(复杂的)

先说定义域,在对数函数指数函数中定义域一般只有两种情况,一种是根号下要大于等于零;还有一种情况是分母不为零(这两种出现在复合函数中的比较多)还有一种,就是底数不为零,不过这一般与对数函数指数函数无关.然后是值域,值域的话就要结合情况来了,如果是复合函数的话,一般也有两种情况,一种是指数函数或对数函数被包含在里面的(如y=根号(2^x)),遇到这种情况就要先求指数函数或对数函数的值域,在去考虑"最外层"函数的值域,然后把它们结合起来,第二种情况与第一种情况相反,我就不多说了,相信凭你的智商是能把它解决的,我现在要去做作业了......另,这纯属我自己的经验,也是我老师教给我的~
凡尘2023-07-28 11:01:531

对数函数的定义

对数函数的定义是:以幂为自变量,指数为因变量,底数为常量的函数。对数函数是6类基本初等函数之一。其中对数的定义:如果a^x=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=logaN,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。一般地,函数y=logax(a>0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。其中x是自变量,函数的定义域是(0,+∞),即x>0。它实际上就是指数函数的反函数,可表示为x=ay。因此指数函数里对于a的规定,同样适用于对数函数。对数函数的产生:16世纪末至17世纪初的时候,当时在自然科学领域(特别是天文学)的发展上经常遇到大量精密而又庞大的数值计算,于是数学家们为了寻求化简的计算方法而发明了对数。德国的史蒂非在1544年所著的《整数算术》中,写出了两个数列,左边是等比数列(叫原数),右边是一个等差数列(叫原数的代表,或称指数,德文是Exponent ,有代表之意)。欲求左边任两数的积(商),只要先求出其代表(指数)的和(差),然后再把这个和(差)对向左边的一个原数,则此原数即为所求之积(商),可惜史提非并未作进一步探索,没有引入对数的概念。对数的图像纳皮尔对数值计算颇有研究。他所制造的纳皮尔算筹,化简了乘除法运算,其原理就是用加减来代替乘除法。 他发明对数的动机是为寻求球面三角计算的简便方法,他依据一种非常独等的与质点运动有关的设想构造出所谓对数方法,其核心思想表现为算术数列与几何数列之间的联系。
可桃可挑2023-07-28 11:01:531

求对数定义域。

对数定义域是:对数函数中,其中x自变量的取值范围。一般地,函数y=logaX(a>0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。其中x是自变量,函数的定义域是(0,+∞),即x>0。它实际上就是指数函数的反函数,可表示为x=ay。因此指数函数里对于a的规定,同样适用于对数函数。对数定义域的求法:对数函数y=logax的定义域是{x丨x>0},但如果遇到对数型复合函数的定义域的求解,除了要注意大于0以外,还应注意底数大于0且不等于1,如求函数y=logx(2x-1)的定义域,需同时满足x>0且x≠1,和2x-1>0,得到x>1/2且x≠1,即其定义域为{x丨x>1/2且x≠1}。值域:实数集R,显然对数函数无界;定点:对数函数的函数图像恒过定点(1,0);单调性:a>1时,在定义域上为单调增函数;0<a<1时,在定义域上为单调减函数;奇偶性:非奇非偶函数周期性:不是周期函数。以上内容参考:百度百科-对数函数
u投在线2023-07-28 11:01:521

对数函数如何判断它定义域?

1、由ln(x)的性质可知x>0,即可确定函数的定义域为x>0;2、对函数求一阶导数,确定其单调递增及递减区间,并尽可能确定其极大值或极小值;3、对函数求二阶导数,确定其斜率的变化规律,即确定其凹凸性;4、y=ln(x)/x的图像如下:扩展资料:16世纪末至17世纪初的时候,当时在自然科学领域(特别是天文学)的发展上经常遇到大量精密而又庞大的数值计算,于是数学家们为了寻求化简的计算方法而发明了对数 。德国的史蒂非(1487-1567)在1544年所著的《整数算术》中,写出了两个数列,左边是等比数列(叫原数),右边是一个等差数列(叫原数的代表,或称指数,德文是Exponent ,有代表之意)。欲求左边任两数的积(商),只要先求出其代表(指数)的和(差),然后再把这个和(差)对向左边的一个原数,则此原数即为所求之积(商),可惜史提非并未作进一步探索,没有引入对数的概念。纳皮尔对数值计算颇有研究。他所制造的「纳皮尔算筹」,化简了乘除法运算,其原理就是用加减来代替乘除法。 他发明对数的动机是为寻求球面三角计算的简便方法,他依据一种非常独等的与质点运动有关的设想构造出所谓对数方法,其核心思想表现为算术数列与几何数列之间的联系。参考资料:百度百科-对数函数
gitcloud2023-07-28 11:01:521

对数定义域是什么?

