汉邦问答 / 问答 / 问答详情

参数方程中t的几何意义

2023-05-20 14:31:36
此后故乡只

参数方程中t的几何意义要看具体的曲线方程了,一般都是长度,角度等几何量,也有一些是不容易找到对应的几何量的。

比如:

对于直线:x=x0+tcosa, y=y0+tsina, 参数t是直线上P(x,y)到定点(x0, y0)的距离。

对于圆:x=x0+rcost, y=y0+rsint, 参数t是圆上P(x, y)点水平方向的圆心角。

拓展资料

参数方程和函数很相似:它们都是由一些在指定的集的数,称为参数或自变量,以决定因变量的结果。例如在运动学,参数通常是“时间”,而方程的结果是速度、位置等。

一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x、y都是某个变数t的函数:

参数方程 

并且对于t的每一个允许的取值,由方程组确定的点(x, y)都在这条曲线上,那么这个方程就叫做曲线的参数方程,联系变数x、y的变数t叫做参变数,简称参数。相对而言,直接给出点坐标间关系的方程叫普通方程。

参考资料:百度百科-参数方程

拌三丝

t总是有几何意义的,表示直线和x轴夹角或者和y轴夹角等等,因为是一个参数而已,所以任何合理的可以表达直线意义的都行。

直线:x=x0+tcosa, y=y0+tsina, 参数t是直线上P(x,y)到定点(x0, y0)的距离。

圆:x=x0+rcost, y=y0+rsint, 参数t是圆上P(x, y)点水平方向的圆心角。

参数方程描述运动规律:

常常比用普通方程更为直接简便。对于解决求最大射程、最大高度、飞行时间或轨迹等一系列问题都比较理想。有些重要但较复杂的曲线(例如圆的渐开线),建立它们的普通方程比较困难,甚至不可能,列出的方程既复杂又不易理解。

以上内容参考:百度百科-参数方程

kikcik

t总是有几何意义的,表示直线和x轴夹角或者和y轴夹角等等,因为是一个参数而已,所以任何合理的可以表达直线意义的都行。

例子:直线的参数方程x=x0+at,y=y0+bt中,(a,b)为直线的一个方向向量,当这个方向向量是单位向量的时候,即a²+b²=1时,直线会有这样的参数方程。

ardim

对于直线:x=x0+tcosa, y=y0+tsina, 参数t是直线上P(x,y)到定点(x0, y0)的距离。

对于圆:x=x0+rcost, y=y0+rsint, 参数t是圆上P(x, y)点水平方向的圆心角。

tt白

哪种参数方程,如直线参数方程,抛物线参数方程等

水元素sl

这要看具体的曲线方程了,一般都是长度,角度等几何量,也有一些是不容易找到对应的几何量的。比如:

对于直线:x=x0+tcosa, y=y0+tsina, 参数t是直线上P(x,y)到定点(x0, y0)的距离。

对于圆:x=x0+rcost, y=y0+rsint, 参数t是圆上P(x, y)点水平方向的圆心角。

参数方程公式

参数方程公式如下:一、圆的参数方程x=a+rcosθ,y=b+rsinθ(θ∈[0,2π)),(a,b)为圆心坐标,r为圆半径,θ为参数,(x,y)为经过点的坐标。二、椭圆的参数方程x=acosθ,y=bsinθ(θ∈[0,2π))a为长半轴长b为短半轴长θ为参数。三、双曲线的参数方程x=asecθ(正割),y=btanθa为实半轴长b为虚半轴长θ为参数。四、抛物线的参数方程x=2pt^2,y=2ptp表示焦点到准线的距离t为参数。五、直线的参数方程x=x"+tcosa,y=y"+tsina,x",y"和a表示直线经过(x",y"),且倾斜角为a,t为参数。六、或者x=x"+ut,y=y"+vt(t∈R)x",y"直线经过定点(x",y"),u,v表示直线的方向向量d=(u,v)。七、圆的渐开线x=r(cosφ+φsinφ)y=r(sinφ-φcosφ)(φ∈[0,2π))r为基圆的半径φ为参数。
2023-05-20 10:22:561

参数方程

就是原来的A,B。他们的用处很难表达,有时用它们来表示曲线代入起来较为开朗
2023-05-20 10:23:184

参数方程怎么求?

有以下四个公式:cos²θ+sin²θ=1ρ=x²+y²ρcosθ=xρsinθ=y参数方程和函数很相似:它们都是由一些在指定的集的数,称为参数或自变量,以决定因变量的结果。例如在运动学,参数通常是“时间”,而方程的结果是速度、位置等。一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x、y都是某个变数t的函数:  ,并且对于t的每一个允许的取值,由方程组确定的点(x, y)都在这条曲线上,那么这个方程就叫做曲线的参数方程,联系变数x、y的变数t叫做参变数,简称参数。相对而言,直接给出点坐标间关系的方程叫普通方程。扩展资料:在柯西中值定理的证明中,也运用到了参数方程。柯西中值定理如果函数f(x)及F(x)满足:⑴在闭区间[a,b]上连续;⑵在开区间(a,b)内可导;⑶对任一x∈(a,b),F"(x)≠0。那么在(a,b)内至少有一点ζ,使等式[f(b)-f(a)]/[F(b)-F(a)]=f"(ζ)/F"(ζ)成立。柯西简洁而严格地证明了微积分学基本定理即牛顿-莱布尼茨公式。他利用定积分严格证明了带余项的泰勒公式,还用微分与积分中值定理表示曲边梯形的面积,推导了平面曲线之间图形的面积、曲面面积和立体体积的公式。参数曲线亦可以是多于一个参数的函数。例如参数表面是两个参数(s,t)或(u,v)的函数。譬如一个圆柱:r(u,v)=[x(u,v),y(u,v),z(u,v)]=[acos(u),asin(u),v]参数是参变数的简称。它是研究运动等一类问题中产生的。质点运动时,它的位置必然与时间有关系,也就是说,质的坐标x,y与时间t之间有函数关系x=f(t),y=g(t),这两个函数式中的变量t,相对于表示质点的几何位置的变量x,y来说,就是一个“参与的变量”。这类实际问题中的参变量,被抽象到数学中,就成了参数。我们所学的参数方程中的参数,其任务在于沟通变量x,y及一些常量之间的联系,为研究曲线的形状和性质提供方便。用参数方程描述运动规律时,常常比用普通方程更为直接简便。对于解决求最大射程、最大高度、飞行时间或轨迹等一系列问题都比较理想。有些重要但较复杂的曲线(例如圆的渐开线),建立它们的普通方程比较困难,甚至不可能,列出的方程既复杂又不易理解。根据方程画出曲线十分费时;而利用参数方程把两个变量x,y间接地联系起来,常常比较容易,方程简单明确,且画图也不太困难。参考资料:百度百科-参数方程
2023-05-20 10:23:561

参数方程有哪些公式?

