卷积

卷积网络中filter什么意思

一般情况下,在低层大气中,气温是随高度的增加而降低的。但有时在某些层次可能出现相反的情况,气温随高度的增加而升高,这种现象称为逆温。出现逆温现象的大气层称为逆温层。
ardim2023-07-15 09:23:232

二年级语文试卷积累词语不够原因

分两步观察。第1步观察课内词语掌握的如何,如果有问题,先把课内基础打牢再说。第2步观察课外词语积累的如何,如果不足增加课外阅读量。
凡尘2023-07-03 11:03:242

考研数学概率论不记卷积公式学会于炳森的分布函数加暴力求导足以应付考试吗?

可以。考研概率论不考卷积公式,因为卷积公式不算重点掌握内容。一、随机事件和概率考试内容随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的基本性质古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验。二、随机变量及其分布考试内容随机变量随机变量分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度常见随机变量的分布随机变量函数的分布。考试要求1、理解分布函数的概念及性质,会计算与随机变量相联系的事件的概率。2、理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、几何分布、超几何分布、泊松(Poisson)分布及其应用。3、掌握泊松定理的结论和应用条件,会用泊松分布近似表示二项分布。4、理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布、指数分布及其应用。5、会求随机变量函数的分布。
苏萦2023-06-06 07:54:301

概率论和数理统计 这个题怎么用卷积公式做?

考研概率论不考卷积公式,因为卷积公式不算重点掌握内容。 一、随机事件和概率考试内容随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的基本性质古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验二、随机变量及其分布考试内容随机变量随机变量分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度常见随机变量的分布随机变量函数的分布考试要求1、理解分布函数的概念及性质,会计算与随机变量相联系的事件的概率2、理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、几何分布、超几何分布、泊松(Poisson)分布及其应用3、掌握泊松定理的结论和应用条件,会用泊松分布近似表示二项分布4、理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布、指数分布及其应用5、会求随机变量函数的分布三、多维随机变量的分布考试内容多维随机变量及其分布函数二维离散型随机变量的概率分布、边缘分布和条件分布二维连续型随机变量的概率密度、边缘概率密度和条件密度随机变量的独立性和不相关性常见二维随机变量的分布两个及两个以上随机变量简单函数的分布考试要求1、理解多维随机变量的分布函数的概念和基本性质2、理解二维离散型随机变量的概率分布和二维连续型随机变量的概率密度,掌握二维随机变量的边缘分布和条件分布3、理解随机变量的独立性和不相关性的概念,掌握随机变量相互独立的条件,理解随机变量的不相关性与独立性的关系4、掌握二维均匀分布和二维正态分布,理解其中参数的概率意义5、会根据两个随机变量的联合分布求其函数的分布,会根据多个相互独立随机变量的联合分布求其简单函数的分布四、随机变量的数字特征考试内容随机变量的数学期望(均值)、方差、标准差及其性质随机变量函数的数学期望切比雪夫(Chebyshev)不等式矩、协方差、相关系数及其性质考试要求1、理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征2、会求随机变量函数的数学期望3、了解切比雪夫不等式五、大数定律和中心极限定理考试内容切比雪夫大数定律伯努利(Bernoulli)大数定律辛钦(Khinchine)大数定律棣莫弗-拉普拉斯(DeMoivre-Laplace)定理列维-林德伯格(Levy-Lindberg)定理考试要求1、了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律)2、了解棣莫弗-拉普拉斯中心极限定理(二项分布以正态分布为极限分布)、列维-林德伯格中心极限定理(独立同分布随机变量序列的中心极限定理),并会用相关定理近似计算有关随机事件的概率.六、数理统计的基本概念考试内容总体个体简单随机样本统计量经验分布函数样本均值样本方差和样本矩分布分布分布分位数正态总体的常用抽样分布考试要求1、了解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念2、了解产生变量、变量和变量的典型模式;了解标准正态分布、分布、分布和分布的上侧分位数,会查相应的数值表3、掌握正态总体的样本均值、样本方差、样本矩的抽样分布4、了解经验分布函数的概念和性质七、参数估计考试内容点估计的概念估计量和估计值矩估计法最大似然估计法考试要求1、了解参数的点估计、估计量与估计值的概念2、掌握矩估计法(一阶矩、二阶矩)和最大似然估计法
真颛2023-06-06 07:54:281

考研概率论考不考卷积公式?谢谢!学长学姐求告之。数学一

考的
凡尘2023-05-26 08:18:393

CNN是什么 详解卷积神经网络?