对数定义域是:对数函数中,其中x自变量的取值范围。一般地,函数y=logaX(a>0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。其中x是自变量,函数的定义域是(0,+∞),即x>0。它实际上就是指数函数的反函数,可表示为x=ay。因此指数函数里对于a的规定,同样适用于对数函数。对数定义域的求法:对数函数y=logax的定义域是{x丨x>0},但如果遇到对数型复合函数的定义域的求解,除了要注意大于0以外,还应注意底数大于0且不等于1,如求函数y=logx(2x-1)的定义域,需同时满足x>0且x≠1,和2x-1>0,得到x>1/2且x≠1,即其定义域为{x丨x>1/2且x≠1}。值域:实数集R,显然对数函数无界;定点:对数函数的函数图像恒过定点(1,0);单调性:a>1时,在定义域上为单调增函数;0<a<1时,在定义域上为单调减函数;奇偶性:非奇非偶函数周期性:不是周期函数。以上内容参考:百度百科-对数函数
tt白2023-07-28 11:01:501

对数函数的定义域,值域是怎么求的

要知道对数函数的定义域范围,一般是真数>0
肖振2023-07-28 11:01:492

对数函数的定义域是什么?

请把题目发上来看一看
可桃可挑2023-07-28 11:01:491

对数函数怎么求定义域

1、由ln(x)的性质可知x>0,即可确定函数的定义域为x>0;2、对函数求一阶导数,确定其单调递增及递减区间,并尽可能确定其极大值或极小值;3、对函数求二阶导数,确定其斜率的变化规律,即确定其凹凸性;4、y=ln(x)/x的图像如下:扩展资料:16世纪末至17世纪初的时候,当时在自然科学领域(特别是天文学)的发展上经常遇到大量精密而又庞大的数值计算,于是数学家们为了寻求化简的计算方法而发明了对数 。德国的史蒂非(1487-1567)在1544年所著的《整数算术》中,写出了两个数列,左边是等比数列(叫原数),右边是一个等差数列(叫原数的代表,或称指数,德文是Exponent ,有代表之意)。欲求左边任两数的积(商),只要先求出其代表(指数)的和(差),然后再把这个和(差)对向左边的一个原数,则此原数即为所求之积(商),可惜史提非并未作进一步探索,没有引入对数的概念。纳皮尔对数值计算颇有研究。他所制造的「纳皮尔算筹」,化简了乘除法运算,其原理就是用加减来代替乘除法。 他发明对数的动机是为寻求球面三角计算的简便方法,他依据一种非常独等的与质点运动有关的设想构造出所谓对数方法,其核心思想表现为算术数列与几何数列之间的联系。参考资料:百度百科-对数函数
九万里风9 2023-07-28 11:01:491

对数函数x的定义域

就是 x 的范围.对数函数的定义域就是真数x的取值范围.具体的定义域的确定要根据具体情况确定.如:y = ln x,定义域:0 < x < +∞y = ln(x + 2),定义域:-2 < x < +∞y = ln(x^2 + 1),定义域:-∞ < x < +∞y = lg(-x),定义域:-∞ < x < 0y = lg(lgx),定义域:1 < x < +∞y = lglglgx,定义域:10 < x < +∞y = √(lgx),定义域:1 ≤ x < +∞y = lg|x|,定义域:x ≠ 0.x的范围是是定义域(domain),y的范围是值域(range).
善士六合2023-07-28 11:01:491

如何求对数函数的定义域?