参数方程与普通方程的互化最基本的有以下四个公式:1.cos²θ+sin²θ=12.ρ=x²+y²3.ρcosθ=x4.ρsinθ=y其他公式:曲线的极坐标参数方程ρ=f(t),θ=g(t)。圆的参数方程 x=a+r cosθ y=b+r sinθ(θ∈ [0,2π) ) (a,b) 为圆心坐标,r 为圆半径,θ 为参数,(x,y) 为经过点的坐标椭圆的参数方程 x=a cosθ  y=b sinθ(θ∈[0,2π)) a为长半轴长 b为短半轴长 θ为参数 [2] 双曲线的参数方程 x=a secθ (正割) y=b tanθ a为实半轴长 b为虚半轴长 θ为参数抛物线的参数方程 x=2pt^2 y=2pt p表示焦点到准线的距离 t为参数直线的参数方程 x=x"+tcosa y=y"+tsina,x",y"和a表示直线经过(x",y"),且倾斜角为a,t为参数或者x=x"+ut,  y=y"+vt (t∈R)x",y"直线经过定点(x",y"),u,v表示直线的方向向量d=(u,v)圆的渐开线x=r(cosφ+φsinφ) y=r(sinφ-φcosφ)(φ∈[0,2π)) r为基圆的半径 φ为参数。扩展资料参数是参变数的简称。它是研究运动等一类问题中产生的。质点运动时,它的位置必然与时间有关系,也就是说,质的坐标x,y与时间t之间有函数关系x=f(t),y=g(t),这两个函数式中的变量t,相对于表示质点的几何位置的变量x,y来说,就是一个“参与的变量”。这类实际问题中的参变量,被抽象到数学中,就成了参数。我们所学的参数方程中的参数,其任务在于沟通变量x,y及一些常量之间的联系,为研究曲线的形状和性质提供方便。用参数方程描述运动规律时,常常比用普通方程更为直接简便。对于解决求最大射程、最大高度、飞行时间或轨迹等一系列问题都比较理想。有些重要但较复杂的曲线(例如圆的渐开线),建立它们的普通方程比较困难,甚至不可能,列出的方程既复杂又不易理解。根据方程画出曲线十分费时;而利用参数方程把两个变量x,y间接地联系起来,常常比较容易,方程简单明确,且画图也不太困难。参考资料:百度百科参数方程
2023-05-20 10:24:151

什么是参数方程

定义:一般的,在平面直角坐标系中,如果曲线上任意一点的坐标x,y都是某个变数"t"的函数并且对于"t"的每一个允许值,由上述方程组所确定的点M(x,y)都在这条曲线上,那么上述方程则为这条曲线的参数方程,联系x,y的变数"t"叫做变参数,简称参数,相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程。(注意:参数是联系变数x,y的桥梁,可以是一个有物理意义和几何意义的变数,也可以是没有实际意义的变数举例:曲线的极坐标参数方程ρ=f(t),θ=g(t)。圆的参数方程 x=a+r cosθ y=b+r sinθ(θ∈ [0,2π) ) (a,b) 为圆心坐标,r 为圆半径,θ 为参数椭圆的参数方程 x=a cosθ y=b sinθ(θ∈[0,2π)) a为长半轴长 b为短半轴长 θ为参数双曲线的参数方程 x=a secθ (正割) y=b tanθ a为实半轴长 b为虚半轴长 θ为参数抛物线的参数方程 x=2pt^2 y=2pt p表示焦点到准线的距离 t为参数应用:参数是参变数的简称。它是研究运动等一类问题中产生的。质点运动时,它的位置必然与时间有关系,也就是说,质的坐标x,y与时间t之间有函数关系x=f(t),y=g(t),这两个函数式中的变量t,相对于表示质点的几何位置的变量x,y来说,就是一个"参与的变量"。这类实际问题中的参变量,被抽象到数学中,就成了参数。我们所学的参数方程中的参数,其任务在于沟通变量x,y及一些常量之间的联系,为研究曲线的形状和性质提供方便。用参数方程描述运动规律时,常常比用普通方程更为直接简便。对于解决求最大射程、最大高度、飞行时间或轨迹等一系列问题都比较理想。有些重要但较复杂的曲线(例如圆的渐开线),建立它们的普通方程比较困难,甚至不可能,列出的方程既复杂又不易理解,如圆的渐开线的普通方程。
2023-05-20 10:25:161

数学的参数方程公式有哪些

  直线参数方程是高中数学在解析几何这一模块中非常重要的知识点,也是整个高中数学的一大难题,接下来我为你整理了数学参数方程公式,一起来看看吧。   数学参数方程公式   数学参数方程概念   一般在平面直角坐标系中,如果曲线上任意一点的坐标x,y都是某个变数t的函数:x=f(t),y=g(t),并且对于t的每一个允许的取值,由方程组确定的点(x,y)都在这条曲线上,那么这个方程就叫做曲线的参数方程,联系变数x,   y的变数t叫做参变数,简称参数。   圆的参数方程   x=a+r cosθ y=b+r sinθ (a,b)为圆心坐标 r为圆半径 θ为参数   椭圆的参数方程   x=a cosθ y=b sinθ a为长半轴 长 b为短半轴长 θ为参数   双曲线的参数方程   x=a secθ (正割) y=b tanθ a为实半轴长 b为虚半轴长 θ为参数   抛物线的参数方程   x=2pt^2 y=2pt p表示焦点到准线的距离 t为参数   直线的参数方程   x=x"+tcosa y=y"+tsina , x", y"和a表示直线经过(x",y"),且倾斜角为a,t为参数.   数学学习技巧   一、课内重视听讲,课后及时复习。   新知识的接受,数学能力的培养主要在课堂上进行,所以要特别重视课内的学习效率,寻求正确的 学习 方法 。上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。   首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,尽量回忆而不采用“不清楚立即翻书”之举。认真独立完成作业,勤于思考,对于有些题目,由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。   在每个阶段的学习中要进行整理和归纳 总结 ,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。   二、适当多做题,养成良好的解题习惯。   要想学好数学,多做题目是必须的,熟悉掌握各种题型的解题思路。刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。   对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程。两者一起比较找出自己的错误所在,以便及时更正。在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。   实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。   三、调整心态,正确对待考试。   首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。   调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能打垮我的自豪感。   在考试前要做好准备,练练常规题,把自己的思路展开,在保证正确率的前提下提高解题速度。对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要尽量拿分,考试中要使自己的水平正常甚至超常发挥。   由此可见,要把数学学好就得找到适合自己的学习方法,了解数学学科的特点,使自己进入数学的广阔天地中去。
2023-05-20 10:25:291

怎么化为参数方程?

