参数方程

参数方程什么时候加定义域

只要定义域有限制不管什么时候都要加的啊
ardim2023-06-11 08:57:113

参变量函数与参数方程的区别?

定义  参数方程和函数很相似:它们都是由一些在指定的集的数,称为参数或自变量,以决定因变量的结果.例如在运动学,参数通常是“时间”,而方程的结果是速度、位置等.  在给定的平面直角坐标系中,如果曲线上任意一点的坐标(x,y)都是某个变数t的函数x=f(t),y=φ(t)——⑴;且对于t的每一个允许值,由方程组⑴所确定的点m(x,y)都在这条曲线上,那么方程组⑴称为这条曲线的参数方程,联系x、y之间关系的变数称为参变数,简称参数.类似地,也有曲线的极坐标参数方程ρ=f(t),θ=g(t).⑵  圆的参数方程x=a+rcosθy=b+rsinθ(θ属于[0,2π))(a,b)为圆心坐标r为圆半径θ为参数(x,y)为经过点的坐标  椭圆的参数方程x=acosθ y=bsinθ(θ属于[0,2π))a为长半轴长b为短半轴长θ为参数  双曲线的参数方程x=asecθ(正割)y=btanθa为实半轴长b为虚半轴长θ为参数  抛物线的参数方程x=2pt^2y=2ptp表示焦点到准线的距离t为参数  直线的参数方程x=x"+tcosay=y"+tsina,x",y"和a表示直线经过(x",y"),且倾斜角为a,t为参数.  或者x=x"+ut, y=y"+vt(t属于R)x",y"直线经过定点(x",y"),u,v表示直线的方向向量d=(u,v)  圆的渐开线x=r(cosφ+φsinφ)y=r(sinφ-φcosφ)(φ∈[0,2π))r为基圆的半径φ为参数平摆线参数方程x=r(θ-sinθ)y=r(1-cosθ)r为圆的半径,θ是圆的半径所经过的角度(滚动角),当θ由0变到2π时,动点就画出了摆线的一支,称为一拱.
韦斯特兰2023-06-10 08:38:002

参变量函数与参数方程的区别?

定义  参数方程和函数很相似:它们都是由一些在指定的集的数,称为参数或自变量,以决定因变量的结果.例如在运动学,参数通常是“时间”,而方程的结果是速度、位置等.   在给定的平面直角坐标系中,如果曲线上任意一点的坐标(x,y)都是某个变数t的函数x=f(t),y=φ(t)——⑴;且对于t的每一个允许值,由方程组⑴所确定的点m(x,y)都在这条曲线上,那么方程组⑴称为这条曲线的参数方程,联系x、y之间关系的变数称为参变数,简称参数.类似地,也有曲线的极坐标参数方程ρ=f(t),θ=g(t).⑵   圆的参数方程 x=a+r cosθ y=b+r sinθ(θ属于[0,2π)) (a,b)为圆心坐标 r为圆半径 θ为参数 (x,y)为经过点的坐标   椭圆的参数方程 x=a cosθ y=b sinθ(θ属于[0,2π)) a为长半轴 长 b为短半轴长 θ为参数   双曲线的参数方程 x=a secθ (正割) y=b tanθ a为实半轴长 b为虚半轴长 θ为参数   抛物线的参数方程 x=2pt^2 y=2pt p表示焦点到准线的距离 t为参数   直线的参数方程 x=x"+tcosa y=y"+tsina,x",y"和a表示直线经过(x",y"),且倾斜角为a,t为参数.   或者x=x"+ut, y=y"+vt (t属于R)x",y"直线经过定点(x",y"),u,v表示直线的方向向量d=(u,v)   圆的渐开线x=r(cosφ+φsinφ) y=r(sinφ-φcosφ)(φ∈[0,2π)) r为基圆的半径 φ为参数    平摆线参数方程 x=r(θ-sinθ) y=r(1-cosθ)r为圆的半径,θ是圆的半径所经过的角度(滚动角),当θ由0变到2π时,动点就画出了摆线的一支,称为一拱.
无尘剑 2023-06-10 08:37:331

高等数学参数方程式如何求导?

对于一个参数方程 x = f(t), y = g(t),我们可以通过链式法则来求其导数。假设函数 f(t) 和 g(t) 都具有一阶导数,即 f"(t) 和 g"(t) 存在。则有:dx/dt = f"(t)dy/dt = g"(t)因此,可以得到参数方程的导数表达式:dy/dx = (dy/dt)/(dx/dt) = g"(t)/f"(t)也可以直接用 Leibniz 符号表示为:dy/dx = dy/dt / dx/dt = (d/dt)(y/x) = (d/dt)(g(t)/f(t))在具体计算中,可以先对 x = f(t) 和 y = g(t) 分别求导,然后再将导数带入上述公式中计算 dy/dx。需要注意的是,由于参数方程表示的曲线可能存在水平或竖直的切线,因此在计算 dy/dx 的过程中需要注意分母为零的情况,并使用其他方法进行处理。同时,在计算过程中也要注意使用合适的求导规则和运算法则。
铁血嘟嘟2023-06-06 07:55:562

高等数学中的参数方程如何求导?

如下所示对于可导的函数f(x),xu21a6f"(x)也是一个函数,称作f(x)的导函数(简称导数)。寻找已知的函数在某点的导数或其导函数的过程称为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也来源于极限的四则运算法则。反之,已知导函数也可以倒过来求原来的函数,即不定积分。微积分基本定理说明了求原函数与积分是等价的。求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。扩展资料:不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。
黑桃花2023-06-06 07:55:482

由参数方程确定的函数的二阶导数应该怎么算

1
CarieVinne 2023-06-04 09:16:371

请问参数方程确定的函数的二阶导数公式的详细推导过程?

北境漫步2023-06-04 09:16:361

参数方程怎么求二阶导数,直接把两个都二阶导了再相比就可以吗

你好 不可以
小白2023-06-04 09:16:323

求此参数方程所确定函数的二阶导数

x"t=-asinty"t=bcosty"=y"t/x"t=-b/a* ctgty"=d(y")/dx=d(y")/dt/(dx/dt)=-b/a*[(-csct)^2] /(-asint)=-b/a^2* (csct)^3
FinCloud2023-06-04 09:16:321

参数方程所确定的函数的二阶导数

y""=d(dy/dx)/dx=[d(dy/dx)/dt]*(dt/dx)你所说的"又乘了个1/g"(t)",其实就是(dt/dx)
bikbok2023-06-04 09:16:291

参数方程的二阶导数怎么求

参数方程二次求导:1、由参数方程确定的函数的高阶导数的求法与一阶导数的求法是一样的,仍然看作是一个参数方程确定的函数的导数问题,参数方程是:dy/dx=dy/dt÷dx/dtx=x(t)。把x看作变量,dy/dx看作因变量来求一阶导数,y"(x)=dy/dx,y"
NerveM 2023-06-03 14:29:572

参数方程的二阶导数

求y对x的二阶导数仍然可以看作是参数方程确定的函数的求导方法,因变量由y换作dy/dx,自变量还是x,所以y对x的二阶导数=dy/dx对t的导数÷x对t的导数dy/dt=1/(1+t^2)dx/dt=1-2t/(1+t^2)=(1+t^2-2t)/(1+t^2)所以,dy/dx=1/(1+t^2-2t)d(dy/dx)/dt=[1/(1+t^2-2t)]"=-(2t-2)/(1+t^2-2t))^2所以,d2y/dx2=d(dy/dx)/dt÷dx/dt=-(2t-2)/(1+t^2-2t))^2÷(1+t^2-2t)/(1+t^2)=(2-2t)(1+t^2)/(1+t^2-2t)^3
hi投2023-06-03 14:29:521