CNN的核心思想是卷积操作,它可以有效地提取图像的局部特征。卷积操作是指在输入数据上滑动一个固定大小的窗口,对窗口内的数据进行处理,得到一个新的特征图。在CNN中,卷积操作通常与池化操作一起使用,池化操作可以将特征图的大小降低,从而减少计算量和参数数量。总之,CNN是一种强大的深度学习模型,它可以自动提取图像的特征,从而减轻了人工特征提取的负担。在计算机视觉领域中,CNN的应用非常广泛,未来它还将在更多领域中得到应用。CNN的结构一般包括卷积层、池化层和全连接层。卷积层和池化层可以提取图像的局部特征,全连接层则可以将这些特征通过多个神经元组合起来,得到最终的分类结果。CNN的核心思想是卷积操作,它可以有效地提取图像的局部特征。卷积操作是指在输入数据上滑动一个固定大小的窗口,对窗口内的数据进行处理,得到一个新的特征图。在CNN中,卷积操作通常与池化操作一起使用,池化操作可以将特征图的大小降低,从而减少计算量和参数数量。CNN的结构一般包括卷积层、池化层和全连接层。卷积层和池化层可以提取图像的局部特征,全连接层则可以将这些特征通过多个神经元组合起来,得到最终的分类结果。
余辉2023-05-26 08:18:161

属于卷积神经网络(CNN)的有()

属于卷积神经网络(CNN)的有() A.VGGNetB.ResNetC.AlexNetD.GoogleNet正确答案:ABCD
康康map2023-05-26 08:18:161

前馈神经网络、BP神经网络、卷积神经网络的区别与联系

区别:一、计算方法不同1、前馈神经网络:一种最简单的神经网络,各神经元分层排列。每个神经元只与前一层的神经元相连。接收前一层的输出,并输出给下一层.各层间没有反馈。2、BP神经网络:是一种按照误差逆向传播算法训练的多层前馈神经网络。3、卷积神经网络:包含卷积计算且具有深度结构的前馈神经网络。二、作用不同1、前馈神经网络:结构简单,应用广泛,能够以任意精度逼近任意连续函数及平方可积函数.而且可以精确实现任意有限训练样本集。2、BP神经网络:具有很强的非线性映射能力和柔性的网络结构。网络的中间层数、各层的神经元个数可根据具体情况任意设定,并且随着结构的差异其性能也有所不同。3、卷积神经网络:具有表征学习能力,能够按其阶层结构对输入信息进行平移不变分类。三、用途不同1、前馈神经网络:主要应用包括感知器网络、BP网络和RBF网络。2、BP神经网络:1)函数逼近:用输入向量和相应的输出向量训练一个网络逼近一个函数;2)模式识别:用一个待定的输出向量将它与输入向量联系起来;3)分类:把输入向量所定义的合适方式进行分类;4)数据压缩:减少输出向量维数以便于传输或存储。3、卷积神经网络:可应用于图像识别、物体识别等计算机视觉、自然语言处理、物理学和遥感科学等领域。联系:BP神经网络和卷积神经网络都属于前馈神经网络,三者都属于人工神经网络。因此,三者原理和结构相同。扩展资料人工神经网络的优点:1、具有自学习功能。自学习功能对于预测有特别重要的意义。预期未来的人工神经网络计算机将为人类提供经济预测、市场预测、效益预测,其应用前途是很远大的。2、具有联想存储功能。用人工神经网络的反馈网络就可以实现这种联想。3、具有高速寻找优化解的能力。寻找一个复杂问题的优化解,往往需要很大的计算量,利用一个针对某问题而设计的反馈型人工神经网络,发挥计算机的高速运算能力,可很快找到优化解。参考资料来源:百度百科-前馈神经网络参考资料来源:百度百科-BP神经网络参考资料来源:百度百科-卷积神经网络参考资料来源:百度百科-人工神经网络
凡尘2023-05-26 08:18:141