空间曲线一般式化为参数方程的方法如下:设空间曲线的一般方程是F(x,y,z)=0,G(x,y,z)=0,令x,y或z中任何一个取到合适的参数方程,用于简化化简。如z=f(t),然后带回到一般方程是F(x,y,z)=0,G(x,y,z)=0中,得到F1(x,y)=f1(t),G1(x,y)=f2(t)。然后通过借这个方程组得出x=p(t),y=q(t),z=f(t)即为参数方程。极坐标也是一种形式的参数方程。比如在曲线中令x=rcosθ,y=rsinθ,得出参数方程r=f(θ)。数学参数方程公式1、圆的参数方程x=a+r,cosθy=b+r,sinθ(a,b)为圆心坐标,r为圆半径,θ为参数。2、椭圆的参数方程x=a,cosθy=b,sinθa为长半轴长,b为短半轴长,θ为参数。3、双曲线的参数方程x=a,secθ(正割)y=b,tanθa为实半轴长,b为虚半轴长,θ为参数。4、抛物线的参数方程x=2pt^2,y=2pt,p表示焦点到准线的距离,t为参数。5、直线的参数方程x=x"+tcosa,y=y"+tsina,x",y"和a表示直线经过(x",y"),且倾斜角为a,t为参数。
2023-05-20 10:25:361

参数方程基础知识

高考复习之参数方程一、考纲要求1.理解参数方程的概念,了解某些常用参数方程中参数的几何意义或物理意义,掌握参数方 程与普通方程的互化方法.会根据所给出的参数,依据条件建立参数方程.2.理解极坐标的概念.会正确进行点的极坐标与直角坐标的互化.会正确将极坐标方程化为 直角坐标方程,会根据所给条件建立直线、圆锥曲线的极坐标方程.不要求利用曲线的参数 方程或极坐标方程求两条曲线的交点.二、知识结构1.直线的参数方程(1)标准式 过点Po(x0,y0),倾斜角为α的直线l(如图)的参数方程是 (t为参数)(2)一般式 过定点P0(x0,y0)斜率k=tgα=的直线的参数方程是(t不参数) ②在一般式②中,参数t不具备标准式中t的几何意义,若a2+b2=1,②即为标准式,此时, | t|表示直线上动点P到定点P0的距离;若a2+b2≠1,则动点P到定点P0的距离是|t|.直线参数方程的应用 设过点P0(x0,y0),倾斜角为α的直线l的参数方程是(t为参数)若P1、P2是l上的两点,它们所对应的参数分别为t1,t2,则(1)P1、P2两点的坐标分别是(x0+t1cosα,y0+t1sinα)(x0+t2cosα,y0+t2sinα);(2)|P1P2|=|t1-t2|;(3)线段P1P2的中点P所对应的参数为t,则t=中点P到定点P0的距离|PP0|=|t|=||(4)若P0为线段P1P2的中点,则t1+t2=0.2.圆锥曲线的参数方程(1)圆 圆心在(a,b),半径为r的圆的参数方程是(φ是参数)φ是动半径所在的直线与x轴正向的夹角,φ∈[0,2π](见图)(2)椭圆 椭圆(a>b>0)的参数方程是 (φ为参数)椭圆 (a>b>0)的参数方程是(φ为参数)3.极坐标极坐标系 在平面内取一个定点O,从O引一条射线Ox,选定一个单位长度以及计算角度的正 方向(通常取逆时针方向为正方向),这样就建立了一个极坐标系,O点叫做极点,射线Ox叫 做极轴.①极点;②极轴;③长度单位;④角度单位和它的正方向,构成了极坐标系的四要素,缺一不可.点的极坐标 设M点是平面内任意一点,用ρ表示线段OM的长度,θ表示射线Ox到OM的角度 ,那么ρ叫做M点的极径,θ叫做M点的极角,有序数对(ρ,θ)叫做M点的极坐标
2023-05-20 10:25:451

参数方程

参数方程如下:一、圆的参数方程x=a+rcosθ,y=b+rsinθ(θ∈[0,2π)),(a,b)为圆心坐标,r为圆半径,θ为参数,(x,y)为经过点的坐标。二、椭圆的参数方程x=acosθ,y=bsinθ(θ∈[0,2π))a为长半轴长b为短半轴长θ为参数。三、双曲线的参数方程x=asecθ(正割),y=btanθa为实半轴长b为虚半轴长θ为参数。四、抛物线的参数方程x=2pt^2,y=2ptp表示焦点到准线的距离t为参数。五、直线的参数方程x=x"+tcosa,y=y"+tsina,x",y"和a表示直线经过(x",y"),且倾斜角为a,t为参数。六、或者x=x"+ut,y=y"+vt(t∈R)x",y"直线经过定点(x",y"),u,v表示直线的方向向量d=(u,v)。七、圆的渐开线x=r(cosφ+φsinφ)y=r(sinφ-φcosφ)(φ∈[0,2π))r为基圆的半径φ为参数。
2023-05-20 10:25:531

什么叫参数方程

曲线上任意一点坐标X,Y都是某个变数T的函数
2023-05-20 10:26:1411

参数方程的定义是什么?

椭圆x2/a2+y2/b2=1(a>b>0)的参数方程是x=acosφ,y=bsinφ(φ是参数)双曲线x2/a2-y2/b2=1(a>0,b>0)的参数方程是x=asecφ,y=btgφ(φ是参数)抛物线y2=2px的参数方程是x=2pt2,y=2pt(t是参数)曲线的极坐标参数方程ρ=f(t),θ=g(t)。圆的参数方程 x=a+r cosθ y=b+r sinθ(θ∈ [0,2π) ) (a,b) 为圆心坐标,r 为圆半径,θ 为参数,(x,y) 为经过点的坐标扩展资料参数方程和函数很相似:它们都是由一些在指定的集的数,称为参数或自变量,以决定因变量的结果。例如在运动学,参数通常是“时间”,而方程的结果是速度、位置等。一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x、y都是某个变数t的函数:  并且对于t的每一个允许的取值,由方程组确定的点(x, y)都在这条曲线上,那么这个方程就叫做曲线的参数方程,联系变数x、y的变数t叫做参变数,简称参数。相对而言,直接给出点坐标间关系的方程叫普通方程。参考资料百度百科-参数方程
2023-05-20 10:26:591

参数方程怎么写?

1.cos²θ+sin²θ=12.ρ=x²+y²3.ρcosθ=x4.ρsinθ=y扩展资料参数方程和函数很相似:它们都是由一些在指定的集的数,称为参数或自变量,以决定因变量的结果。例如在运动学,参数通常是“时间”,而方程的结果是速度、位置等。参考资料:百度百科-参数方程
2023-05-20 10:27:181

什么是参数方程?

就是说有参数
2023-05-20 10:27:344

参数方程的定义?是方程还是函数

可以是方程 也可以是函数 我是这样理解的它描述的是轨迹图象 有一一对应的关系 所以是函数又是等式所以说又是方程
2023-05-20 10:27:502

普通方程怎么转化为参数方程?

