抛物线的参数方程
重心分上比下=2:1 过焦点作垂线交抛物线于两点 就是内接三角形左迁2023-08-03 10:38:272
请问抛物线的三角函数的参数方程怎么表示?
抛物线的三角函数的参数方程怎么表示?解:(1).抛物线的极坐标方程:ρ=p/(1-cosφ),其中p为抛物线的焦参数;(2).抛物线的参数方程:x=acosu2074t,y=asinu2074t;(a>0)九万里风9 2023-08-03 10:38:271
关于抛物线的四种参数方程有没有记忆口诀
抛物线方程就是指抛物线的轨迹方程,是一种用方程来表示抛物线的方法。在几何平面上可以根据抛物线的方程画出抛物线。抛物线在合适的坐标变换下,也可看成二次函数图像。1.过抛物线焦点弦的两端点作抛物线的切线,两切点交点在准线上。2.过抛物线准线上任一点作抛物线的切线,则过切点的弦过焦点。3.过抛物线准线上任一点作抛物线的切线,过两切点的弦最短时为通径。Ntou1232023-08-03 10:38:271
抛物线的参数方程是怎么退出来的
抛物线的参数方程是怎么退出来的设抛物线上一点与原点连线的倾斜角为a,则此线的方程为y=tana*x与y^2=2px联立,得x^2tana^2=2px,x=2p/tana^2,此时设t=1/tana则x=2pt^2代入y=tana*x=2pt苏州马小云2023-08-03 10:38:271
求几条参数方程题目(要分别用参数方法和一般方程方法求解)
在给定的平面直角坐标系中,如果曲线上任意一点的坐标x,y都是某个变数t的函数x=f(t),y=φ(t),(1)且对于t的每一个允许值,由方程组(1)所确定的点m(x,y)都在这条曲线上,那么方程组(1)称为这条曲线的参数方程,联系x、y之间关系的变数称为参变数,简称参数。类似地,也有曲线的极坐标参数方程ρ=f(t),θ=g(t)。(2)圆的参数方程x=a+rcosθy=b+rsinθ(a,b)为圆心坐标r为圆半径θ为参数椭圆的参数方程x=acosθy=bsinθa为长半轴长b为短半轴长θ为参数双曲线的参数方程x=asecθ(正割)y=btanθa为实半轴长b为虚半轴长θ为参数抛物线的参数方程x=2pt^2y=2ptp表示焦点到准线的距离t为参数直线的参数方程x=x"+tcosay=y"+tsina,x",y"和a表示直线经过(x",y"),且倾斜角为a,t为参数.在柯西中值定理的证明中,也运用到了参数方程。柯西中值定理如果函数f(x)及F(x)满足:(1)在闭区间[a,b]上连续;(2)在开区间(a,b)内可导;(3)对任一x∈(a,b),F"(x)≠0,那么在(a,b)内至少有一点ζ,使等式[f(b)-f(a)]/[F(b)-F(a)]=f"(ζ)/F"(ζ)成立。柯西简洁而严格地证明了微积分学基本定理即牛顿-莱布尼茨公式。他利用定积分严格证明了带余项的泰勒公式,还用微分与积分中值定理表示曲边梯形的面积,推导了平面曲线之间图形的面积、曲面面积和立体体积的公式。善士六合2023-08-03 10:38:271
怎样根据抛物线的定义选取参数建立抛物线的参数方程?
抛物线的焦点(p/2,0), 准线x=-p/2, 则抛物线的标准方程为:y^2=2px参数方程可为:x=2pt^2, y=2ptCarieVinne 2023-08-03 10:38:271
高中数学参数方程知识点
圆的参数方程x=a+rcosθ,y=b+rsinθ(a,b)为圆心坐标r为圆半径θ为参数。椭圆的参数方程x=acosθ,y=bsinθa为长半轴长b为短半轴长θ为参数。双曲线的参数方程x=asecθ(正割,)y=btanθa为实半轴长b为虚半轴长θ为参数。抛物线的参数方程x=2pt2,y=2ptp表示焦点到准线的距离t为参数。直线的参数方程 x=x"+tcosa,y=y"+tsina,x",y"和a表示直线经过(x",y"),且倾斜角为a,t为参数。曲线的极坐标参数方程:p =f(t),θ=g(t)。坐标系定义:1、平面直角坐标系:在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。2、空间直角坐标系:从空间某一定点引三条两两垂直,且有相同单位长度的数轴:x轴、y轴、z轴,这样就建立了一个空间直角坐标系Oxyz。极坐标的定义:在平面内取一个定点O,叫做极点;自极点O引一条射线Ox叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系。凡尘2023-08-03 10:38:271
抛物线的参数方程 抛物线四种方程各对应的参数方程是什么
1. y2 = 2px的参数方程为:x = 2pt2, y = 2pt。 2. y2 = - 2px的参数方程为:x = - 2pt2, y = 2pt。 3.x2 = 2PY的参数方程为:y = 2pt2, x = 2pt。 4. x2 = - 2PY的参数方程为:y = - 2pt2, x = 2pt。 5. 一般来说,在平面直角坐标系中,如果曲线上任意一点的坐标x和y是某变量t的函数:x = f (t), y = g (t),对于t的每一个允许值,由方程组确定的点(x, y)都在这条曲线上。 6. 那么这个方程称为曲线的参数方程,连接变量X和Y的变量t称为参数变量,称为参数。相对而言,直接给出点坐标之间关系的方程称为普通方程。小菜G的建站之路2023-08-03 10:38:251
抛物线参数方程标准形式
抛物线的标准方程有四种形式,参数p的几何意义,是焦点到准线的距离,掌握不同形式方程的几何性质,其中P(x0,y0)为抛物线上任一点: 1、y^2=2px(p>0)。 2、y^2=-2px(p>0)。 3、x^2=2py(p>0)。 4、x^2=-2py(p>0)。苏州马小云2023-08-03 10:38:251
抛物线的参数方程?
抛物线的参数方程x=t,y=2pt^2.肖振2023-08-03 10:38:251
抛物线的参数方程怎么写啦?
圆的参数方程x=a+rcosθy=b+rsinθ(a,b)为圆心坐标r为圆半径θ为参数椭圆的参数方程x=acosθy=bsinθa为长半轴长b为短半轴长θ为参数双曲线的参数方程x=asecθ(正割)y=btanθa为实半轴长b为虚半轴长θ为参数抛物线的参数方程x=2pt^2y=2ptp表示焦点到准线的距离t为参数直线的参数方程x=x"+tcosay=y"+tsina,x",y"和a表示直线经过(x",y"),且倾斜角为a,t为参数满意请采纳,谢谢~~真颛2023-08-03 10:38:251
请问抛物线的三角函数的参数方程怎么表示?