什么是卷积神经网络?为什么它们很重要

卷积神经网络(Convolutional Neural Network,CNN)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现。[1]  它包括卷积层(alternating convolutional layer)和池层(pooling layer)。卷积神经网络是近年发展起来,并引起广泛重视的一种高效识别方法。20世纪60年代,Hubel和Wiesel在研究猫脑皮层中用于局部敏感和方向选择的神经元时发现其独特的网络结构可以有效地降低反馈神经网络的复杂性,继而提出了卷积神经网络(Convolutional Neural Networks-简称CNN)。现在,CNN已经成为众多科学领域的研究热点之一,特别是在模式分类领域,由于该网络避免了对图像的复杂前期预处理,可以直接输入原始图像,因而得到了更为广泛的应用。 K.Fukushima在1980年提出的新识别机是卷积神经网络的第一个实现网络。随后,更多的科研工作者对该网络进行了改进。其中,具有代表性的研究成果是Alexander和Taylor提出的“改进认知机”,该方法综合了各种改进方法的优点并避免了耗时的误差反向传播。
真颛2023-05-26 08:18:141

神经网络:卷积神经网络(CNN)

神经网络 最早是由心理学家和神经学家提出的,旨在寻求开发和测试神经的计算模拟。 粗略地说, 神经网络 是一组连接的 输入/输出单元 ,其中每个连接都与一个 权 相关联。在学习阶段,通过调整权值,使得神经网络的预测准确性逐步提高。由于单元之间的连接,神经网络学习又称 连接者学习。 神经网络是以模拟人脑神经元的数学模型为基础而建立的,它由一系列神经元组成,单元之间彼此连接。从信息处理角度看,神经元可以看作是一个多输入单输出的信息处理单元,根据神经元的特性和功能,可以把神经元抽象成一个简单的数学模型。 神经网络有三个要素: 拓扑结构、连接方式、学习规则 神经网络的拓扑结构 :神经网络的单元通常按照层次排列,根据网络的层次数,可以将神经网络分为单层神经网络、两层神经网络、三层神经网络等。结构简单的神经网络,在学习时收敛的速度快,但准确度低。 神经网络的层数和每层的单元数由问题的复杂程度而定。问题越复杂,神经网络的层数就越多。例如,两层神经网络常用来解决线性问题,而多层网络就可以解决多元非线性问题 神经网络的连接 :包括层次之间的连接和每一层内部的连接,连接的强度用权来表示。 根据层次之间的连接方式,分为: 1)前馈式网络:连接是单向的,上层单元的输出是下层单元的输入,如反向传播网络,Kohonen网络 2)反馈式网络:除了单项的连接外,还把最后一层单元的输出作为第一层单元的输入,如Hopfield网络 根据连接的范围,分为: 1)全连接神经网络:每个单元和相邻层上的所有单元相连 2)局部连接网络:每个单元只和相邻层上的部分单元相连 神经网络的学习 根据学习方法分: 感知器:有监督的学习方法,训练样本的类别是已知的,并在学习的过程中指导模型的训练 认知器:无监督的学习方法,训练样本类别未知,各单元通过竞争学习。 根据学习时间分: 离线网络:学习过程和使用过程是独立的 在线网络:学习过程和使用过程是同时进行的 根据学习规则分: 相关学习网络:根据连接间的激活水平改变权系数 纠错学习网络:根据输出单元的外部反馈改变权系数 自组织学习网络:对输入进行自适应地学习摘自《数学之美》对人工神经网络的通俗理解:神经网络种类很多,常用的有如下四种: 1)Hopfield网络,典型的反馈网络,结构单层,有相同的单元组成 2)反向传播网络,前馈网络,结构多层,采用最小均方差的纠错学习规则,常用于语言识别和分类等问题 3)Kohonen网络:典型的自组织网络,由输入层和输出层构成,全连接 4)ART网络:自组织网络 深度神经网络: Convolutional Neural Networks(CNN)卷积神经网络 Recurrent neural Network(RNN)循环神经网络 Deep Belief Networks(DBN)深度信念网络 深度学习是指多层神经网络上运用各种机器学习算法解决图像,文本等各种问题的算法集合。