对数螺线的方程:r=ae^(bθ)中,
a,b均为常数NerveM 2023-08-15 09:39:261
对数螺线的方程:r=ae^(bθ)中,a和b是什么意思?
这个可以理解成以原点为轴心,画圆,其中圆的半径越来越大形成的一个图形,类似一组螺旋线。 这个方程写成X,Y的形式:x=rcosθ,y=rsinθ(r=ae^(bθ),θ取负无穷到正无穷)北境漫步2023-08-15 09:39:212
求对数数螺线ρ=e^θ在点(ρ,θ)=(e^(π/2),π/2)处的切线的直角坐标方程。如题 谢谢了
把螺线方程改为参数方程:x=sinθe^θ,y=cosθe^θ, 所以点(e^(π/2),π/2)的直角坐标为(0,e^(π/2)),所以y"=-1 所以切线方程为y-e^(π/2)=-(x-0),即x+y=e^(π/2) 望楼主能采纳哦。豆豆staR2023-08-15 09:39:201
请问对数螺线参数方程。。。
阿基米德螺线、对数螺线、双曲螺线……还“等”?二维螺线费马螺线……还“...”?各曲线遵循的方程也不给,还要求直接发邮箱?……就你这种问法,500分也不会有人来回答的。参数作图的指令是parametricplot,剩下的你自己看帮助吧。瑞瑞爱吃桃2023-08-15 09:39:162
PbCl2的孤电子对数计算全过程?
(4-2)/2=1ardim2023-08-14 16:43:231
二氯化铅的孤电子对数?
二氯化铅(PbCl2)的电子结构可以用化学键理论解释。在二氯化铅分子中,铅原子的电子排布为1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 5s2 5p6 4f14 5d10 6s2,其中最外层电子结构为6s2 6p0,即有0个孤电子对。因此,二氯化铅分子中不存在孤电子对。阿啵呲嘚2023-08-14 16:43:192
MATLAB中的自然对数e,是怎么表示的
函数exp()大鱼炖火锅2023-08-13 09:26:253
请问matlab怎么编辑任意底数的指数函数和对数函数?
注意取值范围,定义域还有题本生的隐含条件真颛2023-08-13 09:26:242
H2S、SO2、SO3的价层电子对数分别是多少
so3的氧化性强于o2,o2在常温下(无催化剂)与h2s只能缓慢反应,而当so3为气体或液体时可与h2s明显反应,其气态状态下与h2s反应较为剧烈(so3具有强氧化性)。当so3量过少时,生成物为h2o和s:3h2s+so3==3h2o+4s;当so3过量时,生成物为h2o和so2:h2s+3so3==h2o+4so2;以上方程当so3为气态、液态均成立,当so3为固态时,则反应难以发生。特别的:在高考中,气体和液体的生成符号并不作要求,而当so3过量且为液体时明显对so2标出气体生成符号存在问题,故在此回避。当h2s与so3的比例介于3:1和1:3的时候,生成物中既有s也有so2,当然还有h2o.当h2s与so3的比例大于3:1的时候,生成物中只有s和h2o.当h2s与so3的比例小于1:3的时候,生成物中只有so2和h2o.有疑问请提出。NerveM 2023-08-10 10:26:012
食物链中的相对数量是什么意思
因为群体中的个体数量总是不停变化的,生老病死使得群体数量从来都不是一个绝对值,但它们会在某个基数上面维持动态的平衡.食物链中的各级关系更多的是受到“基数值”的影响,而不是群体绝对数量值的影响. 这就是所谓的“相对数量”.NerveM 2023-08-10 10:24:521
三维设计、网页设计、Flash对数学功底的要求。
不是很必要的人类地板流精华2023-08-08 08:50:113
高一数学指数函数和对数函数的公式
当a>0且a≠1时,M>0,N>0,那么: (1)log(a)(MN)=log(a)(M)+log(a)(N); (2)log(a)(M/N)=log(a)(M)-log(a)(N); (3)log(a)(M^n)=nlog(a)(M)(n∈R) (4)log(a^n)(M)=1/nlog(a)(M)(n∈R) (5)换底公式:log(A)M=log(b)M/log(b)A(b>0且b≠1) (6)a^(log(b)n)=n^(log(b)a)证明: 设a=n^x则a^(log(b)n)=(n^x)^log(b)n=n^(x·log(b)n)=n^log(b)(n^x)=n^(log(b)a) (7)对数恒等式:a^log(a)N=N; log(a)a^b=b (8)由幂的对数的运算性质可得(推导公式) 1.log(a)M^(1/n)=(1/n)log(a)M,log(a)M^(-1/n)=(-1/n)log(a)M 2.log(a)M^(m/n)=(m/n)log(a)M,log(a)M^(-m/n)=(-m/n)log(a)M 3.log(a^n)M^n=log(a)M,log(a^n)M^m=(m/n)log(a)M 4.log(以n次根号下的a为底)(以n次根号下的M为真数)=log(a)M, log(以n次根号下的a为底)(以m次根号下的M为真数)=(n/m)log(a)M 5.log(a)b×log(b)c×log(c)a=1凡尘2023-08-05 17:38:241
指数和对数的转换公式是什么?
对数函数与指数函数的互换公式是y=a^x,log(a)y=x 。1、对数函数的一般形式为 y=logax,它实际上就是指数函数的反函数(图象关于直线y=x对称的两函数互为反函数),可表示为x=a^y。2、因此指数函数里对于a存在规定——a>0且a≠1,对于不同大小a会形成不同的函数图形:关于X轴对称、当a>1时,a越大,图像越靠近x轴、当0<a<1时,a越小,图像越靠近x轴。3、对数函数和指数函数都是重要的基本初等函数之一。一般地,函数y=logaX叫做对数函数,也就是说以幂为自变量,指数为因变量,底数为常量的函数,叫对数函数。4、一般地,函数y=a^x叫做指数函数,函数的定义域是R。在指数函数的定义表达式中,在ax前的系数必须是数1,自变量x必须在指数的位置上,且不能是x的其他表达式,否则,就不是指数函数。kikcik2023-08-05 17:38:041
对数函数,指数函数,幂函数计算公式
有个总结挺好的,全面http://zuoye.baidu.com/question/c45b711ed3298e93624905a23b5b0ed9.html人类地板流精华2023-08-05 17:37:592
对数平均温差是多少?
对数平均温差(logarithmic mean temperature difference)简称为LMTD,是在传热流体系统(例如热交换器中)用来分析温度推动力的工具。对数平均温差是在双管换热器中冷端及热端温度差的对数平均。对数平均温差越大,表示传热量越大。在分析固定流速及流体热力学性质的热交换器时,就会出现对数平均温差。相关介绍:若热交换器是并流(热蒸气及冷蒸气平行,都从某一侧进,从另一侧出)或是逆流(热蒸气及冷蒸气平行,但各由一侧进,从另一侧出),以上的式子都会成立。若是交叉流(cross-flow)热交换器,也就是热交换器中有散热片,上面的温度接近定值,其热交换量和LMTD也会有类似的关系,不过会出现修正系数。若是结构比较复杂的热交换器(例如壳管式热交换器),也会有修正系数。假设二流体温度的变化率和其温差成正比,这对固定比热的流体有效,流体的温度变化若在一个较小的范围,此假设成立,不过若比热有变化,用计算对数平均温差计算的热交换量就不准了。LMTD不适用在冷凝器及再沸器中,其中包括了相变化及其潜热,因此假设无效。假设热传系数U为定值,和温度无关,若热传系数和温度有关,计算的准确度也会下降。LMTD是一个稳态的概念,不适用在暂态的分析。特别若LMTD应用在暂态中,其时间较短,热交换器的二边温度梯度的符号相反,对数的引数会出现负值,这也是不允许的。小白2023-08-05 17:17:211
指数函数,对数函数求定义域、值域的一般思路
(1)在已知函数的解析式的条件下,求函数的定义域,就是求使得解析式有意义的自变量的允许值范围. (2)指数函数和对数函数的底大于0而且不等于1,对数式的真数大于0等限制条件. (3)函数的值域取决于定义域和对应法则,不论采用什么方法求函数的值域均应考虑其定义域. (4)指数函数值域 y>0 底数a>0且a不等于1 对数函数值域 R 底数a>0且a不等于1豆豆staR2023-08-05 17:17:161
这种对数螺线组成的图形怎么画?用matlab
画一个外圈和内圈,连接两边先往左边这一方向画弧线,在依照同样的方法凝画往右边的。LuckySXyd2023-08-04 11:14:481
e是怎么得出来的,为什么叫以e为底数的对数叫自然对数
好问题!u投在线2023-08-04 11:14:485
对数螺线求题的图解
极坐标的面积积分公式是1/2 ho^2 d heta, 具体如下:墨然殇2023-08-04 11:14:481
怎么用matlab画出对数螺线 p=e^at t为角度 的图?
a=0.1;theta=0:0.01:4*pi;r=exp(a*theta);polar(theta,r)hi投2023-08-04 11:14:481
跪求!∫∫ xydxdy,D是由对数螺线θ=0和半射线θ =π/2 围成 运算过程
可桃可挑2023-08-04 11:14:481
求对数螺旋线r=ae的θ次方(-π
顺着X轴方向看,每个dx长度上的 图形都是圆环每个圆环的体积为[PAI*(1+根号(2x))^2-PAI*(1-根号(2x))^2]*dx然后对X轴积分,积分区域为0到0.5绕哪个轴就顺着哪个轴看,并在此轴上取微小量.比如两个垂直于x轴的平面截一个球,可以得一个圆台,但是当截面间的间距无限小的时候,圆台就可以看做是圆柱了,用微小量,dx表示圆柱的高,而底圆的半径是可以通过函数来表示的,这样就求除了圆柱的体积,然后再在左边加上积分符号,积分限,就是定积分了北境漫步2023-08-04 11:14:461
对数螺线在proe中怎么实现?
1)方程中exp上用弧度比较合理 2)值上升太快,又大。theta取小点(如300度),我做过,没有问题。康康map2023-08-04 11:14:461
求对数螺线r=ae^θ【-pai pai】射线θ=π所围成的图形的面积。θ=π在这题中的作用是什么。
对数螺线r=ae^θ【-pai pai】是一个螺旋线,不是封闭的图形。在θ=π,或者θ=-π时不连接,θ=π是为了使图形成为封闭图形的。FinCloud2023-08-04 11:14:451
自然对数e是什么
(1+1/x)^x 正是这种从无限变化中获得的有限,从两个相反方向发展(当X趋向正无穷大的时,上式的极限等于e=2.71828……,当X趋向负无穷大时候,上式的结果也等于e=2.71828……)得来的共同形式,充分体现了宇宙的形成、发展及衰亡的最本质的东西。 e=2.71828……是“自然律”的一种量的表达。“自然律”的形象表达是螺线。螺线的数学表达式通常有下面五种:(1)对数螺线;(2)阿基米德螺线;(3)连锁螺线;(4)双曲螺线;(5)回旋螺线。对数螺线在自然界中最为普遍存在,其它螺线也与对数螺线有一定的关系,不过目前我们仍未找到螺线的通式。对数螺线是1638年经笛卡尔引进的,后来瑞士数学家雅各·伯努利曾详细研究过它,发现对数螺线的渐屈线和渐伸线仍是对数螺线,极点在对数螺线各点的切线仍是对数螺线,等等。伯努利对这些有趣的性质惊叹不止,竟留下遗嘱要将对数螺线画在自己的墓碑上。CarieVinne 2023-08-04 11:14:451
对数螺旋线的长度如何计算?
用定积分计算,公式在高数上册第六章阿啵呲嘚2023-08-04 11:14:451
对数主要运用在人们生活的哪些方面?