例如圆x^2+y^2=4x参数方程的表示:先配方(x-2)^2+(y-0)^2=2^2,再令x-2=2×cost,y-0=2×sint,得参数方程:x=2+2cost,y=2sint其中t表示的是圆上某一点P(x,y)与圆心A(2,0)组成的射线AP与x轴的夹角,所以t∈[0,2π]极坐标方程的表示:由圆的方程x^2+y^2=4x,代入x=ρcosθ,y=ρsinθ,得圆的极坐标方程ρ=4cosθ这里的ρ表示圆上一点P(x,y)到极点,也就是坐标原点〇的距离.角度θ的范围一般有两种表示方法,一种是θ表示从极轴逆时针转向射线〇P的角度的大小,所以θ的范围[0,2π];另一种是θ是表示射线〇P与极轴,也就是x轴的夹角,并且规定极轴上方的夹角为正,下方为负,所以θ的范围是[-π,π].很明显,对于圆x^2+y^2=4x来说,θ的表示用第二种形式会简单些,即θ∈[-π/2,π/2]所以,圆x^2+y^2=4x的参数方程是x=2+2cost,y=2sint,t∈[0,2π]极坐标方程是ρ=4cosθ,θ∈[-π/2,π/2]
2023-05-20 10:28:091

什么是参数方程

参数方程和函数很相似:它们都是由一些在指定的集的数,称为参数或自变量,以决定因变量的结果。比如:圆的参数方程 x=a+r cosθ y=b+r sinθ(θ属于[0,2π)) (a,b)为圆心坐标 r为圆半径 θ为参数 (x,y)为经过点的坐标。 椭圆的参数方程 x=a cosθ  y=b sinθ(θ属于[0,2π)) a为长半轴 长 b为短半轴长 θ为参数 。 双曲线的参数方程 x=a secθ (正割) y=b tanθ a为实半轴长 b为虚半轴长 θ为参数。
2023-05-20 10:28:181

怎么把直线的直角坐标方程化为参数方程

x=x0+t*cosα y=y0+t*sinα t是参数 对应参数方程不唯一 (y+5)/(x-1)=tan(π/3)
2023-05-20 10:28:262

参数方程和普通方程是什么关系?

标准方程是:(x-a)²+(y-b)²=r²,其中(a,b)表示圆心,半径是r;一般方程是:x²+y²+dx+ey+f=0,其中d²+e²-4f>0。直角坐标方程是一个曲线方程在直角坐标下的形式f(x,y)=0,对应的有极坐标形式。参数方程是在曲线方程中引入参数来表示,如x=rcosa,y=rsina;引入参数a来表示x,y。普通方程如果你指的是圆锥曲线就是最一般广义的形式Ax^2+By^2+Cxy+Dx+Ey+F=0;标准方程是指一些曲线如圆,椭圆,对称中心在坐标原点,并且关于坐标轴对乘,没有平移或者旋转的方程形式。直线方程从平面解析几何的角度来看,平面上的直线就是由平面直角坐标系中的一个二元一次方程所表示的图形。求两条直线的交点,只需把这两个二元一次方程联立求解,当这个联立方程组无解时,两直线平行;有无穷多解时,两直线重合;只有一解时,两直线相交于一点。常用直线向上方向与 X 轴正向的 夹角( 叫直线的倾斜角 )或该角的正切(称直线的斜率)来表示平面上直线(对于X轴)的倾斜程度。可以通过斜率来判断两条直线是否互相平行或互相垂直,也可计算它们的交角。直线与某个坐标轴的交点在该坐标轴上的坐标,称为直线在该坐标轴上的截距。直线在平面上的位置,由它的斜率和一个截距完全确定。在空间,两个平面相交时,交线为一条直线。因此,在空间直角坐标系中,用两个表示平面的三元一次方程联立,作为它们相交所得直线的方程。表示形式1、点斜式:y-y0=k(x-x0) (适用于不垂直于x轴的直线),表示斜率为k,且过(x0,y0)的直线。2、截距式:x/a+y/b=1(适用于不过原点或不垂直于x轴、y轴的直线),表示与x轴、y轴相交,且x轴截距为a,y轴截距为b的直线。3、斜截式:y=kx+b(适用于不垂直于x轴的直线),表示斜率为k且y轴截距为b的直线。4、交点式:f1(x,y) *m+f2(x,y)=0 (适用于任何直线),表示过直线f1(x,y)=0与直线f2(x,y)=0的交点的直线。5、点平式:f(x,y) -f(x0,y0)=0(适用于任何直线),表示过点(x0,y0)且与直线f(x,y)=0平行的直线。
2023-05-20 10:28:381

直线的向量参数方程是什么

过空间一点p(x0,y0,z0),且已知直线的一个方向向量s=(m,n,p),则该空间直线的参数方程:x=x0+mty=y0+ntz=z0+pt在已知条件下,令n(x,y,z)是直线上任意一点则向量pn与方向向量s平行而:pn=(x,y,z)-(x0,y0,z0)=(x-x0,y-y0,z-z0)故:(x-x0)/m=(y-y0)/n=(z-z0)/p这就是直线的点向式方程,也叫做对称式方程令(x-x0)/m=(y-y0)/n=(z-z0)/p=t便得到参数方程考得题目一般会和平面在一起考比如,给2个平面,让求直线的对称式方程和参数方程求2直线的夹角求直线与面的夹角
2023-05-20 10:28:542

普通方程怎么转化为参数方程?

例如圆x^2+y^2=4x参数方程的表示:先配方(x-2)^2+(y-0)^2=2^2,再令x-2=2×cost,y-0=2×sint,得参数方程:x=2+2cost,y=2sint其中t表示的是圆上某一点P(x,y)与圆心A(2,0)组成的射线AP与x轴的夹角,所以t∈[0,2π]极坐标方程的表示:由圆的方程x^2+y^2=4x,代入x=ρcosθ,y=ρsinθ,得圆的极坐标方程ρ=4cosθ这里的ρ表示圆上一点P(x,y)到极点,也就是坐标原点〇的距离.角度θ的范围一般有两种表示方法,一种是θ表示从极轴逆时针转向射线〇P的角度的大小,所以θ的范围[0,2π];另一种是θ是表示射线〇P与极轴,也就是x轴的夹角,并且规定极轴上方的夹角为正,下方为负,所以θ的范围是[-π,π].很明显,对于圆x^2+y^2=4x来说,θ的表示用第二种形式会简单些,即θ∈[-π/2,π/2]所以,圆x^2+y^2=4x的参数方程是x=2+2cost,y=2sint,t∈[0,2π]极坐标方程是ρ=4cosθ,θ∈[-π/2,π/2]
2023-05-20 10:29:033

怎么求参数方程二阶导数

图中式子就是求y关于x的二阶导,因为y和x又可以有参数方程 y(t)和x(t)确定,那么y""即y"关于x的变化率就可以换为:“y"关于t的变化率”与“x关于t的变化率”之比了。这是微分常用的替换方法,要熟练掌握!
2023-05-20 10:29:113

参数方程的本质及优点

参数方程可以把复杂的方程简单化:在求解与最值有关的问题时使用比较方便:由于我们经常使用标准方程,不适应参数方程,所以才要化为标准方程,其实参数方程也可以解决所有问题,只不过是哪个更简单的问题而已
2023-05-20 10:29:251