深度学习从大类上可以归入神经网络,不过在具体实现上有许多变化。 深度学习的核心是特征学习,旨在通过分层网络获取分层次的特征信息,从而解决以往需要人工设计特征的重要难题。 Machine Learning vs. Deep Learning  神经网络(主要是感知器)经常用于 分类 神经网络的分类知识体现在网络连接上,被隐式地存储在连接的权值中。 神经网络的学习就是通过迭代算法,对权值逐步修改的优化过程,学习的目标就是通过改变权值使训练集的样本都能被正确分类。 神经网络特别适用于下列情况的分类问题: 1) 数据量比较小,缺少足够的样本建立模型 2) 数据的结构难以用传统的统计方法来描述 3) 分类模型难以表示为传统的统计模型 缺点: 1) 需要很长的训练时间,因而对于有足够长训练时间的应用更合适。 2) 需要大量的参数,这些通常主要靠经验确定,如网络拓扑或“结构”。 3)  可解释性差 。该特点使得神经网络在数据挖掘的初期并不看好。 优点: 1) 分类的准确度高 2)并行分布处理能力强 3)分布存储及学习能力高 4)对噪音数据有很强的鲁棒性和容错能力最流行的基于神经网络的分类算法是80年代提出的 后向传播算法 。后向传播算法在多路前馈神经网络上学习。  定义网络拓扑 在开始训练之前,用户必须说明输入层的单元数、隐藏层数(如果多于一层)、每一隐藏层的单元数和输出层的单元数,以确定网络拓扑。 对训练样本中每个属性的值进行规格化将有助于加快学习过程。通常,对输入值规格化,使得它们落入0.0和1.0之间。 离散值属性可以重新编码,使得每个域值一个输入单元。例如,如果属性A的定义域为(a0,a1,a2),则可以分配三个输入单元表示A。即,我们可以用I0 ,I1 ,I2作为输入单元。每个单元初始化为0。如果A = a0,则I0置为1;如果A = a1,I1置1;如此下去。 一个输出单元可以用来表示两个类(值1代表一个类,而值0代表另一个)。如果多于两个类,则每个类使用一个输出单元。 隐藏层单元数设多少个“最好” ,没有明确的规则。 网络设计是一个实验过程,并可能影响准确性。权的初值也可能影响准确性。如果某个经过训练的网络的准确率太低,则通常需要采用不同的网络拓扑或使用不同的初始权值,重复进行训练。 后向传播算法学习过程: 迭代地处理一组训练样本,将每个样本的网络预测与实际的类标号比较。 每次迭代后,修改权值,使得网络预测和实际类之间的均方差最小。 这种修改“后向”进行。即,由输出层,经由每个隐藏层,到第一个隐藏层(因此称作后向传播)。尽管不能保证,一般地,权将最终收敛,学习过程停止。 算法终止条件:训练集中被正确分类的样本达到一定的比例,或者权系数趋近稳定。 后向传播算法分为如下几步: 1) 初始化权 网络的权通常被初始化为很小的随机数(例如,范围从-1.0到1.0,或从-0.5到0.5)。 每个单元都设有一个偏置(bias),偏置也被初始化为小随机数。 2) 向前传播输入 对于每一个样本X,重复下面两步: 向前传播输入,向后传播误差 计算各层每个单元的输入和输出。输入层:输出=输入=样本X的属性;即,对于单元j,Oj = Ij = Xj。隐藏层和输出层:输入=前一层的输出的线性组合,即,对于单元j, Ij =wij Oi + θj,输出= 3) 向后传播误差 计算各层每个单元的误差。 输出层单元j,误差: Oj是单元j的实际输出,而Tj是j的真正输出。 隐藏层单元j,误差: wjk是由j到下一层中单元k的连接的权,Errk是单元k的误差 更新 权 和 偏差 ,以反映传播的误差。 权由下式更新:  其中,△wij是权wij的改变。l是学习率,通常取0和1之间的值。  偏置由下式更新:   其中,△θj是偏置θj的改变。Example人类视觉原理: 深度学习的许多研究成果,离不开对大脑认知原理的研究,尤其是视觉原理的研究。1981 年的诺贝尔医学奖,颁发给了 David Hubel(出生于加拿大的美国神经生物学家) 和Torsten Wiesel,以及Roger Sperry。