抛物线的三角函数的参数方程怎么表示?解:(1).抛物线的极坐标方程:ρ=p/(1-cosφ),其中p为抛物线的焦参数;(2).抛物线的参数方程:x=acosu2074t,y=asinu2074t;(a>0)FinCloud2023-08-03 10:38:251
怎样将曲线化为参数方程
空间曲线一般式化为参数方程的方法如下:设空间曲线的一般方程是F(x,y,z)=0,G(x,y,z)=0,令x,y或z中任何一个取到合适的参数方程,用于简化化简。如z=f(t),然后带回到一般方程是F(x,y,z)=0,G(x,y,z)=0中,得到F1(x,y)=f1(t),G1(x,y)=f2(t)。然后通过借这个方程组得出x=p(t),y=q(t),z=f(t)即为参数方程。极坐标也是一种形式的参数方程。比如在曲线中令x=rcosθ,y=rsinθ,得出参数方程r=f(θ)。数学参数方程公式1、圆的参数方程x=a+r,cosθy=b+r,sinθ(a,b)为圆心坐标,r为圆半径,θ为参数。2、椭圆的参数方程x=a,cosθy=b,sinθa为长半轴长,b为短半轴长,θ为参数。3、双曲线的参数方程x=a,secθ(正割)y=b,tanθa为实半轴长,b为虚半轴长,θ为参数。4、抛物线的参数方程x=2pt^2,y=2pt,p表示焦点到准线的距离,t为参数。5、直线的参数方程x=x"+tcosa,y=y"+tsina,x",y"和a表示直线经过(x",y"),且倾斜角为a,t为参数。苏州马小云2023-08-03 10:38:251
x2+y2+z2=1的参数方程是什么
1、x=cosαcosβ;y=sinαcosβ;z=sinβ2、参数方程和函数很相似:它们都是由一些在指定的集的数,称为参数或自变量,以决定因变量的结果。例如在运动学,参数通常是“时间”,而方程的结果是速度、位置等。3、例如:①圆的参数方程 x=a+r cosθ,y=b+r sinθ(θ∈ [0,2π) ) (a,b) 为圆心坐标,r 为圆半径,θ 为参数,(x,y) 为经过点的坐标;②椭圆的参数方程 x=a cosθ,y=b sinθ(θ∈[0,2π)) a为长半轴长,b为短半轴长,θ为参数;③双曲线的参数方程 x=a secθ(正割),y=b tanθ a为实半轴长,b为虚半轴长,θ为参数;④抛物线的参数方程 x=2pt^2,y=2pt p表示焦点到准线的距离 t为参数;⑤直线的参数方程 x=x"+tcosa,y=y"+tsina,x"、y"和a表示直线经过(x",y"),且倾斜角为a、t为参数;或者x=x"+ut,y=y"+vt (t∈R),x",y"直线经过定点(x",y"),u、v表示直线的方向向量d=(u,v)。再也不做站长了2023-07-24 10:44:253
空间直线的参数方程是什么意思?
空间直线的参数方程在平面直角坐标系中,如果曲线上任意一点的坐标x、y都是某个变数t的函数:并且对于t的每一个允许的取值,由方程组确定的点(x, y)都在这条曲线上,那么这个方程就叫做曲线的参数方程,联系变数x、y的变数t叫做参变数,简称参数。相对而言,直接给出点坐标间关系的方程即可为普通方程。扩展资料:曲线的极坐标参数方程ρ=f(t),θ=g(t)。圆的参数方程 x=a+r cosθ y=b+r sinθ(θ∈ [0,2π) ) (a,b) 为圆心坐标,r 为圆半径,θ 为参数,(x,y) 为经过点的坐标椭圆的参数方程 x=a cosθ y=b sinθ(θ∈[0,2π)) a为长半轴长 b为短半轴长 θ为参数双曲线的参数方程 x=a secθ (正割) y=b tanθ a为实半轴长 b为虚半轴长 θ为参数。抛物线的参数方程 x=2pt^2 y=2pt p表示焦点到准线的距离 t为参数。直线的参数方程 x=x"+tcosa y=y"+tsina,x",y"和a表示直线经过(x",y"),且倾斜角为a,t为参数。或者x=x"+ut, y=y"+vt (t∈R)x",y"直线经过定点(x",y"),u,v表示直线的方向向量d=(u,v)。圆的渐开线x=r(cosφ+φsinφ) y=r(sinφ-φcosφ)(φ∈[0,2π)) r为基圆的半径 φ为参数。参考资料来源:百度百科-参数方程北境漫步2023-07-24 10:44:241
直线和双曲线相交时的参数方程怎么求
直线和双曲线相交时的参数方程就是以直线与双曲线的交点为坐标,根据交点建立参数方程。Ntou1232023-07-24 10:44:231
已知空间中的两点坐标 怎样求过这两点的直线的参数方程
过点P,Q的直线的方向向量就是向量PQ,所以设P(x1,y1,z1),Q(x2,y2,z2),直线的方程就是(x-x1)/(x2-x1)=(y-y1)/(y2-y1)=(z-z1)/(z2-z1)凡尘2023-07-24 10:44:231
求圆,椭圆,抛物线,双曲线的标准方程,及其参数方程. 如题
圆与椭圆均为封闭曲线, 二者标准方程为x^2/a^2+y^2/b^2=1 对于圆:a=b>0 对于椭圆a^2=b^2+c^2 (c为焦半距)a>b>0,a>c>0.b,c大小关系不确定. 双曲线标准方程为x^2/a^2-y^2/b^2=1 满足a^2+b^2=c^2 (c为焦半距)c>a>0,c>b>0.a,b大小关系不确定 抛物线标准方程为四类:y^2=2px (p>0)(焦点在x轴正半轴上) y^2=-2px(p>0)(焦点在x轴负半轴上) x^2=2py(p>0)(焦点在y轴正半轴上) x^2=-2py(p>0)(焦点在y轴负半轴上) 参数方程等会上 椭圆 X=a cosx y=b sinx 双曲线: x = a*secθ y = b*tgθ 抛物线: x = 2p*t^2 y = 2p*t 椭圆可用三角函数来建立参数方程 椭圆:x^2/a^2 +y^2/b^2=1 椭圆上的点可以设为(a·cosθ,b·sinθ) 相同的有:双曲线:x^2/a^2 - y^2/b^2=1 双曲线上的点可以设为(a·secθ,b·tanθ) 因为 (secθ)^2-(tanθ)^2=1 抛物线:y^2=2p·x 则抛物线上的点可设为 (2p·t^2,2p·t) 相应的,如果抛物线是:x^2=2p·y 则抛物线上的点可设为 (2p·t,2p·t^2) 你的名字我喜欢康康map2023-07-24 10:44:221
高中数学参数方程知识点总结
高中数学涉及的知识点很多,今天我就来为广大高中同学们总结一下高中数学参数方程的知识点,参数方程和函数很相似:它们都是由一些在指定的集的数,称为参数或自变量,以决定因变量的结果。例如在运动学,参数通常是“时间”,而方程的结果是速度、位置等。下面为具体内容,供参考。 高中数学知识点之参数方程定义 一般的,在平面直角坐标系中,如果曲线上任意一点的坐标x,y都是某个变数t的函数x=f(t)、y=g(t) 并且对于t的每一个允许值,由上述方程组所确定的点M(x,y)都在这条曲线上,那么上述方程则为这条曲线的参数方程,联系x,y的变数t叫做变参数,简称参数,相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程。(注意:参数是联系变数x,y的桥梁,可以是一个有物理意义和几何意义的变数,也可以是没有实际意义的变数。 高中数学知识点之参数方程 圆的参数方程x=a+rcosθy=b+rsinθ(a,b)为圆心坐标r为圆半径θ为参数 椭圆的参数方程x=acosθy=bsinθa为长半轴长b为短半轴长θ为参数 双曲线的参数方程x=asecθ(正割)y=btanθa为实半轴长b为虚半轴长θ为参数 抛物线的参数方程x=2pt2y=2ptp表示焦点到准线的距离t为参数 直线的参数方程 x=x"+tcosa y=y"+tsina,x",y"和a表示直线经过(x",y"),且倾斜角为a,t为参数 高中数学知识点之参数方程的应用wpBeta2023-07-24 10:43:511