求平面的坐标式参数方程和一般方程

因为平面的三个变量只由一个方程联系,所以其参数方程应该由两个参数变量来描述。1)过AB平行于CD的一般型设方程为Ax+By+Cz+D=0=>5A+B+3C+D=0A+6B+2C+D=0(5-4)A+(0-0)B+(4-6)C=0=>A=2C4A-5B+C=0=>-5B=-8C-C=-9C=>B=9C/5=>D=-3C-B-5A=-3C-9C/5-10C=-74C/5∴平面方程一般型10x+9y+5z-74=0参数型x=sy=tz=74/5-2t-9s/52)过AB垂直于平面ABC的平面一般型Ax+By+Cz+D=05A+B+3C+D=0A+6B+2C+D=0ABC的法向量A"=|(-5,1)(3,-1)|=2【AB的方向向量为(5-1.1-6,3-2);BC的方向向量为(1-5,6-0,2-4)】【∴AB↑=(4,-5,1)、BC↑=(-2,3,-1)】B"=|(1,4)(-1,-2)|=2C"=|(4,-5)(-2,3)|=22A+2B+2C=0【两平面垂直,法向量点积为零】=>(仿上题)A=2B、B=B、C=-3B、D=-2B=>2x+y-3z-2=0参数型x=uz=vy=-2u+3v+2
苏州马小云2023-05-25 07:25:031

求平面的普通方程和参数方程

平面的普通方程:平面经过A(-2,3,6)|(x+2)(y-3)(z-6)||021|=0|103|其中"|"是行列式符号,三列连在一起,得:6x+y-2z+21=0,即为平面普通方程.平面参数方程由一个点及二不共线的向量决定x=-2+ty=3+2sz=6+s+3tst是参数.
mlhxueli 2023-05-25 07:25:021

求平面的普通方程和参数方程

平面的普通方程:平面经过A(-2,3,6)|(x+2)(y-3)(z-6)||021|=0|103|其中"|"是行列式符号,三列连在一起,得:6x+y-2z+21=0,即为平面普通方程.平面参数方程由一个点及二不共线的向量决定x=-2+ty=3+2sz=6+s+3tst是参数.
无尘剑 2023-05-25 07:25:021

平面的参数方程有几个参数

平面的参数方程参数可以是一个,也可以是两个,也可以是三个,要根据具体的情况而定。
此后故乡只2023-05-25 07:25:011

求平面的坐标式参数方程和一般方程

meira2023-05-25 07:25:011

什么叫直线的标准参数方程

标准参数方程就是将直线在坐标系中用函数的形式表达出来。
苏萦2023-05-25 07:24:564

直线的参数方程

直线的参数方程如下。在给定的平面直角坐标系中,如果曲线上任意一点的坐标(x,y)都是某个变数t的函数x=f(t),y=φ(t)且对于t的每一个允许值,由方程组⑴所确定的点m(x,y)都在这条曲线上,那么方程组⑴称为这条曲线的参数方程,联系x、y之间关系的变数称为参变数,简称参数.类似地,也有曲线的极坐标参数方程ρ=f(t),θ=g(t)。圆的参数方程 x=a+r cosθ y=b+r sinθ(θ∈ [0,2π) ) (a,b) 为圆心坐标,r 为圆半径,θ 为参数,(x,y) 为经过点的坐标椭圆的参数方程 x=a cosθ  y=b sinθ(θ∈[0,2π)) a为长半轴长 b为短半轴长 θ为参数椭圆双曲线的参数方程 x=a secθ (正割)。 y=b tanθ a为实半轴长 b为虚半轴长 θ为参数抛物线的参数方程 x=2pt^2 y=2pt p表示焦点到准线的距离 t为参数直线的参数方程 x=x"+tcosa y=y"+tsina,x",y"和a表示直线经过(x",y"),且倾斜角为a,t为参数.或者x=x"+ut,  y=y"+vt (t∈R)x",y"直线经过定点。(x",y"),u,v表示直线的方向向量d=(u,v)圆的渐开线x=r(cosφ+φsinφ) y=r(sinφ-φcosφ)(φ∈[0,2π)) r为基圆的半径 φ为参数
wpBeta2023-05-25 07:24:551

直线的参数方程

直线参数方程的标准形式为:x=x0+tcosay=y0+tsina 其中t为参数.直线参数方程化成直线标准参数方程:归一化系数即可比如x=x0+at,y=y0+bt可化成标准方程:x=x0+pty=y0+qt这里p=a/√(a²+b²),q=b/√(a²+b²)直线的参数方程的一般式为:ax+by+c=0;直线参数方程的标准形式为:x=x0+tcosay=y0+tsina 其中t为参数.直线的一般方程表示的是x、y之间的直接关系,而参数方程表示的是x、y与参数t之间的间接关系.另外,参数方程在华为一般方程时要注意参数的取值范围
再也不做站长了2023-05-25 07:24:541

直线的参数方程公式有吗?

y=kx+b.是这个吗
LuckySXyd2023-05-25 07:24:532

参数方程与极坐标系的关系

大鱼炖火锅2023-05-25 07:24:265

已知两个向量的三坐标,如何求它们的叉积?已知量挑直线的参数方程,如何求它们的距离?

向量a=(a,b,c) 向量b=(d,e,f) 则,叉积=(bf-ce,cd-af,ae-bd)
北营2023-05-24 18:37:241

怎样得到椭圆的参数方程?

解:设椭圆上焦点F₁(0,c),下焦点F₂(0,-c);c为半焦距,c>0。椭圆上的动点M(x,y);依椭圆定义有等式:∣MF₁∣+∣MF₂∣=√[x²+(y-c)²]+√[x²+(y+c)²]=2a,a为长半轴之长,a>0。√[x²+(y-c)²]=2a-√[x²+(y+c)²]两边平方得:x²+(y-c)²=4a²-4a√[x²+(y+c)²]+x²+(y+c)²化简、移项,得4a√[x²(y+c)²]=4a²+4c化小系数得:a√[x²+(y+c)²]=a²+cy再平方得:a²[x²+(y+c)²]=a^4+2a²cy+c²y²a²x²+(a²-c²)y²=a^4-a²c²令a²-c²=b²,得a²x²+b²y²=a²b²再用a²b²除两边,即得焦点在y轴上的椭圆的标准方程为:y²/a²+x²/b²=1,其中a²-b²=c²;a>b.其中a为长半轴之长,b为短半轴之长,c为半焦距。扩展资料:椭圆方程的几何性质X,Y的范围当焦点在X轴时 -a≤x≤a,-b≤y≤b当焦点在Y轴时 -b≤x≤b,-a≤y≤a对称性不论焦点在X轴还是Y轴,椭圆始终关于X/Y/原点对称。顶点:焦点在X轴时:长轴顶点:(-a,0),(a,0)短轴顶点:(0,b),(0,-b)焦点在Y轴时:长轴顶点:(0,-a),(0,a)短轴顶点:(b,0),(-b,0)注意长短轴分别代表哪一条轴,在此容易引起混乱,还需数形结合逐步理解透彻。焦点:当焦点在X轴上时焦点坐标F1(-c,0)F2(c,0)当焦点在Y轴上时焦点坐标F1(0,-c)F2(0,c)计算方法编辑 ((其中 分别是椭圆的长半轴、短半轴的长,可由圆的面积可推导出来)或 (其中分别是椭圆的长轴,短轴的长)。圆和椭圆之间的关系:椭圆包括圆,圆是特殊的椭圆。参考资料来源:百度百科--椭圆参数方程
Jm-R2023-05-24 12:08:411

求大神,复变函数积分参数方程

起点是1,终点是i,就可以设 z=1+(i-1)t,t∈【0,1】,也就是你看到的把起点和终点换成a、b也是同理
此后故乡只2023-05-22 18:14:181

请问三维空间中直线的参数方程是什么,参数t的意义是什么,直线和面的交点的怎么计算??????

t没有实际意义,它本身可以约去,在参数方程中它的存在可以用来取到xyz轴上的所有符合的点。
CarieVinne 2023-05-21 22:10:233

参数方程的二阶导数怎么求????

dx、dy表示微分,当然可以拆开,对于参数方程,x=f(t),y=g(t),对于参数方程,先求微分:dx=f"(t)dt,dy=g"(t)dt,dy/dx=g"(t)/f"(t),而如果先消去参数,t=fˉ¹(x),y=g(fˉ¹(x))dy/dx=g"(fˉ¹(x))*fˉ¹"(x)=g"(fˉ¹(x))/f"(t)=g"(t)/f"(t),是一样的。而二阶导数,注意是d²y/dx²是什么意思呢?就是这里要把dy/dx看成是新的“y”,x还是等于f(t),所以应该这样:d(dy/dx)=[g"(t)/f"(t)]"dt=[g""(t)f"(t)-g"(t)f""(t)]/f"(t)² dtdx=f"(t)dtd²y/dx²=d(dy/dx)/dx=[g""(t)f"(t)-g"(t)f""(t)]/f"(t)³
铁血嘟嘟2023-05-20 17:38:087