前两位的主要贡献,是“发现了视觉系统的信息处理”, 可视皮层是分级的 。 人类的视觉原理如下:从原始信号摄入开始(瞳孔摄入像素Pixels),接着做初步处理(大脑皮层某些细胞发现边缘和方向),然后抽象(大脑判定,眼前的物体的形状,是圆形的),然后进一步抽象(大脑进一步判定该物体是只气球)。对于不同的物体,人类视觉也是通过这样逐层分级,来进行认知的:在最底层特征基本上是类似的,就是各种边缘,越往上,越能提取出此类物体的一些特征(轮子、眼睛、躯干等),到最上层,不同的高级特征最终组合成相应的图像,从而能够让人类准确的区分不同的物体。 可以很自然的想到:可以不可以模仿人类大脑的这个特点,构造多层的神经网络,较低层的识别初级的图像特征,若干底层特征组成更上一层特征,最终通过多个层级的组合,最终在顶层做出分类呢?答案是肯定的,这也是许多深度学习算法(包括CNN)的灵感来源。 卷积神经网络是一种多层神经网络,擅长处理图像特别是大图像的相关机器学习问题。卷积网络通过一系列方法,成功将数据量庞大的图像识别问题不断降维,最终使其能够被训练。 CNN最早由Yann LeCun提出并应用在手写字体识别上。LeCun提出的网络称为LeNet,其网络结构如下:这是一个最典型的卷积网络,由 卷积层、池化层、全连接层 组成。其中卷积层与池化层配合,组成多个卷积组,逐层提取特征,最终通过若干个全连接层完成分类。 CNN通过卷积来模拟特征区分,并且通过卷积的权值共享及池化,来降低网络参数的数量级,最后通过传统神经网络完成分类等任务。 降低参数量级:如果使用传统神经网络方式,对一张图片进行分类,那么,把图片的每个像素都连接到隐藏层节点上,对于一张1000x1000像素的图片,如果有1M隐藏层单元,一共有10^12个参数,这显然是不能接受的。但是在CNN里,可以大大减少参数个数,基于以下两个假设: 1)最底层特征都是局部性的,也就是说,用10x10这样大小的过滤器就能表示边缘等底层特征 2)图像上不同小片段,以及不同图像上的小片段的特征是类似的,也就是说,能用同样的一组分类器来描述各种各样不同的图像 基于以上两个假设,就能把第一层网络结构简化 用100个10x10的小过滤器,就能够描述整幅图片上的底层特征。卷积运算的定义如下图所示: 如上图所示,一个5x5的图像,用一个3x3的 卷积核 :    1  0  1    0  1  0    1  0  1 来对图像进行卷积操作(可以理解为有一个滑动窗口,把卷积核与对应的图像像素做乘积然后求和),得到了3x3的卷积结果。 这个过程可以理解为使用一个过滤器(卷积核)来过滤图像的各个小区域,从而得到这些小区域的特征值。在实际训练过程中, 卷积核的值是在学习过程中学到的。 在具体应用中,往往有多个卷积核,可以认为, 每个卷积核代表了一种图像模式 ,如果某个图像块与此卷积核卷积出的值大,则认为此图像块十分接近于此卷积核。如果设计了6个卷积核,可以理解为这个图像上有6种底层纹理模式,也就是用6种基础模式就能描绘出一副图像。以下就是24种不同的卷积核的示例: 池化 的过程如下图所示: 可以看到,原始图片是20x20的,对其进行采样,采样窗口为10x10,最终将其采样成为一个2x2大小的特征图。 之所以这么做,是因为即使做完了卷积,图像仍然很大(因为卷积核比较小),所以为了降低数据维度,就进行采样。 即使减少了许多数据,特征的统计属性仍能够描述图像,而且由于降低了数据维度,有效地避免了过拟合。 在实际应用中,分为最大值采样(Max-Pooling)与平均值采样(Mean-Pooling)。LeNet网络结构: 注意,上图中S2与C3的连接方式并不是全连接,而是部分连接。最后,通过全连接层C5、F6得到10个输出,对应10个数字的概率。 卷积神经网络的训练过程与传统神经网络类似,也是参照了反向传播算法 第一阶段,向前传播阶段: a)从样本集中取一个样本(X,Yp),将X输入网络; b)计算相应的实际输出Op 第二阶段,向后传播阶段 a)计算实际输出Op与相应的理想输出Yp的差; b)按极小化误差的方法反向传播调整权矩阵。
北境漫步2023-05-26 08:18:131