1、由ln(x)的性质可知x>0,即可确定函数的定义域为x>0;2、对函数求一阶导数,确定其单调递增及递减区间,并尽可能确定其极大值或极小值;3、对函数求二阶导数,确定其斜率的变化规律,即确定其凹凸性;4、y=ln(x)/x的图像如下:扩展资料:16世纪末至17世纪初的时候,当时在自然科学领域(特别是天文学)的发展上经常遇到大量精密而又庞大的数值计算,于是数学家们为了寻求化简的计算方法而发明了对数 。德国的史蒂非(1487-1567)在1544年所著的《整数算术》中,写出了两个数列,左边是等比数列(叫原数),右边是一个等差数列(叫原数的代表,或称指数,德文是Exponent ,有代表之意)。欲求左边任两数的积(商),只要先求出其代表(指数)的和(差),然后再把这个和(差)对向左边的一个原数,则此原数即为所求之积(商),可惜史提非并未作进一步探索,没有引入对数的概念。纳皮尔对数值计算颇有研究。他所制造的「纳皮尔算筹」,化简了乘除法运算,其原理就是用加减来代替乘除法。 他发明对数的动机是为寻求球面三角计算的简便方法,他依据一种非常独等的与质点运动有关的设想构造出所谓对数方法,其核心思想表现为算术数列与几何数列之间的联系。参考资料:百度百科-对数函数
西柚不是西游2023-07-28 11:01:491

对数函数的定义域 什么是对数函数

1、函数的定义域是(0,+∞),即x>0。 2、对数函数是6类基本初等函数之一。其中对数的定义:如果ax =N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=logaN,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。 3、一般地,函数y=logaX(a>0,且a≠1)叫做对数函数,函数的定义域是(0,+∞),即x>0。它实际上就是指数函数的反函数,可表示为x=ay。因此指数函数里对于a的规定,同样适用于对数函数。
北营2023-07-28 11:01:471

对数函数定义域

求对数函数的定义域关键要考虑两个方面: 首先是底数必须大于0,且不等于1. 其次是真数部分必须大于0. (1)这题的底数确定为10,所以只要列出一个等式:2x>0,推出定义域为{x|x>0}. 这里要注意定义域是一个集合,也可以写成区间的形式,要注意表示方法,不可以直接写成x>0. (2)这题的底数为a,不知道原题有没有交待a的范围,若没有交待,则须顺带说明一下,a>0,且a不等于0. 第二步,1-x^2>0,==> -1
再也不做站长了2023-07-28 11:01:472

对数定义域是什么?

对于对数函数y=logg(x)来说,其定义域为:1、对数函数的真数g(x)>0;2、对数函数的底数f(x)>0,且f(x)≠1。对数函数的底数要大于0且不为1的原因:在一个普通对数式里a0},但如果遇到对数型复合函数的定义域的求解,除了要注意大于0以外,还应注意底数大于0且不等于1,如求函数y=logx(2x-1)的定义域,需同时满足x>0且x≠1,和2x-1>0,得到x>1/2且x≠1,即其定义域为{x丨x>1/2且x≠1}。值域:实数集R,显然对数函数无界;定点:对数函数的函数图像恒过定点(1,0);单调性:a>1时,在定义域上为单调增函数;0奇偶性:非奇非偶函数周期性:不是周期函数。函数(function)的定义通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。函数的近代定义是给定一个数集A,假设其中的元素为x,对A中的元素x施加对应法则f,记作f(x),得到另一数集B,假设B中的元素为y,则y与x之间的等量关系可以用y=f(x)表示,函数概念含有三个要素:定义域A、值域B和对应法则f。其中核心是对应法则f,它是函数关系的本质特征。
拌三丝2023-07-28 11:01:471

对数函数真数定义域是什么?

对数函数的真数g(x)>0;对数函数的底数f(x)>0,且f(x)≠1。一般地,函数y=logaX(a>0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。其中x是自变量,函数的定义域是(0,+∞),即x>0,它实际上就是指数函数的反函数,可表示为x=ay,因此指数函数里对于a的规定,同样适用于对数函数。对数函数的运算公式当a>0且a≠1时,M>0,N>0,那么:(1)log(a)(MN)=log(a)(M)+log(a)(N)。(2)log(a)(M/N)=log(a)(M)-log(a)(N)。(3)log(a)(M^n)=nlog(a)(M)(n∈R)。(4)log(a^n)(M)=(1/n)log(a)(M)(n∈R)。(5)换底公式:log(A)M=log(b)M/log(b)A (b>0且b≠1)。(6)a^(log(b)n)=n^(log(b)a)。(7)对数恒等式:a^log(a)N=N。
豆豆staR2023-07-28 11:01:471

对数的定义域是什么?