求圆,椭圆,抛物线,双曲线的标准方程,及其参数方程。
圆与椭圆均为封闭曲线,二者标准方程为x^2/a^2+y^2/b^2=1对于圆:a=b>0对于椭圆a^2=b^2+c^2(c为焦半距)a>b>0,a>c>0.b,c大小关系不确定.双曲线标准方程为x^2/a^2-y^2/b^2=1满足a^2+b^2=c^2(c为焦半距)c>a>0,c>b>0.a,b大小关系不确定抛物线标准方程为四类:y^2=2px(p>0)(焦点在x轴正半轴上)y^2=-2px(p>0)(焦点在x轴负半轴上)x^2=2py(p>0)(焦点在y轴正半轴上)x^2=-2py(p>0)(焦点在y轴负半轴上)参数方程等会上椭圆X=acosxy=bsinx双曲线:x=a*secθy=b*tgθ抛物线:x=2p*t^2y=2p*t椭圆可用三角函数来建立参数方程椭圆:x^2/a^2+y^2/b^2=1椭圆上的点可以设为(a·cosθ,b·sinθ)相同的有:双曲线:x^2/a^2-y^2/b^2=1双曲线上的点可以设为(a·secθ,b·tanθ)因为(secθ)^2-(tanθ)^2=1抛物线:y^2=2p·x则抛物线上的点可设为(2p·t^2,2p·t)相应的,如果抛物线是:x^2=2p·y则抛物线上的点可设为(2p·t,2p·t^2)你的名字我喜欢【数学之美】很高兴为你解答,不懂请追问!满意请采纳,谢谢!O(∩_∩)O~水元素sl2023-07-24 10:43:481
求圆,椭圆,抛物线,双曲线的标准方程,及其参数方程。
圆与椭圆均为封闭曲线,二者标准方程为x^2/a^2+y^2/b^2=1对于圆:a=b>0对于椭圆a^2=b^2+c^2(c为焦半距)a>b>0,a>c>0.b,c大小关系不确定.双曲线标准方程为x^2/a^2-y^2/b^2=1满足a^2+b^2=c^2(c为焦半距)c>a>0,c>b>0.a,b大小关系不确定抛物线标准方程为四类:y^2=2px(p>0)(焦点在x轴正半轴上)y^2=-2px(p>0)(焦点在x轴负半轴上)x^2=2py(p>0)(焦点在y轴正半轴上)x^2=-2py(p>0)(焦点在y轴负半轴上)参数方程等会上椭圆X=acosxy=bsinx双曲线:x=a*secθy=b*tgθ抛物线:x=2p*t^2y=2p*t椭圆可用三角函数来建立参数方程椭圆:x^2/a^2+y^2/b^2=1椭圆上的点可以设为(a·cosθ,b·sinθ)相同的有:双曲线:x^2/a^2-y^2/b^2=1双曲线上的点可以设为(a·secθ,b·tanθ)因为(secθ)^2-(tanθ)^2=1抛物线:y^2=2p·x则抛物线上的点可设为(2p·t^2,2p·t)相应的,如果抛物线是:x^2=2p·y则抛物线上的点可设为(2p·t,2p·t^2)你的名字我喜欢【数学之美】很高兴为你解答,不懂请追问!满意请采纳,谢谢!O(∩_∩)O~北营2023-07-24 10:43:481
双曲线xy=1的参数方程
选D,这样才包含x,y所有非零实数的情形. A的x,y只包含非负数,且xy=t,并不为1,不符 B的x的绝对值不大于1,不符 C的x的绝对值不大于1,不符拌三丝2023-07-24 10:43:481
双曲线参数方程的几何意义是什么?
双曲线参数方程为x=x0+asecθ,y=y0+btanθ,(x0,y0)为中心,a为实轴长,b为虚半轴长,θ为离心角是由标准方程(x-x0)^2/a^2-(y-y0)^2/b^2=1推导出来的人类地板流精华2023-07-24 10:43:471
什么叫参数方程?
参数方程 参数方程和函数很相似:它们都是由一些在指定的集的数,称为参数或自变量,以决定因变量的结果.例如在运动学,参数通常是“时间”,而方程的结果是速度、位置等. 在给定的平面直角坐标系中,如果曲线上任意一点的坐标(x,y)都是某个变数t的函数x=f(t),y=φ(t)——⑴;且对于t的每一个允许值,由方程组⑴所确定的点m(x,y)都在这条曲线上,那么方程组⑴称为这条曲线的参数方程,联系x、y之间关系的变数称为参变数,简称参数.类似地,也有曲线的极坐标参数方程ρ=f(t),θ=g(t).⑵ 圆的参数方程 x=a+r cosθ y=b+r sinθ(θ属于[0,2π)) (a,b)为圆心坐标 r为圆半径 θ为参数 (x,y)为经过点的坐标 椭圆的参数方程 x=a cosθ y=b sinθ(θ属于[0,2π)) a为长半轴 长 b为短半轴长 θ为参数 椭圆 双曲线的参数方程 x=a secθ (正割) y=b tanθ a为实半轴长 b为虚半轴长 θ为参数 抛物线的参数方程 x=2pt^2 y=2pt p表示焦点到准线的距离 t为参数 直线的参数方程 x=x"+tcosa y=y"+tsina,x",y"和a表示直线经过(x",y"),且倾斜角为a,t为参数. 或者x=x"+ut, y=y"+vt (t属于R)x",y"直线经过定点(x",y"),u,v表示直线的方向向量d=(u,v) 圆的渐开线x=r(cosφ+φsinφ) y=r(sinφ-φcosφ)(φ∈[0,2π)) r为基圆的半径 φ为参数 圆的渐开线 平摆线参数方程 x=r(θ-sinθ) y=r(1-cosθ)r为圆的半径,θ是圆的半径所经过的角度(滚动角),当θ由0变到2π时,动点就画出了摆线的一支,称为一拱. 平摆线 编辑本段 方程的应用 在柯西中值定理的证明中,也运用到了参数方程. 柯西中值定理 如果函数f(x)及F(x)满足: ⑴在闭区间[a,b]上连续; ⑵在开区间(a,b)内可导; ⑶对任一x∈(a,b),F"(x)≠0, 那么在(a,b)内至少有一点ζ,使等式 [f(b)-f(a)]/[F(b)-F(a)]=f"(ζ)/F"(ζ)成立. 柯西简洁而严格地证明了微积分学基本定理即牛顿-莱布尼茨公式.他利用定积分严格证明了带余项的泰勒公式,还用微分与积分中值定理表示曲边梯形的面积,推导了平面曲线之间图形的面积、曲面面积和立体体积的公式. 参数曲线亦可以是多于一个参数的函数.例如参数表面是两个参数(s,t)或(u,v)的函数. 譬如一个圆柱: r(u,v)=[x(u,v),y(u,v),z(u,v)]=[acos(u),asin(u),v] 参数是参变数的简称.它是研究运动等一类问题中产生的.质点运动时,它的位置必然与时间有关系,也就是说,质的坐标x,y与时间t之间有函数关系x=f(t),y=g(t),这两个函数式中的变量t,相对于表示质点的几何位置的变量x,y来说,就是一个“参与的变量”.这类实际问题中的参变量,被抽象到数学中,就成了参数.我们所学的参数方程中的参数,其任务在于沟通变量x,y及一些常量之间的联系,为研究曲线的形状和性质提供方便. 用参数方程描述运动规律时,常常比用普通方程更为直接简便.对于解决求最大射程、最大高度、飞行时间或轨迹等一系列问题都比较理想.有些重要但较复杂的曲线(例如圆的渐开线),建立它们的普通方程比较困难,甚至不可能,列出的方程既复杂又不易理解,如圆的渐开线的普通方程. 根据方程画出曲线十分费时;而利用参数方程把两个变量x,y间接地联系起来,常常比较容易,方程简单明确,且画图也不太困难.肖振2023-07-24 10:43:471
空间曲线怎样化为参数方程式的形式?