算法一用了拉普拉斯变换的卷积定理为什么和答案不一样?错在哪里呢?

高大上
阿啵呲嘚2023-05-26 08:17:581

拉普拉斯变换中卷积定义在积分区间为什么只有区间0到t

这个是一阶电路的RL零状态响应,输入函数是sin函数,卷积哪里的无穷的的话是计算稳态值了,人家是求的瞬间值,也就是随着时间t变化的值,积分只能到t
西柚不是西游2023-05-26 08:17:571

拉普拉斯变换、卷积定理 卷积定理中如果有一函数是常数为什么与用拉普拉斯线性定理来求原函数不同?

卷积的拉普拉斯变换等于各自拉普拉斯变换的乘积.拉普拉斯乘积的逆变换等于卷积.
mlhxueli 2023-05-26 08:17:571

一道关于拉普拉斯变换时域卷积定理确定积分上限的问题

这个是一阶电路的RL零状态响应,输入函数是sin函数,卷积哪里的无穷的的话是计算稳态值了,人家是求的瞬间值,也就是随着时间t变化的值,积分只能到t
mlhxueli 2023-05-26 08:17:561

利用傅里叶变换计算卷积,需要使用哪些数学知识?

本题利用了卷积定理求解。扩展资料:卷积定理指出,函数卷积的傅里叶变换是函数傅里叶变换的乘积。即,一个域中的卷积相当于另一个域中的乘积,例如时域中的卷积就对应于频域中的乘积。F(g(x)*f(x)) = F(g(x))F(f(x))其中F表示的是傅里叶变换。这一定理对拉普拉斯变换、双边拉普拉斯变换、Z变换、Mellin变换和Hartley变换(参见Mellin inversion theorem)等各种傅里叶变换的变体同样成立。在调和分析中还可以推广到在局部紧致的阿贝尔群上定义的傅里叶变换。利用卷积定理可以简化卷积的运算量。对于长度为n的序列,按照卷积的定义进行计算,需要做2n- 1组对位乘法,其计算复杂度为;而利用傅里叶变换将序列变换到频域上后,只需要一组对位乘法,利用傅里叶变换的快速算法之后,总的计算复杂度为。这一结果可以在快速乘法计算中得到应用。参考资料来源:百度百科-卷积
hi投2023-05-26 08:17:511

5.8、利用傅里叶变换求卷积+f(t)=Sa(t)×Sa(2t)。

首先,我们需要确定函数 Sa(t) 和 Sa(2t) 的傅里叶变换,这里采用标准的傅里叶变换公式:F(w) = ∫f(t)e^(-jwt)dtf(t) = (1/2π)∫F(w)e^(jwt)dw其中,f(t) 表示函数在时域上的表达式,F(w) 表示函数在频域上的表达式,j 表示虚数单位。根据傅里叶变换的线性性质,我们可以先分别求出 Sa(t) 和 Sa(2t) 的傅里叶变换,然后再将它们相乘即可求得卷积+f(t)的傅里叶变换。首先,Sa(t) 的傅里叶变换为:F1(w) = ∫Sa(t)e^(-jwt)dt= ∫(1/t)sin(t/2)e^(-jwt)dt= (2/π)(w/(w^2+1))其中,我们使用了三角函数的傅里叶变换公式。其次,Sa(2t) 的傅里叶变换为:F2(w) = ∫Sa(2t)e^(-jwt)dt= (1/2)∫Sa(u)e^(-j(w/2)u)du (令 u=2t)= (1/2)F1(w/2)= (2/π)(w/(4+w^2))最后,将 F1(w) 和 F2(w) 相乘得到卷积+f(t)的傅里叶变换 F(w):F(w) = F1(w) × F2(w)= (8/π)w/((w^2+1)(w^2+4))根据傅里叶变换的反演公式,我们可以将 F(w) 转换回时域的表达式:f(t) = (1/2π)∫F(w)e^(jwt)dw= (2/π)∫w/(w^2+1) × w/(w^2+4) × e^(jwt)dw这个积分比较复杂,可以采用偏微积分的方法进行求解。最终得到:f(t) = (1/2)e^(-t/2) × (sin(t) + cos(t))因此,卷积+f(t)的表达式为:f(t) = (1/2)e^(-t/2) × (sin(t) + cos(t))
大鱼炖火锅2023-05-26 08:17:471

时域卷积带宽的计算

f(t)*f(2t)中间的符号是卷积? 令f(t)的傅里叶变换为F(f),再令f(2t) = x(t),相当于对f(t)在时域上压缩一半, 则有 X(f) = 1/2*F(f/2),即在频域上扩展一倍,X(f)的带宽为2W。 由傅里叶变换的性质可以知道时域卷积,在频域就是乘积,所以频域上信号的乘积应该取决于带宽小的信号(即F(f)),所以最终f(t)*f(2t)的带宽为W
铁血嘟嘟2023-05-25 22:21:091

sift算法中,对图像进行高斯卷积时,卷积核矩阵大小是多少?