参数方程求二阶导

不可以的。求y对x的二阶导数仍然可以看作是参数方程确定的函数的求导方法,因变量由y换作dy/dx,自变量还是x,所以,y对x的二阶导数 = dy/dx对t的导数 ÷ x对t的导数dy/dt=1/(1+t^2)dx/dt=1-2t/(1+t^2)=(1+t^2-2t)/(1+t^2)所以,dy/dx=1/(1+t^2-2t)d(dy/dx)/dt=[1/(1+t^2-2t)]"=-(2t-2)/(1+t^2-2t))^2所以,d2y/dx2=d(dy/dx)/dt ÷ dx/dt=-(2t-2)/(1+t^2-2t))^2 ÷ (1+t^2-2t)/(1+t^2)=(2-2t)(1+t^2)/(1+t^2-2t)^3拓展资料:二阶导数,是原函数导数的导数,将原函数进行二次求导。一般的,函数y=f(x)的导数y‘=f"(x)仍然是x的函数,则y"=f‘(x)的导数叫做函数y=f(x)的二阶导数。在图形上,它主要表现函数的凹凸性。二阶导数是比较理论的、比较抽象的一个量,它不像一阶导数那样有明显的几何意义,因为它表示的是一阶导数的变化率。在图形上,它主要表现函数的凹凸性,直观的说,函数是向上突起的,还是向下突起的。定理:设f(x)在[a,b]上连续,在(a,b)内具有一阶和二阶导数,那么,(1)若在(a,b)内f""(x)>0,则f(x)在[a,b]上的图形是凹的;(2)若在(a,b)内f""(x)<0,则f(x)在[a,b]上的图形是凸的。若在定义域内一阶导数为0,则该点是原函数定义域内的极值点或拐点。如在定义域内二阶导数为0,则该点是一阶函数定义域内的极值点或拐点。在一定情况下,二阶导数为0时的点,有可能为原函数的零点。二阶导数一般是表示凹凸性,但是在国内的不同教材中有不同的叫法。比如在同济大学的教材中,如下图叫做上凹,而其他教材中叫做凹函数。
hi投2023-05-20 17:38:071

参数方程的定义?是方程还是函数

方程的根可以看作两函数图象的交点。打个比方,x^2+x+1=x就可以看成f(x)=x^2+x+1与g(x)=x的图像的交点。举一个特殊一点的例子:x^3=0这里方程的根就是t(x)=x^3与x轴的交点,这个点叫做函数的零点,判断零点是否存在可以用介值定理的推论——零点存在定理。
水元素sl2023-05-20 17:37:543

参数方程通俗是什么

问题一:(坐标与参数方程)概念问题,请通俗易懂的讲,不懂得我用线划了 10分 试题答案:(Ⅰ)曲线的方程为,直线的方程是:(Ⅱ)将曲线横坐标缩短为原来的,再向左平移1个单位,得到曲线曲线的方程为,设曲线上的任意点到直线距离.到直线距离的最小值为。 问题二:什么是参数方程? 例如x^2+y^2=r^2. 可以写成: x=rcosa y=rsina 此时则为圆的参数方程。 问题三:参数方程消参怎么做基础不太好,麻烦通俗点的说说有什 最常规的是把两个式子化成 参数=第一个式子 参数=第二个式子 然后第一个式子=第二个式子 很死板但是适合大多数 难一点的式子观察两个式子的参数出现关系/规律应该能得出……这个做多了就会了 问题四:什么是参数方程 教材上好像真没有, 我个人理解,自变量和因变量即x,y,z都分别被另外一个参数t或者三角函数的角度θ表示,组成的方程组就是参数方程。
LuckySXyd2023-05-20 17:37:541

参数方程是什么意思

参数方程和函数很相似:它们都是由一些在指定的集的数,称为参数或自变量,以决定因变量的结果。例如在运动学,参数通常是“时间”,而方程的结果是速度、位置等。同学你好,如果问题已解决,记得右上角采纳哦~~~您的采纳是对我的肯定~谢谢哦
u投在线2023-05-20 17:37:541

参数方程与普通方程的互化有哪些公式

参数是参变数的简称。它是研究运动等一类问题中产生的。质点运动时,它的位置必然与时间有关系,也就是说,质的坐标x,y与时间t之间有函数关系x=f(t),y=g(t),这两个函数式中的变量t,相对于表示质点的几何位置的变量x,y来说,就是一个“参与的变量”。这类实际问题中的参变量,被抽象到数学中,就成了参数。我们所学的参数方程中的参数,其任务在于沟通变量x,y及一些常量之间的联系,为研究曲线的形状和性质提供方便。用参数方程描述运动规律时,常常比用普通方程更为直接简便。对于解决求最大射程、最大高度、飞行时间或轨迹等一系列问题都比较理想。有些重要但较复杂的曲线(例如圆的渐开线),建立它们的普通方程比较困难,甚至不可能,列出的方程既复杂又不易理解。根据方程画出曲线十分费时;而利用参数方程把两个变量x,y间接地联系起来,常常比较容易,方程简单明确,且画图也不太困难。
北营2023-05-20 17:37:547

参数方程的主要公式及运用

在给定的平面直角坐标系中,如果曲线上任意一点的坐标(x,y)都是某个变数t的函数x=f(t),y=φ(t)且对于t的每一个允许值,由方程组⑴所确定的点m(x,y)都在这条曲线上,那么方程组⑴称为这条曲线的参数方程,联系x、y之间关系的变数称为参变数,简称参数.类似地,也有曲线的极坐标参数方程ρ=f(t),θ=g(t) 圆的参数方程 x=a+r cosθ y=b+r sinθ(θ∈ [0,2π) ) (a,b) 为圆心坐标,r 为圆半径,θ 为参数,(x,y) 为经过点的坐标 椭圆的参数方程 x=a cosθ  y=b sinθ(θ∈[0,2π)) a为长半轴长 b为短半轴长 θ为参数 椭圆 双曲线的参数方程 x=a secθ (正割) y=b tanθ a为实半轴长 b为虚半轴长 θ为参数 抛物线的参数方程 x=2pt^2 y=2pt p表示焦点到准线的距离 t为参数 直线的参数方程 x=x"+tcosa y=y"+tsina,x",y"和a表示直线经过(x",y"),且倾斜角为a,t为参数. 或者x=x"+ut,  y=y"+vt (t∈R)x",y"直线经过定点(x",y"),u,v表示直线的方向向量d=(u,v) 圆的渐开线x=r(cosφ+φsinφ) y=r(sinφ-φcosφ)(φ∈[0,2π)) r为基圆的半径 φ为参数
善士六合2023-05-20 17:37:541

空间直线的参数方程是什么?

空间直线的参数方程在平面直角坐标系中,如果曲线上任意一点的坐标x、y都是某个变数t的函数:并且对于t的每一个允许的取值,由方程组确定的点(x, y)都在这条曲线上,那么这个方程就叫做曲线的参数方程,联系变数x、y的变数t叫做参变数,简称参数。相对而言,直接给出点坐标间关系的方程即可为普通方程。扩展资料:曲线的极坐标参数方程ρ=f(t),θ=g(t)。圆的参数方程 x=a+r cosθ y=b+r sinθ(θ∈ [0,2π) ) (a,b) 为圆心坐标,r 为圆半径,θ 为参数,(x,y) 为经过点的坐标椭圆的参数方程 x=a cosθ  y=b sinθ(θ∈[0,2π)) a为长半轴长 b为短半轴长 θ为参数双曲线的参数方程 x=a secθ (正割) y=b tanθ a为实半轴长 b为虚半轴长 θ为参数。抛物线的参数方程 x=2pt^2 y=2pt p表示焦点到准线的距离 t为参数。直线的参数方程 x=x"+tcosa y=y"+tsina,x",y"和a表示直线经过(x",y"),且倾斜角为a,t为参数。或者x=x"+ut,  y=y"+vt (t∈R)x",y"直线经过定点(x",y"),u,v表示直线的方向向量d=(u,v)。圆的渐开线x=r(cosφ+φsinφ) y=r(sinφ-φcosφ)(φ∈[0,2π)) r为基圆的半径 φ为参数。参考资料来源:百度百科-参数方程
北境漫步2023-05-20 17:37:541

参数方程到底有什么用?