对数定义域是:对数函数中,其中x自变量的取值范围。一般地,函数y=logaX(a>0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。其中x是自变量,函数的定义域是(0,+∞),即x>0。它实际上就是指数函数的反函数,可表示为x=ay。因此指数函数里对于a的规定,同样适用于对数函数。对数函数和指数的关系:同底的对数函数与指数函数互为反函数。当a>0且a≠1时,ax=N,x=㏒aN。关于y=x对称。对数函数的一般形式为y=㏒ax,它实际上就是指数函数的反函数(图象关于直线y=x对称的两函数互为反函数),可表示为x=ay。因此指数函数里对于a的规定(a>0且a≠1),右图给出对于不同大小a所表示的函数图形:关于X轴对称、当a>1时,a越大,图像越靠近x轴、当0<a<1时,a越小,图像越靠近x轴。以上内容参考:百度百科-对数函数
拌三丝2023-07-28 11:01:461

对数函数的定义域是什么?

对数定义域是:对数函数中,其中x自变量的取值范围。一般地,函数y=logaX(a>0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。其中x是自变量,函数的定义域是(0,+∞),即x>0。它实际上就是指数函数的反函数,可表示为x=ay。因此指数函数里对于a的规定,同样适用于对数函数。对数定义域的求法:对数函数y=logax的定义域是{x丨x>0},但如果遇到对数型复合函数的定义域的求解,除了要注意大于0以外,还应注意底数大于0且不等于1,如求函数y=logx(2x-1)的定义域,需同时满足x>0且x≠1,和2x-1>0,得到x>1/2且x≠1,即其定义域为{x丨x>1/2且x≠1}。值域:实数集R,显然对数函数无界;定点:对数函数的函数图像恒过定点(1,0);单调性:a>1时,在定义域上为单调增函数;0<a<1时,在定义域上为单调减函数;奇偶性:非奇非偶函数周期性:不是周期函数。以上内容参考:百度百科-对数函数
苏萦2023-07-28 11:01:461

对数函数的定义域是什么?

对于对数函数y=logg(x)来说,其定义域为:1、对数函数的真数g(x)>0;2、对数函数的底数f(x)>0,且f(x)≠1。对数函数的底数要大于0且不为1的原因:在一个普通对数式里 a<0,或=1 的时候是会有相应b的值。但是,根据对数定义:log以a为底a的对数;如果a=1或=0,那么log以a为底a的对数就可以等于一切实数,比如log11也可以等于2,3,4,5,等等。扩展资料:对数函数性质:对数函数y=logax 的定义域是{x 丨x>0},但如果遇到对数型复合函数的定义域的求解,除了要注意大于0以外,还应注意底数大于0且不等于1,如求函数y=logx(2x-1)的定义域,需同时满足x>0且x≠1,和2x-1>0 ,得到x>1/2且x≠1,即其定义域为 {x 丨x>1/2且x≠1}:值域:实数集R,显然对数函数无界;定点:对数函数的函数图像恒过定点(1,0);单调性:a>1时,在定义域上为单调增函数;0<a<1时,在定义域上为单调减函数;奇偶性:非奇非偶函数周期性:不是周期函数
拌三丝2023-07-28 11:01:461

对数函数的定义域是什么?