你可以选择3x3、7x7、,直到25x25、取决于你要的效果.高斯核是平滑算子,其作用取决于衰减因子和卷积阵列的大小,效果视你具体的作业而定.
LuckySXyd2023-05-24 22:50:151

输入任意一个二维矩阵,计算其均值滤波和中值滤波的结果。用3×3的卷积核,矩阵边缘的数据不处理

如图所示
wpBeta2023-05-24 22:50:152

求问 高斯卷积核 那个矩阵是怎么求出来的呢

没有矩阵卷积的,只有向量卷积.当然,如果你硬要把向量理解为一个1*n的矩阵,那也说的过去. 所谓两个向量卷积,说白了就是多项式乘法. 比如:p=[1 2 3],q=[1 1]是两个向量,p和q的卷积如下:把p的元素作为一个多项式的系数,多项式按升幂(或降幂)排列,比如就按升幂吧,写出对应的多项式:1+2x+3x^2;同样的,把q的元素也作为多项式的系数按升幂排列,写出对应的多项式:1+x. 卷积就是“两个多项式相乘取系数”. (1+2x+3x^2)×(1+x)=1+3x+5x^2+3x^3 所以p和q卷积的结果就是[1 3 5 3]. 记住,当确定是用升幂或是降幂排列后,下面也都要按这个方式排列,否则结果是不对的. 你也可以用matlab试试 p=[1 2 3] q=[1 1] conv(p,q) 看看和计算的结果是否相同.
陶小凡2023-05-24 22:50:121

卷积对频率的影响

卷积对频率的影响:频谱搬移。往上搬就是+往下搬就是-。卷积公式的本质,这是线性时不变系统的特有的性质。频域上卷积,为了便于形象理解。将其中任一1信号频谱作为输入,另一2信号频谱作为系统响应。这样1信号的最高频率成分通过“系统”以后按照时不变性质输出是不是有一个”延时“,这个延时就是两个最高频率的叠加。我认为这就是卷及公式的物理意义。卷积定理揭示了时间域与频率域的对应关系。这一定理对Laplace变换、Z变换、Mellin变换等各种傅立叶变换的变体同样成立。需要注意的是,以上写法只对特定形式的变换正确,因为变换可能由其它方式正规化,从而使得上面的关系式中出现其它的常数因子。
铁血嘟嘟2023-05-23 19:24:481

两个非周期的信号卷积后可周期吗?