空间曲线一般式化为参数方程的方法如下:设空间曲线的一般方程是F(x,y,z)=0,G(x,y,z)=0,令x,y或z中任何一个取到合适的参数方程,用于简化化简。如z=f(t),然后带回到一般方程是F(x,y,z)=0,G(x,y,z)=0中,得到F1(x,y)=f1(t),G1(x,y)=f2(t)。然后通过借这个方程组得出x=p(t),y=q(t),z=f(t)即为参数方程。极坐标也是一种形式的参数方程。比如在曲线中令x=rcosθ,y=rsinθ,得出参数方程r=f(θ)。数学参数方程公式1、圆的参数方程x=a+r,cosθy=b+r,sinθ(a,b)为圆心坐标,r为圆半径,θ为参数。2、椭圆的参数方程x=a,cosθy=b,sinθa为长半轴长,b为短半轴长,θ为参数。3、双曲线的参数方程x=a,secθ(正割)y=b,tanθa为实半轴长,b为虚半轴长,θ为参数。4、抛物线的参数方程x=2pt^2,y=2pt,p表示焦点到准线的距离,t为参数。5、直线的参数方程x=x"+tcosa,y=y"+tsina,x",y"和a表示直线经过(x",y"),且倾斜角为a,t为参数。苏萦2023-07-24 10:43:471
已知双曲线x^2/a^2-y^2/b^2=1,设x/a+y/b=t,若以t为参数,求出双曲线的参数方程.
由x^2/a^2-y^2/b^2=1可得(x/a+y/b)(x/a-y/b)=1 所以x/a-y/b=1/t,再结合x/a+y/b,可求得x=(t+1/t)a/2, y=(t-1/t)b/2tt白2023-07-24 10:43:311
焦点在y轴的双曲线参数方程怎样求
你好中心在原点,焦点在y轴上的双曲线标准方程为:(y^2/a^2)-(x^2/b^2)=1.设动点m(x,y),定点f(c,0),点m到定直线l:x=a^2/c的距离为d,则由|mf|/d=e>1.推导出(y^2/a^2)-(x^2/b^2)=1.以上仅供参考北有云溪2023-07-24 10:43:251
空间曲线怎么化为参数方程?
空间曲线一般式化为参数方程的方法如下:设空间曲线的一般方程是F(x,y,z)=0,G(x,y,z)=0,令x,y或z中任何一个取到合适的参数方程,用于简化化简。如z=f(t),然后带回到一般方程是F(x,y,z)=0,G(x,y,z)=0中,得到F1(x,y)=f1(t),G1(x,y)=f2(t)。然后通过借这个方程组得出x=p(t),y=q(t),z=f(t)即为参数方程。极坐标也是一种形式的参数方程。比如在曲线中令x=rcosθ,y=rsinθ,得出参数方程r=f(θ)。数学参数方程公式1、圆的参数方程x=a+r,cosθy=b+r,sinθ(a,b)为圆心坐标,r为圆半径,θ为参数。2、椭圆的参数方程x=a,cosθy=b,sinθa为长半轴长,b为短半轴长,θ为参数。3、双曲线的参数方程x=a,secθ(正割)y=b,tanθa为实半轴长,b为虚半轴长,θ为参数。4、抛物线的参数方程x=2pt^2,y=2pt,p表示焦点到准线的距离,t为参数。5、直线的参数方程x=x"+tcosa,y=y"+tsina,x",y"和a表示直线经过(x",y"),且倾斜角为a,t为参数。北营2023-07-24 10:43:241
怎样写圆的参数方程?
x=a+rcosβy=b+rsinβgitcloud2023-07-24 10:43:244
如何解空间直角坐标中两点的参数方程?
基本思路就是把空间曲线投影在坐标面上,根据投影的形状写出参数方程,然后再回代,写出整个式子的参数方程。或者这样说令其中一个未知数等于t,将t看做已知数,然后解剩下两个未知数的方程组,用t表示结果,得到参数方程拓展资料:参数方程和函数很相似:它们都是由一些在指定的集的数,称为参数或自变量,以决定因变量的结果。曲线的极坐标参数方程ρ=f(t),θ=g(t)。圆的参数方程 x=a+r cosθ y=b+r sinθ(θ∈ [0,2π) ) (a,b) 为圆心坐标,r 为圆半径,θ 为参数,(x,y) 为经过点的坐标;椭圆的参数方程 x=a cosθ y=b sinθ(θ∈[0,2π)) a为长半轴长 b为短半轴长 θ为参数;双曲线的参数方程 x=a secθ (正割) y=b tanθ a为实半轴长 b为虚半轴长 θ为参数;抛物线的参数方程 x=2pt^2 y=2pt p表示焦点到准线的距离 t为参数。例如在运动学,参数通常是“时间”,而方程的结果是速度、位置等。参考资料:参数方程——百度百科韦斯特兰2023-07-24 10:43:221
球的参数方程
球的参数方程为:x = r sinθ cosφ、y = r sinθ sinφ、z = r cosθ,其中 r 为球的半径,θ为极角,φ为方位角。Chen2023-07-24 10:43:222
圆,椭圆,双曲线,直线的参数方程
圆x=a+rcosθ,y=b+rsinθ 椭圆:x=acosθ,y=bsinθ 双曲线:x=asecθ,y=btanθ肖振2023-07-24 10:43:221
求圆,双曲线,椭圆,双扭线的参数方程?
圆与椭圆均为封闭曲线,二者标准方程为x^2/a^2+y^2/b^2=1对于圆:a=b>0对于椭圆a^2=b^2+c^2 (c为焦半距)a>b>0,a>c>0.b,c大小关系不确定.双曲线标准方程为x^2/a^2-y^2/b^2=1满足a^2+b^2=c^2 (c为焦半距)c>a>0,c>b>0.a,b大小关系不确定抛物线标准方程为四类:y^2=2px (p>0)(焦点在x轴正半轴上)y^2=-2px(p>0)(焦点在x轴负半轴上)x^2=2py(p>0)(焦点在y轴正半轴上)x^2=-2py(p>0)(焦点在y轴负半轴上)参数方程等会上椭圆X=a cosxy=b sinx双曲线:x = a*secθy = b*tgθ抛物线:x = 2p*t^2y = 2p*t椭圆可用三角函数来建立参数方程椭圆:x^2/a^2 +y^2/b^2=1椭圆上的点可以设为(a·cosθ,b·sinθ)相同的有:双曲线:x^2/a^2 - y^2/b^2=1双曲线上的点可以设为(a·secθ,b·tanθ)因为 (secθ)^2-(tanθ)^2=1抛物线:y^2=2p·x则抛物线上的点可设为 (2p·t^2,2p·t)相应的,如果抛物线是:x^2=2p·y则抛物线上的点可设为 (2p·t,2p·t^2)苏州马小云2023-07-24 10:43:221
焦点在y轴的双曲线的参数方程怎样写
中心在原点,焦点在y轴上的双曲线标准方程为:(y^2/a^2)-(x^2/b^2)=1.余辉2023-07-24 10:43:221
双曲线参数方程中θ的几何意义
x=secθ y=tanθθ=arcsin(tanα×a/b) α为高中数学在学sinα cosα时对α的定义 α大于等于0小于等于360度,你会发现α大于渐进线角度是方程无解(注arcsin是反三角函数 例如:arcsin1=90度,arcsin(1/2)=30度)补充:α为你选择的双曲线上的点和原点的连线与x正半轴夹角北境漫步2023-07-24 10:43:213
双曲线与抛物线参数方程的推导?