自然对数当x趋近于正无穷或负无穷时,[1+(1/x)]^x的极限就等于e,实际上e就是通过这个极限而发现的。它是个无限不循环小数。其值约等于2.718281828...它用e表示以e为底数的对数通常用于㏑而且e还是一个超越数e在科学技术中用得非常多,一般不使用以10为底数的对数。以e为底数,许多式子都能得到简化,用它是最“自然”的,所以叫“自然对数”。 涡形或螺线型是自然事物极为普遍的存在形式,比如:一缕袅袅升上蓝天的炊烟,一朵碧湖中轻轻荡开的涟漪,数只缓缓攀援在篱笆上的蜗牛和无数在恬静的夜空携拥着旋舞的繁星…… 螺线特别是对数螺线的美学意义可以用指数的形式来表达: φkρ=αe 其中,α和k为常数,φ是极角,ρ是极径,e是自然对数的底。为了讨论方便,我们把e或由e经过一定变换和复合的形式定义为“自然律”。因此,“自然律”的核心是e,其值为2.71828……,是一个无限循环数。 、“自然律”之美 “自然律”是e 及由e经过一定变换和复合的形式。e是“自然律”的精髓,在数学上它是函数: (1+1/x)^x 当X趋近无穷时的极限。 人们在研究一些实际问题,如物体的冷却、细胞的繁殖、放射性元素的衰变时,都要研究 (1+1/x)^x X的X次方,当X趋近无穷时的极限。正是这种从无限变化中获得的有限,从两个相反方向发展(当X趋向正无穷大的时,上式的极限等于e=2.71828……,当X趋向负无穷大时候,上式的结果也等于e=2.71828……)得来的共同形式,充分体现了宇宙的形成、发展及衰亡的最本质的东西。 现代宇宙学表明,宇宙起源于“大爆炸”,而且目前还在膨胀,这种描述与十九世纪后半叶的两个伟大发现之一的熵定律,即热力学第二定律相吻合。熵定律指出,物质的演化总是朝着消灭信息、瓦解秩序的方向,逐渐由复杂到简单、由高级到低级不断退化的过程。退化的极限就是无序的平衡,即熵最大的状态,一种无为的死寂状态。这过程看起来像什么?只要我们看看天体照相中的旋涡星系的照片即不难理解。如果我们一定要找到亚里士多德所说的那种动力因,那么,可以把宇宙看成是由各个预先上紧的发条组织,或者干脆把整个宇宙看成是一个巨大的发条,历史不过是这种发条不断争取自由而放出能量的过程。 生命体的进化却与之有相反的特点,它与热力学第二定律描述的熵趋于极大不同,它使生命物质能避免趋向与环境衰退。任何生命都是耗散结构系统,它之所以能免于趋近最大的熵的死亡状态,就是因为生命体能通过吃、喝、呼吸等新陈代谢的过程从环境中不断吸取负熵。新陈代谢中本质的东西,乃是使有机体成功的消除了当它自身活着的时候不得不产生的全部熵。 “自然律”一方面体现了自然系统朝着一片混乱方向不断瓦解的崩溃过程(如元素的衰变),另一方面又显示了生命系统只有通过一种有序化过程才能维持自身稳定和促进自身的发展(如细胞繁殖)的本质。正是具有这种把有序和无序、生机与死寂寓于同一形式的特点,“自然律”才在美学上有重要价值。 如果荒僻不毛、浩瀚无际的大漠是“自然律”无序死寂的熵增状态,那么广阔无垠、生机盎然的草原是“自然律”有序而欣欣向荣的动态稳定结构。因此,大漠使人感到肃穆、苍茫,令人沉思,让人回想起生命历程的种种困顿和坎坷;而草原则使人兴奋、雀跃,让人感到生命的欢乐和幸福。 e=2.71828……是“自然律”的一种量的表达。“自然律”的形象表达是螺线。螺线的数学表达式通常有下面五种:(1)对数螺线;(2)阿基米德螺线;(3)连锁螺线;(4)双曲螺线;(5)回旋螺线。对数螺线在自然界中最为普遍存在,其它螺线也与对数螺线有一定的关系,不过目前我们仍未找到螺线的通式。对数螺线是1638年经笛卡尔引进的,后来瑞士数学家雅各·伯努利曾详细研究过它,发现对数螺线的渐屈线和渐伸线仍是对数螺线,极点在对数螺线各点的切线仍是对数螺线,等等。伯努利对这些有趣的性质惊叹不止,竟留下遗嘱要将对数螺线画在自己的墓碑上。 英国著名画家和艺术理论家荷迦兹深深感到:旋涡形或螺线形逐渐缩小到它们的中心,都是美的形状。事实上,我们也很容易在古今的艺术大师的作品中找到螺线。为什么我们的感觉、我们的“精神的”眼睛经常能够本能地和直观地从这样一种螺线的形式中得到满足呢?这难道不意味着我们的精神,我们的“内在”世界同外在世界之间有一种比历史更原始的同构对应关系吗? 我们知道,作为生命现象的基础物质蛋白质,在生命物体内参与着生命过程的整个工作,它的功能所以这样复杂高效和奥秘无穷,是同其结构紧密相关的。化学家们发现蛋白质的多钛链主要是螺旋状的,决定遗传的物质——核酸结构也是螺螺状的。 古希腊人有一种称为风鸣琴的乐器,当它的琴弦在风中振动时,能产生优美悦耳的音调。这种音调就是所谓的“涡流尾迹效应”。让人深思的是,人类经过漫长岁月进化而成的听觉器官的内耳结构也具涡旋状。这是为便于欣赏古希腊人的风鸣琴吗?还有我们的指纹、发旋等等,这种审美主体的生理结构与外在世界的同构对应,也就是“内在”与“外在”和谐的自然基础。 有人说数学美是“一”的光辉,它具有尽可能多的变换群作用下的不变性,也即是拥有自然普通规律的表现,是“多”与“一”的统一,那么“自然律”也同样闪烁着“一”的光辉。谁能说清e=2.71828……给数学家带来多少方便和成功?人们赞扬直线的刚劲、明朗和坦率,欣赏曲线的优美、变化与含蓄,殊不知任何直线和曲线都可以从螺线中取出足够的部分来组成。有人说美是主体和客体的同一,是内在精神世界同外在物质世界的统一,那么“自然律”也同样有这种统一。人类的认识是按否定之否定规律发展的,社会、自然的历史也遵循着这种辩证发展规律,是什么给予这种形式以生动形象的表达呢?螺线! 有人说美在于事物的节奏,“自然律”也具有这种节奏;有人说美是动态的平衡、变化中的永恒,那么“自然律”也同样是动态的平衡、变化中的永恒;有人说美在于事物的力动结构,那么“自然律”也同样具有这种结构——如表的游丝、机械中的弹簧等等。 “自然律”是形式因与动力因的统一,是事物的形象显现,也是具象和抽象的共同表达。有限的生命植根于无限的自然之中,生命的脉搏无不按照宇宙的旋律自觉地调整着运动和节奏……有机的和无机的,内在的和外在的,社会的和自然的,一切都合而为一。这就是“自然律”揭示的全部美学奥秘吗?不!“自然律”永远具有不能穷尽的美学内涵,因为它象征着广袤深邃的大自然。正因为如此,它才吸引并且值的人们进行不懈的探索,从而显示人类不断进化的本质力量。旋涡形或螺线型是自然事物极为普遍的存在形式,比如:一缕袅袅升上蓝天的炊烟,一朵碧湖中轻轻荡开的涟漪,数只缓缓攀援在篱笆上的蜗牛和无数在恬静的夜空携拥着旋舞的繁星…… 螺线特别是对数螺线的美学意义可以用指数的形式来表达: φkρ=αe 其中,α和k为常数,φ是极角,ρ是极径,e是自然对数的底。为了讨论方便,我们把e或由e经过一定变换和复合的形式定义为“自然律”。因此,“自然律”的核心是e,其值为2.71828……,是一个无限循环数。 数,美吗? 1、数之美 人们很早就对数的美有深刻的认识。其中,公元前六世纪盛行于古希腊的毕达哥斯学派见解较为深刻。他们首先从数学和声学的观点去研究音乐节奏的和谐,发现声音的质的差别(如长短、高低、轻重等)都是由发音体数量方面的差别决定的。例如发音体(如琴弦)长,声音就长;振动速度快,声音就高;振动速度慢,声音就低。因此,音乐的基本原则在于数量关系。 毕达哥斯学派把音乐中的和谐原理推广到建筑、雕刻等其它艺术,探求什么样的比例才会产生美的效果,得出了一些经验性的规范。例如,在欧洲有长久影响的“黄金律”据说是他们发现的(有人说,是蔡泌于一八五四年提出了所谓的“黄金分割律”。所谓黄金分割律“就是取一根线分为两部分,使长的那部分的平方等于短的那部分乘全线段。”“如果某物的长与宽是按照这个比例所组成的,那么它就比由其它比例所组成的长方形‘要美"。”)。 这派学者还把数学与和谐的原则应用于天文学的研究,因而形成所谓“诸天音乐”或“宇宙和谐”的概念,认为天上诸星体在遵照一定的轨道运动中,也产生一种和谐的音乐。他们还认为,人体的机能也是和谐的,就象一个“小宇宙”。人体之所以美,是由于它各部分——头、手、脚、五官等比例适当,动作协调;宇宙之所以美,是由于各个物质单位以及各个星体之间运行的速度、距离、周转时间等等配合协调。这些都是数的和谐。 中国古代思想家们也有类似的观点。道家的老子和周易《系辞传》,都曾尝试以数学解释宇宙生成,后来又衍为周易象数派。《周易》中贲卦的表示朴素之美,离卦的表示华丽之美,以及所谓“极其数,遂定天下之象”,都是类似数学推理的结论。儒家的荀卿也说过:“万物同宇宙而异体。无宜而有用为人,数也。”庄子把“小我”与“大我”一视同仁,“小年”与“大年”等量齐观,也略同于毕达哥拉斯学派之把“小宇宙”和“大宇宙”互相印证。所谓“得之于手而应用于心,口不能言,有数存在焉与其间”。这种从数的和谐看出美的思想,深深地影响了后世的中国美学。 2、黄金律之美 黄金律历来被染上瑰丽诡秘的色彩,被人们称为“天然合理”的最美妙的形式比例。我们知道,黄金律不仅是构图原则,也是自然事物的最佳状态。中世纪意大利数学家费勃奈舍发现,许多植物叶片、花瓣以及松果壳瓣,从小到大的序列是以0.618:1的近似值排列的,这即是著名的“费勃奈舍数列”:1、2、3、5、8、13、21、34……动物身上的色彩图案也大体符合黄金比。舞蹈教练、体操专家选择人材制定的比列尺寸,例如肩宽和腰的比例、腰部以上与腰部以下的比列也都大体符合黄金比。 现代科学家还发现,当大脑呈现的“倍塔”脑电波的高频与低频之比是1:0.618的近似值(12.9赫兹与8赫兹之比)时,人的心身最具快感。甚至,当大自然的气温(23摄氏度)与人的体温37摄氏度之比为0.618:1时,最适宜于人的身心健康,最使人感到舒适。另外,数学家们为工农业生产制度的优选法,所提出的配料最佳比例、组织结构的最佳比例等等,也都大体符合黄金律。 然而,这并不意味着黄金律比“自然律”更具有美学意义。我们可以证明,当对数螺线: φkρ=αe 的等比取黄金律,即k=0.0765872,等比P1/P2=0.618时,则螺线中同一半径线上相邻极半径之比都有黄金分割关系。事实上,当函数f(X)等于e的X次方时,取X为0.4812,那么,f(X)=0.618…… 因此,黄金律被“自然律”逻辑所蕴含。换言之,“自然律”囊括了黄金律。 黄金律表现了事物的相对静止状态,而“自然律”则表现了事物运动发展的普遍状态。因此,从某种意义上说,黄金律是凝固的“自然律”,“自然律”是运动着的黄金律。 3、“自然律”之美 “自然律”是e 及由e经过一定变换和复合的形式。e是“自然律”的精髓,在数学上它是函数: 1(1+——) X的X次方,当X趋近无穷时的极限。 人们在研究一些实际问题,如物体的冷却、细胞的繁殖、放射性元素的衰变时,都要研究 1(1+——) X的X次方,当X趋近无穷时的极限。正是这种从无限变化中获得的有限,从两个相反方向发展(当X趋向正无穷大的时,上式的极限等于e=2.71828……,当X趋向负无穷大时候,上式的结果也等于e=2.71828……)得来的共同形式,充分体现了宇宙的形成、发展及衰亡的最本质的东西。 现代宇宙学表明,宇宙起源于“大爆炸”,而且目前还在膨胀,这种描述与十九世纪后半叶的两个伟大发现之一的熵定律,即热力学第二定律相吻合。熵定律指出,物质的演化总是朝着消灭信息、瓦解秩序的方向,逐渐由复杂到简单、由高级到低级不断退化的过程。退化的极限就是无序的平衡,即熵最大的状态,一种无为的死寂状态。这过程看起来像什么?只要我们看看天体照相中的旋涡星系的照片即不难理解。如果我们一定要找到亚里士多德所说的那种动力因,那么,可以把宇宙看成是由各个预先上紧的发条组织,或者干脆把整个宇宙看成是一个巨大的发条,历史不过是这种发条不断争取自由而放出能量的过程。 生命体的进化却与之有相反的特点,它与热力学第二定律描述的熵趋于极大不同,它使生命物质能避免趋向与环境衰退。任何生命都是耗散结构系统,它之所以能免于趋近最大的熵的死亡状态,就是因为生命体能通过吃、喝、呼吸等新陈代谢的过程从环境中不断吸取负熵。新陈代谢中本质的东西,乃是使有机体成功的消除了当它自身活着的时候不得不产生的全部熵。 “自然律”一方面体现了自然系统朝着一片混乱方向不断瓦解的崩溃过程(如元素的衰变),另一方面又显示了生命系统只有通过一种有序化过程才能维持自身稳定和促进自身的发展(如细胞繁殖)的本质。正是具有这种把有序和无序、生机与死寂寓于同一形式的特点,“自然律”才在美学上有重要价值。 如果荒僻不毛、浩瀚无际的大漠是“自然律”无序死寂的熵增状态,那么广阔无垠、生机盎然的草原是“自然律”有序而欣欣向荣的动态稳定结构。因此,大漠使人感到肃穆、苍茫,令人沉思,让人回想起生命历程的种种困顿和坎坷;而草原则使人兴奋、雀跃,让人感到生命的欢乐和幸福。 e=2.71828……是“自然律”的一种量的表达。“自然律”的形象表达是螺线。螺线的数学表达式通常有下面五种:(1)对数螺线;(2)阿基米德螺线;(3)连锁螺线;(4)双曲螺线;(5)回旋螺线。对数螺线在自然界中最为普遍存在,其它螺线也与对数螺线有一定的关系,不过目前我们仍未找到螺线的通式。对数螺线是1638年经笛卡尔引进的,后来瑞士数学家雅各·伯努利曾详细研究过它,发现对数螺线的渐屈线和渐伸线仍是对数螺线,极点在对数螺线各点的切线仍是对数螺线,等等。伯努利对这些有趣的性质惊叹不止,竟留下遗嘱要将对数螺线画在自己的墓碑上。 英国著名画家和艺术理论家荷迦兹深深感到:旋涡形或螺线形逐渐缩小到它们的中心,都是美的形状。事实上,我们也很容易在古今的艺术大师的作品中找到螺线。为什么我们的感觉、我们的“精神的”眼睛经常能够本能地和直观地从这样一种螺线的形式中得到满足呢?这难道不意味着我们的精神,我们的“内在”世界同外在世界之间有一种比历史更原始的同构对应关系吗? 我们知道,作为生命现象的基础物质蛋白质,在生命物体内参与着生命过程的整个工作,它的功能所以这样复杂高效和奥秘无穷,是同其结构紧密相关的。化学家们发现蛋白质的多钛链主要是螺旋状的,决定遗传的物质——核酸结构也是螺螺状的。 古希腊人有一种称为风鸣琴的乐器,当它的琴弦在风中振动时,能产生优美悦耳的音调。这种音调就是所谓的“涡流尾迹效应”。让人深思的是,人类经过漫长岁月进化而成的听觉器官的内耳结构也具涡旋状。这是为便于欣赏古希腊人的风鸣琴吗?还有我们的指纹、发旋等等,这种审美主体的生理结构与外在世界的同构对应,也就是“内在”与“外在”和谐的自然基础。 有人说数学美是“一”的光辉,它具有尽可能多的变换群作用下的不变性,也即是拥有自然普通规律的表现,是“多”与“一”的统一,那么“自然律”也同样闪烁着“一”的光辉。谁能说清e=2.71828……给数学家带来多少方便和成功?人们赞扬直线的刚劲、明朗和坦率,欣赏曲线的优美、变化与含蓄,殊不知任何直线和曲线都可以从螺线中取出足够的部分来组成。有人说美是主体和客体的同一,是内在精神世界同外在物质世界的统一,那么“自然律”也同样有这种统一。人类的认识是按否定之否定规律发展的,社会、自然的历史也遵循着这种辩证发展规律,是什么给予这种形式以生动形象的表达呢?螺线! 有人说美在于事物的节奏,“自然律”也具有这种节奏;有人说美是动态的平衡、变化中的永恒,那么“自然律”也同样是动态的平衡、变化中的永恒;有人说美在于事物的力动结构,那么“自然律”也同样具有这种结构——如表的游丝、机械中的弹簧等等。 “自然律”是形式因与动力因的统一,是事物的形象显现,也是具象和抽象的共同表达。有限的生命植根于无限的自然之中,生命的脉搏无不按照宇宙的旋律自觉地调整着运动和节奏……有机的和无机的,内在的和外在的,社会的和自然的,一切都合而为一。这就是“自然律”揭示的全部美学奥秘吗?不!“自然律”永远具有不能穷尽的美学内涵,因为它象征着广袤深邃的大自然。正因为如此,它才吸引并且值的人们进行不懈的探索,从而显示人类不断进化的本质力量。(原载《科学之春》杂志1984年第4期,原题为:《自然律——美学家和艺术家的瑰宝》)2,尤拉的自然对数底公式 (大约等于2.71828的自然对数的底——e) 尤拉被称为数字界的莎士比亚,他是历史上最多产的数学家,也是各领域(包含数学中理论与应用的所有分支及力学、光学、音响学、水利、天文、化学、医药等)最多著作的学者。数学史上称十八世纪为“尤拉时代”。 尤拉出生于瑞士,31岁丧失了右眼的视力,59岁双眼失明,但他性格乐观,有惊人的记忆力及集中力,使他在13个小孩子吵闹的环境中仍能精确思考复杂问题。 尤拉一生谦逊,从没有用自己的名字给他发现的东西命名。只有那个大约等于2.71828的自然对数的底,被他命名为e。但因他对数学广泛的贡献,因此在许多数学分支中,反而经常见到以他的名字命名的重要常数、公式和定理。 我们现在习以为常的数学符号很多都是尤拉所发明介绍的,例如:函数符号f(x)、π、e、∑、logx、sinx、cosx以及虚数i等。高中教师常用一则自然对数的底数e笑话,帮助学生记忆一个很特别的微分公式:在一家精神病院里,有个病患整天对着别人说,“我微分你、我微分你。”也不知为什么,这些病患都有一点简单的微积分概念,总以为有一天自己会像一般多项式函数般,被微分到变成零而消失,因此对他避之不及,然而某天他却遇上了一个不为所动的人,他很意外,而这个人淡淡地对他说,“我是e的x次方。” 这个微分公式就是:e不论对x微分几次,结果都还是e!难怪数学系学生会用e比喻坚定不移的爱情! 相对于π是希腊文字中圆周第一个字母,e的由来较不为人熟知。有人甚至认为:尤拉取自己名字的第一个字母作为自然对数。 而尤拉选择e的理由较为人所接受的说法有二:一为在a,b,c,d等四个常被使用的字母后面,第一个尚未被经常使用的字母就是e,所以,他很自然地选了这个符号,代表自然对数的底数;一为e是指数的第一个字母,虽然你或许会怀疑瑞士人尤拉的母语不是英文,可事实上法文、德文的指数都是它。ardim2023-08-04 11:14:451
求一个对数螺旋线的表达式。
这就是极坐标,r和θ是变量极径和极角,其他都是已知数,两边平方并取对数得ln(x^2+y^2)=2lnrg+2tgα*arctan(y/x)……①,两边求导整理得x=-tgα*y,带入①式整理得ln[(secα)^2*y^2]=2lnrg+2tgα(α-π/2),此式只含y变量,可解出y,x=-tgα*y瑞瑞爱吃桃2023-08-04 11:14:431
求对数螺线p=e^相应于0≤t≤m的一段弧长?有谁会的
微元:设ρ=f(θ) 那么弧长微元ΔL=1/2(f(θ)+f(θ+Δθ)) Δθ 这样弧长L=ΣΔL=Σ1/2(f(θ)+f(θ+Δθ)) Δθ=∫ f(θ)dθ 所以该题的弧长L就应该是e^(at)在0≤t≤m的积分wpBeta2023-08-04 11:14:431
求对数螺线r=eu02c6aθ相应θ=0到θ=φ的一段弧长
简单计算一下即可,答案如图所示拌三丝2023-08-04 11:14:421
求对数螺线p=e^2θ相应于0-π的一段弧长
根据弧长公式s=rθds=pdθs=∫(0,π)e^2θ =(e^2θ)/2|(0,π) =(e^2θ-1)/2CarieVinne 2023-08-04 11:14:422
对数主要运用在人们生活的哪些方面?