方程有哪些种类,参数方程属于哪一种

  方程有多种形式,如一元一次方程、二元一次方程、多元一次等   方程可以依其中用到的运算及未知数的条件加以分类,以下是一些重要的种类:   代数方程是指只由已知数及未知数的代数运算组合的方程,还可以依多项式的次数细分为一次方程、二次方程……等.   分式方程是指等式中至少有一个分母为未知数的方程.   超越方程是指包含超越函数的方程.   函数方程是指其中包含未知函数的方程.   微分方程是指其中包含导数的函数方程.   积分方程是指其中包含积分的函数方程.   丢番图方程是其中未知数只允许是整数的方程.   差分方程是其中未知数为一数列的方程. 参数方程和函数很相似:它们都是由一些在指定的集的数,称为参数或自变量,以决定因变量的结果. 圆的参数方程 x=a+r cosθ y=b+r sinθ(θ属于[0,2π)) (a,b)为圆心坐标 r为圆半径 θ为参数 (x,y)为经过点的坐标 椭圆的参数方程 x=a cosθ  y=b sinθ(θ属于[0,2π)) a为长半轴 长 b为短半轴长 θ为参数 双曲线的参数方程 x=a secθ (正割) y=b tanθ a为实半轴长 b为虚半轴长 θ为参数 抛物线的参数方程 x=2pt^2 y=2pt p表示焦点到准线的距离 t为参数 直线的参数方程 x=x"+tcosa y=y"+tsina,x",y"和a表示直线经过(x",y"),且倾斜角为a,t为参数. 或者x=x"+ut,  y=y"+vt (t属于R)x",y"直线经过定点(x",y"),u,v表示直线的方向向量d=(u,v) 圆的渐开线x=r(cosφ+φsinφ) y=r(sinφ-φcosφ)(φ∈[0,2π)) r为基圆的半径 φ为参数
2023-05-20 10:30:031

直线参数方程怎么化成标准型

函数以参数方程的形式表示,是为了方便,其形式也不是唯一的,如果用参数方程表示还没有原来的形式简洁,这又何必呢?因此一般地研究用参数式表示函数是没有任何意思的,只有具体问题具体分析,即对于具体的函数才需要考虑要不要用参数式表示及怎样表示。 例如函数y=f(x)总可以用这样的参数式表示:x=t,y=f(t),但这有什么意思呢?
2023-05-20 10:30:123

直线的参数方程与标准方程有什么区别

直线的参数方程的一般式为:ax+by+c=0;直线参数方程的标准形式为:x=x0+tcosay=y0+tsina 其中t为参数.直线的一般方程表示的是x、y之间的直接关系,而参数方程表示的是x、y与参数t之间的间接关系.另外,参数方程在华为一般方程时要注意参数的取值范围
2023-05-20 10:30:561

高中数学参数方程知识点总结

  高中数学涉及的知识点很多,今天我就来为广大高中同学们总结一下高中数学参数方程的知识点,参数方程和函数很相似:它们都是由一些在指定的集的数,称为参数或自变量,以决定因变量的结果。例如在运动学,参数通常是“时间”,而方程的结果是速度、位置等。下面为具体内容,供参考。   高中数学知识点之参数方程定义   一般的,在平面直角坐标系中,如果曲线上任意一点的坐标x,y都是某个变数t的函数x=f(t)、y=g(t)   并且对于t的每一个允许值,由上述方程组所确定的点M(x,y)都在这条曲线上,那么上述方程则为这条曲线的参数方程,联系x,y的变数t叫做变参数,简称参数,相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程。(注意:参数是联系变数x,y的桥梁,可以是一个有物理意义和几何意义的变数,也可以是没有实际意义的变数。    高中数学知识点之参数方程   圆的参数方程x=a+rcosθy=b+rsinθ(a,b)为圆心坐标r为圆半径θ为参数   椭圆的参数方程x=acosθy=bsinθa为长半轴长b为短半轴长θ为参数   双曲线的参数方程x=asecθ(正割)y=btanθa为实半轴长b为虚半轴长θ为参数   抛物线的参数方程x=2pt²y=2ptp表示焦点到准线的距离t为参数   直线的参数方程 x=x"+tcosa y=y"+tsina,x",y"和a表示直线经过(x",y"),且倾斜角为a,t为参数    高中数学知识点之参数方程的应用
2023-05-20 10:31:051

定积分问题 当图形边界曲线为参数方程时,求其面积的定积分公式是什么啊?求教!

面积公式是∫(α→β) (1/2)r²(θ) dθ
2023-05-20 10:31:145

如何解释参数方程?

1.cos²θ+sin²θ=12.ρ=x²+y²3.ρcosθ=x4.ρsinθ=y扩展资料参数方程和函数很相似:它们都是由一些在指定的集的数,称为参数或自变量,以决定因变量的结果。例如在运动学,参数通常是“时间”,而方程的结果是速度、位置等。参考资料:百度百科-参数方程
2023-05-20 10:31:291

参数方程怎么求,有哪些类型?

椭圆x2/a2+y2/b2=1(a>b>0)的参数方程是x=acosφ,y=bsinφ(φ是参数)双曲线x2/a2-y2/b2=1(a>0,b>0)的参数方程是x=asecφ,y=btgφ(φ是参数)抛物线y2=2px的参数方程是x=2pt2,y=2pt(t是参数)曲线的极坐标参数方程ρ=f(t),θ=g(t)。圆的参数方程 x=a+r cosθ y=b+r sinθ(θ∈ [0,2π) ) (a,b) 为圆心坐标,r 为圆半径,θ 为参数,(x,y) 为经过点的坐标扩展资料参数方程和函数很相似:它们都是由一些在指定的集的数,称为参数或自变量,以决定因变量的结果。例如在运动学,参数通常是“时间”,而方程的结果是速度、位置等。一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x、y都是某个变数t的函数:  并且对于t的每一个允许的取值,由方程组确定的点(x, y)都在这条曲线上,那么这个方程就叫做曲线的参数方程,联系变数x、y的变数t叫做参变数,简称参数。相对而言,直接给出点坐标间关系的方程叫普通方程。参考资料百度百科-参数方程
2023-05-20 10:31:411

数学参数方程化为直角坐标方程

平面直角坐标系中一般方程化为极坐标方程,以x轴为极轴,做代换:x=pcosay=psina,将原方程化为p=f(a)的形式,即为极坐标方程.一般方程化为参数方程,最主要考虑三角代换,即sin²x+cos²x=11=sec²x-tan²x前两个方程可以作为椭圆,双曲线参数方程转化的依据,一般直线的参数方程为x=x0+ty=y0+kt,t∈r
2023-05-20 10:32:001

心形线r=a(1+cosθ)化为参数方程

可以这么来:x=rcosθ=a(1+cosθ)cosθy=rsinθ=a(1+cosθ)sinθ(x,y)为坐标,θ为参数。
2023-05-20 10:32:082

常用曲线参数方程

圆的参数方程 x=a+r cosθ y=b+r sinθ (a,b)为圆心坐标 r为圆半径 θ为参数 椭圆的参数方程 x=a cosθ y=b sinθ a为长半轴 长 b为短半轴长 θ为参数 双曲线的参数方程 x=a secθ (正割) y=b tanθ a为实半轴长 b为虚半轴长 θ为参数
2023-05-20 10:32:171

参数方程的斜率怎么求

两种方法,一种是直接求导法,设参数为t,先就y对参数进行求导得到y‘(t),然后就x对参数t求导得到x"(t),则斜率k=y"=y"(t)/x"(t).第二种方法,就是消除参数得到关于y,x的函数,然后对y求导,即可得到斜率。
2023-05-20 10:32:251

参数方程怎么做?