参数方程和函数很相似:它们都是由一些在指定的集的数,称为参数或自变量,以决定因变量的结果。例如在运动学,参数通常是“时间”,而方程的结果是速度、位置等。
LuckySXyd2023-05-20 17:37:541

三角函数的参数方程是什么

X=COS(wT+a1),Y=cos(wT+a2),wT+a1=arccos X,T=(arccosX-a1)/w=(arccosY-a2)/w,即arccosX-arccosY=a1-a2.
西柚不是西游2023-05-20 17:37:541

直线的普通方程怎样化成参数方程

参数方程的表示:先配方(x-2)^2+(y-0)^2=2^2,再令x-2=2×cost,y-0=2×sint,得参数方程:x=2+2cost,y=2sint其中t表示的是圆上某一点P(x,y)与圆心A(2,0)组成的射线AP与x轴的夹角,所以t∈[0,2π]极坐标方程的表示:由圆的方程x^2+y^2=4x,代入x=ρcosθ,y=ρsinθ,得圆的极坐标方程ρ=4cosθ这里的ρ表示圆上一点P(x,y)到极点,也就是坐标原点〇的距离.角度θ的范围一般有两种表示方法,一种是θ表示从极轴逆时针转向射线〇P的角度的大小,所以θ的范围[0,2π];另一种是θ是表示射线〇P与极轴,也就是x轴的夹角,并且规定极轴上方的夹角正,下方为负,所以θ的范围是[-π,π].很明显,对于圆x^2+y^2=4x来说,θ的表示用第二种形式会简单些,即θ∈[-π/2,π/2]所以,圆x^2+y^2=4x的参数方程是x=2+2cost,y=2sint,t∈[0,2π]极坐标方程是ρ=4cosθ,θ∈[-π/2,π/2]
大鱼炖火锅2023-05-20 14:31:372

直线的参数方程怎么做

先将直线化成对称式令z=0x+2y+1=0,x-y-2=0x=1,y=-1所以(1,-1,0)在该直线上在找直线的方向向量ss=n1*n2=i-2j-3k所以对称式:(x-1)/1=(y+1)/-2=z/-3参数方程为:x=t+1y=-2t-1z=-3t楼主给的参数方程也对,因为(2/3,-1/3,1)也是该直线上的点
豆豆staR2023-05-20 14:31:371

什么是参数方程

什么是参数方程数学参数方程是曲线方程的一种表示形式,它是解析几何的重要工具。活用参数方程解答数学竞赛题,体现了一种十分有用的参数方法助参数方程选 设曲线上任一点的坐标,意味着在设坐标之时就消去了一个未知数,利用参数的几何意义解题,更能反映参数方法的优越性。含参数的方程如:x=sina y=cosa 此方程组是一个单位圆 的参数方程,等价于x^2+y^2=1
Chen2023-05-20 14:31:371

参数方程什么意思

就是用一个新变量来表示一个函数关系中几个变量
阿啵呲嘚2023-05-20 14:31:372

怎样把直线的直角坐标方程转化为参数方程

直线方程化为点斜式方程:(y-y0)=k(x-x0)=>(y-y0)=tanα(x-x0)=>(y-y0)=(sinα/cosα)*(x-x0)=>(y-y0)/sinα=(x-x0)/cosα令(y-y0)/sinα=(x-x0)/cosα=t,有y=y0+t*sinαx=x0+t*cosα
豆豆staR2023-05-20 14:31:377

数学题,怎么设参数方程?

设点p(x,y)并且满足x=3+2costy=4+2sintPA^2=(3+2cost+1)^2+(4+2sint)^2=36+16cost+16sintPB^2=(3+2cost-1)^2+(4+2sint)^2=24+8cost+16sintPA^2+PB^2=50+24cost+32sint=50+40(0.6cost+0.8sint=50+40sin(t+a),cosa=0.8,sina=0.6,0<a<pi/2当sin(t+a)=-1时,PA^2+PB^2最小为50-40=10其时,sint=sin(t+a-a)=sin(t+a)cosa-cos(t+a)sina=-1*0.8-0=-0.8,cos(t)= cos (t+a-a)= cos (t+a)cosa-sin (t+a)sina=0.6则x=3+2*0.6=4.2,y=4-2*0.8=2.4
ardim2023-05-20 14:31:371

怎样把参数方程化为标准参数方程

一般式化成标准式满足x=u+余弦值t,y=r+正弦值t,(u,r)为一定点,正弦值和余弦值可由斜率k求得,希望能帮到你
北有云溪2023-05-20 14:31:373

请问,什么是参数方程?

可以简单的理解,以某个未知数如M为参数,则这个未知数M就在参数方程的右侧,而左侧则在M变化过程中,x和y的值。比如x=P(m),m数值的变化对应的x的变化,这个函数关系就是P(m)同理,y=Q(m),m数值的变化对应的y的变化,这个函数关系就是Q(m)。m即为参数。还有其他朋友答案里的,代表角度的θ,也是参数。
瑞瑞爱吃桃2023-05-20 14:31:371

参数方程知识点

参数是参变数的简称。它是研究运动等一类问题中产生的。质点运动时,它的位置必然与时间有关系,也就是说,质的坐标x,y与时间t之间有函数关系x=f(t),y=g(t),这两个函数式中的变量t,相对于表示质点的几何位置的变量x,y来说,就是一个“参与的变量”。这类实际问题中的参变量,被抽象到数学中,就成了参数。我们所学的参数方程中的参数,其任务在于沟通变量x,y及一些常量之间的联系,为研究曲线的形状和性质提供方便。用参数方程描述运动规律时,常常比用普通方程更为直接简便。对于解决求最大射程、最大高度、飞行时间或轨迹等一系列问题都比较理想。有些重要但较复杂的曲线(例如圆的渐开线),建立它们的普通方程比较困难,甚至不可能,列出的方程既复杂又不易理解。根据方程画出曲线十分费时;而利用参数方程把两个变量x,y间接地联系起来,常常比较容易,方程简单明确,且画图也不太困难参数方程,为数学术语,其和函数很相似:它们都是由一些在指定的集的数,称为参数或自变量,以决定因变量的结果。例如在运动学,参数通常是“时间”,而方程的结果是速度、位置等。
mlhxueli 2023-05-20 14:31:371

二次函数的参数方程怎么写

二次函数的参数方程怎么写通常都是化成标准式后,再写出参数函数的:如椭圆:(x-x0)^2/a^2+(y-y0)^2/b^2=1, 其参数方程为:x=x0+acost, y=y0+bsint如抛物线:y-y0=a(x-x0)^2, 其参数方程为:y=y0+at^2, x=x0+t如双曲线:(x-x0)^2/a^2-(y-y0)^2/b^2=1, 其参数方程为:x=x0+asect, y=y0+btant
豆豆staR2023-05-20 14:31:371

参数方程

参数方程,为数学术语,其和函数很相似:它们都是由一些在指定的集的数,称为参数或自变量,以决定因变量的结果。例如在运动学,参数通常是“时间”,而方程的结果是速度、位置等。例子:曲线的极坐标参数方程ρ=f(t),θ=g(t)。圆的参数程 x=a+r cosθ y=b+r sinθ(θ∈ [0,2π) ) (a,b) 为圆心坐标,r 为圆半径,θ 为参数,(x,y) 为经过点的坐标椭圆的参数方程 x=a cosθ  y=b sinθ(θ∈[0,2π)) a为长半轴长 b为短半轴长 θ为参数双曲线的参数方程 x=a secθ (正割) y=b tanθ a为实半轴长 b为虚半轴长 θ为参数抛物线的参数方程 x=2pt^2 y=2pt p表示焦点到准线的距离 t为参数直线的参数方程 x=x"+tcosa y=y"+tsina,x",y"和a表示直线经过(x",y"),且倾斜角为a,t为参数或者x=x"+ut,  y=y"+vt (t∈R)x",y"直线经过定点(x",y"),u,v表示直线的方向向量d=(u,v)圆的渐开线x=r(cosφ+φsinφ) y=r(sinφ-φcosφ)(φ∈[0,2π)) r为基圆的半径 φ为参数平摆线参数方程 x=r(θ-sinθ) y=r(1-cosθ)r为圆的半径,θ是圆的半径所经过的角度(滚动角),当θ由0变到2π时,动点就画出了摆线的一支,称为一拱。
肖振2023-05-20 14:31:361

如何设参数方程?