自然对数当x趋近于正无穷或负无穷时,[1+(1/x)]^x的极限就等于e,实际上e就是通过这个极限而发现的。它是个无限不循环小数。其值约等于2.718281828...它用e表示以e为底数的对数通常用于㏑而且e还是一个超越数e在科学技术中用得非常多,一般不使用以10为底数的对数。以e为底数,许多式子都能得到简化,用它是最“自然”的,所以叫“自然对数”。 涡形或螺线型是自然事物极为普遍的存在形式,比如:一缕袅袅升上蓝天的炊烟,一朵碧湖中轻轻荡开的涟漪,数只缓缓攀援在篱笆上的蜗牛和无数在恬静的夜空携拥着旋舞的繁星…… 螺线特别是对数螺线的美学意义可以用指数的形式来表达: φkρ=αe 其中,α和k为常数,φ是极角,ρ是极径,e是自然对数的底。为了讨论方便,我们把e或由e经过一定变换和复合的形式定义为“自然律”。因此,“自然律”的核心是e,其值为2.71828……,是一个无限循环数。 、“自然律”之美 “自然律”是e 及由e经过一定变换和复合的形式。e是“自然律”的精髓,在数学上它是函数: (1+1/x)^x 当X趋近无穷时的极限。 人们在研究一些实际问题,如物体的冷却、细胞的繁殖、放射性元素的衰变时,都要研究 (1+1/x)^x X的X次方,当X趋近无穷时的极限。正是这种从无限变化中获得的有限,从两个相反方向发展(当X趋向正无穷大的时,上式的极限等于e=2.71828……,当X趋向负无穷大时候,上式的结果也等于e=2.71828……)得来的共同形式,充分体现了宇宙的形成、发展及衰亡的最本质的东西。 现代宇宙学表明,宇宙起源于“大爆炸”,而且目前还在膨胀,这种描述与十九世纪后半叶的两个伟大发现之一的熵定律,即热力学第二定律相吻合。熵定律指出,物质的演化总是朝着消灭信息、瓦解秩序的方向,逐渐由复杂到简单、由高级到低级不断退化的过程。退化的极限就是无序的平衡,即熵最大的状态,一种无为的死寂状态。这过程看起来像什么?只要我们看看天体照相中的旋涡星系的照片即不难理解。如果我们一定要找到亚里士多德所说的那种动力因,那么,可以把宇宙看成是由各个预先上紧的发条组织,或者干脆把整个宇宙看成是一个巨大的发条,历史不过是这种发条不断争取自由而放出能量的过程。 生命体的进化却与之有相反的特点,它与热力学第二定律描述的熵趋于极大不同,它使生命物质能避免趋向与环境衰退。任何生命都是耗散结构系统,它之所以能免于趋近最大的熵的死亡状态,就是因为生命体能通过吃、喝、呼吸等新陈代谢的过程从环境中不断吸取负熵。新陈代谢中本质的东西,乃是使有机体成功的消除了当它自身活着的时候不得不产生的全部熵。 “自然律”一方面体现了自然系统朝着一片混乱方向不断瓦解的崩溃过程(如元素的衰变),另一方面又显示了生命系统只有通过一种有序化过程才能维持自身稳定和促进自身的发展(如细胞繁殖)的本质。正是具有这种把有序和无序、生机与死寂寓于同一形式的特点,“自然律”才在美学上有重要价值。 如果荒僻不毛、浩瀚无际的大漠是“自然律”无序死寂的熵增状态,那么广阔无垠、生机盎然的草原是“自然律”有序而欣欣向荣的动态稳定结构。因此,大漠使人感到肃穆、苍茫,令人沉思,让人回想起生命历程的种种困顿和坎坷;而草原则使人兴奋、雀跃,让人感到生命的欢乐和幸福。 e=2.71828……是“自然律”的一种量的表达。“自然律”的形象表达是螺线。螺线的数学表达式通常有下面五种:(1)对数螺线;(2)阿基米德螺线;(3)连锁螺线;(4)双曲螺线;(5)回旋螺线。对数螺线在自然界中最为普遍存在,其它螺线也与对数螺线有一定的关系,不过目前我们仍未找到螺线的通式。对数螺线是1638年经笛卡尔引进的,后来瑞士数学家雅各·伯努利曾详细研究过它,发现对数螺线的渐屈线和渐伸线仍是对数螺线,极点在对数螺线各点的切线仍是对数螺线,等等。伯努利对这些有趣的性质惊叹不止,竟留下遗嘱要将对数螺线画在自己的墓碑上。 英国著名画家和艺术理论家荷迦兹深深感到:旋涡形或螺线形逐渐缩小到它们的中心,都是美的形状。事实上,我们也很容易在古今的艺术大师的作品中找到螺线。为什么我们的感觉、我们的“精神的”眼睛经常能够本能地和直观地从这样一种螺线的形式中得到满足呢?这难道不意味着我们的精神,我们的“内在”世界同外在世界之间有一种比历史更原始的同构对应关系吗? 我们知道,作为生命现象的基础物质蛋白质,在生命物体内参与着生命过程的整个工作,它的功能所以这样复杂高效和奥秘无穷,是同其结构紧密相关的。化学家们发现蛋白质的多钛链主要是螺旋状的,决定遗传的物质——核酸结构也是螺螺状的。 古希腊人有一种称为风鸣琴的乐器,当它的琴弦在风中振动时,能产生优美悦耳的音调。这种音调就是所谓的“涡流尾迹效应”。让人深思的是,人类经过漫长岁月进化而成的听觉器官的内耳结构也具涡旋状。这是为便于欣赏古希腊人的风鸣琴吗?还有我们的指纹、发旋等等,这种审美主体的生理结构与外在世界的同构对应,也就是“内在”与“外在”和谐的自然基础。 有人说数学美是“一”的光辉,它具有尽可能多的变换群作用下的不变性,也即是拥有自然普通规律的表现,是“多”与“一”的统一,那么“自然律”也同样闪烁着“一”的光辉。谁能说清e=2.71828……给数学家带来多少方便和成功?人们赞扬直线的刚劲、明朗和坦率,欣赏曲线的优美、变化与含蓄,殊不知任何直线和曲线都可以从螺线中取出足够的部分来组成。有人说美是主体和客体的同一,是内在精神世界同外在物质世界的统一,那么“自然律”也同样有这种统一。人类的认识是按否定之否定规律发展的,社会、自然的历史也遵循着这种辩证发展规律,是什么给予这种形式以生动形象的表达呢?螺线! 有人说美在于事物的节奏,“自然律”也具有这种节奏;有人说美是动态的平衡、变化中的永恒,那么“自然律”也同样是动态的平衡、变化中的永恒;有人说美在于事物的力动结构,那么“自然律”也同样具有这种结构——如表的游丝、机械中的弹簧等等。 “自然律”是形式因与动力因的统一,是事物的形象显现,也是具象和抽象的共同表达。有限的生命植根于无限的自然之中,生命的脉搏无不按照宇宙的旋律自觉地调整着运动和节奏……有机的和无机的,内在的和外在的,社会的和自然的,一切都合而为一。这就是“自然律”揭示的全部美学奥秘吗?不!“自然律”永远具有不能穷尽的美学内涵,因为它象征着广袤深邃的大自然。正因为如此,它才吸引并且值的人们进行不懈的探索,从而显示人类不断进化的本质力量。旋涡形或螺线型是自然事物极为普遍的存在形式,比如:一缕袅袅升上蓝天的炊烟,一朵碧湖中轻轻荡开的涟漪,数只缓缓攀援在篱笆上的蜗牛和无数在恬静的夜空携拥着旋舞的繁星…… 螺线特别是对数螺线的美学意义可以用指数的形式来表达: φkρ=αe 其中,α和k为常数,φ是极角,ρ是极径,e是自然对数的底。为了讨论方便,我们把e或由e经过一定变换和复合的形式定义为“自然律”。因此,“自然律”的核心是e,其值为2.71828……,是一个无限循环数。 数,美吗? 1、数之美 人们很早就对数的美有深刻的认识。其中,公元前六世纪盛行于古希腊的毕达哥斯学派见解较为深刻。他们首先从数学和声学的观点去研究音乐节奏的和谐,发现声音的质的差别(如长短、高低、轻重等)都是由发音体数量方面的差别决定的。例如发音体(如琴弦)长,声音就长;振动速度快,声音就高;振动速度慢,声音就低。因此,音乐的基本原则在于数量关系。 毕达哥斯学派把音乐中的和谐原理推广到建筑、雕刻等其它艺术,探求什么样的比例才会产生美的效果,得出了一些经验性的规范。例如,在欧洲有长久影响的“黄金律”据说是他们发现的(有人说,是蔡泌于一八五四年提出了所谓的“黄金分割律”。所谓黄金分割律“就是取一根线分为两部分,使长的那部分的平方等于短的那部分乘全线段。”“如果某物的长与宽是按照这个比例所组成的,那么它就比由其它比例所组成的长方形‘要美"。”)。 这派学者还把数学与和谐的原则应用于天文学的研究,因而形成所谓“诸天音乐”或“宇宙和谐”的概念,认为天上诸星体在遵照一定的轨道运动中,也产生一种和谐的音乐。他们还认为,人体的机能也是和谐的,就象一个“小宇宙”。人体之所以美,是由于它各部分——头、手、脚、五官等比例适当,动作协调;宇宙之所以美,是由于各个物质单位以及各个星体之间运行的速度、距离、周转时间等等配合协调。这些都是数的和谐。 中国古代思想家们也有类似的观点。道家的老子和周易《系辞传》,都曾尝试以数学解释宇宙生成,后来又衍为周易象数派。《周易》中贲卦的表示朴素之美,离卦的表示华丽之美,以及所谓“极其数,遂定天下之象”,都是类似数学推理的结论。儒家的荀卿也说过:“万物同宇宙而异体。无宜而有用为人,数也。”庄子把“小我”与“大我”一视同仁,“小年”与“大年”等量齐观,也略同于毕达哥拉斯学派之把“小宇宙”和“大宇宙”互相印证。所谓“得之于手而应用于心,口不能言,有数存在焉与其间”。这种从数的和谐看出美的思想,深深地影响了后世的中国美学。 2、黄金律之美 黄金律历来被染上瑰丽诡秘的色彩,被人们称为“天然合理”的最美妙的形式比例。我们知道,黄金律不仅是构图原则,也是自然事物的最佳状态。中世纪意大利数学家费勃奈舍发现,许多植物叶片、花瓣以及松果壳瓣,从小到大的序列是以0.618:1的近似值排列的,这即是著名的“费勃奈舍数列”:1、2、3、5、8、13、21、34……动物身上的色彩图案也大体符合黄金比。舞蹈教练、体操专家选择人材制定的比列尺寸,例如肩宽和腰的比例、腰部以上与腰部以下的比列也都大体符合黄金比。 现代科学家还发现,当大脑呈现的“倍塔”脑电波的高频与低频之比是1:0.618的近似值(12.9赫兹与8赫兹之比)时,人的心身最具快感。甚至,当大自然的气温(23摄氏度)与人的体温37摄氏度之比为0.618:1时,最适宜于人的身心健康,最使人感到舒适。另外,数学家们为工农业生产制度的优选法,所提出的配料最佳比例、组织结构的最佳比例等等,也都大体符合黄金律。 然而,这并不意味着黄金律比“自然律”更具有美学意义。我们可以证明,当对数螺线: φkρ=αe 的等比取黄金律,即k=0.0765872,等比P1/P2=0.618时,则螺线中同一半径线上相邻极半径之比都有黄金分割关系。事实上,当函数f(X)等于e的X次方时,取X为0.4812,那么,f(X)=0.618…… 因此,黄金律被“自然律”逻辑所蕴含。换言之,“自然律”囊括了黄金律。 黄金律表现了事物的相对静止状态,而“自然律”则表现了事物运动发展的普遍状态。因此,从某种意义上说,黄金律是凝固的“自然律”,“自然律”是运动着的黄金律。 3、“自然律”之美 “自然律”是e 及由e经过一定变换和复合的形式。e是“自然律”的精髓,在数学上它是函数: 1(1+——) X的X次方,当X趋近无穷时的极限。 人们在研究一些实际问题,如物体的冷却、细胞的繁殖、放射性元素的衰变时,都要研究 1(1+——) X的X次方,当X趋近无穷时的极限。正是这种从无限变化中获得的有限,从两个相反方向发展(当X趋向正无穷大的时,上式的极限等于e=2.71828……,当X趋向负无穷大时候,上式的结果也等于e=2.71828……)得来的共同形式,充分体现了宇宙的形成、发展及衰亡的最本质的东西。 现代宇宙学表明,宇宙起源于“大爆炸”,而且目前还在膨胀,这种描述与十九世纪后半叶的两个伟大发现之一的熵定律,即热力学第二定律相吻合。熵定律指出,物质的演化总是朝着消灭信息、瓦解秩序的方向,逐渐由复杂到简单、由高级到低级不断退化的过程。退化的极限就是无序的平衡,即熵最大的状态,一种无为的死寂状态。这过程看起来像什么?只要我们看看天体照相中的旋涡星系的照片即不难理解。如果我们一定要找到亚里士多德所说的那种动力因,那么,可以把宇宙看成是由各个预先上紧的发条组织,或者干脆把整个宇宙看成是一个巨大的发条,历史不过是这种发条不断争取自由而放出能量的过程。 生命体的进化却与之有相反的特点,它与热力学第二定律描述的熵趋于极大不同,它使生命物质能避免趋向与环境衰退。任何生命都是耗散结构系统,它之所以能免于趋近最大的熵的死亡状态,就是因为生命体能通过吃、喝、呼吸等新陈代谢的过程从环境中不断吸取负熵。新陈代谢中本质的东西,乃是使有机体成功的消除了当它自身活着的时候不得不产生的全部熵。 “自然律”一方面体现了自然系统朝着一片混乱方向不断瓦解的崩溃过程(如元素的衰变),另一方面又显示了生命系统只有通过一种有序化过程才能维持自身稳定和促进自身的发展(如细胞繁殖)的本质。正是具有这种把有序和无序、生机与死寂寓于同一形式的特点,“自然律”才在美学上有重要价值。 如果荒僻不毛、浩瀚无际的大漠是“自然律”无序死寂的熵增状态,那么广阔无垠、生机盎然的草原是“自然律”有序而欣欣向荣的动态稳定结构。因此,大漠使人感到肃穆、苍茫,令人沉思,让人回想起生命历程的种种困顿和坎坷;而草原则使人兴奋、雀跃,让人感到生命的欢乐和幸福。 e=2.71828……是“自然律”的一种量的表达。“自然律”的形象表达是螺线。螺线的数学表达式通常有下面五种:(1)对数螺线;(2)阿基米德螺线;(3)连锁螺线;(4)双曲螺线;(5)回旋螺线。对数螺线在自然界中最为普遍存在,其它螺线也与对数螺线有一定的关系,不过目前我们仍未找到螺线的通式。对数螺线是1638年经笛卡尔引进的,后来瑞士数学家雅各·伯努利曾详细研究过它,发现对数螺线的渐屈线和渐伸线仍是对数螺线,极点在对数螺线各点的切线仍是对数螺线,等等。伯努利对这些有趣的性质惊叹不止,竟留下遗嘱要将对数螺线画在自己的墓碑上。 英国著名画家和艺术理论家荷迦兹深深感到:旋涡形或螺线形逐渐缩小到它们的中心,都是美的形状。