基本思路就是把空间曲线投影在坐标面上,根据投影的形状写出参数方程,然后再回代,写出整个式子的参数方程。或者这样说令其中一个未知数等于t,将t看做已知数,然后解剩下两个未知数的方程组,用t表示结果,得到参数方程拓展资料:参数方程和函数很相似:它们都是由一些在指定的集的数,称为参数或自变量,以决定因变量的结果。曲线的极坐标参数方程ρ=f(t),θ=g(t)。圆的参数方程 x=a+r cosθ y=b+r sinθ(θ∈ [0,2π) ) (a,b) 为圆心坐标,r 为圆半径,θ 为参数,(x,y) 为经过点的坐标;椭圆的参数方程 x=a cosθ  y=b sinθ(θ∈[0,2π)) a为长半轴长 b为短半轴长 θ为参数;双曲线的参数方程 x=a secθ (正割) y=b tanθ a为实半轴长 b为虚半轴长 θ为参数;抛物线的参数方程 x=2pt^2 y=2pt p表示焦点到准线的距离 t为参数。例如在运动学,参数通常是“时间”,而方程的结果是速度、位置等。参考资料:参数方程——百度百科
2023-05-20 10:32:321

参数方程怎么求?

参数方程公式如下:一、圆的参数方程x=a+rcosθ,y=b+rsinθ(θ∈[0,2π)),(a,b)为圆心坐标,r为圆半径,θ为参数,(x,y)为经过点的坐标。二、椭圆的参数方程x=acosθ,y=bsinθ(θ∈[0,2π))a为长半轴长b为短半轴长θ为参数。三、双曲线的参数方程x=asecθ(正割),y=btanθa为实半轴长b为虚半轴长θ为参数。四、抛物线的参数方程x=2pt^2,y=2ptp表示焦点到准线的距离t为参数。五、直线的参数方程x=x"+tcosa,y=y"+tsina,x",y"和a表示直线经过(x",y"),且倾斜角为a,t为参数。六、或者x=x"+ut,y=y"+vt(t∈R)x",y"直线经过定点(x",y"),u,v表示直线的方向向量d=(u,v)。七、圆的渐开线x=r(cosφ+φsinφ)y=r(sinφ-φcosφ)(φ∈[0,2π))r为基圆的半径φ为参数。
2023-05-20 10:33:031

参数方程怎么写?

参数方程公式如下:一、圆的参数方程x=a+rcosθ,y=b+rsinθ(θ∈[0,2π)),(a,b)为圆心坐标,r为圆半径,θ为参数,(x,y)为经过点的坐标。二、椭圆的参数方程x=acosθ,y=bsinθ(θ∈[0,2π))a为长半轴长b为短半轴长θ为参数。三、双曲线的参数方程x=asecθ(正割),y=btanθa为实半轴长b为虚半轴长θ为参数。四、抛物线的参数方程x=2pt^2,y=2ptp表示焦点到准线的距离t为参数。五、直线的参数方程x=x"+tcosa,y=y"+tsina,x",y"和a表示直线经过(x",y"),且倾斜角为a,t为参数。六、或者x=x"+ut,y=y"+vt(t∈R)x",y"直线经过定点(x",y"),u,v表示直线的方向向量d=(u,v)。七、圆的渐开线x=r(cosφ+φsinφ)y=r(sinφ-φcosφ)(φ∈[0,2π))r为基圆的半径φ为参数。
2023-05-20 10:33:221

数学中参数方程的一般形式是什么?

有以下四个公式:cos²θ+sin²θ=1ρ=x²+y²ρcosθ=xρsinθ=y参数方程和函数很相似:它们都是由一些在指定的集的数,称为参数或自变量,以决定因变量的结果。例如在运动学,参数通常是“时间”,而方程的结果是速度、位置等。一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x、y都是某个变数t的函数:  ,并且对于t的每一个允许的取值,由方程组确定的点(x, y)都在这条曲线上,那么这个方程就叫做曲线的参数方程,联系变数x、y的变数t叫做参变数,简称参数。相对而言,直接给出点坐标间关系的方程叫普通方程。扩展资料:在柯西中值定理的证明中,也运用到了参数方程。柯西中值定理如果函数f(x)及F(x)满足:⑴在闭区间[a,b]上连续;⑵在开区间(a,b)内可导;⑶对任一x∈(a,b),F"(x)≠0。那么在(a,b)内至少有一点ζ,使等式[f(b)-f(a)]/[F(b)-F(a)]=f"(ζ)/F"(ζ)成立。柯西简洁而严格地证明了微积分学基本定理即牛顿-莱布尼茨公式。他利用定积分严格证明了带余项的泰勒公式,还用微分与积分中值定理表示曲边梯形的面积,推导了平面曲线之间图形的面积、曲面面积和立体体积的公式。参数曲线亦可以是多于一个参数的函数。例如参数表面是两个参数(s,t)或(u,v)的函数。譬如一个圆柱:r(u,v)=[x(u,v),y(u,v),z(u,v)]=[acos(u),asin(u),v]参数是参变数的简称。它是研究运动等一类问题中产生的。质点运动时,它的位置必然与时间有关系,也就是说,质的坐标x,y与时间t之间有函数关系x=f(t),y=g(t),这两个函数式中的变量t,相对于表示质点的几何位置的变量x,y来说,就是一个“参与的变量”。这类实际问题中的参变量,被抽象到数学中,就成了参数。我们所学的参数方程中的参数,其任务在于沟通变量x,y及一些常量之间的联系,为研究曲线的形状和性质提供方便。用参数方程描述运动规律时,常常比用普通方程更为直接简便。对于解决求最大射程、最大高度、飞行时间或轨迹等一系列问题都比较理想。有些重要但较复杂的曲线(例如圆的渐开线),建立它们的普通方程比较困难,甚至不可能,列出的方程既复杂又不易理解。根据方程画出曲线十分费时;而利用参数方程把两个变量x,y间接地联系起来,常常比较容易,方程简单明确,且画图也不太困难。参考资料:百度百科-参数方程
2023-05-20 10:33:401

参数方程怎么求呢?

有以下四个公式:cos²θ+sin²θ=1ρ=x²+y²ρcosθ=xρsinθ=y参数方程和函数很相似:它们都是由一些在指定的集的数,称为参数或自变量,以决定因变量的结果。例如在运动学,参数通常是“时间”,而方程的结果是速度、位置等。一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x、y都是某个变数t的函数:  ,并且对于t的每一个允许的取值,由方程组确定的点(x, y)都在这条曲线上,那么这个方程就叫做曲线的参数方程,联系变数x、y的变数t叫做参变数,简称参数。相对而言,直接给出点坐标间关系的方程叫普通方程。扩展资料:在柯西中值定理的证明中,也运用到了参数方程。柯西中值定理如果函数f(x)及F(x)满足:⑴在闭区间[a,b]上连续;⑵在开区间(a,b)内可导;⑶对任一x∈(a,b),F"(x)≠0。那么在(a,b)内至少有一点ζ,使等式[f(b)-f(a)]/[F(b)-F(a)]=f"(ζ)/F"(ζ)成立。柯西简洁而严格地证明了微积分学基本定理即牛顿-莱布尼茨公式。他利用定积分严格证明了带余项的泰勒公式,还用微分与积分中值定理表示曲边梯形的面积,推导了平面曲线之间图形的面积、曲面面积和立体体积的公式。参数曲线亦可以是多于一个参数的函数。例如参数表面是两个参数(s,t)或(u,v)的函数。譬如一个圆柱:r(u,v)=[x(u,v),y(u,v),z(u,v)]=[acos(u),asin(u),v]参数是参变数的简称。它是研究运动等一类问题中产生的。质点运动时,它的位置必然与时间有关系,也就是说,质的坐标x,y与时间t之间有函数关系x=f(t),y=g(t),这两个函数式中的变量t,相对于表示质点的几何位置的变量x,y来说,就是一个“参与的变量”。这类实际问题中的参变量,被抽象到数学中,就成了参数。我们所学的参数方程中的参数,其任务在于沟通变量x,y及一些常量之间的联系,为研究曲线的形状和性质提供方便。用参数方程描述运动规律时,常常比用普通方程更为直接简便。对于解决求最大射程、最大高度、飞行时间或轨迹等一系列问题都比较理想。有些重要但较复杂的曲线(例如圆的渐开线),建立它们的普通方程比较困难,甚至不可能,列出的方程既复杂又不易理解。根据方程画出曲线十分费时;而利用参数方程把两个变量x,y间接地联系起来,常常比较容易,方程简单明确,且画图也不太困难。参考资料:百度百科-参数方程
2023-05-20 10:33:591