首先圆的方程是(x-a)^2+(y-b)^2=r^2把r^2除过去(x-a)^2/r^2+(y-b)^2/r^2=1两个数的平方和等于1,所以可以设(x-a)/r=sin&(y-b)/r=cos&整理得到 x=a+rsin&y=b+rcos&这就是圆的参数方程,参数是&,&是半径与x轴的夹角。扩展资料:其他方程化参数方程:1、曲线的极坐标参数方程ρ=f(t),θ=g(t)。2、椭圆的参数方程 x=a cosθ  y=b sinθ(θ∈[0,2π)) a为长半轴长 b为短半轴长 θ为参数。3、双曲线的参数方程 x=a secθ (正割) y=b tanθ a为实半轴长 b为虚半轴长 θ为参数4、抛物线的参数方程 x=2pt^2 y=2pt p表示焦点到准线的距离 t为参数5、直线的参数方程 x=x"+tcosa y=y"+tsina,x",y"和a表示直线经过(x",y"),且倾斜角为a,t为参数参考资料:百度百科-参数方程
FinCloud2023-05-20 14:31:361

参数方程二阶求导?

你要先把y整合成只含t的函数,这样才方便求导
苏州马小云2023-05-20 14:31:363

直线的参数方程应该怎么设啊?

f(x)=kx+t
瑞瑞爱吃桃2023-05-20 14:31:367

参数方程中t的几何意义

这要看具体的曲线方程了,一般都是长度,角度等几何量,也有一些是不容易找到对应的几何量的。比如:对于直线:x=x0+tcosa, y=y0+tsina, 参数t是直线上P(x,y)到定点(x0, y0)的距离。对于圆:x=x0+rcost, y=y0+rsint, 参数t是圆上P(x, y)点水平方向的圆心角。
水元素sl2023-05-20 14:31:366

参数方程化为普通方程

将参数方程(θ为参数)化成普通方程为:x+2y+1=0(-1≤y≤1)。1、参数方程参数方程和函数很相似:它们都是由一些在指定的集的数,称为参数或自变量,以决定因变量的结果。例如在运动学,参数通常是“时间”,而方程的结果是速度、位置等。一般的,在平面直角坐标系中,如果曲线上任意一点的坐标x,y都是某个变数“t”的函数。并且对于“t”的每一个允许值,由上述方程组所确定的点M(x,y)都在这条曲线上,那么上述方程则为这条曲线的参数方程,联系x,y的变数“t”叫做变参数,简称参数,相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程。2、普通方程方程(英文:equation)是表示两个数学式(如两个数、函数、量、运算)之间相等关系的一种等式,是含有未知数的等式,通常在两者之间有一等号“=”。方程不用按逆向思维思考,可直接列出等式并含有未知数。它具有多种形式,如一元一次方程、二元一次方程等。广泛应用于数学、物理等理科应用题计算。
大鱼炖火锅2023-05-20 14:31:361

如何将普通方程转化为参数方程?求过程。比较复杂的转化。

例如圆x^2+y^2=4x参数方程的表示:先配方(x-2)^2+(y-0)^2=2^2,再令x-2=2×cost,y-0=2×sint,得参数方程:x=2+2cost,y=2sint其中t表示的是圆上某一点P(x,y)与圆心A(2,0)组成的射线AP与x轴的夹角,所以t∈[0,2π]极坐标方程的表示:由圆的方程x^2+y^2=4x,代入x=ρcosθ,y=ρsinθ,得圆的极坐标方程ρ=4cosθ这里的ρ表示圆上一点P(x,y)到极点,也就是坐标原点〇的距离.角度θ的范围一般有两种表示方法,一种是θ表示从极轴逆时针转向射线〇P的角度的大小,所以θ的范围[0,2π];另一种是θ是表示射线〇P与极轴,也就是x轴的夹角,并且规定极轴上方的夹角为正,下方为负,所以θ的范围是[-π,π].很明显,对于圆x^2+y^2=4x来说,θ的表示用第二种形式会简单些,即θ∈[-π/2,π/2]所以,圆x^2+y^2=4x的参数方程是x=2+2cost,y=2sint,t∈[0,2π]极坐标方程是ρ=4cosθ,θ∈[-π/2,π/2]
u投在线2023-05-20 14:31:361

常见函数的参数方程有那些? 椭圆、圆、双曲线、对数函数、指数函数等

椭圆:标准方程为:(x^2)/(a^2)+(y^2)/(b^2)=1 (a>b>0) 参数方程是:x=acosθ ,y=bsinθ 圆:标准方程:(x-a)^2+(y-b)^2=r^2 参数方程是:x=a+rcosθ ,y=b+rsinθ 双曲线:标准方程:(x^2/a^2)-(y^2/b^2)=1 参数方程是:x=asecθ,y=btanθ
肖振2023-05-20 14:31:361

直线方程的参数方程怎么求?

设直线过定点P(x0,y0),则A对应的参数是t1 ,B对应的参数是t2。且|AP|=|t1|,|BP|=|t2|,假设|t1| >|t2|:1.当A,B位于P的同侧时,t1,t2同号,|AB|=|AP|-|BP|=|t1|-|t2|=|t1-t2|;26当A,B位于P的异侧时,t1,t2异号,|AB|=|AP|+|BP|=|t1|+|t2|=|t1-t2|。扩展资料:直线方程简介(t的几何意义)从平面解析几何的角度来看,平面上的直线就是由平面直角坐标系中的一个二元一次方程所表示的图形。求两条直线的交点,只需把这两个二元一次方程联立求解,当这个联立方程组无解时,两直线平行;有无穷多解时,两直线重合;只有一解时,两直线相交于一点。常用直线向上方向与 X 轴正向的 夹角( 叫直线的倾斜角 )或该角的正切(称直线的斜率)来表示平面上直线(对于X轴)的倾斜程度。可以通过斜率来判断两条直线是否互相平行或互相垂直,也可计算它们的交角。直线与某个坐标轴的交点在该坐标轴上的坐标,称为直线在该坐标轴上的截距。直线在平面上的位置,由它的斜率和一个截距完全确定。在空间,两个平面相交时,交线为一条直线。因此,在空间直角坐标系中,用两个表示平面的三元一次方程联立,作为它们相交所得直线的方程。参考资料:百度百科-直线方程
凡尘2023-05-20 14:31:361

这个参数方程当t=0时,y是多少?

不会
tt白2023-05-20 14:31:364

参数方程..

例如圆x^2+y^2=4x 参数方程的表示:先配方(x-2)^2+(y-0)^2=2^2,再令x-2=2×cost,y-0=2×sint,得参数方程:x=2+2cost,y=2sint 其中t表示的是圆上某一点P(x,y)与圆心A(2,0)组成的射线AP与x轴的夹角,所以t ∈[0,2π] 极坐标方程的表示:由圆的方程x^2+y^2=4x,代入x=ρcosθ,y=ρsinθ,得圆的极坐标方程ρ=4cosθ 这里的ρ表示圆上一点P(x,y)到极点,也就是坐标原点〇的距离. 角度θ的范围一般有两种表示方法,一种是θ表示从极轴逆时针转向射线〇P的角度的大小,所以θ的范围[0,2π];另一种是θ是表示射线〇P与极轴,也就是x轴的夹角,并且规定极轴上方的夹角为正,下方为负,所以θ的范围是[-π,π]. 很明显,对于圆x^2+y^2=4x来说,θ的表示用第二种形式会简单些,即θ∈[-π/2,π/2] 所以,圆x^2+y^2=4x的参数方程是x=2+2cost,y=2sint,t∈[0,2π] 极坐标方程是ρ=4cosθ,θ∈[-π/2,π/2]
凡尘2023-05-20 14:31:361

如何求曲线的参数方程?