事实上,我们也很容易在古今的艺术大师的作品中找到螺线。为什么我们的感觉、我们的“精神的”眼睛经常能够本能地和直观地从这样一种螺线的形式中得到满足呢?这难道不意味着我们的精神,我们的“内在”世界同外在世界之间有一种比历史更原始的同构对应关系吗? 我们知道,作为生命现象的基础物质蛋白质,在生命物体内参与着生命过程的整个工作,它的功能所以这样复杂高效和奥秘无穷,是同其结构紧密相关的。化学家们发现蛋白质的多钛链主要是螺旋状的,决定遗传的物质——核酸结构也是螺螺状的。 古希腊人有一种称为风鸣琴的乐器,当它的琴弦在风中振动时,能产生优美悦耳的音调。这种音调就是所谓的“涡流尾迹效应”。让人深思的是,人类经过漫长岁月进化而成的听觉器官的内耳结构也具涡旋状。这是为便于欣赏古希腊人的风鸣琴吗?还有我们的指纹、发旋等等,这种审美主体的生理结构与外在世界的同构对应,也就是“内在”与“外在”和谐的自然基础。 有人说数学美是“一”的光辉,它具有尽可能多的变换群作用下的不变性,也即是拥有自然普通规律的表现,是“多”与“一”的统一,那么“自然律”也同样闪烁着“一”的光辉。谁能说清e=2.71828……给数学家带来多少方便和成功?人们赞扬直线的刚劲、明朗和坦率,欣赏曲线的优美、变化与含蓄,殊不知任何直线和曲线都可以从螺线中取出足够的部分来组成。有人说美是主体和客体的同一,是内在精神世界同外在物质世界的统一,那么“自然律”也同样有这种统一。人类的认识是按否定之否定规律发展的,社会、自然的历史也遵循着这种辩证发展规律,是什么给予这种形式以生动形象的表达呢?螺线! 有人说美在于事物的节奏,“自然律”也具有这种节奏;有人说美是动态的平衡、变化中的永恒,那么“自然律”也同样是动态的平衡、变化中的永恒;有人说美在于事物的力动结构,那么“自然律”也同样具有这种结构——如表的游丝、机械中的弹簧等等。 “自然律”是形式因与动力因的统一,是事物的形象显现,也是具象和抽象的共同表达。有限的生命植根于无限的自然之中,生命的脉搏无不按照宇宙的旋律自觉地调整着运动和节奏……有机的和无机的,内在的和外在的,社会的和自然的,一切都合而为一。这就是“自然律”揭示的全部美学奥秘吗?不!“自然律”永远具有不能穷尽的美学内涵,因为它象征着广袤深邃的大自然。正因为如此,它才吸引并且值的人们进行不懈的探索,从而显示人类不断进化的本质力量。(原载《科学之春》杂志1984年第4期,原题为:《自然律——美学家和艺术家的瑰宝》)2,尤拉的自然对数底公式 (大约等于2.71828的自然对数的底——e) 尤拉被称为数字界的莎士比亚,他是历史上最多产的数学家,也是各领域(包含数学中理论与应用的所有分支及力学、光学、音响学、水利、天文、化学、医药等)最多著作的学者。数学史上称十八世纪为“尤拉时代”。 尤拉出生于瑞士,31岁丧失了右眼的视力,59岁双眼失明,但他性格乐观,有惊人的记忆力及集中力,使他在13个小孩子吵闹的环境中仍能精确思考复杂问题。 尤拉一生谦逊,从没有用自己的名字给他发现的东西命名。只有那个大约等于2.71828的自然对数的底,被他命名为e。但因他对数学广泛的贡献,因此在许多数学分支中,反而经常见到以他的名字命名的重要常数、公式和定理。 我们现在习以为常的数学符号很多都是尤拉所发明介绍的,例如:函数符号f(x)、π、e、∑、logx、sinx、cosx以及虚数i等。高中教师常用一则自然对数的底数e笑话,帮助学生记忆一个很特别的微分公式:在一家精神病院里,有个病患整天对着别人说,“我微分你、我微分你。”也不知为什么,这些病患都有一点简单的微积分概念,总以为有一天自己会像一般多项式函数般,被微分到变成零而消失,因此对他避之不及,然而某天他却遇上了一个不为所动的人,他很意外,而这个人淡淡地对他说,“我是e的x次方。” 这个微分公式就是:e不论对x微分几次,结果都还是e!难怪数学系学生会用e比喻坚定不移的爱情! 相对于π是希腊文字中圆周第一个字母,e的由来较不为人熟知。有人甚至认为:尤拉取自己名字的第一个字母作为自然对数。 而尤拉选择e的理由较为人所接受的说法有二:一为在a,b,c,d等四个常被使用的字母后面,第一个尚未被经常使用的字母就是e,所以,他很自然地选了这个符号,代表自然对数的底数;一为e是指数的第一个字母,虽然你或许会怀疑瑞士人尤拉的母语不是英文,可事实上法文、德文的指数都是它。善士六合2023-08-04 11:14:421
当0≤θ≤π时,对数螺线r=eθ的弧长为______
∵r=eθ,0≤θ≤π∴ds=r2(θ)+r′2(θ)dθ=2eθdθ∴s=∫π02eθdθ=2(eπ?1)gitcloud2023-08-04 11:14:412
科学对数e是多少
自然对数 又称“双曲对数”。以超越数[fc(]e=1+11!+12!+13!+…=271828…[fc)]为底的对数。用记号“ln”表示。有自然对数表可查。 当x趋近于正无穷或负无穷时,[1+(1/x)]^x的极限就等于e,实际上e就是通过这个极限而发现的。它是个无限不循环小数。其值约等于2.718281828... 它用e表示 以e为底数的对数通常用于㏑ 而且e还是一个超越数 e在科学技术中用得非常多,一般不使用以10为底数的对数。以e为底数,许多式子都能得到简化,用它是最“自然”的,所以叫“自然对数”。 涡形或螺线型是自然事物极为普遍的存在形式,比如:一缕袅袅升上蓝天的炊烟,一朵碧湖中轻轻荡开的涟漪,数只缓缓攀援在篱笆上的蜗牛和无数在恬静的夜空携拥着旋舞的繁星…… 螺线特别是对数螺线的美学意义可以用指数的形式来表达: φkρ=αe 其中,α和k为常数,φ是极角,ρ是极径,e是自然对数的底。为了讨论方便,我们把e或由e经过一定变换和复合的形式定义为“自然律”。因此,“自然律”的核心是e,其值为2.71828……,是一个无限循环数。 、“自然律”之美 “自然律”是e 及由e经过一定变换和复合的形式。e是“自然律”的精髓,在数学上它是函数: (1+1/x)^x 当X趋近无穷时的极限。 人们在研究一些实际问题,如物体的冷却、细胞的繁殖、放射性元素的衰变时,都要研究 (1+1/x)^x X的X次方,当X趋近无穷时的极限。正是这种从无限变化中获得的有限,从两个相反方向发展(当X趋向正无穷大的时,上式的极限等于e=2.71828……,当X趋向负无穷大时候,上式的结果也等于e=2.71828……)得来的共同形式,充分体现了宇宙的形成、发展及衰亡的最本质的东西。 现代宇宙学表明,宇宙起源于“大爆炸”,而且目前还在膨胀,这种描述与十九世纪后半叶的两个伟大发现之一的熵定律,即热力学第二定律相吻合。熵定律指出,物质的演化总是朝着消灭信息、瓦解秩序的方向,逐渐由复杂到简单、由高级到低级不断退化的过程。退化的极限就是无序的平衡,即熵最大的状态,一种无为的死寂状态。这过程看起来像什么?只要我们看看天体照相中的旋涡星系的照片即不难理解。如果我们一定要找到亚里士多德所说的那种动力因,那么,可以把宇宙看成是由各个预先上紧的发条组织,或者干脆把整个宇宙看成是一个巨大的发条,历史不过是这种发条不断争取自由而放出能量的过程。 生命体的进化却与之有相反的特点,它与热力学第二定律描述的熵趋于极大不同,它使生命物质能避免趋向与环境衰退。任何生命都是耗散结构系统,它之所以能免于趋近最大的熵的死亡状态,就是因为生命体能通过吃、喝、呼吸等新陈代谢的过程从环境中不断吸取负熵。新陈代谢中本质的东西,乃是使有机体成功的消除了当它自身活着的时候不得不产生的全部熵。 “自然律”一方面体现了自然系统朝着一片混乱方向不断瓦解的崩溃过程(如元素的衰变),另一方面又显示了生命系统只有通过一种有序化过程才能维持自身稳定和促进自身的发展(如细胞繁殖)的本质。正是具有这种把有序和无序、生机与死寂寓于同一形式的特点,“自然律”才在美学上有重要价值。 如果荒僻不毛、浩瀚无际的大漠是“自然律”无序死寂的熵增状态,那么广阔无垠、生机盎然的草原是“自然律”有序而欣欣向荣的动态稳定结构。因此,大漠使人感到肃穆、苍茫,令人沉思,让人回想起生命历程的种种困顿和坎坷;而草原则使人兴奋、雀跃,让人感到生命的欢乐和幸福。 e=2.71828……是“自然律”的一种量的表达。“自然律”的形象表达是螺线。螺线的数学表达式通常有下面五种:(1)对数螺线;(2)阿基米德螺线;(3)连锁螺线;(4)双曲螺线;(5)回旋螺线。对数螺线在自然界中最为普遍存在,其它螺线也与对数螺线有一定的关系,不过目前我们仍未找到螺线的通式。对数螺线是1638年经笛卡尔引进的,后来瑞士数学家雅各·伯努利曾详细研究过它,发现对数螺线的渐屈线和渐伸线仍是对数螺线,极点在对数螺线各点的切线仍是对数螺线,等等。伯努利对这些有趣的性质惊叹不止,竟留下遗嘱要将对数螺线画在自己的墓碑上。 英国著名画家和艺术理论家荷迦兹深深感到:旋涡形或螺线形逐渐缩小到它们的中心,都是美的形状。事实上,我们也很容易在古今的艺术大师的作品中找到螺线。为什么我们的感觉、我们的“精神的”眼睛经常能够本能地和直观地从这样一种螺线的形式中得到满足呢?这难道不意味着我们的精神,我们的“内在”世界同外在世界之间有一种比历史更原始的同构对应关系吗? 我们知道,作为生命现象的基础物质蛋白质,在生命物体内参与着生命过程的整个工作,它的功能所以这样复杂高效和奥秘无穷,是同其结构紧密相关的。化学家们发现蛋白质的多钛链主要是螺旋状的,决定遗传的物质——核酸结构也是螺螺状的。 古希腊人有一种称为风鸣琴的乐器,当它的琴弦在风中振动时,能产生优美悦耳的音调。这种音调就是所谓的“涡流尾迹效应”。让人深思的是,人类经过漫长岁月进化而成的听觉器官的内耳结构也具涡旋状。这是为便于欣赏古希腊人的风鸣琴吗?还有我们的指纹、发旋等等,这种审美主体的生理结构与外在世界的同构对应,也就是“内在”与“外在”和谐的自然基础。 有人说数学美是“一”的光辉,它具有尽可能多的变换群作用下的不变性,也即是拥有自然普通规律的表现,是“多”与“一”的统一,那么“自然律”也同样闪烁着“一”的光辉。谁能说清e=2.71828……给数学家带来多少方便和成功?人们赞扬直线的刚劲、明朗和坦率,欣赏曲线的优美、变化与含蓄,殊不知任何直线和曲线都可以从螺线中取出足够的部分来组成。有人说美是主体和客体的同一,是内在精神世界同外在物质世界的统一,那么“自然律”也同样有这种统一。人类的认识是按否定之否定规律发展的,社会、自然的历史也遵循着这种辩证发展规律,是什么给予这种形式以生动形象的表达呢?螺线! 有人说美在于事物的节奏,“自然律”也具有这种节奏;有人说美是动态的平衡、变化中的永恒,那么“自然律”也同样是动态的平衡、变化中的永恒;有人说美在于事物的力动结构,那么“自然律”也同样具有这种结构——如表的游丝、机械中的弹簧等等。 “自然律”是形式因与动力因的统一,是事物的形象显现,也是具象和抽象的共同表达。有限的生命植根于无限的自然之中,生命的脉搏无不按照宇宙的旋律自觉地调整着运动和节奏……有机的和无机的,内在的和外在的,社会的和自然的,一切都合而为一。这就是“自然律”揭示的全部美学奥秘吗?不!“自然律”永远具有不能穷尽的美学内涵,因为它象征着广袤深邃的大自然。正因为如此,它才吸引并且值的人们进行不懈的探索,从而显示人类不断进化的本质力量。(原载《科学之春》杂志1984年第4期,原题为:《自然律——美学家和艺术家的瑰宝》)此后故乡只2023-08-04 11:14:401
谁发明了对数螺旋线
早在2000多年以前,古希腊数学家阿基米德就对螺旋线进行了研究。公元1638年,著名数学家笛卡尔首先描述了对数螺旋线,并列出了螺旋线的解析式。这种螺旋线有很多特点,其中最突出的一点则是它的形状,无论你把它放大或缩小都不会改变。就像我们不能把角放大或缩小一样。当我们观察着园蛛,尤其是丝光蛛和条纹蛛的网时,我们会发现它的网并不是杂乱无章的,那些辐排得很均匀,每对相邻的辐所交成的角都是相等的;虽然辐的数目对不同的蜘蛛而言是各不相同的,可这个规律适用于各种蜘蛛。 我们已经知道,蜘蛛织网的方式很特别,它把网分成若干等份,同一类蜘蛛所分的份数是相同的。当它安置辐的时候,我们只见它向各个方向乱跳,似乎毫无规则,但是这种无规则的工作的结果是造成一个规则而美丽的网,像教堂中的玫瑰窗一般。即使他用了圆规、尺子之类的工具。没有一个设计家能画出一个比这更规范的网来。 我们可以看到,在同一个扇形里,所有的弦,也就是那构成螺旋形线圈的横辐,都是互相平行的,并且越靠近中心,这种弦之间的距离就越远。每一根弦和支持它的两根辐交成四个角,一边的两个是钝角,另一边的两个是锐角。而同一扇形中的弦和辐所交成的钝角和锐角正好各自相等——因为这些弦都是平行的。 不但如此,凭我们的观察,这些相等的锐角和钝角,又和别的扇形中的锐角和钝角分别相等,所以,总的看来,这螺旋形的线圈包括一组组的横档以及一组组和辐交成相等的角。 这种特性使我们想到数学家们所称的“对数螺线”。水元素sl2023-08-04 11:14:391
对数螺线极轴是x轴还是y轴
对数螺线极轴是x轴还是y?是y轴。人类地板流精华2023-08-04 11:14:391
求对数螺线r=ae^θ【-pai pai】射线θ=π所围成的图形的面积。θ=π在这题中的作用是封闭图形
因为对数螺线是一个不断旋转的图形,但是每点都不会重合。射线θ=π相当于切断了它的旋转铁血嘟嘟2023-08-04 11:14:381
对数主要运用在人们生活的哪些方面? 请详细描述,最好举例子!