圆的参数方程x=a+rcosθy=b+rsinθ(a,b)为圆心坐标r为圆半径θ为参数 椭圆的参数方程x=acosθy=bsinθa为长半轴长b为短半轴长θ为参数 双曲线的参数方程x=asecθ(正割)y=btanθa为实半轴长b为虚半轴长θ为参数 抛物线的参数方程x=2pt^2y=2ptp表示焦点到准线的距离t为参数 直线的参数方程x=x"+tcosay=y"+tsina,x",y"和a表示直线经过(x",y"),且倾斜角为a,t为参数满意请采纳,谢谢~~苏州马小云2023-07-24 10:43:211
双曲线参数方程的几何意义是什么?
双曲线参数方程为x=x0+asecθ,y=y0+btanθ , (x0,y0)为中心,a为实轴长,b为虚半轴长,θ为离心角 是由标准方程(x-x0)^2/a^2-(y-y0)^2/b^2=1推导出来的bikbok2023-07-24 10:43:041
空间直线的参数方程是什么?
空间直线的参数方程在平面直角坐标系中,如果曲线上任意一点的坐标x、y都是某个变数t的函数:并且对于t的每一个允许的取值,由方程组确定的点(x, y)都在这条曲线上,那么这个方程就叫做曲线的参数方程,联系变数x、y的变数t叫做参变数,简称参数。相对而言,直接给出点坐标间关系的方程即可为普通方程。扩展资料:曲线的极坐标参数方程ρ=f(t),θ=g(t)。圆的参数方程 x=a+r cosθ y=b+r sinθ(θ∈ [0,2π) ) (a,b) 为圆心坐标,r 为圆半径,θ 为参数,(x,y) 为经过点的坐标椭圆的参数方程 x=a cosθ y=b sinθ(θ∈[0,2π)) a为长半轴长 b为短半轴长 θ为参数双曲线的参数方程 x=a secθ (正割) y=b tanθ a为实半轴长 b为虚半轴长 θ为参数。抛物线的参数方程 x=2pt^2 y=2pt p表示焦点到准线的距离 t为参数。直线的参数方程 x=x"+tcosa y=y"+tsina,x",y"和a表示直线经过(x",y"),且倾斜角为a,t为参数。或者x=x"+ut, y=y"+vt (t∈R)x",y"直线经过定点(x",y"),u,v表示直线的方向向量d=(u,v)。圆的渐开线x=r(cosφ+φsinφ) y=r(sinφ-φcosφ)(φ∈[0,2π)) r为基圆的半径 φ为参数。参考资料来源:百度百科-参数方程此后故乡只2023-07-24 10:43:031
怎么解释双曲线的参数方程
首先,参数方程的参数代表意义你要搞清楚,你给出的双曲线参数方程中的参数Z是否有什么意义,一般来说参数方程可以用任意参数来表达但这个参数是否有几何或则代数上的意义就很难说了,比如你给出的;其次,参数方程中的参数是由因变量决定的,对于你的问题也就是说,Z是由xy决定的,而不是xy由Z决定的,比如先x=a,y=0你要从参数方程中求出满足条件的Z,而不是说Z是实数,那么y就是虚数了;第三,参数方程是有关联的,比如X=aCOSz、Y=ibSINz,那么cosZ=X/a、sinZ=Y/(ib)你能找到相应的Z的值使得正弦为实数,余弦为虚数?当然你学过复变函数又当别论,但这就不是高中的知识了,一般双曲线的参数方程可以用x=asect,y=btant或者x=acosht,y=bsinht表示(焦点在x轴上);最后,复平面上的点和复数是有点区别的,(acosZ,ibsinZ)如果Z为实数的话,不是复平面上的点,与复数acosZ+ibsinZ是不同.真颛2023-07-24 10:43:021
双曲线写成参数方程
首先,参数方程的参数代表意义你要搞清楚,你给出的双曲线参数方程中的参数Z是否有什么意义,一般来说参数方程可以用任意参数来表达但这个参数是否有几何或则代数上的意义就很难说了,比如你给出的; 其次,参数方程中的参数是由因变量决定的,对于你的问题也就是说,Z是由xy决定的,而不是xy由Z决定的,比如先x=a,y=0你要从参数方程中求出满足条件的Z,而不是说Z是实数,那么y就是虚数了; 第三,参数方程是有关联的,比如X=aCOSz、Y=ibSINz,那么cosZ=X/a、sinZ=Y/(ib)你能找到相应的Z的值使得正弦为实数,余弦为虚数?当然你学过复变函数又当别论,但这就不是高中的知识了,一般双曲线的参数方程可以用x=asect,y=btant或者x=acosht,y=bsinht表示(焦点在x轴上); 最后,复平面上的点和复数是有点区别的,(acosZ,ibsinZ)如果Z为实数的话,不是复平面上的点,与复数acosZ+ibsinZ是不同.陶小凡2023-07-24 10:42:581
直线,圆,椭圆,双曲线,抛物线的参数方程是什么?
直线的参数方程是:x=x0+tcosp y=y0+tsinp,其中(x0,y0)为直线上一点.t为参数,p为倾斜角 圆的参数方程是:x=rcosp,y=rsinp 椭圆的参数方程是:x=acosp,y=bsinp 双曲线的参数方程是:x=asecp,y=btanp ,其中参数p表示角人类地板流精华2023-07-24 10:42:581
怎么解释双曲线的参数方程
首先,参数方程的参数代表意义你要搞清楚,你给出的双曲线参数方程中的参数Z是否有什么意义,一般来说参数方程可以用任意参数来表达但这个参数是否有几何或则代数上的意义就很难说了,比如你给出的;其次,参数方程中的参数是由因变量决定的,对于你的问题也就是说,Z是由xy决定的,而不是xy由Z决定的,比如先x=a,y=0你要从参数方程中求出满足条件的Z,而不是说Z是实数,那么y就是虚数了;第三,参数方程是有关联的,比如X=aCOSz、Y=ibSINz,那么cosZ=X/a、sinZ=Y/(ib)你能找到相应的Z的值使得正弦为实数,余弦为虚数?当然你学过复变函数又当别论,但这就不是高中的知识了,一般双曲线的参数方程可以用x=asect,y=btant或者x=acosht,y=bsinht表示(焦点在x轴上);最后,复平面上的点和复数是有点区别的,(acosZ,ibsinZ)如果Z为实数的话,不是复平面上的点,与复数acosZ+ibsinZ是不同.水元素sl2023-07-24 10:42:571
双曲线的参数方程
双曲线的参数方程如下:x=a*sec(t),y=b*tan(t)是双曲线(x^2)/(a^2)-(y^2)/(b^2)=1的参数方程,同一条曲线都可以表示成无穷多种形式的参数方程,参数不一定都有几何意义的。取参数t∈(-π/2,π/2),可以画出右半支曲线;取参数t∈(π/2,3π/2),可以画出左半支曲线。当然你会发现,当取参数t∈(π/2,π)时,画出的图象却是在第三象限内的,这没有什么可以奇怪的。下面是当a=3,b=2时的图象,我是用Mathcad画的。x=a*sec(t),y=b*tan(t)是双曲线(x^2)/(a^2)-(y^2)/(b^2)=1的参数方程,同一条曲线都可以表示成无穷多种形式的参数方程,参数不一定都有几何意义的。取参数t∈(-π/2,π/2),可以画出右半支曲线;取参数t∈(π/2,3π/2),可以画出左半支曲线。当然你会发现,当取参数t∈(π/2,π)时,画出的图象却是在第三象限内的,这没有什么可以奇怪的。下面是当a=3,b=2时的图象,我是用Mathcad画的。x=a*sec(t),y=b*tan(t)是双曲线(x^2)/(a^2)-(y^2)/(b^2)=1的参数方程,同一条曲线都可以表示成无穷多种形式的参数方程,参数不一定都有几何意义的。取参数t∈(-π/2,π/2),可以画出右半支曲线;取参数t∈(π/2,3π/2),可以画出左半支曲线。当然你会发现,当取参数t∈(π/2,π)时,画出的图象却是在第三象限内的,这没有什么可以奇怪的。肖振2023-07-24 10:42:561
求大神,如何将空间曲线方程转化为参数方程。
令其未知数等于tt看做已知数解剩下两未知数方程组用t表示结得参数方程北有云溪2023-07-24 10:42:483
请问各位一道双曲线的参数方程题,麻烦前辈高人们帮忙看下~
不会,楼主自己求一下参数范围就可以了,我已经算出来了,但是输入无能,不过结果是可以确定的。u投在线2023-07-24 10:42:442
焦点在y轴的双曲线的参数方程怎样写
焦点在y轴,则y^2/a^2-x^2/b^2=1墨然殇2023-07-24 10:42:432
用对称式方程及参数方程表示直线x-y+z=1;2x+y+z=4
参数方程:x=t y=(3-t)/2 z=(5-3t)/2对称式:(x-1)/-2=(y-1)/1=(z-1)/3肖振2023-07-24 10:42:433
参数方程,第二问怎么化简?