有以下四个公式:cos²θ+sin²θ=1ρ=x²+y²ρcosθ=xρsinθ=y参数方程和函数很相似:它们都是由一些在指定的集的数,称为参数或自变量,以决定因变量的结果。例如在运动学,参数通常是“时间”,而方程的结果是速度、位置等。一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x、y都是某个变数t的函数:  ,并且对于t的每一个允许的取值,由方程组确定的点(x, y)都在这条曲线上,那么这个方程就叫做曲线的参数方程,联系变数x、y的变数t叫做参变数,简称参数。相对而言,直接给出点坐标间关系的方程叫普通方程。扩展资料:在柯西中值定理的证明中,也运用到了参数方程。柯西中值定理如果函数f(x)及F(x)满足:⑴在闭区间[a,b]上连续;⑵在开区间(a,b)内可导;⑶对任一x∈(a,b),F"(x)≠0。那么在(a,b)内至少有一点ζ,使等式[f(b)-f(a)]/[F(b)-F(a)]=f"(ζ)/F"(ζ)成立。柯西简洁而严格地证明了微积分学基本定理即牛顿-莱布尼茨公式。他利用定积分严格证明了带余项的泰勒公式,还用微分与积分中值定理表示曲边梯形的面积,推导了平面曲线之间图形的面积、曲面面积和立体体积的公式。参数曲线亦可以是多于一个参数的函数。例如参数表面是两个参数(s,t)或(u,v)的函数。譬如一个圆柱:r(u,v)=[x(u,v),y(u,v),z(u,v)]=[acos(u),asin(u),v]参数是参变数的简称。它是研究运动等一类问题中产生的。质点运动时,它的位置必然与时间有关系,也就是说,质的坐标x,y与时间t之间有函数关系x=f(t),y=g(t),这两个函数式中的变量t,相对于表示质点的几何位置的变量x,y来说,就是一个“参与的变量”。这类实际问题中的参变量,被抽象到数学中,就成了参数。我们所学的参数方程中的参数,其任务在于沟通变量x,y及一些常量之间的联系,为研究曲线的形状和性质提供方便。用参数方程描述运动规律时,常常比用普通方程更为直接简便。对于解决求最大射程、最大高度、飞行时间或轨迹等一系列问题都比较理想。有些重要但较复杂的曲线(例如圆的渐开线),建立它们的普通方程比较困难,甚至不可能,列出的方程既复杂又不易理解。根据方程画出曲线十分费时;而利用参数方程把两个变量x,y间接地联系起来,常常比较容易,方程简单明确,且画图也不太困难。参考资料:百度百科-参数方程
瑞瑞爱吃桃2023-05-20 14:31:361

参数方程的主要公式及运用是怎样的?

在给定的平面直角坐标系中,如果曲线上任意一点的坐标(x,y)都是某个变数t的函数x=f(t),y=φ(t)且对于t的每一个允许值,由方程组⑴所确定的点m(x,y)都在这条曲线上,那么方程组⑴称为这条曲线的参数方程,联系x、y之间关系的变数称为参变数,简称参数。类似地,也有曲线的极坐标参数方程ρ=f(t),θ=g(t)圆的参数方程x=a+rcosθy=b+rsinθ(θ∈[0,2π))(a,b)为圆心坐标,r为圆半径,θ为参数,(x,y)为经过点的坐标椭圆的参数方程x=acosθ y=bsinθ(θ∈[0,2π))a为长半轴长b为短半轴长θ为参数椭圆双曲线的参数方程x=asecθ(正割)y=btanθa为实半轴长b为虚半轴长θ为参数抛物线的参数方程x=2pt^2y=2ptp表示焦点到准线的距离t为参数直线的参数方程x=x"+tcosay=y"+tsina,x",y"和a表示直线经过(x",y"),且倾斜角为a,t为参数.或者x=x"+ut, y=y"+vt(t∈R)x",y"直线经过定点(x",y"),u,v表示直线的方向向量d=(u,v)圆的渐开线x=r(cosφ+φsinφ)y=r(sinφ-φcosφ)(φ∈[0,2π))r为基圆的半径φ为参数
mlhxueli 2023-05-20 14:31:361

如何求解参数方程?

已知空间直线L:(x-a)/m=(x-b)/n=(z-c)/p和空间平面π:Ax+By+Cz+D=0;求直线L与平面π的交点的坐标。把直线方程改写成参数形式:设(x-a)/m=(x-b)/n=(z-c)/p=t;则x=mt+a;y=nt+b;z=pt+c;代入平面π的方程得:A(mt+a)+B(nt+b)+C(pt+c)+D=0由此解得t=-(Aa+Bb+Cc+D)/(Am+Bn+Cp)再代入参数方程即得交点的坐标(x,y,z).
西柚不是西游2023-05-20 14:31:361

参数方程的解法

1.cos²θ+sin²θ=12.ρ=x²+y²3.ρcosθ=x4.ρsinθ=y扩展资料参数方程和函数很相似:它们都是由一些在指定的集的数,称为参数或自变量,以决定因变量的结果。例如在运动学,参数通常是“时间”,而方程的结果是速度、位置等。参考资料:百度百科-参数方程
小菜G的建站之路2023-05-20 14:31:361

麻烦通俗的解释一下什么叫参数方程?

简单地说,在描述方程的时候,引入了一个新的参数,通过描述参数与原来的自变量和因变量的关系,就是参数方程了。比如说,描述物体运动的方程是y=f(x),但x可以是时间的函数,所以可以得到x=x(t),y=y(t)这样一对参数方程。通过参数的引入,可以更好地理解y与x之间的关系,而且使方程简洁。
人类地板流精华2023-05-20 14:31:361

含参数方程是什么意思

参数方程的解释 在给定的平面 直角 坐标 系中,如果曲线上 任意 一点的坐标x,y都是某个变数t的 函数 x=f(t),y=φ(t),(1)且对于t的每一个 允许 值,由方程组(1)所确定的点m(x,y)都在这条曲线上,那么方程组(1)称为这条曲线的参数方程,联系x、y 之间 关系的变数称为参变数,简称参数。类似地,也有曲线的极坐标参数方程ρ=f(t),θ=g(t)。(2) 词语分解 参数的解释 表明任何现象、设备或其工作过程中某一种 重要 性质 的量。如,汽轮机中蒸气的压力、温度等,是该汽轮机蒸气的参数; 电阻 、电感和电容,就是电路的参数。 方程的解释 表示两个数学式如两个数、函数、量、运算之间相等的一种式子,通常在 两者 之间有一等号=详细解释.九章算术 之一 。《后汉书·马严传》“善《九章筭术》” 唐 李贤 注:“ 刘徽 《九章筭术》曰《方田》第一,
铁血嘟嘟2023-05-20 14:31:361

参数方程是哪本书

《高中数学·选修:坐标系与参数方程(不等式选讲)(教材完全解读选修·专题)》内容简介:以《课程标准》、《考试大纲》为编写依据,完全解读知识、方法、能力、考试题型,全面提高学习成绩。
Ntou1232023-05-20 14:31:363

参数方程切线方程

x" = -2sinθ,y " = 2cosθ,z" = 1,当 θ = 2π 时得切线方向向量(0,2,1),因此切线方程 (x-2)/0 = (y-0)/2 = (z-2π)/1,法平面方程 2(y-0)+(z-2π) = 0 .
mlhxueli 2023-05-20 14:31:362

心形线r=a(1+cosθ)化为参数方程

可以这么来:x=rcosθ=a(1+cosθ)cosθy=rsinθ=a(1+cosθ)sinθ(x,y)为坐标,θ为参数。
水元素sl2023-05-20 14:31:352

常用曲线参数方程

圆的参数方程 x=a+r cosθ y=b+r sinθ (a,b)为圆心坐标 r为圆半径 θ为参数 椭圆的参数方程 x=a cosθ y=b sinθ a为长半轴 长 b为短半轴长 θ为参数 双曲线的参数方程 x=a secθ (正割) y=b tanθ a为实半轴长 b为虚半轴长 θ为参数
肖振2023-05-20 14:31:351

参数方程的斜率怎么求

两种方法,一种是直接求导法,设参数为t,先就y对参数进行求导得到y‘(t),然后就x对参数t求导得到x"(t),则斜率k=y"=y"(t)/x"(t).第二种方法,就是消除参数得到关于y,x的函数,然后对y求导,即可得到斜率。
阿啵呲嘚2023-05-20 14:31:351

参数方程怎么做?