自然对数 当x趋近于正无穷或负无穷时,[1+(1/x)]^x的极限就等于e,实际上e就是通过这个极限而发现的.它是个无限不循环小数.其值约等于2.718281828... 它用e表示 以e为底数的对数通常用于㏑ 而且e还是一个超越数 e在科学技术中用得非常多,一般不使用以10为底数的对数.以e为底数,许多式子都能得到简化,用它是最“自然”的,所以叫“自然对数”. 涡形或螺线型是自然事物极为普遍的存在形式,比如:一缕袅袅升上蓝天的炊烟,一朵碧湖中轻轻荡开的涟漪,数只缓缓攀援在篱笆上的蜗牛和无数在恬静的夜空携拥着旋舞的繁星…… 螺线特别是对数螺线的美学意义可以用指数的形式来表达: φkρ=αe 其中,α和k为常数,φ是极角,ρ是极径,e是自然对数的底.为了讨论方便,我们把e或由e经过一定变换和复合的形式定义为“自然律”.因此,“自然律”的核心是e,其值为2.71828……,是一个无限循环数. 、“自然律”之美 “自然律”是e 及由e经过一定变换和复合的形式.e是“自然律”的精髓,在数学上它是函数: (1+1/x)^x 当X趋近无穷时的极限. 人们在研究一些实际问题,如物体的冷却、细胞的繁殖、放射性元素的衰变时,都要研究 (1+1/x)^x X的X次方,当X趋近无穷时的极限.正是这种从无限变化中获得的有限,从两个相反方向发展(当X趋向正无穷大的时,上式的极限等于e=2.71828……,当X趋向负无穷大时候,上式的结果也等于e=2.71828……)得来的共同形式,充分体现了宇宙的形成、发展及衰亡的最本质的东西. 现代宇宙学表明,宇宙起源于“大爆炸”,而且目前还在膨胀,这种描述与十九世纪后半叶的两个伟大发现之一的熵定律,即热力学第二定律相吻合.熵定律指出,物质的演化总是朝着消灭信息、瓦解秩序的方向,逐渐由复杂到简单、由高级到低级不断退化的过程.退化的极限就是无序的平衡,即熵最大的状态,一种无为的死寂状态.这过程看起来像什么?只要我们看看天体照相中的旋涡星系的照片即不难理解.如果我们一定要找到亚里士多德所说的那种动力因,那么,可以把宇宙看成是由各个预先上紧的发条组织,或者干脆把整个宇宙看成是一个巨大的发条,历史不过是这种发条不断争取自由而放出能量的过程. 生命体的进化却与之有相反的特点,它与热力学第二定律描述的熵趋于极大不同,它使生命物质能避免趋向与环境衰退.任何生命都是耗散结构系统,它之所以能免于趋近最大的熵的死亡状态,就是因为生命体能通过吃、喝、呼吸等新陈代谢的过程从环境中不断吸取负熵.新陈代谢中本质的东西,乃是使有机体成功的消除了当它自身活着的时候不得不产生的全部熵. “自然律”一方面体现了自然系统朝着一片混乱方向不断瓦解的崩溃过程(如元素的衰变),另一方面又显示了生命系统只有通过一种有序化过程才能维持自身稳定和促进自身的发展(如细胞繁殖)的本质.正是具有这种把有序和无序、生机与死寂寓于同一形式的特点,“自然律”才在美学上有重要价值. 如果荒僻不毛、浩瀚无际的大漠是“自然律”无序死寂的熵增状态,那么广阔无垠、生机盎然的草原是“自然律”有序而欣欣向荣的动态稳定结构.因此,大漠使人感到肃穆、苍茫,令人沉思,让人回想起生命历程的种种困顿和坎坷;而草原则使人兴奋、雀跃,让人感到生命的欢乐和幸福. e=2.71828……是“自然律”的一种量的表达.“自然律”的形象表达是螺线.螺线的数学表达式通常有下面五种:(1)对数螺线;(2)阿基米德螺线;(3)连锁螺线;(4)双曲螺线;(5)回旋螺线.对数螺线在自然界中最为普遍存在,其它螺线也与对数螺线有一定的关系,不过目前我们仍未找到螺线的通式.对数螺线是1638年经笛卡尔引进的,后来瑞士数学家雅各·伯努利曾详细研究过它,发现对数螺线的渐屈线和渐伸线仍是对数螺线,极点在对数螺线各点的切线仍是对数螺线,等等.伯努利对这些有趣的性质惊叹不止,竟留下遗嘱要将对数螺线画在自己的墓碑上. 英国著名画家和艺术理论家荷迦兹深深感到:旋涡形或螺线形逐渐缩小到它们的中心,都是美的形状.事实上,我们也很容易在古今的艺术大师的作品中找到螺线.为什么我们的感觉、我们的“精神的”眼睛经常能够本能地和直观地从这样一种螺线的形式中得到满足呢?这难道不意味着我们的精神,我们的“内在”世界同外在世界之间有一种比历史更原始的同构对应关系吗? 我们知道,作为生命现象的基础物质蛋白质,在生命物体内参与着生命过程的整个工作,它的功能所以这样复杂高效和奥秘无穷,是同其结构紧密相关的.化学家们发现蛋白质的多钛链主要是螺旋状的,决定遗传的物质——核酸结构也是螺螺状的. 古希腊人有一种称为风鸣琴的乐器,当它的琴弦在风中振动时,能产生优美悦耳的音调.这种音调就是所谓的“涡流尾迹效应”.让人深思的是,人类经过漫长岁月进化而成的听觉器官的内耳结构也具涡旋状.这是为便于欣赏古希腊人的风鸣琴吗?还有我们的指纹、发旋等等,这种审美主体的生理结构与外在世界的同构对应,也就是“内在”与“外在”和谐的自然基础. 有人说数学美是“一”的光辉,它具有尽可能多的变换群作用下的不变性,也即是拥有自然普通规律的表现,是“多”与“一”的统一,那么“自然律”也同样闪烁着“一”的光辉.谁能说清e=2.71828……给数学家带来多少方便和成功?人们赞扬直线的刚劲、明朗和坦率,欣赏曲线的优美、变化与含蓄,殊不知任何直线和曲线都可以从螺线中取出足够的部分来组成.有人说美是主体和客体的同一,是内在精神世界同外在物质世界的统一,那么“自然律”也同样有这种统一.人类的认识是按否定之否定规律发展的,社会、自然的历史也遵循着这种辩证发展规律,是什么给予这种形式以生动形象的表达呢?螺线! 有人说美在于事物的节奏,“自然律”也具有这种节奏;有人说美是动态的平衡、变化中的永恒,那么“自然律”也同样是动态的平衡、变化中的永恒;有人说美在于事物的力动结构,那么“自然律”也同样具有这种结构——如表的游丝、机械中的弹簧等等. “自然律”是形式因与动力因的统一,是事物的形象显现,也是具象和抽象的共同表达.有限的生命植根于无限的自然之中,生命的脉搏无不按照宇宙的旋律自觉地调整着运动和节奏……有机的和无机的,内在的和外在的,社会的和自然的,一切都合而为一.这就是“自然律”揭示的全部美学奥秘吗?不!“自然律”永远具有不能穷尽的美学内涵,因为它象征着广袤深邃的大自然.正因为如此,它才吸引并且值的人们进行不懈的探索,从而显示人类不断进化的本质力量. 旋涡形或螺线型是自然事物极为普遍的存在形式,比如:一缕袅袅升上蓝天的炊烟,一朵碧湖中轻轻荡开的涟漪,数只缓缓攀援在篱笆上的蜗牛和无数在恬静的夜空携拥着旋舞的繁星…… 螺线特别是对数螺线的美学意义可以用指数的形式来表达: φkρ=αe 其中,α和k为常数,φ是极角,ρ是极径,e是自然对数的底.为了讨论方便,我们把e或由e经过一定变换和复合的形式定义为“自然律”.因此,“自然律”的核心是e,其值为2.71828……,是一个无限循环数. 数,美吗? 1、数之美 人们很早就对数的美有深刻的认识.其中,公元前六世纪盛行于古希腊的毕达哥斯学派见解较为深刻.他们首先从数学和声学的观点去研究音乐节奏的和谐,发现声音的质的差别(如长短、高低、轻重等)都是由发音体数量方面的差别决定的.例如发音体(如琴弦)长,声音就长;振动速度快,声音就高;振动速度慢,声音就低.因此,音乐的基本原则在于数量关系. 毕达哥斯学派把音乐中的和谐原理推广到建筑、雕刻等其它艺术,探求什么样的比例才会产生美的效果,得出了一些经验性的规范.例如,在欧洲有长久影响的“黄金律”据说是他们发现的(有人说,是蔡泌于一八五四年提出了所谓的“黄金分割律”.所谓黄金分割律“就是取一根线分为两部分,使长的那部分的平方等于短的那部分乘全线段.”“如果某物的长与宽是按照这个比例所组成的,那么它就比由其它比例所组成的长方形‘要美".”). 这派学者还把数学与和谐的原则应用于天文学的研究,因而形成所谓“诸天音乐”或“宇宙和谐”的概念,认为天上诸星体在遵照一定的轨道运动中,也产生一种和谐的音乐.他们还认为,人体的机能也是和谐的,就象一个“小宇宙”.人体之所以美,是由于它各部分——头、手、脚、五官等比例适当,动作协调;宇宙之所以美,是由于各个物质单位以及各个星体之间运行的速度、距离、周转时间等等配合协调.这些都是数的和谐. 中国古代思想家们也有类似的观点.道家的老子和周易《系辞传》,都曾尝试以数学解释宇宙生成,后来又衍为周易象数派.《周易》中贲卦的表示朴素之美,离卦的表示华丽之美,以及所谓“极其数,遂定天下之象”,都是类似数学推理的结论.儒家的荀卿也说过:“万物同宇宙而异体.无宜而有用为人,数也.”庄子把“小我”与“大我”一视同仁,“小年”与“大年”等量齐观,也略同于毕达哥拉斯学派之把“小宇宙”和“大宇宙”互相印证.所谓“得之于手而应用于心,口不能言,有数存在焉与其间”.这种从数的和谐看出美的思想,深深地影响了后世的中国美学. 2、黄金律之美 黄金律历来被染上瑰丽诡秘的色彩,被人们称为“天然合理”的最美妙的形式比例.我们知道,黄金律不仅是构图原则,也是自然事物的最佳状态.中世纪意大利数学家费勃奈舍发现,许多植物叶片、花瓣以及松果壳瓣,从小到大的序列是以0.618:1的近似值排列的,这即是著名的“费勃奈舍数列”:1、2、3、5、8、13、21、34……动物身上的色彩图案也大体符合黄金比.舞蹈教练、体操专家选择人材制定的比列尺寸,例如肩宽和腰的比例、腰部以上与腰部以下的比列也都大体符合黄金比. 现代科学家还发现,当大脑呈现的“倍塔”脑电波的高频与低频之比是1:0.618的近似值(12.9赫兹与8赫兹之比)时,人的心身最具快感.甚至,当大自然的气温(23摄氏度)与人的体温37摄氏度之比为0.618:1时,最适宜于人的身心健康,最使人感到舒适.另外,数学家们为工农业生产制度的优选法,所提出的配料最佳比例、组织结构的最佳比例等等,也都大体符合黄金律. 然而,这并不意味着黄金律比“自然律”更具有美学意义.我们可以证明,当对数螺线: φkρ=αe 的等比取黄金律,即k=0.0765872,等比P1/P2=0.618时,则螺线中同一半径线上相邻极半径之比都有黄金分割关系.事实上,当函数f(X)等于e的X次方时,取X为0.4812,那么,f(X)=0.618…… 因此,黄金律被“自然律”逻辑所蕴含.换言之,“自然律”囊括了黄金律. 黄金律表现了事物的相对静止状态,而“自然律”则表现了事物运动发展的普遍状态.因此,从某种意义上说,黄金律是凝固的“自然律”,“自然律”是运动着的黄金律. 3、“自然律”之美 “自然律”是e 及由e经过一定变换和复合的形式.e是“自然律”的精髓,在数学上它是函数: 1(1+——) X的X次方,当X趋近无穷时的极限. 人们在研究一些实际问题,如物体的冷却、细胞的繁殖、放射性元素的衰变时,都要研究 1(1+——) X的X次方,当X趋近无穷时的极限.正是这种从无限变化中获得的有限,从两个相反方向发展(当X趋向正无穷大的时,上式的极限等于e=2.71828……,当X趋向负无穷大时候,上式的结果也等于e=2.71828……)得来的共同形式,充分体现了宇宙的形成、发展及衰亡的最本质的东西. 现代宇宙学表明,宇宙起源于“大爆炸”,而且目前还在膨胀,这种描述与十九世纪后半叶的两个伟大发现之一的熵定律,即热力学第二定律相吻合.熵定律指出,物质的演化总是朝着消灭信息、瓦解秩序的方向,逐渐由复杂到简单、由高级到低级不断退化的过程.退化的极限就是无序的平衡,即熵最大的状态,一种无为的死寂状态.这过程看起来像什么?只要我们看看天体照相中的旋涡星系的照片即不难理解.如果我们一定要找到亚里士多德所说的那种动力因,那么,可以把宇宙看成是由各个预先上紧的发条组织,或者干脆把整个宇宙看成是一个巨大的发条,历史不过是这种发条不断争取自由而放出能量的过程. 生命体的进化却与之有相反的特点,它与热力学第二定律描述的熵趋于极大不同,它使生命物质能避免趋向与环境衰退.任何生命都是耗散结构系统,它之所以能免于趋近最大的熵的死亡状态,就是因为生命体能通过吃、喝、呼吸等新陈代谢的过程从环境中不断吸取负熵.新陈代谢中本质的东西,乃是使有机体成功的消除了当它自身活着的时候不得不产生的全部熵. “自然律”一方面体现了自然系统朝着一片混乱方向不断瓦解的崩溃过程(如元素的衰变),另一方面又显示了生命系统只有通过一种有序化过程才能维持自身稳定和促进自身的发展(如细胞繁殖)的本质.正是具有这种把有序和无序、生机与死寂寓于同一形式的特点,“自然律”才在美学上有重要价值. 如果荒僻不毛、浩瀚无际的大漠是“自然律”无序死寂的熵增状态,那么广阔无垠、生机盎然的草原是“自然律”有序而欣欣向荣的动态稳定结构.因此,大漠使人感到肃穆、苍茫,令人沉思,让人回想起生命历程的种种困顿和坎坷;而草原则使人兴奋、雀跃,让人感到生命的欢乐和幸福. e=2.71828……是“自然律”的一种量的表达.“自然律”的形象表达是螺线.螺线的数学表达式通常有下面五种:(1)对数螺线;(2)阿基米德螺线;(3)连锁螺线;(4)双曲螺线;(5)回旋螺线.对数螺线在自然界中最为普遍存在,其它螺线也与对数螺线有一定的关系,不过目前我们仍未找到螺线的通式.对数螺线是1638年经笛卡尔引进的,后来瑞士数学家雅各·伯努利曾详细研究过它,发现对数螺线的渐屈线和渐伸线仍是对数螺线,极点在对数螺线各点的切线仍是对数螺线,等等.伯努利对这些有趣的性质惊叹不止,竟留下遗嘱要将对数螺线画在自己的墓碑上. 英国著名画家和艺术理论家荷迦兹深深感到:旋涡形或螺线形逐渐缩小到它们的中心,都是美的形状.事实上,我们也很容易在古今的艺术大师的作品中找到螺线.为什么我们的感觉、我们的“精神的”眼睛经常能够本能地和直观地从这样一种螺线的形式中得到满足呢?这难道不意味着我们的精神,我们的“内在”世界同外在世界之间有一种比历史更原始的同构对应关系吗? 我们知道,作为生命现象的基础物质蛋白质,在生命物体内参与着生命过程的整个工作,它的功能所以这样复杂高效和奥秘无穷,是同其结构紧密相关的.化学家们发现蛋白质的多钛链主要是螺旋状的,决定遗传的物质——核酸结构也是螺螺状的. 古希腊人有一种称为风鸣琴的乐器,当它的琴弦在风中振动时,能产生优美悦耳的音调.这种音调就是所谓的“涡流尾迹效应”.让人深思的是,人类经过漫长岁月进化而成的听觉器官的内耳结构也具涡旋状.这是为便于欣赏古希腊人的风鸣琴吗?还有我们的指纹、发旋等等,这种审美主体的生理结构与外在世界的同构对应,也就是“内在”与“外在”和谐的自然基础. 有人说数学美是“一”的光辉,它具有尽可能多的变换群作用下的不变性,也即是拥有自然普通规律的表现,是“多”与“一”的统一,那么“自然律”也同样闪烁着“一”的光辉.谁能说清e=2.71828……给数学家带来多少方便和成功?人们赞扬直线的刚劲、明朗和坦率,欣赏曲线的优美、变化与含蓄,殊不知任何直线和曲线都可以从螺线中取出足够的部分来组成.有人说美是主体和客体的同一,是内在精神世界同外在物质世界的统一,那么“自然律”也同样有这种统一.人类的认识是按否定之否定规律发展的,社会、自然的历史也遵循着这种辩证发展规律,是什么给予这种形式以生动形象的表达呢?螺线! 有人说美在于事物的节奏,“自然律”也具有这种节奏;有说美是动态的平衡、变化中的永恒,那么“自然律”也同样是动态的平衡、变化中的永恒;有人说美在于事物的力动结构,那么“自然律”也同样具有这种结构——如表的游丝、机械中的弹簧等等. “自然律”是形式因与动力因的统一,是事物的形象显现,也是具象和抽象的共同表达.有限的生命植根于无限的自然之中,生命的脉搏无不按照宇宙的旋律自觉地调整着运动和节奏……有机的和无机的,内在的和外在的,社会的和自然的,一切都合而为一.这就是“自然律”揭示的全部美学奥秘吗?不!“自然律”永远具有不能穷尽的美学内涵,因为它象征着广袤深邃的大自然.正因为如此,它才吸引并且值的人们进行不懈的探索,从而显示人类不断进化的本质力量.(原载《科学之春》杂志1984年第4期,原题为:《自然律——美学家和艺术家的瑰宝》) 2,尤拉的自然对数底公式 (大约等于2.71828的自然对数的底——e) 尤拉被称为数字界的莎士比亚,他是历史上最多产的数学家,也是各领域(包含数学中理论与应用的所有分支及力学、光学、音响学、水利、天文、化学、医药等)最多著作的学者.数学史上称十八世纪为“尤拉时代”. 尤拉出生于瑞士,31岁丧失了右眼的视力,59岁双眼失明,但他性格乐观,有惊人的记忆力及集中力,使他在13个小孩子吵闹的环境中仍能精确思考复杂问题. 尤拉一生谦逊,从没有用自己的名字给他发现的东西命名.只有那个大约等于2.71828的自然对数的底,被他命名为e.但因他对数学广泛的贡献,因此在许多数学分支中,反而经常见到以他的名字命名的重要常数、公式和定理. 我们现在习以为常的数学符号很多都是尤拉所发明介绍的,例如:函数符号f(x)、π、e、∑、logx、sinx、cosx以及虚数i等.高中教师常用一则自然对数的底数e笑话,帮助学生记忆一个很特别的微分公式:在一家精神病院里,有个病患整天对着别人说,“我微分你、我微分你.”也不知为什么,这些病患都有一点简单的微积分概念,总以为有一天自己会像一般多项式函数般,被微分到变成零而消失,因此对他避之不及,然而某天他却遇上了一个不为所动的人,他很意外,而这个人淡淡地对他说,“我是e的x次方.” 这个微分公式就是:e不论对x微分几次,结果都还是e!难怪数学系学生会用e比喻坚定不移的爱情! 相对于π是希腊文字中圆周第一个字母,e的由来较不为人熟知.有人甚至认为:尤拉取自己名字的第一个字母作为自然对数. 而尤拉选择e的理由较为人所接受的说法有二:一为在a,b,c,d等四个常被使用的字母后面,第一个尚未被经常使用的字母就是e,所以,他很自然地选了这个符号,代表自然对数的底数;一为e是指数的第一个字母,虽然你或许会怀疑瑞士人尤拉的母语不是英文,可事实上法文、德文的指数都是它.Chen2023-08-04 11:14:381
计算∫(L)ds,L为对数螺线ρ=ae^kθ(k>0)在圆ρ=a内的部分
人家不采纳,你有什么脾气?CarieVinne 2023-08-04 11:14:371
求对数螺线p=e^(at)相应于0≤t≤m的一段弧长?有谁会的?