如何求解参数方程?

参数方程公式如下:一、圆的参数方程x=a+rcosθ,y=b+rsinθ(θ∈[0,2π)),(a,b)为圆心坐标,r为圆半径,θ为参数,(x,y)为经过点的坐标。二、椭圆的参数方程x=acosθ,y=bsinθ(θ∈[0,2π))a为长半轴长b为短半轴长θ为参数。三、双曲线的参数方程x=asecθ(正割),y=btanθa为实半轴长b为虚半轴长θ为参数。四、抛物线的参数方程x=2pt^2,y=2ptp表示焦点到准线的距离t为参数。五、直线的参数方程x=x"+tcosa,y=y"+tsina,x",y"和a表示直线经过(x",y"),且倾斜角为a,t为参数。六、或者x=x"+ut,y=y"+vt(t∈R)x",y"直线经过定点(x",y"),u,v表示直线的方向向量d=(u,v)。七、圆的渐开线x=r(cosφ+φsinφ)y=r(sinφ-φcosφ)(φ∈[0,2π))r为基圆的半径φ为参数。
2023-05-20 10:34:161

参数方程是什么意思?

一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x、y都是某个变数t的函数: 平面直角坐标系中,如果曲线上任意一点的坐标x、y都是某个变数t的函数。曲线的极坐标参数方程ρ=f(t),θ=g(t)。圆的参数方程 x=a+r cosθ y=b+r sinθ(θ∈ [0,2π) ) (a,b) 为圆心坐标,r 为圆半径,θ 为参数,(x,y) 为经过点的坐标。椭圆的参数方程 x=a cosθ  y=b sinθ(θ∈[0,2π)) a为长半轴长 b为短半轴长 θ为参数。双曲线的参数方程 x=a secθ (正割) y=b tanθ a为实半轴长 b为虚半轴长 θ为参数。抛物线的参数方程 x=2pt^2 y=2pt p表示焦点到准线的距离 t为参数。并且对于t的每一个允许的取值,由方程组确定的点(x, y)都在这条曲线上,联系变数x、y的变数t叫做参变数。相对而言,直接给出点坐标间关系的方程为普通方程。直线的参数方程 x=x"+tcosa y=y"+tsina,x",y"和a表示直线经过(x",y"),且倾斜角为a,t为参数。扩展资料积分的保号性:如果一个函数f在某个区间上黎曼可积,并且在此区间上大于等于零。那么它在这个区间上的积分也大于等于零。如果f勒贝格可积并且几乎总是大于等于零,那么它的勒贝格积分也大于等于零。作为推论,如果两个等于0,那么任何可积函数在A上的积分等于0。函数的积分表示了函数在某个区域上的整体性质,改变函数某点的取值不会改变它的积分值。对于黎曼可积的函数,改变有限个点的取值,其积分不变。某个测度为0的集合上的函数值改变,不会影响它的积分值。如果两个函数几乎处处相同,那么它们的积分相同。如果对中任意元素A,可积函数f在A上的积分总等于(大于等于)可积函数g在A上的积分,那么f几乎处处等于(大于等于)g。参考资料来源:百度百科-参数方程参考资料来源:百度百科-积分
2023-05-20 10:34:351

参数方程的解释

参数方程的解释 在给定的平面 直角 坐标 系中,如果曲线上 任意 一点的坐标x,y都是某个变数t的 函数 x=f(t),y=φ(t),(1)且对于t的每一个 允许 值,由方程组(1)所确定的点m(x,y)都在这条曲线上,那么方程组(1)称为这条曲线的参数方程,联系x、y 之间 关系的变数称为参变数,简称参数。类似地,也有曲线的极坐标参数方程ρ=f(t),θ=g(t)。(2) 词语分解 参数的解释 表明任何现象、设备或其工作过程中某一种 重要 性质 的量。如,汽轮机中蒸气的压力、温度等,是该汽轮机蒸气的参数; 电阻 、电感和电容,就是电路的参数。 方程的解释 表示两个数学式如两个数、函数、量、运算之间相等的一种式子,通常在 两者 之间有一等号=详细解释.九章算术 之一 。《后汉书·马严传》“善《九章筭术》” 唐 李贤 注:“ 刘徽 《九章筭术》曰《方田》第一,
2023-05-20 10:34:471

参数方程定理公式是什么?

椭圆x2/a2+y2/b2=1(a>b>0)的参数方程是x=acosφ,y=bsinφ(φ是参数)双曲线x2/a2-y2/b2=1(a>0,b>0)的参数方程是x=asecφ,y=btgφ(φ是参数)抛物线y2=2px的参数方程是x=2pt2,y=2pt(t是参数)曲线的极坐标参数方程ρ=f(t),θ=g(t)。圆的参数方程 x=a+r cosθ y=b+r sinθ(θ∈ [0,2π) ) (a,b) 为圆心坐标,r 为圆半径,θ 为参数,(x,y) 为经过点的坐标扩展资料参数方程和函数很相似:它们都是由一些在指定的集的数,称为参数或自变量,以决定因变量的结果。例如在运动学,参数通常是“时间”,而方程的结果是速度、位置等。一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x、y都是某个变数t的函数:  并且对于t的每一个允许的取值,由方程组确定的点(x, y)都在这条曲线上,那么这个方程就叫做曲线的参数方程,联系变数x、y的变数t叫做参变数,简称参数。相对而言,直接给出点坐标间关系的方程叫普通方程。参考资料百度百科-参数方程
2023-05-20 10:34:541