基本思路就是把空间曲线投影在坐标面上,根据投影的形状写出参数方程,然后再回代,写出整个式子的参数方程。或者这样说令其中一个未知数等于t,将t看做已知数,然后解剩下两个未知数的方程组,用t表示结果,得到参数方程拓展资料:参数方程和函数很相似:它们都是由一些在指定的集的数,称为参数或自变量,以决定因变量的结果。曲线的极坐标参数方程ρ=f(t),θ=g(t)。圆的参数方程 x=a+r cosθ y=b+r sinθ(θ∈ [0,2π) ) (a,b) 为圆心坐标,r 为圆半径,θ 为参数,(x,y) 为经过点的坐标;椭圆的参数方程 x=a cosθ  y=b sinθ(θ∈[0,2π)) a为长半轴长 b为短半轴长 θ为参数;双曲线的参数方程 x=a secθ (正割) y=b tanθ a为实半轴长 b为虚半轴长 θ为参数;抛物线的参数方程 x=2pt^2 y=2pt p表示焦点到准线的距离 t为参数。例如在运动学,参数通常是“时间”,而方程的结果是速度、位置等。参考资料:参数方程——百度百科
Jm-R2023-05-20 14:31:351

参数方程怎么求?

参数方程公式如下:一、圆的参数方程x=a+rcosθ,y=b+rsinθ(θ∈[0,2π)),(a,b)为圆心坐标,r为圆半径,θ为参数,(x,y)为经过点的坐标。二、椭圆的参数方程x=acosθ,y=bsinθ(θ∈[0,2π))a为长半轴长b为短半轴长θ为参数。三、双曲线的参数方程x=asecθ(正割),y=btanθa为实半轴长b为虚半轴长θ为参数。四、抛物线的参数方程x=2pt^2,y=2ptp表示焦点到准线的距离t为参数。五、直线的参数方程x=x"+tcosa,y=y"+tsina,x",y"和a表示直线经过(x",y"),且倾斜角为a,t为参数。六、或者x=x"+ut,y=y"+vt(t∈R)x",y"直线经过定点(x",y"),u,v表示直线的方向向量d=(u,v)。七、圆的渐开线x=r(cosφ+φsinφ)y=r(sinφ-φcosφ)(φ∈[0,2π))r为基圆的半径φ为参数。
人类地板流精华2023-05-20 14:31:351

参数方程怎么写?

参数方程公式如下:一、圆的参数方程x=a+rcosθ,y=b+rsinθ(θ∈[0,2π)),(a,b)为圆心坐标,r为圆半径,θ为参数,(x,y)为经过点的坐标。二、椭圆的参数方程x=acosθ,y=bsinθ(θ∈[0,2π))a为长半轴长b为短半轴长θ为参数。三、双曲线的参数方程x=asecθ(正割),y=btanθa为实半轴长b为虚半轴长θ为参数。四、抛物线的参数方程x=2pt^2,y=2ptp表示焦点到准线的距离t为参数。五、直线的参数方程x=x"+tcosa,y=y"+tsina,x",y"和a表示直线经过(x",y"),且倾斜角为a,t为参数。六、或者x=x"+ut,y=y"+vt(t∈R)x",y"直线经过定点(x",y"),u,v表示直线的方向向量d=(u,v)。七、圆的渐开线x=r(cosφ+φsinφ)y=r(sinφ-φcosφ)(φ∈[0,2π))r为基圆的半径φ为参数。
拌三丝2023-05-20 14:31:351

数学中参数方程的一般形式是什么?

有以下四个公式:cos²θ+sin²θ=1ρ=x²+y²ρcosθ=xρsinθ=y参数方程和函数很相似:它们都是由一些在指定的集的数,称为参数或自变量,以决定因变量的结果。例如在运动学,参数通常是“时间”,而方程的结果是速度、位置等。一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x、y都是某个变数t的函数:  ,并且对于t的每一个允许的取值,由方程组确定的点(x, y)都在这条曲线上,那么这个方程就叫做曲线的参数方程,联系变数x、y的变数t叫做参变数,简称参数。相对而言,直接给出点坐标间关系的方程叫普通方程。扩展资料:在柯西中值定理的证明中,也运用到了参数方程。柯西中值定理如果函数f(x)及F(x)满足:⑴在闭区间[a,b]上连续;⑵在开区间(a,b)内可导;⑶对任一x∈(a,b),F"(x)≠0。那么在(a,b)内至少有一点ζ,使等式[f(b)-f(a)]/[F(b)-F(a)]=f"(ζ)/F"(ζ)成立。柯西简洁而严格地证明了微积分学基本定理即牛顿-莱布尼茨公式。他利用定积分严格证明了带余项的泰勒公式,还用微分与积分中值定理表示曲边梯形的面积,推导了平面曲线之间图形的面积、曲面面积和立体体积的公式。参数曲线亦可以是多于一个参数的函数。例如参数表面是两个参数(s,t)或(u,v)的函数。譬如一个圆柱:r(u,v)=[x(u,v),y(u,v),z(u,v)]=[acos(u),asin(u),v]参数是参变数的简称。它是研究运动等一类问题中产生的。质点运动时,它的位置必然与时间有关系,也就是说,质的坐标x,y与时间t之间有函数关系x=f(t),y=g(t),这两个函数式中的变量t,相对于表示质点的几何位置的变量x,y来说,就是一个“参与的变量”。这类实际问题中的参变量,被抽象到数学中,就成了参数。我们所学的参数方程中的参数,其任务在于沟通变量x,y及一些常量之间的联系,为研究曲线的形状和性质提供方便。用参数方程描述运动规律时,常常比用普通方程更为直接简便。对于解决求最大射程、最大高度、飞行时间或轨迹等一系列问题都比较理想。有些重要但较复杂的曲线(例如圆的渐开线),建立它们的普通方程比较困难,甚至不可能,列出的方程既复杂又不易理解。根据方程画出曲线十分费时;而利用参数方程把两个变量x,y间接地联系起来,常常比较容易,方程简单明确,且画图也不太困难。参考资料:百度百科-参数方程
meira2023-05-20 14:31:351

参数方程怎么求呢?

有以下四个公式:cos²θ+sin²θ=1ρ=x²+y²ρcosθ=xρsinθ=y参数方程和函数很相似:它们都是由一些在指定的集的数,称为参数或自变量,以决定因变量的结果。例如在运动学,参数通常是“时间”,而方程的结果是速度、位置等。一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x、y都是某个变数t的函数:  ,并且对于t的每一个允许的取值,由方程组确定的点(x, y)都在这条曲线上,那么这个方程就叫做曲线的参数方程,联系变数x、y的变数t叫做参变数,简称参数。相对而言,直接给出点坐标间关系的方程叫普通方程。扩展资料:在柯西中值定理的证明中,也运用到了参数方程。柯西中值定理如果函数f(x)及F(x)满足:⑴在闭区间[a,b]上连续;⑵在开区间(a,b)内可导;⑶对任一x∈(a,b),F"(x)≠0。那么在(a,b)内至少有一点ζ,使等式[f(b)-f(a)]/[F(b)-F(a)]=f"(ζ)/F"(ζ)成立。柯西简洁而严格地证明了微积分学基本定理即牛顿-莱布尼茨公式。他利用定积分严格证明了带余项的泰勒公式,还用微分与积分中值定理表示曲边梯形的面积,推导了平面曲线之间图形的面积、曲面面积和立体体积的公式。参数曲线亦可以是多于一个参数的函数。例如参数表面是两个参数(s,t)或(u,v)的函数。譬如一个圆柱:r(u,v)=[x(u,v),y(u,v),z(u,v)]=[acos(u),asin(u),v]参数是参变数的简称。它是研究运动等一类问题中产生的。质点运动时,它的位置必然与时间有关系,也就是说,质的坐标x,y与时间t之间有函数关系x=f(t),y=g(t),这两个函数式中的变量t,相对于表示质点的几何位置的变量x,y来说,就是一个“参与的变量”。这类实际问题中的参变量,被抽象到数学中,就成了参数。我们所学的参数方程中的参数,其任务在于沟通变量x,y及一些常量之间的联系,为研究曲线的形状和性质提供方便。用参数方程描述运动规律时,常常比用普通方程更为直接简便。对于解决求最大射程、最大高度、飞行时间或轨迹等一系列问题都比较理想。有些重要但较复杂的曲线(例如圆的渐开线),建立它们的普通方程比较困难,甚至不可能,列出的方程既复杂又不易理解。根据方程画出曲线十分费时;而利用参数方程把两个变量x,y间接地联系起来,常常比较容易,方程简单明确,且画图也不太困难。参考资料:百度百科-参数方程
Chen2023-05-20 14:31:351

如何求解参数方程?