微元:设ρ=f(θ) 那么弧长微元ΔL=1/2(f(θ)+f(θ+Δθ)) Δθ 这样弧长L=ΣΔL=Σ1/2(f(θ)+f(θ+Δθ)) Δθ=∫ f(θ)dθ 所以该题的弧长L就应该是e^(at)在0≤t≤m的积分黑桃花2023-08-04 11:14:371
求对数数螺线ρ=e^θ在点(ρ,θ)=(e^(π/2),π/2)处的切线的直角坐标方程。如题 谢谢了
把螺线方程改为参数方程:x=cosθe^θ,y=sinθe^θ,所以点(e^(π/2),π/2)的直角坐标为(e^(π/2),0),所以y"=-1所以切线方程为y-e^(π/2)=-(x-0),即x+y=e^(π/2)望楼主能采纳哦。苏萦2023-08-04 11:14:372
求对数螺线ρ=ae^θ(-π
a^2/4(e^2π-e^-2π)ardim2023-08-04 11:14:361
对数螺线与斐波那契螺线的关系
这种螺旋线有很多特点,其中最突出的一点则是它的形状,无论你把它放大或缩小都不会改变。就像我们不能把角放大或缩小一样。 这螺旋线还有一个特点。如果你用一根有弹性的线绕成一个对数螺线的图形,再把这根线放开来,然后拉紧放开的那部分,那么线的运动的一端就会划成一个和原来的对数螺线完全相似的螺线,只是变换了一下位置。这个定理是一位名叫杰克斯.勃诺利的数学教授发现的,他死后,后人把这条定理刻在他的墓碑上,算是他一生中最为光荣的事迹之一。ardim2023-08-04 11:14:361
对数螺线是什么
详见http://baike.baidu.com/view/795.htm 对数螺线是一根无止尽的螺线,它永远向着极绕,越绕越靠近极,但又永远不能到达极。据说,使用最精密的仪器也看不到一根完全的对数螺线,这种图形只存在科学家的假想中。 螺线特别是对数螺线的美学意义可以用指数的形式来表达: ρ=αe^(kφ) 其中,α和k为常数,φ是极角,ρ是极径,e是自然对数的底。为了讨论方便,我们把e或由e经过一定变换和复合的形式定义为“自然律”。因此,“自然律”的核心是e,其值为2.71828……,是一个无限不循环小数。 对数螺线在自然界中最为普遍存在,其它螺线也与对数螺线有一定的关系,不过目前我们仍未找到螺线的通式。阿啵呲嘚2023-08-04 11:14:351
什么是对数螺线?是谁发明的
对数螺线是一根无止尽的螺线,它永远向着极绕,越绕越靠近极,但又永远不能到达极。据说,使用最精密的仪器也看不到一根完全的对数螺线,这种图形只存在科学家的假想中。螺线特别是对数螺线的美学意义可以用指数的形式来表达:φkρ=αe其中,α和k为常数,φ是极角,ρ是极径,e是自然对数的底。为了讨论方便,我们把e或由e经过一定变换和复合的形式定义为“自然律”。因此,“自然律”的核心是e,其值为2.71828……,是一个无限循环数。对数螺线在自然界中最为普遍存在,其它螺线也与对数螺线有一定的关系,不过目前我们仍未找到螺线的通式。对数螺线是1638年经笛卡尔引进的,后来瑞士数学家雅各·伯努利曾详细研究过它,发现对数螺线的渐屈线和渐伸线仍是对数螺线,极点在对数螺线各点的切线仍是对数螺线,等等。伯努利对这些有趣的性质惊叹不止,竟留下遗嘱要将对数螺线画在自己的墓碑上。再也不做站长了2023-08-04 11:14:351
对数螺线的参数方程
对数螺线的参数方程x=t·cos[ln(t)]y=t·sin[ln(t)]陶小凡2023-08-04 11:14:352
对数螺旋线有什么特点?在物理上用什么应用 ?和其他物理量有什么关系?
早在2000多年以前,古希腊数学家阿基米德就对螺旋线进行了研究。公元1638年,著名数学家笛卡尔首先描述了对数螺旋线,并列出了螺旋线的解析式。这种螺旋线有很多特点,其中最突出的一点则是它的形状,无论你把它放大或缩小都不会改变。就像我们不能把角放大或缩小一样。当我们观察着园蛛,尤其是丝光蛛和条纹蛛的网时,我们会发现它的网并不是杂乱无章的,那些辐排得很均匀,每对相邻的辐所交成的角都是相等的;虽然辐的数目对不同的蜘蛛而言是各不相同的,可这个规律适用于各种蜘蛛。 我们已经知道,蜘蛛织网的方式很特别,它把网分成若干等份,同一类蜘蛛所分的份数是相同的。当它安置辐的时候,我们只见它向各个方向乱跳,似乎毫无规则,但是这种无规则的工作的结果是造成一个规则而美丽的网,像教堂中的玫瑰窗一般。即使他用了圆规、尺子之类的工具。没有一个设计家能画出一个比这更规范的网来。 我们可以看到,在同一个扇形里,所有的弦,也就是那构成螺旋形线圈的横辐,都是互相平行的,并且越靠近中心,这种弦之间的距离就越远。每一根弦和支持它的两根辐交成四个角,一边的两个是钝角,另一边的两个是锐角。而同一扇形中的弦和辐所交成的钝角和锐角正好各自相等——因为这些弦都是平行的。 不但如此,凭我们的观察,这些相等的锐角和钝角,又和别的扇形中的锐角和钝角分别相等,所以,总的看来,这螺旋形的线圈包括一组组的横档以及一组组和辐交成相等的角。 这种特性使我们想到数学家们所称的“对数螺线”。这种曲线在科学领域是很著名的。对数螺线是一根无止尽的螺线,它永远向着极绕,越绕越靠近极,但又永远不能到达极。即使用最精密的仪器,我们也看不到一根完全的对数螺线。这种图形只存在科学家的假想中,可令人惊讶的是小小的蜘蛛也知道这线,它就是依照这种曲线的法则来绕它网上的螺线的,而且做得很精确。 这螺旋线还有一个特点。如果你用一根有弹性的线绕成一个对数螺线的图形,再把这根线放开来,然后拉紧放开的那部分,那么线的运动的一端就会划成一个和原来的对数螺线完全相似的螺线,只是变换了一下位置。这个定理是一位名叫杰克斯.勃诺利的数学教授发现的,他死后,后人把这条定理刻在他的墓碑上,算是他一生中最为光荣的事迹之一。 那么,难道有着这些特性的对数螺线只是几何学家的一个梦想吗?这真的仅仅是一个梦、一个谜吗?那么它究竟有什么用呢? 它确实广泛的巧合,总之它是普遍存在的,有许多动物的建筑都采取这一结构。有一种蜗牛的壳就是依照对数螺线构造的。世界上第一只蜗牛知道了对数螺线,然后用它来造壳,一直到现在,壳的样子还没变过。 在壳类的化石中,这种螺线的例子还有很多。现在,在南海,我们还可以找到一种太古时代的生物的后代,那就是鹦鹉螺。它们还是很坚贞地守着祖传的老法则,它们的壳和世界初始时它们的老祖宗的壳完全一样。也就是说,它们的壳仍然是依照对数螺线设计的。并没有因时间的流逝而改变,就是在我们的死水池里,也有一种螺,它也有一个螺线壳,普通的蜗牛壳也是属于这一构造。 可是这些动物是从哪里学到这种高深的数学知识的呢?又是怎样把这些知识应用于实际的呢?有这样一种说法,说蜗牛是从蠕虫进化来的。某一天,蠕虫被太阳晒得舒服极了,无意识地揪住自己的尾巴玩弄起来,便把它绞成螺旋形取乐。突然它发现这样很舒服,于是常常这么做。久而久之便成了螺旋形的了,做螺旋形的壳的计划,就是从这时候产生的。 但是蜘蛛呢?它从哪里得到这个概念呢?因为它和蠕虫没有什么关系。然而它却很熟悉对数螺线,而且能够简单地运用到它的网中。蜗牛的壳要造好几年,所以它能做得很精致,但蛛网差不多只用一个小时就造成了,所以它只能做出这种曲线的一个轮廊,管不精确,但这确实是算得上一个螺旋曲线。是什么东西在指引着它呢?除了天生的技巧外,什么都没有。天生的技巧能使动物控制自己的工作,正像植物的花瓣和小蕊的排列法,它们天生就是这样的。没有人教它们怎么做,而事实上,它们也只能作这么一种,蜘蛛自己不知不觉地在练习高等几何学,靠着它生来就有的本领很自然地工作着。 我们抛出一个石子,让它落到地上,这石子在空间的路线是一种特殊的曲线。树上的枯叶被风吹下来落到地上,所经过的路程也是这种形状的曲线。科学家称这种曲线为抛物线。 几何学家对这曲线作了进一步的研究,他们假想这曲线在一根无限长的直线上滚动,那么它的焦点将要划出怎样一道轨迹呢?答案是:垂曲线。这要用一个很复杂的代数式来表示。如果要用数字来表示的话,这个数字的值约等于这样一串数字+1/1+1/1*2+1/1*2*3+1/1*2*3*4+……的和。 几何学家不喜欢用这么一长串数字来表示,所以就用“e”来代表这个数。e是一个无限不循环小数,数学中常常用到它。 这种线是不是一种理论上的假想呢?并不,你到处可以看到垂曲线的图形:当一根弹性线的两端固定,而中间松驰的时候,它就形成了一条垂曲线;当船的帆被风吹着的时候,就会弯曲成垂曲线的图形;这些寻常的图形中都包含着“e”的秘密。一根无足轻重的线,竟包含着这么多深奥的科学!我们暂且别惊讶。一根一端固定的线的摇摆,一滴露水从草叶上落下来,一阵微风在水面拂起了微波,这些看上去稀松平常、极为平凡的事,如果从数学的角度去研究的话,就变得非常复杂了。 我们人类的数学测量方法是聪明的。但我们对发明这些方法的人,不必过分地佩服。因为和那些小动物的工作比起来,这些繁重的公式和理论显得又慢又复杂。难道将来我们想不出一个更简单的形式,并使它运用到实际生活中吗?难道人类的智慧还不足以让我们不依赖这种复杂的公式吗?我相信,越是高深的道理,其表现形式越应该简单而朴实。 在这里,我们这个魔术般的“e”字又在蜘蛛网上被发现了。在一个有雾的早晨,这粘性的线上排了许多小小的露珠。它的重量把蛛网的丝压得弯下来,于是构成了许多垂曲线,像许多透明的宝石串成的链子。太阳一出来,这一串珠子就发出彩虹一般美丽的光彩。好像一串金钢钻。“e”这个数目,就包蕴在这光明灿烂的链子里。望着这美丽的链子,你会发现科学之美、自然之美和探究之美。 几何学,这研究空间的和谐的科学几乎统治着自然界的一切。在铁杉果的鳞片的排列中以及蛛网的线条排列中,我们能找到它;在蜗牛的螺线中,我们能找到它;在行星的轨道上,我们也能找到它,它无处不在,无时不在,在原子的世界里,在广大的宇宙中,它的足迹遍布天下。 这种自然的几何学告诉我们,宇宙间有一位万能的几何学家,他已经用它神奇的工具测量过宇宙间所有的东西。所以万事万物都有一定的规律。我觉得用这个假设来解释鹦鹉螺和蛛网的对数螺线,似乎比蠕虫绞尾巴而造成螺线的说法更恰当。再也不做站长了2023-08-04 11:14:351
数三考对数螺线吗
不能确定,因为每次试卷题都不一样。对数螺线是一根无止尽的螺线,它永远向着极绕,越绕越靠近极,但又永远不能到达极。据说,使用最精密的仪器也看不到一根完全的对数螺线,这种图形只存在科学家的假想中。螺线特别是对数螺线的美学意义可以用指数的形式来表达:ρ=αe^(kφ)其中,α和k为常数,φ是极角,ρ是极径,e是自然对数的底。为了讨论方便,我们把e或由e经过一定变换和复合的形式定义为自然律。因此,自然律的核心是e,其值为2.71828,是一个无限不循环小数。对数螺线在自然界中最为普遍存在,其它螺线也与对数螺线有一定的关系,不过目前我们仍未找到螺线的通式。西柚不是西游2023-08-04 11:14:351
什么是对数螺线?是谁发明的?