对数函数的定义域是:对数函数的真数g(x)>0;对数函数的底数f(x)>0,且f(x)≠1。一般地,函数y=logaX(a>0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。其中x是自变量,函数的定义域是(0,+∞),即x>0。它实际上就是指数函数的反函数,可表示为x=ay。因此指数函数里对于a的规定,同样适用于对数函数。相关性质:对数函数的一般形式为 y=㏒ax,它实际上就是指数函数的反函数(图象关于直线y=x对称的两函数互为反函数),可表示为x=ay。因此指数函数里对于a的规定(a>0且a≠1),右图给出对于不同大小a所表示的函数图形:关于X轴对称、当a>1时,a越大,图像越靠近x轴、当0<a<1时,a越小,图像越靠近x轴。可以看到,对数函数的图形只不过是指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。
此后故乡只2023-07-28 11:01:451

对数函数的定义域怎么求

  对数函数,特别是对数复合函数的定义域以及值域,由于它牵涉的知识点比较多,在中学数学教学中占有相当重要的地位,对数函数的定义域怎么求?以下是我为大家整理的关于对数函数的定义域的求法,欢迎大家前来阅读!   对数函数的定义域的求法   试题分析   根据函数的定义为使函数的解析式有意义的自变量x取值范围,我们可以构造关于自变量x的不等式,解不等式即可得到答案.   试题解析   (1)要使函数的解析式有意义,   自变量x须满足:   2+x>02u2212x>0,可得-2   故函数f(x)=lg(2+x)+lg(2-x)的定义域为(-2,2).   (2)∵不等式f(x)>m有解,u2234m
小白2023-07-28 11:01:441

对数函数定义域求法(详细的)

函数定义域的三类求法 一、给出函数解析式求其定义域,一般是先列出限制条件的不等式(组),再进行求解. 二.给出函数的定义域,求函数的定义域,其解法步骤是:若已知函数的定义域为,则其复合函数的定义域应由不等式解得. 三.给出的定义域,求的定义域,其解法步骤是:若已知的定义域为,则的定义域是在时的取值范围.
康康map2023-07-28 11:01:441

对数函数真数范围是什么?

对数函数真数大于0。1、对数函数以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。2、其中x是自变量,函数的定义域是(0,+∞),即x>0。它实际上就是指数函数的反函数,可表示为x=ay。因此指数函数里对于a的规定,同样适用于对数函数。对数函数的性质:一般地,如果a(a>0,且a≠1)的b次幂等于N,那么数b叫做以a为底N的对数其中a叫做对数的底数,N叫做真数。底数则要>0且≠1 真数>0,并且在比较两个函数值时:1、如果底数一样,真数越大,函数值越大。(a>1时)2、如果底数一样,真数越小,函数值越大。(0<a<1时)
墨然殇2023-07-28 11:01:441

求对数函数的定义域

一般地,如果a(a大于0,且a不等于1)的b次幂等于N,那么数b叫做以a为底N的对数,记作log aN=b,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。一般地,函数y=log(a)X,(其中a是常数,a>0且a不等于1)叫做对数函数 它实际上就是指数函数的反函数,可表示为x=a^y。因此指数函数里对于a的规定,同样适用于对数函数。
hi投2023-07-28 11:01:443

求对数函数定义录怎么知道大于0小于1

需要看自变量的具体情况判断了。
水元素sl2023-07-28 11:01:433

对数函数的定义域为什么要大于0

因为负数和0没有对数,这是定义,也是公理
余辉2023-07-28 11:01:423

对数函数的定义域和值域怎么求

定义域是函数y=f(x)中的自变量x的范围。求函数的定义域需要从这几个方面入手:(1),分母不为零(2)偶次根式的被开方数非负。(3),对数中的真数部分大于0。(4),指数、对数的底数大于0,且不等于1(5)。y=tanx中x≠kπ+π/2,y=cotx中x≠kπ等等。值域是函数y=f(x)中y的取值范围。常用的求值域的方法:(1)化归法;(2)图象法(数形结合),(3)函数单调性法,(4)配方法,(5)换元法,(6)反函数法(逆求法),(7)判别式法,(8)复合函数法,(9)三角代换法,(10)基本不等式法等
wpBeta2023-07-28 11:01:412

帮我解释下对数函数

第一题,X定义为R,所以X不可以受限制,任何一个X的取值都必须使式子大于0,所以要用A来限制,这是2次函数,记得算函数=0怎么算吗?判断△的情况,△<0,则函数无法等于0,才满足那个式子必须>0的要求,如果A<0,那函数就是向下抛的,开口向下,就肯定会取到小于0的解,所以A要>0第2题,值域为R,我觉得△必须>0,>=0是错的,因为真数必须>0,0是没有对数的.
苏州马小云2023-07-28 11:01:412

幂函数,指数函数,对数函数,三角函数,反三角函数各自的定义域?