M的极坐标方程为ρ=1/2联立M和N的极坐标方程,得1/2=2/(2-sin2θ)整理得sin2θ=-2在实数范围内该方程无解,因此M和N没有交点,点A在圆M外豆豆staR2023-07-24 10:42:421
双曲线的离心角是什么是关于双曲线参数方程的,请具体解释离心角
双曲线的没有离心角,只有离心率双曲线的焦距与实轴长的比e=c/a,叫双曲线的离心率说明:①由c>a>0可得e>1;②双曲线的离心率越大,它的开口越阔小菜G的建站之路2023-07-24 10:42:171
空间曲线怎么求参数方程?
空间曲线一般式化为参数方程的方法如下:设空间曲线的一般方程是F(x,y,z)=0,G(x,y,z)=0,令x,y或z中任何一个取到合适的参数方程,用于简化化简。如z=f(t),然后带回到一般方程是F(x,y,z)=0,G(x,y,z)=0中,得到F1(x,y)=f1(t),G1(x,y)=f2(t)。然后通过借这个方程组得出x=p(t),y=q(t),z=f(t)即为参数方程。极坐标也是一种形式的参数方程。比如在曲线中令x=rcosθ,y=rsinθ,得出参数方程r=f(θ)。数学参数方程公式1、圆的参数方程x=a+r,cosθy=b+r,sinθ(a,b)为圆心坐标,r为圆半径,θ为参数。2、椭圆的参数方程x=a,cosθy=b,sinθa为长半轴长,b为短半轴长,θ为参数。3、双曲线的参数方程x=a,secθ(正割)y=b,tanθa为实半轴长,b为虚半轴长,θ为参数。4、抛物线的参数方程x=2pt^2,y=2pt,p表示焦点到准线的距离,t为参数。5、直线的参数方程x=x"+tcosa,y=y"+tsina,x",y"和a表示直线经过(x",y"),且倾斜角为a,t为参数。Chen2023-07-24 10:42:161
圆的参数方程是什么?
参数方程公式如下:一、圆的参数方程x=a+rcosθ,y=b+rsinθ(θ∈[0,2π)),(a,b)为圆心坐标,r为圆半径,θ为参数,(x,y)为经过点的坐标。二、椭圆的参数方程x=acosθ,y=bsinθ(θ∈[0,2π))a为长半轴长b为短半轴长θ为参数。三、双曲线的参数方程x=asecθ(正割),y=btanθa为实半轴长b为虚半轴长θ为参数。四、抛物线的参数方程x=2pt^2,y=2ptp表示焦点到准线的距离t为参数。五、直线的参数方程x=x"+tcosa,y=y"+tsina,x",y"和a表示直线经过(x",y"),且倾斜角为a,t为参数。六、或者x=x"+ut,y=y"+vt(t∈R)x",y"直线经过定点(x",y"),u,v表示直线的方向向量d=(u,v)。七、圆的渐开线x=r(cosφ+φsinφ)y=r(sinφ-φcosφ)(φ∈[0,2π))r为基圆的半径φ为参数。kikcik2023-07-24 10:42:162
直线,圆,椭圆,双曲线,抛物线的参数方程是什么?
北营2023-07-24 10:41:581
双曲线参数方程中θ的几何意义
参数方程为x=asecθ,y=btanθ注:sec为正割函数,secθ=1/cosθ,其中θ为参数,θ的几何意义如下图:以双曲线实轴和虚轴为直径分别做圆C1(图中大圆)、C2(图中小圆),对双曲线上任一点M,做x轴垂线,垂足为A"。过A"做圆C1切线,切点为A。过圆C2与x正半轴焦点B做圆C2的切线,与过M并平行于x轴的直线交于B"点。则O、A、B"三点共线,∠AOx即为参数θ。扩展资料双曲线的任意一条切线平分切点所在的焦点三角形顶角。图中∠α=∠β,对顶角相等,切线是焦点三角形的一条角平分线。该性质在高考中应用较少,但其揭示了双曲线的一条光学性质,该性质在高中数学课本上也有提及,即从双曲线的一个焦点发出的光线,经双曲线反射后,其反向延长线在另一个焦点汇聚。参考资料来源:百度百科-双曲线的参数方程gitcloud2023-07-24 10:41:581
怎么解释双曲线的参数方程
就是把双曲线这个函数代入参数方程中。在给定的平面直角坐标系中,如果曲线上任意一点的坐标(x,y)都是某个变数t的函数x=f(t),y=φ(t)——⑴;且对于t的每一个允许值,由方程组⑴所确定的点m(x,y)都在这条曲线上,那么方程组⑴称为这条曲线的参数方程,联系x、y之间关系的变数称为参变数,简称参数。类似地,也有曲线的极坐标参数方程ρ=f(t),θ=g(t)。在数学中,双曲线(希腊语“ὑπερβολή”,字面意思是“超过”或“超出”)是定义为平面交截直角圆锥面的两半的一类圆锥曲线。它还可以定义为与两个固定的点(叫做焦点)的距离差是常数的点的轨迹。这个固定的距离差是a的两倍,这里的a是从双曲线的中心到双曲线最近的分支的顶点的距离。a还叫做双曲线的实半轴。焦点位于贯穿轴上,它们的中间点叫做中心,中心一般位于原点处。铁血嘟嘟2023-07-24 10:41:572
焦点在y轴上的双曲线的参数方程是什么
焦点在y轴上的双曲线的参数方程为:egin{cases}x=asect\y=b antend{cases}其中a和b分别表示双曲线横轴和纵轴上的半轴长,t为参数。由于双曲线在y轴上,因此不会与y轴相交,所以不存在渐近线。焦点在y轴上的双曲线的方程也可以用解析式表示为:frac{y^2}{b^2}-frac{x^2}{a^2+b^2}=1拌三丝2023-07-24 10:41:531
双曲线参数方程
双曲线参数方程为x=x0+asecθ,y=y0+btanθ,(x0,y0)为中心,a为实轴长,b为虚半轴长,θ为离心角是由标准方程(x-x0)^2/a^2-(y-y0)^2/b^2=1推导出来的我有课件,要的话给我发消息Chen2023-07-24 10:41:512
双曲面(单叶、双叶)存在参数方程吗?