对数螺线是一根无止尽的螺线,它永远向着极绕,越绕越靠近极,但又永远不能到达极。雅各·贝努利是发明者 查看原帖>>麻烦采纳,谢谢!gitcloud2023-08-04 11:14:343
求对数螺线的弧长公式和面积公式。面积公式很好求,关键是弧长公式不好求。这是极坐标方程
可桃可挑2023-08-04 11:14:324
求对数螺线r=e^aθ相应θ=0到θ=φ的一段弧长
弧长元素=rdθ则弧长=∫e^(aθ)*θdθ=1/a∫θd[e^(aθ)]=1/a*θ*e^(aθ)-1/a∫[e^(aθ)]dθ=1/a*θ*e^(aθ)-1/a*1/a*e^(aθ)+C0→φ为(φ/a-1/a^2)*e^(aφ)+1/a^2wpBeta2023-08-04 11:14:322
高数微积分,对数螺线求弧长,求指教怎么计算?
臂的距离以几何级数递增的螺线。设 L 为穿过原点的任意直线,则 L 与等角螺线的相交的角A永远相等。豆豆staR2023-08-04 11:14:323
请问如何画对数螺旋线
画对数螺旋线的方法步骤: 1、直接输入命令“HELIX”,或者点击“绘图”、“螺旋线”,即可打开螺旋线绘制功能; 2、在绘图区域点击需要绘制螺旋线的圆点; 3、移动鼠标,或者直接输入底面圆半径; 4、移动鼠标,或者直接输入顶面圆半径; 5、如果需要修改圆圈数,就输入“t”之后,然后回车; 6、输入圈数后回车; 7、移动鼠标,或者直接输入螺旋圈的高度,然后点击绘图区,即可完成螺旋线的绘制。Chen2023-08-04 11:14:311
对数螺线的寓意
慢慢靠近始终无法达到。对数螺线是一根无止尽的螺线,永远向着极绕,越绕越靠近极,但又永远不能到达极,表示慢慢靠近始终无法达到,多用于双方的感情。对数螺线指等角螺线,指的是臂的距离以几何级数递增的螺线。Ntou1232023-08-04 11:14:301
对数螺旋线有什么特点
早在2000多年以前,古希腊数学家阿基米德就对螺旋线进行了研究.公元1638年,著名数学家笛卡尔首先描述了对数螺旋线,并列出了螺旋线的解析式.这种螺旋线有很多特点,其中最突出的一点则是它的形状,无论你把它放大或缩小都不会改变.就像我们不能把角放大或缩小一样.当我们观察着园蛛,尤其是丝光蛛和条纹蛛的网时,我们会发现它的网并不是杂乱无章的,那些辐排得很均匀,每对相邻的辐所交成的角都是相等的;虽然辐的数目对不同的蜘蛛而言是各不相同的,可这个规律适用于各种蜘蛛. 我们已经知道,蜘蛛织网的方式很特别,它把网分成若干等份,同一类蜘蛛所分的份数是相同的.当它安置辐的时候,我们只见它向各个方向乱跳,似乎毫无规则,但是这种无规则的工作的结果是造成一个规则而美丽的网,像教堂中的玫瑰窗一般.即使他用了圆规、尺子之类的工具.没有一个设计家能画出一个比这更规范的网来. 我们可以看到,在同一个扇形里,所有的弦,也就是那构成螺旋形线圈的横辐,都是互相平行的,并且越靠近中心,这种弦之间的距离就越远.每一根弦和支持它的两根辐交成四个角,一边的两个是钝角,另一边的两个是锐角.而同一扇形中的弦和辐所交成的钝角和锐角正好各自相等——因为这些弦都是平行的. 不但如此,凭我们的观察,这些相等的锐角和钝角,又和别的扇形中的锐角和钝角分别相等,所以,总的看来,这螺旋形的线圈包括一组组的横档以及一组组和辐交成相等的角. 这种特性使我们想到数学家们所称的“对数螺线”.这种曲线在科学领域是很著名的.对数螺线是一根无止尽的螺线,它永远向着极绕,越绕越靠近极,但又永远不能到达极.即使用最精密的仪器,我们也看不到一根完全的对数螺线.这种图形只存在科学家的假想中,可令人惊讶的是小小的蜘蛛也知道这线,它就是依照这种曲线的法则来绕它网上的螺线的,而且做得很精确. 这螺旋线还有一个特点.如果你用一根有弹性的线绕成一个对数螺线的图形,再把这根线放开来,然后拉紧放开的那部分,那么线的运动的一端就会划成一个和原来的对数螺线完全相似的螺线,只是变换了一下位置.这个定理是一位名叫杰克斯.勃诺利的数学教授发现的,他死后,后人把这条定理刻在他的墓碑上,算是他一生中最为光荣的事迹之一.FinCloud2023-08-04 11:14:301
为什么自然界中存在这么多的对数螺线呢?
因为对数螺线具有等角性,受环境影响,很多直线运动会转变为等角螺线运动。我们以飞蛾扑火为例亿万年来,夜晚活动的蛾子等昆虫都是靠月光和星光来导航,因为天体距离很远,这些光都是平行光,可以作为参照来做直线飞行。如下图所示,注意蛾子只要按照固定夹角飞行,就可以飞成直线,这样飞才最节省能量。但自从人类学会了使用火,这些人造光源因为很近,光线成中心放射线状,可怜的蛾子就开始倒霉了。蛾子还以为按照与光线的固定夹角飞行就是直线运动,结果越飞越坑爹,飞成了等角螺线,最后飞到火里去了,这种现象还被人类称为昆虫的正趋光性。蛾子说:趋你妹的光啊,傻瓜才瞪着光飞,不知道会亮瞎眼啊?!!我们完全被人类误导了,亿万年才演化出的精妙直线导航方法,被人类的光污染干扰失效了!不用假慈悲的飞蛾扑火纱罩灯了,凸(#)凸,赶紧把灯关了吧!注意下图飞虫都在做螺线飞行,如果昆虫有趋光性。直飞不是更好吗?不要以为只有蛾子会这样,人在用指南针导航时也有同样的问题。根本原因是原来作为参考的平行场变成了中心发散的场,导致直线运动变成了螺线运动。我们也知道,绝对平行的场在自然界中是不存在的,只是我们为了计算方便,在小范围内近似认为平行而已。如果把尺度放大了看,更多的场是不平行的、是发散的,所以自然界中大量存在等角螺线现象就很正常了。例如理想状态下,流体应该是直线运动的,但在发散场和地球自转的作用下,就会像飞蛾一样走出类似等角螺线的形状,天上的台风和水中的漩涡就是这样形成的,不过实际情况远比这要复杂,只能近似这样考虑。关于对数螺线还有一个小笑话。对数螺线是笛卡儿在1638年发现的,雅各布伯努利也做了研究,并发现了许多非常优美的特性,经过各种变换,结果还保持原来的样子。他十分惊叹和欣赏这种美,要求死后自己的墓碑上一定要刻上对数螺线,以及墓志铭“纵使改变,依然故我”(eadem mutata resurgo)。结果石匠同志误将阿基米德螺线刻了上去,雅各布九泉有知一定会把棺材掀翻的!阿基米德螺线是这样的:常人的确看不出区别,你能看出来吗?千万不要搞混啊!北有云溪2023-08-04 11:14:301
对数螺线的弧长公式
对数螺线的弧长公式是r=e^θ,对数螺线一般指等角螺线,指的是臂的距离以几何级数递增的螺线,设L为穿过原点的任意直线,则L与等角螺线的相交的角A永远相等。等角螺线、对数螺线或生长螺线是在自然界常见的螺线,等角螺线的渐屈线和垂足线都是等角螺线。从原点到等角螺线的任意点上的长度有限,但由该任意点出发沿等角螺线走到原点却需绕原点转无限次。黑桃花2023-08-04 11:14:301
对数螺线Θ属于 -π到π时是指图形中的哪一部分呀
如图。北境漫步2023-08-04 11:14:291
对数螺线怎么转换成参数方程
对数螺线的参数方程为:x=e^θcosθ。y=e^θsinθ。等角螺线,指的是臂的距离以几何级数递增的螺线。设 L 为穿过原点的任意直线,则 L 与等角螺线的相交的角A永远相等(故其名),而此值为 arccot(b)。简介等角螺线是由笛卡儿在1638年发现的。雅各布.伯努利后来重新研究之。他发现了等角螺线的许多特性,如等角螺线经过各种适当的变换之后仍是等角螺线。他十分惊叹和欣赏这曲线的特性,故要求死后将之刻在自己的墓碑上,并附词纵使改变,依然故我(eadem mutata resurgo)。可惜雕刻师误将阿基米德螺线刻了上去。左迁2023-08-04 11:14:291
什么是对数螺线?是谁发明的?
分类: 教育/科学 >> 科学技术 解析: 对数螺线是一根无止尽的螺线,它永远向着极绕,越绕越靠近极,但又永远不能到达极。据说,使用最精密的仪器也看不到一根完全的对数螺线,这种图形只存在科学家的假想中。 螺线特别是对数螺线的美学意义可以用指数的形式来表达: φkρ=αe 其中,α和k为常数,φ是极角,ρ是极径,e是自然对数的底。为了讨论方便,我们把e或由e经过一定变换和复合的形式定义为“自然律”。因此,“自然律”的核心是e,其值为2.71828……,是一个无限循环数。对数螺线在自然界中最为普遍存在,其它螺线也与对数螺线有一定的关系,不过目前我们仍未找到螺线的通式。对数螺线是1638年经笛卡尔引进的,后来瑞士数学家雅各·伯努利曾详细研究过它,发现对数螺线的渐屈线和渐伸线仍是对数螺线,极点在对数螺线各点的切线仍是对数螺线,等等。伯努利对这些有趣的性质惊叹不止,竟留下遗嘱要将对数螺线画在自己的墓碑上。u投在线2023-08-04 11:14:281
对数螺线是什么
对数螺线是一根无止尽的螺线,它永远向着极绕,越绕越靠近极,但又永远不能到达极.据说,使用最精密的仪器也看不到一根完全的对数螺线,这种图形只存在科学家的假想中. 螺线特别是对数螺线的美学意义可以用指数的形式来表达: ρ=αe^(kφ) 其中,α和k为常数,φ是极角,ρ是极径,e是自然对数的底.为了讨论方便,我们把e或由e经过一定变换和复合的形式定义为“自然律”.因此,“自然律”的核心是e,其值为2.71828……,是一个无限不循环小数. 对数螺线在自然界中最为普遍存在,其它螺线也与对数螺线有一定的关系,不过目前我们仍未找到螺线的通式.肖振2023-08-04 11:14:281
对数螺线方程如何解
填空:对数螺线ρ=e^θ在点处切线的直角坐标方程为________。x+y=e^(π/2).详解一,对数螺线方程ρ=e^θ在点θ=π/2处的切线直角坐标系方程见附图;详解二:对数螺线方程ρ=e^θ可化为隐函数方程:ln√[x^2+y^2]=arctan(y/x),利用隐函数求导法,求得在点[0,e^(π/2)]处的导数为y"(0)=-1,故所求在点(ρ,θ)处的切线方程是:y-e^(π/2)=-1(x-0)=-x,即x+y=e^(π/2).瑞瑞爱吃桃2023-08-04 11:14:281
方程之父是谁?关于他的生平简介是什么?他对数学的发展有哪些突出和贡献?方程的定义是什么?方程的种类
不是很清楚,之父是埃及人,直到三百年前,法国的数学家笛卡儿第一个提倡用字母代表未知数,才形成了现在的方程。kikcik2023-08-04 10:59:202
生物统计题:用LSD法、SSR法、和q法对数据进行多重比较
SSR(新复极差法):假设H0:设两者治愈率相同,即π1=π2,H1:两者治愈率不同,即π1≠π2。α=0.05。T最小值为30×70÷145=14.5>5,不需校正。χ2=(53×13-17×62)(53×13-17×62)×145/(115×30×70×75)=1.07 自由度v=1。然后查卡方届值表得p>0.05,所以不可以拒绝H0,接受H1即可以认为两者治愈率有差别。LSR法检验统计量计算有Duncan于1955年提出的新复极差法(SSR法)和Tukey于1949年提出的q法:SSR=(xi.-xj.)/SE~SSR(p,fe)q=(xi.-xj.)/SE~q(p,fe)SE=(MSe/r)开平方扩展资料:多重比较法要求的条件与方差分析法相同,即随机变量服从正态分布,方差相齐和观测值的独立性。多重比较法的方法(一)LSD(Least Significant Difference)法要求组间的标本数必须相同,适用于被指定组间的比较检定。(二)Tukey法这个方法也被称作Tukey(a)法,适用于将进行比较的组间完全对等关系的情况,具有相同的标本数是进行检定的前提。(三)Bonferroni法这个方这是LSD法的改良法,适用于全体组间比较检定。(四)Scheffe法适用于需要进行全体组间比较检定。Scheffe技在需要进行比较的个数多于平均值个数时,比BonfeDoni法更容易得到明确的判断。另外,在万检定的结果不存在有意差时,也可以判断某组间是否存在有意差等特点。参考资料来源:百度百科-Scheffe成对比较检验可桃可挑2023-08-03 10:42:431
求教对数的性质及其证明(
对数的概念 英语名词:logarithms 如果a^n=b,那么log(a)(b)=n。其中,a叫做“底数”,b叫做“真数”,n叫做“以a为底b的对数”。 log(a)(b)函数叫做对数函数。对数函数中b的定义域是b>0,零和负数没有对数;a的定义域是a>0且a≠1。[编辑本段]对数的性质及推导定义: 若a^n=b(a>0且a≠1) 则n=log(a)(b)基本性质: 1、a^(log(a)(b))=b 2、log(a)(a^b)=b 3、log(a)(MN)=log(a)(M)+log(a)(N); 4、log(a)(M÷N)=log(a)(M)-log(a)(N); 5、log(a)(M^n)=nlog(a)(M) 6、log(a^n)M=log(a)(M)/n推导 1、因为n=log(a)(b),代入则a^n=b,即a^(log(a)(b))=b。 2、因为a^b=a^b 令t=a^b 所以a^b=t,b=log(a)(t)=log(a)(a^b) 3、MN=M×N 由基本性质1(换掉M和N) a^[log(a)(MN)]=a^[log(a)(M)]×a^[log(a)(N)]=(M)*(N) 由指数的性质 a^[log(a)(MN)]=a^{[log(a)(M)]+[log(a)(N)]} 两种方法只是性质不同,采用方法依实际情况而定 又因为指数函数是单调函数,所以 log(a)(MN)=log(a)(M)+log(a)(N) 4、与(3)类似处理 MN=M÷N 由基本性质1(换掉M和N) a^[log(a)(M÷N)]=a^[log(a)(M)]÷a^[log(a)(N)] 由指数的性质 a^[log(a)(M÷N)]=a^{[log(a)(M)]-[log(a)(N)]} 又因为指数函数是单调函数,所以 log(a)(M÷N)=log(a)(M)-log(a)(N) 5、与(3)类似处理 M^n=M^n 由基本性质1(换掉M) a^[log(a)(M^n)]={a^[log(a)(M)]}^n 由指数的性质 a^[log(a)(M^n)]=a^{[log(a)(M)]*n} 又因为指数函数是单调函数,所以 log(a)(M^n)=nlog(a)(M) 基本性质4推广 log(a^n)(b^m)=m/n*[log(a)(b)] 推导如下: 由换底公式(换底公式见下面)[lnx是log(e)(x),e称作自然对数的底] log(a^n)(b^m)=ln(b^m)÷ln(a^n) 换底公式的推导: 设e^x=b^m,e^y=a^n 则log(a^n)(b^m)=log(e^y)(e^x)=x/y x=ln(b^m),y=ln(a^n) 得:log(a^n)(b^m)=ln(b^m)÷ln(a^n) 由基本性质4可得 log(a^n)(b^m)=[m×ln(b)]÷[n×ln(a)]=(m÷n)×{[ln(b)]÷[ln(a)]} 再由换底公式 log(a^n)(b^m)=m÷n×[log(a)(b)]--------------------------------------------(性质及推导完)[编辑本段]函数图象 1.对数函数的图象都过(1,0)点. 2.对于y=log(a)(n)函数, ①,当0<a<1时,图象上函数显示为(0,+∞)单减.随着a的增大,图象逐渐以(1,0)点为轴顺时针转动,但不超过X=1. ②当a>1时,图象上显示函数为(0,+∞)单增,随着a的减小,图象逐渐以(1.0)点为轴逆时针转动,但不超过X=1. 3.与其他函数与反函数之间图象关系相同,对数函数和指数函数的图象关于直线y=x对称.[编辑本段]其他性质 性质一:换底公式 log(a)(N)=log(b)(N)÷log(b)(a) 推导如下: N=a^[log(a)(N)] a=b^[log(b)(a)] 综合两式可得 N={b^[log(b)(a)]}^[log(a)(N)]=b^{[log(a)(N)]*[log(b)(a)]} 又因为N=b^[log(b)(N)] 所以b^[log(b)(N)]=b^{[log(a)(N)]*[log(b)(a)]} 所以log(b)(N)=[log(a)(N)]*[log(b)(a)]{这步不明白或有疑问看上面的} 所以log(a)(N)=log(b)(N)/log(b)(a)公式二:log(a)(b)=1/log(b)(a) 证明如下: 由换底公式log(a)(b)=log(b)(b)/log(b)(a)----取以b为底的对数 log(b)(b)=1=1/log(b)(a)还可变形得:log(a)(b)×log(b)(a)=1 在实用上,常采用以10为底的对数,并将对数记号简写为lgb,称为常用对数,它适用于求十进伯制整数或小数的对数。例如lg10=1,lg100=lg10^2=2,lg4000=lg(10^3×4)=3+lg4,可见只要对某一范围的数编制出对数表,便可利用来计算其他十进制数的对数的近似值。在数学理论上一般都用以无理数e=2.7182818……为底的对数,并将记号loge。简写为ln,称为自然对数,因为自然对数函数的导数表达式特别简洁,所以显出了它比其他对数在理论上的优越性。历史上,数学工作者们编制了多种不同精确度的常用对数表和自然对数表。但随着电子技术的发展,这些数表已逐渐被现代的电子计算工具所取代。真颛2023-08-03 10:42:312
数学指数函数,幂函数,对数函数的所有性质与公式
先给你找了两个,你看下行不行,文库相关的应该还有一些http://wenku.baidu.com/view/09e6097931b765ce050814f2.htmlhttp://wenku.baidu.com/view/5bf4ee4d2b160b4e767fcfa9.htmlmlhxueli 2023-08-03 10:42:312
对数函数图像及性质
对数函数图像及性质如图所示:对数函数y=logax 的定义域是{x 丨x>0},但如果遇到对数型复合函数的定义域的求解,除了要注意大于0以外,还应注意底数大于0且不等于1,如求函数y=logx(2x-1)的定义域,需同时满足x>0且x≠1。一般地,如果a(a>0,且a≠1)的b次幂等于N,那么数b叫做以a为底N的对数,记作logaN=b,其中a叫做对数的底数,N叫做真数。底数则要>0且≠1 真数>0。并且,在比较两个函数值时:如果底数一样,真数越大,函数值越大。(a>弯旦1时)如果底数一样,真数越小,函数值越大。(0<a<1时)对数函数的一般形式为 y=㏒ax,它实际上就是指数函数的反函数(图象关于直线y=x对称的两函数互物闹型为反函数),可表示为x=ay。因此指数函数里对于罩猜a的规定(a>0且a≠1),右图给出对于不同大小a所表示的函数图形:关于X轴对称、当a>1时,a越大,图像越靠近x轴、当0<a<1时,a越小,图像越靠近x轴。Ntou1232023-08-03 10:42:291
指数函数和对数函数的性质
指数函数y=ax(a>0,且a≠1)与对数函数y=logax(a>0,且a≠1)的图象和性质如下表. 指数函数和对数函数黑桃花2023-08-03 10:42:291
对数函数的性质及运算
性质 y=loga(x) (1)定义域 x>0 (2)值域 R (3) a>1,在定义域内是增函数,0 <a<1,在定义域内是减函数 (4)过定点(1,0) (5)是非奇非偶函数 对数函数没有啥运算 对数有运算法则 loga(M)+loga(N)=loga(MN) loga(M)-loga(N)=loga(M-N) nloga(M)=loga(M^n)</a<1,在定义域内是减函数mlhxueli 2023-08-03 10:42:281
对数的运算性质是怎么得出来的?