请问参数方程是什么?顺便把高中解析几何中所有的图形的参数方程都给我吧

定义   在给定的平面直角坐标系中,如果曲线上任意一点的坐标x,y都是某个变数t的函数x=f(t),y=φ(t)——(1);且对于t的每一个允许值,由方程组(1)所确定的点m(x,y)都在这条曲线上,那么方程组(1)称为这条曲线的参数方程,联系x、y之间关系的变数称为参变数,简称参数.类似地,也有曲线的极坐标参数方程ρ=f(t),θ=g(t).(2) 圆的参数方程 x=a+r cosθ y=b+r sinθ (θ属于[0,2π) ) (a,b)为圆心坐标 r为圆半径 θ为参数 (x,y)为经过点的坐标 椭圆的参数方程 x=a cosθ y=b sinθ (θ属于[0,2π) ) a为长半轴 长 b为短半轴长 θ为参数   双曲线的参数方程 x=a secθ (正割) y=b tanθ a为实半轴长 b为虚半轴长 θ为参数  抛物线的参数方程 x=2pt^2 y=2pt p表示焦点到准线的距离 t为参数 直线的参数方程 x=x"+tcosa y=y"+tsina ,x",y"和a表示直线经过(x",y"),且倾斜角为a,t为参数.  或者x=x"+ut,y=y"+vt (t属于R) x",y"直线经过定点(x",y"),u,v表示直线的方向 向量d=(u,v)
2023-05-20 10:35:241

参数方程公式高中

椭圆x2/a2+y2/b2=1(a>b>0)的参数方程是x=acosφ,y=bsinφ(φ是参数)。双曲线x2/a2-y2/b2=1(a>0,b>0)的参数方程是x=asecφ,y=btgφ(φ是参数)。抛物线y2=2px的参数方程是x=2pt2,y=2pt(t是参数)。曲线的极坐标参数方程ρ=f(t),θ=g(t)。圆的参数方程 x=a+r cosθ y=b+r sinθ(θ∈ [0,2π) ) (a,b) 为圆心坐标,r 为圆半径,θ 为参数,(x,y) 为经过点的坐标。参数方程,为数学术语,其和函数很相似:它们都是由一些在指定的集的数,称为参数或自变量,以决定因变量的结果。例如在运动学,参数通常是“时间”,而方程的结果是速度、位置等。
2023-05-20 10:35:321

什么是参数方程? 它的概念?式子?

参数方程 在给定的平面直角坐标系中,如果曲线上任意一点的坐标x,y都是某个变数t的函数x=f(t),y=φ(t),(1)且对于t的每一个允许值,由方程组(1)所确定的点m(x,y)都在这条曲线上,那么方程组(1)称为这条曲线的参数方程,联系x、y之间关系的变数称为参变数,简称参数.类似地,也有曲线的极坐标参数方程ρ=f(t),θ=g(t).
2023-05-20 10:35:501

极坐标和参数方程有什么区别?

设椭圆参数方程x=acosθ,y=bsinθ向量oa坐标为(acosθ,bsinθ),ob坐标为(acos(θ+1/2π)),(bsin(θ+1/2π))即为(-asinθ,bcosθ)∴s⊿abc=1/2×(√a²cos²θ+b²sin²θ)×(√a²sin²θ+b²cos²θ)接着只要求关于θ的函数的最大和最小值就行了
2023-05-20 10:35:592

参数方程。

球体的参数方程:被球面紧贴包围的立体称为球体,简称球。在空间R的球面的方程为参数方程为如果圆心为(a, b, c),半径为R,则表示为: (x-a)2+(y-b)2+(z-c)2=R2 也可表示为参数方程,u,v为参数: x=a+Rcosu y=b+Rsinucosv z=c+Rsinusinv (0≤θ≤2π,0≤φ≤π)在解析几何,球是中心在(x0,y0,z0),半径是r的所有点(x, y, z)的集合: (x-x0)2+(y-y0)2+(z-z0)2=r2 使用极坐标来表示半径为r的球面: x=x0+r sinθcosφ y=y0+r sinθsinφ z=z0+r cosθ (θ的取值范围:0≤θ≤ n 和 -∏<φ≤∏) 圆的参数方程: (x+a)^2+(y+b)^2 = r^2 (a,b)为圆心,r为半径。参数方程和函数很相似:它们都是由一些在指定的集的数,称为参数或自变量,以决定因变量的结果。例如在运动学,参数通常是“时间”,而方程的结果是速度、位置等。
2023-05-20 10:36:093

参数方程中的参数是什么

你应该是高三的吧,学参数方程!!!比如参数方程y=2sina,x=cosa,这里面的参数就是a参数一般是指的我们直角坐标系里面x,y以外的变量!!其实解参数方程很简单的,就是利用x=pcosa,y=psina---【p值得是极轴】有问题可以加我建的学习群4656639
2023-05-20 10:36:451

什么是参数方程?

在给定的平面直角坐标系中,如果曲线上任意一点的坐标x,y都是某个变数t的函数x=f(t),y=φ(t),(1)且对于t的每一个允许值,由方程组(1)所确定的点m(x,y)都在这条曲线上,那么方程组(1)称为这条曲线的参数方程,联系x、y之间关系的变数称为参变数,简称参数。类似地,也有曲线的极坐标参数方程ρ=f(t),θ=g(t)。(2)
2023-05-20 10:36:543

参数方程怎么求?

参数方程与普通方程的互化最基本的有以下四个公式:1.cos²θ+sin²θ=12.ρ=x²+y²3.ρcosθ=x4.ρsinθ=y其他公式:曲线的极坐标参数方程ρ=f(t),θ=g(t)。圆的参数方程 x=a+r cosθ y=b+r sinθ(θ∈ [0,2π) ) (a,b) 为圆心坐标,r 为圆半径,θ 为参数,(x,y) 为经过点的坐标椭圆的参数方程 x=a cosθ  y=b sinθ(θ∈[0,2π)) a为长半轴长 b为短半轴长 θ为参数 [2] 双曲线的参数方程 x=a secθ (正割) y=b tanθ a为实半轴长 b为虚半轴长 θ为参数抛物线的参数方程 x=2pt^2 y=2pt p表示焦点到准线的距离 t为参数直线的参数方程 x=x"+tcosa y=y"+tsina,x",y"和a表示直线经过(x",y"),且倾斜角为a,t为参数或者x=x"+ut,  y=y"+vt (t∈R)x",y"直线经过定点(x",y"),u,v表示直线的方向向量d=(u,v)圆的渐开线x=r(cosφ+φsinφ) y=r(sinφ-φcosφ)(φ∈[0,2π)) r为基圆的半径 φ为参数。扩展资料参数是参变数的简称。它是研究运动等一类问题中产生的。质点运动时,它的位置必然与时间有关系,也就是说,质的坐标x,y与时间t之间有函数关系x=f(t),y=g(t),这两个函数式中的变量t,相对于表示质点的几何位置的变量x,y来说,就是一个“参与的变量”。这类实际问题中的参变量,被抽象到数学中,就成了参数。我们所学的参数方程中的参数,其任务在于沟通变量x,y及一些常量之间的联系,为研究曲线的形状和性质提供方便。用参数方程描述运动规律时,常常比用普通方程更为直接简便。对于解决求最大射程、最大高度、飞行时间或轨迹等一系列问题都比较理想。有些重要但较复杂的曲线(例如圆的渐开线),建立它们的普通方程比较困难,甚至不可能,列出的方程既复杂又不易理解。根据方程画出曲线十分费时;而利用参数方程把两个变量x,y间接地联系起来,常常比较容易,方程简单明确,且画图也不太困难。参考资料:百度百科参数方程
2023-05-20 10:37:021