当然有了,可以说任何方程都存在参数方程,只是参数的选择的意义可能并不一定有明显的几何意义。单页双曲面:(x^2)/(a^2)+(y^2)/(b^2)-(z^2)/(c^2)=1 比如可令z=ctanθ, x=asecθcosφ, y=bsecθsinφ双页双曲面:(x^2)/(a^2)+(y^2)/(b^2)-(z^2)/(c^2)=-1 比如可令z=csecθ, x=asecθcosφ, y=bsecθsinφ墨然殇2023-07-24 10:41:511
求椭圆 双曲线 直线 抛物线 圆的参数方程
我建议你去维基百科看看,那里有详细的介绍,这里的字数限制我无法给你讲清楚。下面我给你连接,你可以自己看看CarieVinne 2023-07-24 10:41:513
双曲线的参数方程公式是什么
双曲线的参数方程公式:x=a*sec(t),y=b*tan(t),并且对于t的每一个允许的取值,由方程组确定的点(x,y)都在这条曲线上,联系变数x、y的变数t叫做参变数,简称参数。相对而言,直接给出点坐标间关系的方程即称为普通方程。并且用参数方程描述运动规律时,常常比用普通方程更为直接简便。对于解决求最大射程、最大高度、飞行时间或轨迹等一系列问题都比较理想。九万里风9 2023-07-24 10:41:451
双曲线参数方程
双曲线可以用参数方程表示为:x = a cosh(t), y = b sinh(t),其中a和b是正常数,cosh和sinh是双曲函数。这个参数方程的关键在于双曲函数的性质,它们与三角函数有许多相似之处,但也有很多不同之处。cosh函数是指数函数的一种形式,它可以写成cosh(x) = (e^x + e^-x)/2的形式;而sinh函数可以写成sinh(x) = (e^x - e^-x)/2的形式。当t取遍所有实数时,上述参数方程将覆盖整个双曲线。双曲线具有许多有趣的性质,在物理、工程和数学等领域都有广泛应用,例如电磁场中的场线、光学中的反射和折射等等。Chen2023-07-24 10:41:441
知道参数方程怎么求斜率
斜率k=dy/dx=(dy/dt)/(dx/dt)=sina/cosaardim2023-07-20 11:02:174
已知参数方程求法线方程
x=e^t. sin2tdx/dt =( sin2t + 2cos2t). e^ty=e^t .costdy/dt = ( cost -sint ) . e^tdy/dx = (dy/dt) /(dx/dt) = ( cost -sint )/( sin2t + 2cos2t)(x,y)=(0,1) => t=0dy/dx | t=0 = ( 1 -0 )/( 0 + 2) = 1/2法线方程 (0,1)y-1 = -2(x-0)2x+y-1=0水元素sl2023-07-15 09:23:271
双曲线的参数方程
x=a*sec(t),y=b*tan(t)是双曲线(x^2)/(a^2)-(y^2)/(b^2)=1的参数方程,同一条曲线都可以表示成无穷多种形式的参数方程,参数不一定都有几何意义的。 取参数t∈(-π/2,π/2),可以画出右半支曲线;取参数t∈(π/2,3π/2),可以画出左半支曲线。当然你会发现,当取参数t∈(π/2,π)时,画出的图象却是在第三象限内的,这没有什么可以奇怪的。 下面是当a=3,b=2时的图象,我是用Mathcad画的。 x=a*sec(t),y=b*tan(t)是双曲线(x^2)/(a^2)-(y^2)/(b^2)=1的参数方程,同一条曲线都可以表示成无穷多种形式的参数方程,参数不一定都有几何意义的。 取参数t∈(-π/2,π/2),可以画出右半支曲线;取参数t∈(π/2,3π/2),可以画出左半支曲线。当然你会发现,当取参数t∈(π/2,π)时,画出的图象却是在第三象限内的,这没有什么可以奇怪的。 下面是当a=3,b=2时的图象,我是用Mathcad画的。 x=a*sec(t),y=b*tan(t)是双曲线(x^2)/(a^2)-(y^2)/(b^2)=1的参数方程,同一条曲线都可以表示成无穷多种形式的参数方程,参数不一定都有几何意义的。 取参数t∈(-π/2,π/2),可以画出右半支曲线;取参数t∈(π/2,3π/2),可以画出左半支曲线。当然你会发现,当取参数t∈(π/2,π)时,画出的图象却是在第三象限内的,这没有什么可以奇怪的。此后故乡只2023-07-07 15:24:131
双曲线的参数方程是什么?
x=a*sec(t),y=b*tan(t)是双曲线(x^2)/(a^2)-(y^2)/(b^2)=1的参数方程,同一条曲线都可以表示成无穷多种形式的参数方程,参数不一定都有几何意义的。 x0dx0a取参数t∈(-π/2,π/2),可以画出右半支曲线;取参数t∈(π/2,3π/2),可以画出左半支曲线。当然你会发现,当取参数t∈(π/2,π)时,画出的图象却是在第三象限内的,这没有什么可以奇怪的。 x0dx0a下面是当a=3,b=2时的图象,我是用Mathcad画的。 x0dx0ax0dx0ax=a*sec(t),y=b*tan(t)是双曲线(x^2)/(a^2)-(y^2)/(b^2)=1的参数方程,同一条曲线都可以表示成无穷多种形式的参数方程,参数不一定都有几何意义的。 x0dx0a取参数t∈(-π/2,π/2),可以画出右半支曲线;取参数t∈(π/2,3π/2),可以画出左半支曲线。当然你会发现,当取参数t∈(π/2,π)时,画出的图象却是在第三象限内的,这没有什么可以奇怪的。 x0dx0a下面是当a=3,b=2时的图象,我是用Mathcad画的。 x0dx0ax=a*sec(t),y=b*tan(t)是双曲线(x^2)/(a^2)-(y^2)/(b^2)=1的参数方程,同一条曲线都可以表示成无穷多种形式的参数方程,参数不一定都有几何意义的。 x0dx0a取参数t∈(-π/2,π/2),可以画出右半支曲线;取参数t∈(π/2,3π/2),可以画出左半支曲线。当然你会发现,当取参数t∈(π/2,π)时,画出的图象却是在第三象限内的,这没有什么可以奇怪的。无尘剑 2023-07-07 15:23:591
双曲线的参数方程
双曲线的参数方程如下:x=a*sec(t),y=b*tan(t)是双曲线(x^2)/(a^2)-(y^2)/(b^2)=1的参数方程,同一条曲线都可以表示成无穷多种形式的参数方程,参数不一定都有几何意义的。取参数t∈(-π/2,π/2),可以画出右半支曲线;取参数t∈(π/2,3π/2),可以画出左半支曲线。当然你会发现,当取参数t∈(π/2,π)时,画出的图象却是在第三象限内的,这没有什么可以奇怪的。下面是当a=3,b=2时的图象,我是用Mathcad画的。x=a*sec(t),y=b*tan(t)是双曲线(x^2)/(a^2)-(y^2)/(b^2)=1的参数方程,同一条曲线都可以表示成无穷多种形式的参数方程,参数不一定都有几何意义的。取参数t∈(-π/2,π/2),可以画出右半支曲线;取参数t∈(π/2,3π/2),可以画出左半支曲线。当然你会发现,当取参数t∈(π/2,π)时,画出的图象却是在第三象限内的,这没有什么可以奇怪的。下面是当a=3,b=2时的图象,我是用Mathcad画的。x=a*sec(t),y=b*tan(t)是双曲线(x^2)/(a^2)-(y^2)/(b^2)=1的参数方程,同一条曲线都可以表示成无穷多种形式的参数方程,参数不一定都有几何意义的。取参数t∈(-π/2,π/2),可以画出右半支曲线;取参数t∈(π/2,3π/2),可以画出左半支曲线。当然你会发现,当取参数t∈(π/2,π)时,画出的图象却是在第三象限内的,这没有什么可以奇怪的。北有云溪2023-07-07 15:23:541
双曲线的参数方程是如何推导出来的?求详细过程
看看吧左迁2023-07-07 15:23:192
双曲线的参数方程是什么?