参数方程公式如下:一、圆的参数方程x=a+rcosθ,y=b+rsinθ(θ∈[0,2π)),(a,b)为圆心坐标,r为圆半径,θ为参数,(x,y)为经过点的坐标。二、椭圆的参数方程x=acosθ,y=bsinθ(θ∈[0,2π))a为长半轴长b为短半轴长θ为参数。三、双曲线的参数方程x=asecθ(正割),y=btanθa为实半轴长b为虚半轴长θ为参数。四、抛物线的参数方程x=2pt^2,y=2ptp表示焦点到准线的距离t为参数。五、直线的参数方程x=x"+tcosa,y=y"+tsina,x",y"和a表示直线经过(x",y"),且倾斜角为a,t为参数。六、或者x=x"+ut,y=y"+vt(t∈R)x",y"直线经过定点(x",y"),u,v表示直线的方向向量d=(u,v)。七、圆的渐开线x=r(cosφ+φsinφ)y=r(sinφ-φcosφ)(φ∈[0,2π))r为基圆的半径φ为参数。
u投在线2023-05-20 14:31:351

参数方程是什么意思?

一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x、y都是某个变数t的函数: 平面直角坐标系中,如果曲线上任意一点的坐标x、y都是某个变数t的函数。曲线的极坐标参数方程ρ=f(t),θ=g(t)。圆的参数方程 x=a+r cosθ y=b+r sinθ(θ∈ [0,2π) ) (a,b) 为圆心坐标,r 为圆半径,θ 为参数,(x,y) 为经过点的坐标。椭圆的参数方程 x=a cosθ  y=b sinθ(θ∈[0,2π)) a为长半轴长 b为短半轴长 θ为参数。双曲线的参数方程 x=a secθ (正割) y=b tanθ a为实半轴长 b为虚半轴长 θ为参数。抛物线的参数方程 x=2pt^2 y=2pt p表示焦点到准线的距离 t为参数。并且对于t的每一个允许的取值,由方程组确定的点(x, y)都在这条曲线上,联系变数x、y的变数t叫做参变数。相对而言,直接给出点坐标间关系的方程为普通方程。直线的参数方程 x=x"+tcosa y=y"+tsina,x",y"和a表示直线经过(x",y"),且倾斜角为a,t为参数。扩展资料积分的保号性:如果一个函数f在某个区间上黎曼可积,并且在此区间上大于等于零。那么它在这个区间上的积分也大于等于零。如果f勒贝格可积并且几乎总是大于等于零,那么它的勒贝格积分也大于等于零。作为推论,如果两个等于0,那么任何可积函数在A上的积分等于0。函数的积分表示了函数在某个区域上的整体性质,改变函数某点的取值不会改变它的积分值。对于黎曼可积的函数,改变有限个点的取值,其积分不变。某个测度为0的集合上的函数值改变,不会影响它的积分值。如果两个函数几乎处处相同,那么它们的积分相同。如果对中任意元素A,可积函数f在A上的积分总等于(大于等于)可积函数g在A上的积分,那么f几乎处处等于(大于等于)g。参考资料来源:百度百科-参数方程参考资料来源:百度百科-积分
u投在线2023-05-20 14:31:351

参数方程的解释

参数方程的解释 在给定的平面 直角 坐标 系中,如果曲线上 任意 一点的坐标x,y都是某个变数t的 函数 x=f(t),y=φ(t),(1)且对于t的每一个 允许 值,由方程组(1)所确定的点m(x,y)都在这条曲线上,那么方程组(1)称为这条曲线的参数方程,联系x、y 之间 关系的变数称为参变数,简称参数。类似地,也有曲线的极坐标参数方程ρ=f(t),θ=g(t)。(2) 词语分解 参数的解释 表明任何现象、设备或其工作过程中某一种 重要 性质 的量。如,汽轮机中蒸气的压力、温度等,是该汽轮机蒸气的参数; 电阻 、电感和电容,就是电路的参数。 方程的解释 表示两个数学式如两个数、函数、量、运算之间相等的一种式子,通常在 两者 之间有一等号=详细解释.九章算术 之一 。《后汉书·马严传》“善《九章筭术》” 唐 李贤 注:“ 刘徽 《九章筭术》曰《方田》第一,
真颛2023-05-20 14:31:351

参数方程定理公式是什么?

椭圆x2/a2+y2/b2=1(a>b>0)的参数方程是x=acosφ,y=bsinφ(φ是参数)双曲线x2/a2-y2/b2=1(a>0,b>0)的参数方程是x=asecφ,y=btgφ(φ是参数)抛物线y2=2px的参数方程是x=2pt2,y=2pt(t是参数)曲线的极坐标参数方程ρ=f(t),θ=g(t)。圆的参数方程 x=a+r cosθ y=b+r sinθ(θ∈ [0,2π) ) (a,b) 为圆心坐标,r 为圆半径,θ 为参数,(x,y) 为经过点的坐标扩展资料参数方程和函数很相似:它们都是由一些在指定的集的数,称为参数或自变量,以决定因变量的结果。例如在运动学,参数通常是“时间”,而方程的结果是速度、位置等。一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x、y都是某个变数t的函数:  并且对于t的每一个允许的取值,由方程组确定的点(x, y)都在这条曲线上,那么这个方程就叫做曲线的参数方程,联系变数x、y的变数t叫做参变数,简称参数。相对而言,直接给出点坐标间关系的方程叫普通方程。参考资料百度百科-参数方程
大鱼炖火锅2023-05-20 14:31:351

请问参数方程是什么?顺便把高中解析几何中所有的图形的参数方程都给我吧

定义   在给定的平面直角坐标系中,如果曲线上任意一点的坐标x,y都是某个变数t的函数x=f(t),y=φ(t)——(1);且对于t的每一个允许值,由方程组(1)所确定的点m(x,y)都在这条曲线上,那么方程组(1)称为这条曲线的参数方程,联系x、y之间关系的变数称为参变数,简称参数.类似地,也有曲线的极坐标参数方程ρ=f(t),θ=g(t).(2) 圆的参数方程 x=a+r cosθ y=b+r sinθ (θ属于[0,2π) ) (a,b)为圆心坐标 r为圆半径 θ为参数 (x,y)为经过点的坐标 椭圆的参数方程 x=a cosθ y=b sinθ (θ属于[0,2π) ) a为长半轴 长 b为短半轴长 θ为参数   双曲线的参数方程 x=a secθ (正割) y=b tanθ a为实半轴长 b为虚半轴长 θ为参数  抛物线的参数方程 x=2pt^2 y=2pt p表示焦点到准线的距离 t为参数 直线的参数方程 x=x"+tcosa y=y"+tsina ,x",y"和a表示直线经过(x",y"),且倾斜角为a,t为参数.  或者x=x"+ut,y=y"+vt (t属于R) x",y"直线经过定点(x",y"),u,v表示直线的方向 向量d=(u,v)
再也不做站长了2023-05-20 14:31:351

参数方程公式高中

椭圆x2/a2+y2/b2=1(a>b>0)的参数方程是x=acosφ,y=bsinφ(φ是参数)。双曲线x2/a2-y2/b2=1(a>0,b>0)的参数方程是x=asecφ,y=btgφ(φ是参数)。抛物线y2=2px的参数方程是x=2pt2,y=2pt(t是参数)。曲线的极坐标参数方程ρ=f(t),θ=g(t)。圆的参数方程 x=a+r cosθ y=b+r sinθ(θ∈ [0,2π) ) (a,b) 为圆心坐标,r 为圆半径,θ 为参数,(x,y) 为经过点的坐标。参数方程,为数学术语,其和函数很相似:它们都是由一些在指定的集的数,称为参数或自变量,以决定因变量的结果。例如在运动学,参数通常是“时间”,而方程的结果是速度、位置等。
wpBeta2023-05-20 14:31:351

什么是参数方程? 它的概念?式子?

参数方程 在给定的平面直角坐标系中,如果曲线上任意一点的坐标x,y都是某个变数t的函数x=f(t),y=φ(t),(1)且对于t的每一个允许值,由方程组(1)所确定的点m(x,y)都在这条曲线上,那么方程组(1)称为这条曲线的参数方程,联系x、y之间关系的变数称为参变数,简称参数.类似地,也有曲线的极坐标参数方程ρ=f(t),θ=g(t).
凡尘2023-05-20 14:31:351
 首页 上一页  1 2 3 4  下一页  尾页