幂函数的定义域是最复杂的,y=x^a中,a若为无理数,涉及到实数连续统的极为深刻的知识.这里就不说了. 对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性: 如果a为任意实数,则函数的定义域为大于0的所有实数; 如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0 的所有实数. 指数函f(x)=a^x,定义域数是全体实数. 对数函数f(x)=lgx,定义域是所有正数.即(0,-∞) 三角函数,f(x)=sinx,定义域全体实数,他的反函数arcsinx,定义域[-1,1] f(x)=cos一样, f(x)=tanx,定义域,x≠kπ/2,他的反函数是根据f(x)=tanx的定义域确定的.所以定义域也不同.
hi投2023-07-28 11:01:411

指数函数,对数函数,幂函数图象及定义域、值域.

指数函数的定义域是r值域是(0,正无穷)对数函数的定义域是(0,正无穷)值域是r以上性质由图像即可看出tsinghua为你解答谢谢采纳~~5星好评~~
wpBeta2023-07-28 11:01:412

对数函数定义域

logax>=0(1) a>1 logax>=loga1 a>=1定义域【1,+无穷)(2)0<a<1 logax>=loga1 0<a<=1定义域(0,1]
tt白2023-07-28 11:01:401

对数函数求定义域

(1).由对数函数性质可得3x-2>0,还有由分母不等于0可得3x-2不等于1,可以解得x>三分之二且不等于1(2).由对数函数性质可得,2x-1>0,-4x+8>0,解得二分之一<x<2
NerveM 2023-07-28 11:01:252

对数函数指数函数定义域,值域求法(复杂的)

先说定义域,在对数函数指数函数中定义域一般只有两种情况,一种是根号下要大于等于零;还有一种情况是分母不为零(这两种出现在复合函数中的比较多)还有一种,就是底数不为零,不过这一般与对数函数指数函数无关.然后是值域,值域的话就要结合情况来了,如果是复合函数的话,一般也有两种情况,一种是指数函数或对数函数被包含在里面的(如y=根号(2^x)),遇到这种情况就要先求指数函数或对数函数的值域,在去考虑"最外层"函数的值域,然后把它们结合起来,第二种情况与第一种情况相反,我就不多说了,相信凭你的智商是能把它解决的,我现在要去做作业了......另,这纯属我自己的经验,也是我老师教给我的~
gitcloud2023-07-28 11:01:251

急求指数对数函数定义域值域问题解答。

(1)在已知函数的解析式的条件下,求函数的定义域,就是求使得解析式有意义的自变量的允许值范围。(2)指数函数和对数函数的底大于0而且不等于1,对数式的真数大于0等限制条件。(3)函数的值域取决于定义域和对应法则,不论采用什么方法求函数的值域均应考虑其定义域。(4)指数函数值域y>0底数a>0且a不等于1对数函数值域r底数a>0且a不等于1
小菜G的建站之路2023-07-28 11:01:241

求对数函数的定义域

一般地,如果a(a大于0,且a不等于1)的b次幂等于N,那么数b叫做以a为底N的对数,记作logaN=b,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。一般地,函数y=log(a)X,(其中a是常数,a>0且a不等于1)叫做对数函数它实际上就是指数函数的反函数,可表示为x=a^y。因此指数函数里对于a的规定,同样适用于对数函数。
bikbok2023-07-28 11:00:591

对数函数定义域为什么大于0

对数函数和指数函数是反函数。指数的值域是大于0,所以对数的定义域大于0。
九万里风9 2023-07-28 11:00:593

log的定义域是什么 带你了解对数函数

1、log对数函数是以幂(真数)为自变量,指数为因变量,底数为常量的函数。 2、对数函数是6类基本初等函数之一。其中对数的定义: 如果ax =N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=logaN,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。 3、一般地,函数y=logaX(a>0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。 其中x是自变量,函数的定义域是(0,+∞),即x>0。它实际上就是指数函数的反函数,可表示为x=ay。因此指数函数里对于a的规定,同样适用于对数函数。
左迁2023-07-28 11:00:581
 首页 上一页  1 2 3 4 5 6 7  下一页  尾页