x=a*sec(t),y=b*tan(t)是双曲线(x^2)/(a^2)-(y^2)/(b^2)=1的参数方程,同一条曲线都可以表示成无穷多种形式的参数方程,参数不一定都有几何意义的。 取参数t∈(-π/2,π/2),可以画出右半支曲线;取参数t∈(π/2,3π/2),可以画出左半支曲线。当然你会发现,当取参数t∈(π/2,π)时,画出的图象却是在第三象限内的,这没有什么可以奇怪的。 下面是当a=3,b=2时的图象,我是用Mathcad画的。 x=a*sec(t),y=b*tan(t)是双曲线(x^2)/(a^2)-(y^2)/(b^2)=1的参数方程,同一条曲线都可以表示成无穷多种形式的参数方程,参数不一定都有几何意义的。 取参数t∈(-π/2,π/2),可以画出右半支曲线;取参数t∈(π/2,3π/2),可以画出左半支曲线。当然你会发现,当取参数t∈(π/2,π)时,画出的图象却是在第三象限内的,这没有什么可以奇怪的。 下面是当a=3,b=2时的图象,我是用Mathcad画的。 x=a*sec(t),y=b*tan(t)是双曲线(x^2)/(a^2)-(y^2)/(b^2)=1的参数方程,同一条曲线都可以表示成无穷多种形式的参数方程,参数不一定都有几何意义的。 取参数t∈(-π/2,π/2),可以画出右半支曲线;取参数t∈(π/2,3π/2),可以画出左半支曲线。当然你会发现,当取参数t∈(π/2,π)时,画出的图象却是在第三象限内的,这没有什么可以奇怪的。Chen2023-07-07 15:23:151
抛物线公式 抛物线参数方程公式
1、y2=2px的参数方程为:x=2pt2,y=2pt。 2、y2=-2px的参数方程为:x=-2pt2,y=2pt。 3、x2=2py的参数方程为:y=2pt2,x=2pt。 4、x2=-2py的参数方程为:y=-2pt2,x=2pt。 5、一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x、y都是某个变数t的函数:x=f(t),y=g(t),并且对于t的每一个允许的取值,由方程组确定的点(x, y)都在这条曲线上。 6、那么这个方程就叫做曲线的参数方程,联系变数x、y的变数t叫做参变数,简称参数。相对而言,直接给出点坐标间关系的方程叫普通方程。北境漫步2023-07-03 11:15:461
抛物线四种方程各对应的参数方程是什么?
这个去问数学老师吧,找姐姐我太垃圾了,不晓得,以前学的都忘完了,惭愧人类地板流精华2023-07-03 11:15:453
抛物线的参数方程是什么?
y轴 y = ax^2 + bx + c ==> 参数方程 x = t, y = at^2 + bt + cx轴 x = ay^2 + by + c ==> 参数方程 x = at^2 + bt + c, y =t肖振2023-07-03 11:15:314
抛物线的参数方程是什么 抛物线的参数方程是怎样的
1、抛物线y^2=2px(p>0)的参数方程为:x=2pt^2,y=2pt。其中参数p的几何意义,是抛物线的焦点F(p/2,0)到准线x=-p/2的距离,称为抛物线的焦参数。 2、参数方程和函数很相似:它们都是由一些在指定的集的数,称为参数或自变量,以决定因变量的结果。例如在运动学,参数通常是“时间”,而方程的结果是速度、位置等。gitcloud2023-07-03 11:15:241
抛物线的参数方程是什么?
抛物线参数方程如下:其中参数p的几何意义,是抛物线的焦点F(p/2,0)到准线x=-p/2的距离,称为抛物线的焦参数。扩展资料相关参数(对于向右开口的抛物线y1=2px)离心率:e=1(恒为定值,为抛物线上一点与准线的距二次函数的图像是一条抛物线离以及该点与焦点的距离比)焦点:(p/2,0)准线方程l:x=-p/2顶点:(0,0)通径:2P;定义:圆锥曲线(除圆外)中,过焦点并垂直于轴的弦定义域:对于抛物线y1=2px,p>0时,定义域为x≥0,p<0时,定义域为x≤0;对于抛物线x1=2py,定义域为R。值域:对于抛物线y1=2px,值域为R,对于抛物线x1=2py,p>0时,值域为y≥0,p<0时,值域为y≤0。参考资料来源:百度百科-参数方程参考资料来源:百度百科-抛物线左迁2023-07-03 11:15:121
抛物线的参数方程是什么
常用:抛物线y^2=2px(p>0)的参数方程为: x=2pt^2 y=2pt 其中参数p的几何意义,是抛物线的焦点F(p/2,0)到准线x=-p/2的距离,称为抛物线的焦参数.wpBeta2023-07-03 11:15:091
抛物线的参数方程是什么
常用:抛物线y^2=2px(p>0)的参数方程为: x=2pt^2 y=2pt 其中参数p的几何意义,是抛物线的焦点F(p/2,0)到准线x=-p/2的距离,称为抛物线的焦参数。墨然殇2023-07-03 11:14:201
抛物线的参数方程 抛物线四种方程各对应的参数方程是什么
1、y2=2px的参数方程为:x=2pt2,y=2pt。 2、y2=-2px的参数方程为:x=-2pt2,y=2pt。 3、x2=2py的参数方程为:y=2pt2,x=2pt。 4、x2=-2py的参数方程为:y=-2pt2,x=2pt。 5、一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x、y都是某个变数t的函数:x=f(t),y=g(t),并且对于t的每一个允许的取值,由方程组确定的点(x, y)都在这条曲线上。 6、那么这个方程就叫做曲线的参数方程,联系变数x、y的变数t叫做参变数,简称参数。相对而言,直接给出点坐标间关系的方程叫普通方程。kikcik2023-07-03 11:14:081
抛物线的参数方程是什么
常用:抛物线y^2=2px(p>0)的参数方程为: x=2pt^2 y=2pt 其中参数p的几何意义,是抛物线的焦点F(p/2,0)到准线x=-p/2的距离,称为抛物线的焦参数.大鱼炖火锅2023-07-03 11:14:061
在平面直角坐标系xoy中圆O参数方程为x=cos θ y=sinθ 过点(0.-√2)且倾斜角为α
解再也不做站长了2023-06-27 08:21:172
请问参数方程里的参数和含参方程、含参不等式里的参数是一个东西吗?它们为什么都叫参数?
233333333333333333333333333333333333333333333333333黑桃花2023-06-13 07:11:422
参数方程中t是否是变量
参量和变量是两回事,是相对的。在研究函数变化中,有自变量和因变量,参量(也就是参数)指的是在整个复杂变化中,为了将之变化成已学知识或简化关系而设定的量,这个量可以使定量,但更多的是变量。http://zhidao.baidu.com/link?url=ED7XLL30_vgbaxb7LvjDJtY9saFmBjiFfRFnzZJ2Un0bdH5CP5megqDqcO_DQ55Y5KAmjwI6wNzyWMfBZHoLF_黑桃花2023-06-13 07:11:412
一个数学问题,老师总说参数方程之类的,可我还是不懂什么叫参数,求解释
参数和未知数差不多吧铁血嘟嘟2023-06-13 07:11:384