请你多看下对数函数的定义举个例子吧,假设lna=b则根据定义,我们可以知道e^b=a因为e^m*e^n=e^(m+n)所以ln(mn)=lnm+lnn相信你指数函数的性质一定很了解,由于指数函数与对数函数互为反函数,所以你可以根据指数函数的性质来推导出对数函数的性质。刚开始学对部分函数的运算性质不是很了解,等你学的更多了,站在与现在不同的高度看待问题了,这些东西就自然而然的明白了。阿啵呲嘚2023-08-03 10:42:281
对数函数的性质及运算
。。gitcloud2023-08-03 10:42:283
对数函数的性质
A设lnx=a,lny=b那么x=e^a,y=e^b则xy=e^(a b)所以ln(xy)=lnx lnyLuckySXyd2023-08-03 10:42:281
求对数函数的所有性质和公式
用^表示乘方,用log(a)(b)表示以a为底,b的对数 *表示乘号,/表示除号 定义式: 若a^n=b(a>0且a≠1) 则n=log(a)(b) 基本性质: 1.a^(log(a)(b))=b 2.log(a)(MN)=log(a)(M)+log(a)(N); 3.log(a)(M/N)=log(a)(M)-log(a)(N); 4.log(a)(M^n)=nlog(a)(M) 推导 1.这个就不用推了吧,直接由定义式可得(把定义式中的[n=log(a)(b)]带入a^n=b) 2. MN=M*N 由基本性质1(换掉M和N) a^[log(a)(MN)] = a^[log(a)(M)] * a^[log(a)(N)] 由指数的性质 a^[log(a)(MN)] = a^{[log(a)(M)] + [log(a)(N)]} 又因为指数函数是单调函数,所以 log(a)(MN) = log(a)(M) + log(a)(N) 3.与2类似处理 MN=M/N 由基本性质1(换掉M和N) a^[log(a)(M/N)] = a^[log(a)(M)] / a^[log(a)(N)] 由指数的性质 a^[log(a)(M/N)] = a^{[log(a)(M)] - [log(a)(N)]} 又因为指数函数是单调函数,所以 log(a)(M/N) = log(a)(M) - log(a)(N) 4.与2类似处理 M^n=M^n 由基本性质1(换掉M) a^[log(a)(M^n)] = {a^[log(a)(M)]}^n 由指数的性质 a^[log(a)(M^n)] = a^{[log(a)(M)]*n} 又因为指数函数是单调函数,所以 log(a)(M^n)=nlog(a)(M) 其他性质: 性质一:换底公式 log(a)(N)=log(b)(N) / log(b)(a) 推导如下 N = a^[log(a)(N)] a = b^[log(b)(a)] 综合两式可得 N = {b^[log(b)(a)]}^[log(a)(N)] = b^{[log(a)(N)]*[log(b)(a)]} 又因为N=b^[log(b)(N)] 所以 b^[log(b)(N)] = b^{[log(a)(N)]*[log(b)(a)]} 所以 log(b)(N) = [log(a)(N)]*[log(b)(a)] {这步不明白或有疑问看上面的} 所以log(a)(N)=log(b)(N) / log(b)(a) 性质二:(不知道什么名字) log(a^n)(b^m)=m/n*[log(a)(b)] 推导如下 由换底公式[lnx是log(e)(x),e称作自然对数的底] log(a^n)(b^m)=ln(a^n) / ln(b^n) 由基本性质4可得 log(a^n)(b^m) = [n*ln(a)] / [m*ln(b)] = (m/n)*{[ln(a)] / [ln(b)]} 再由换底公式 log(a^n)(b^m)=m/n*[log(a)(b)]真颛2023-08-03 10:42:281
对数函数图象及其性质?
对数函数是6类基本初等函数之一。其中对数的定义:如果a^x=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=logaN,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。一般地,函数y=logax(a>0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。其中x是自变量,函数的定义域是(0,+∞),即x>0。它实际上就是指数函数的反函数,可表示为x=ay。因此指数函数里对于a的规定,同样适用于对数函数。“log”是拉丁文logarithm(对数)的缩写,读作:[英][lɔɡ][美][lɔɡ, lɑɡ]。图像如下:wpBeta2023-08-03 10:42:261
指数函数与对数函数性质是什么
1、对数函数的图像都过(1,0)点,指数函数的图像都过(0,1)点; 2、对数(指数)函数的底数大于1时为增函数,大于0而小于1时为减函数; 3、对数函数的图像在y轴右侧,指数函数的图像在x轴上方; 4、对数函数的图像在区间(1,正无穷)上,当底数大于1时底数越大图像越接近x轴,当底数小于1时底数越小越图像越接近x轴。 5、性质规律的比较:指数函数和对数函数的单调性都由底数来决定,当时它们在各自的定义域内都是减函数,当时它们在各自的定义域内都是增函数;指数函数和对数函数都不具有奇偶性;它们的变化规律是,指数函数当时 ,当时即有“同位大于1,异位小于1”的规律,而对数函数当时 ,当时即有“同位得正,异位得负”的规律。余辉2023-08-03 10:42:261
对数函数的性质
定义域求解:对数函数y=logax 的定义域是{x 丨x>0},但如果遇到对数型复合函数的定义域的求解,除了要注意大于0以外,还应注意底数大于0且不等于1,如求函数y=logx(2x-1)的定义域,需同时满足x>0且x≠1和2x-1>0 ,得到x>1/2且x≠1,即其定义域为 {x 丨x>1/2且x≠1}值域:实数集R,显然对数函数无界;定点:对数函数的函数图像恒过定点(1,0);单调性:a>1时,在定义域上为单调增函数;0<a<1时,在定义域上为单调减函数;奇偶性:非奇非偶函数周期性:不是周期函数对称性:无最值:无零点:x=1注意:负数和0没有对数。两句经典话:底真同对数正,底真异对数负。解释如下:也就是说:若y=logab (其中a>0,a≠1,b>0)当0<a<1, 0<b<1时,y=logab>0;当a>1, b>1时,y=logab>0;当0<a<1, b>1时,y=logab<0;当a>1, 0<b<1时,y=logab<0。运算性质一般地,如果a(a>0,且a≠1)的b次幂等于N,那么数b叫做以a为底N的对数,记作logaN=b,其中a叫做对数的底数,N叫做真数。底数则要>0且≠1 真数>0并且,在比较两个函数值时:如果底数一样,真数越大,函数值越大。(a>1时)如果底数一样,真数越小,函数值越大。(0<a<1时)余辉2023-08-03 10:42:261
对数函数性质是什么对数函数及其性质
1、一般地,对数函数以幂(真数)为自变量,指数为因变量,底数为常量的函数。2、对数函数是6类基本初等函数之一。其中对数的定义:如果ax=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=logaN,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。3、一般地,函数y=logax(a>0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。4、其中x是自变量,函数的定义域是(0,+∞),即x>0。它实际上就是指数函数的反函数,可表示为x=ay。因此指数函数里对于a的规定,同样适用于对数函数。5、“log”是拉丁文logarithm(对数)的缩写。再也不做站长了2023-08-03 10:42:251
指数函数 对数函数 幂函数 但它们趋近于0时它们的趋近速度有什么规律吗(就像它们趋近无穷大一样)谢
当x趋近于0时,所有指数函数趋近于1,所有对数函数都趋近于负无穷或正无穷,所有幂函数都趋近于0。解析(规律):1、指数函数:一般地,函数(a为常数且以a>0,a≠1)叫做指数函数,函数的定义域是R。 对于一切指数函数来讲,值域为(0, +∞)。指数函数中前面的系数为1。所以当x趋近于0时,所有指数函数趋近于1。2、对数函数:一般地,函数y=log(a>0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。其中x是自变量,函数的定义域是(0,+∞),即x>0。值域为(-∞,+∞)。所以当x趋近于0时,所有对数函数都趋近于负无穷或正无穷。3、幂函数幂函数的一般形式是,其中,a可为任何常数,但中学阶段仅研究a为有理数的情形(a为无理数时取其近似的有理数),这时可表示为,其中m,n,k∈N*,且m,n互质。特别,当n=1时为整数指数幂。所以当x趋近于0时,所有幂函数都趋近于0。扩展资料:一、对数函数的其他性质1、定点:对数函数的函数图像恒过定点(1,0)2、单调性:(1)a>1时,在定义域上为单调增函数。(2)0<a<1时,在定义域上为单调减函数。3、奇偶性:非奇非偶函数。4、周期性:不是周期函数。5、零点:x=1注意:负数和0没有对数。二、指数函数的其他性质1、函数图形都是上凹的。函数总是在某一个方向上无限趋向于X轴,并且永不相交。2、单调性:(1)a>1时,则指数函数单调递增。(2)若0<a<1,则指数函数单调递减。3、定点:函数总是通过(0,1)这点(若y=a*+b,则函数定过点{0,1+b)}4、奇偶性:指数函数是非奇非偶函数5、反函数指数函数具有反函数,其反函数是对数函数,它是一个多值函数。三、幂函数的的其他性质1、奇偶性:(1)当m,n都为奇数,k为偶数时,定义域、值域均为R,为奇函数。(2)当m,n都为奇数,k为奇数时,定义域、值域均为{x∈R|x≠0},也就是(-∞,0)∪(0,+∞),为奇函数。(3)当m为奇数,n为偶数,k为偶数时,定义域、值域均为[0,+∞),为非奇非偶函数。(4)当m为奇数,n为偶数,k为奇数时,定义域、值均为(0,+∞),为非奇非偶函数。(5)当m为偶数,n为奇数,k为偶数时,定义域为R、值域为[0,+∞),为偶函数。(6)当m为偶数,n为奇数,k为奇数时,定义域为{x∈R|x≠0},也就是(-∞,0)∪(0,+∞),值域为(0,+∞),为偶函数。2、正值性质当α>0时,幂函数有下列性质:(1)图像都经过点(1,1),(0,0)。(2)函数的图像在区间[0,+∞)上是增函数。(3)在第一象限内,α>1时,导数值逐渐增大;α=1时,导数为常数;0<α<1时,导数值逐渐减小,趋近于0。3、负值性质当α<0时,幂函数有下列性质:(1)图像都通过点(1,1)。(2)图像在区间(0,+∞)上是减函数;(内容补充:若为X-2,易得到其为偶函数。利用对称性,对称轴是y轴,可得其图像在区间(-∞,0)上单调递增。其余偶函数亦是如此)。(3)在第一象限内,有两条渐近线(即坐标轴),自变量趋近0,函数值趋近+∞,自变量趋近+∞,函数值趋近0。4、零值性质当α=0时,幂函数有下列性质:的图像是直线y=1去掉一点(0,1)。它的图像不是直线。参考资料来源:百度百科-对数函数参考资料来源:百度百科-指数函数参考资料来源:百度百科-幂函数墨然殇2023-08-03 10:42:231
对数函数性质是什么 对数函数及其性质
1、一般地,对数函数以幂(真数)为自变量,指数为因变量,底数为常量的函数。 2、对数函数是6类基本初等函数之一。其中对数的定义:如果ax=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=logaN,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。 3、一般地,函数y=logax(a>0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。 4、其中x是自变量,函数的定义域是(0,+∞),即x>0。它实际上就是指数函数的反函数,可表示为x=ay。因此指数函数里对于a的规定,同样适用于对数函数。 5、“log”是拉丁文logarithm(对数)的缩写。水元素sl2023-08-03 10:42:221
对数函数性质是什么?
对数函数性质如下:1、值域:实数集R,显然对数函数无界;2、定点:函数图像恒过定点(1,0);3、单调性:a>1时,在定义域上为单调增函数;4、奇偶性:非奇非偶函数;5、周期性:不是周期函数;6、零点:x=1;7、底数则要>0且≠1 真数>0,并且在比较两个函数值时:如果底数一样,真数越大,函数值越大。(a>1时);如果底数一样,真数越小,函数值越大(0<a<1时)。对数函数表达方式:(1)常用对数:lg(b)=log10b(10为底数)。(2)自然对数:ln(b)=logeb(e为底数)。e为无限不循环小数,通常情况下只取e=2.71828。对数函数的图形只不过是指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。Chen2023-08-03 10:42:211