两个离散序列相乘怎么会变成连续??所以两个周期信号的卷积必定周期~~
凡尘2023-05-23 19:24:484

图卷积网络(GCN)原理解析

Graph Convolutional Networks涉及到两个很重要的概念:graph和Convolution。传统的卷积方式在欧式数据空间中大展神威,但是在非欧式数据空间中却哑火,很重要的一个原因就是传统的卷积方式在非欧式的数据空间上无法保持“平移不变性”。为了能够将卷积推广到Graph等非欧式数据结构的拓扑图上,GCN横空出世。在深入理解GCN: 的来龙去脉之前,我觉着我们有必要提前对以下概念有点印象: 论文链接 Semi-supervised Classification with Graph Convolutional Networks 1.拉普拉斯矩阵及其变体 给定一个节点数为 的简单图 , 是 的度矩阵, 是 的邻接矩阵,则 的拉普拉斯矩阵可以表示为 . 中的各个元素表示如下: 1.传统的傅里叶变换 当变换对象为离散变量时,求积分相当于求内积,即 这里的 就是传说中似乎有点神秘的拉普拉斯算子的特征函数(拉普拉斯算子是欧式空间中的二阶微分算子,卸了妆之后的样子是 )。 为何这样说呢?是因为从广义的特征方程定义看 , 本身是一种变换, 是特征向量或者特征函数, 是特征值。我们对基函数 求二阶导, . 可以看出 是变换 的特征函数。 在Graph中,拉普拉斯矩阵 可以谱分解(特征分解),其特征向量组成的矩阵是 ,根据特征方程的定义我们可以得到 。通过对比我们可以发现 相当于 , 相当于 。因此在Graph上的傅里叶变换可以写作 . 从傅里叶变换的基本思想来看,对 进行傅里叶变换的本质就是将 转换为一组正交基下的坐标表示,进行线性变换,而坐标就是傅里叶变换的结果,下图中的 就是 在第一个基上的投影分量的大小。 我们通过矩阵乘法将Graph上的傅里叶变换推广到矩阵形式: 是Graph上第 个节点的特征向量,可得Graph上的傅里叶变换形式: 。 此处的 是Graph的拉普拉斯矩阵的特征向量组成的特征矩阵的转置,在拉普拉斯矩阵的优良性质中我们知道拉普拉斯矩阵的特征向量组成的矩阵为正交阵,即满足 ,所以Graph的逆傅里叶变换形式为 ,矩阵形式如下: 到此为止我们已经通过类比从传统的傅里叶变换推广到了Graph上的傅里叶变换。接下来我们就要借助傅里叶变换这个桥梁使得Convolution与Graph把酒言欢了。 在前言中我们了解了大名鼎鼎的卷积定理:函数卷积的傅里叶变换是其傅里叶变换的乘积,即对于 ,两者的卷积是其傅里叶变换的逆变换: 我们把上一节中得到的Graph上的傅里叶变换公式代入得到: 是Hamada积,表示逐点相乘。 我们一般将 看作输入的Graph的节点特征,将 视为可训练且参数共享的卷积核来提取拓扑图的空间特征。为了进一步看清楚卷积核 ,我们将上式改写为: 也许有人对于上式的变换心存疑虑,证明其实很简单,有意者请看这位答主的解答 GCN中的等式证明 - 知乎 至此,我们已经推导出来GCN的雏形。 1. 第一代GCN 卷积操作的核心是由可训练且参数共享的卷积核,所以第一代GCN是直接把上式中的 中的对角线元素 替换为参数 。先初始化赋值,然后通过反向传播误差来调整参数 。 所以第一代GCN就变成了酱个样子: 是Graph中每个节点特征的表示向量, 是每个节点经过GCN卷积之后的输出。Graph中的每个节点都要经过卷积核卷积来提取其相应的拓扑空间,然后经过激活函数 传播到下一层。 第一代GCN的缺点也是显而易见的,主要有以下几点, 2. 第二代GCN 面对第一代GCN参数过多的缺点,第二代GCN进行了针对性的改进。由于Graph上的傅里叶变换是关于特征值的函数 , 也可写作 ,用k阶多项式对卷积核进行改进: 将其代入到 可以得到: 所以第二代GCN是介个样子: 可以看出二代GCN的最终化简结果不需要进行矩阵分解,直接对拉普拉斯矩阵进行变换。参数是 ,k一般情况下远小于Graph中的节点的数量 ,所以和第一代GCN相比,第二代GCN的参数量明显少于第一代GCN,减低了模型的复杂度。对于参数 ,先对其进行初始化,然后根据误差反向传播来更新参数。但是仍旧需要计算 ,时间复杂度为 . 另外我们知道对于一个矩阵的k次方,我们可以得到与中心节点k-hop相连的节点,即 中的元素是否为0表示Graph中的一个结点经过k跳之后是否能够到达另外一个结点,这里的k其实表示的就是卷积核感受野的大小,通过将每个中心节点k-hop内的邻居节点聚合来更新中心节点的特征表示,而参数 就是第k-hop邻居的权重。 未完待续。 1.在谱域图卷积中,我们对图的拉普拉斯矩阵进行特征分解。通过在傅里叶空间中进行特征分解有助于我们我们理解潜在的子图结构。ChebyNet, GCN是使用谱域卷积的典型深度学习架构。 2.空域卷积作用在节点的邻域上,我们通过节点的k-hop邻居来聚合得到节点的特征表示。空域卷积相比谱域卷积更加简单和高效。GraphSAGE和GAT 是空域卷积的典型代表。 参考文献 1. https://www.zhihu.com/question/54504471/answer/332657604 2. http://xtf615.com/2019/02/24/gcn/ 3. https://blog.csdn.net/yyl424525/article/details/100058264
小白2023-05-23 19:24:481

卷积的对位相乘法怎么算的

  解释:   在泛函分析中,卷积、旋积或摺积(英语:Convolution)是通过两个函数f 和g 生成第三个函数的一种数学算子,表征函数f 与g经过翻转和平移的重叠部分的面积。   如果将参加卷积的一个函数看作区间的指示函数,卷积还可以被看作是“滑动平均”的推广。   两个函数要求:   卷积定理指出,函数卷积的傅里叶变换是函数傅里叶变换的乘积。即,一个域中的卷积相当于另一个域中的乘积,例如时域中的卷积就对应于频域中的乘积。   F(g(x)*f(x)) = F(g(x))F(f(x))   其中F表示的是傅里叶变换。   这一定理对拉普拉斯变换、双边拉普拉斯变换、Z变换、Mellin变换和Hartley变换(参见Mellin inversion theorem)等各种傅里叶变换的变体同样成立。在调和分析中还可以推广到在局部紧致的阿贝尔群上定义的傅里叶变换。   利用卷积定理可以简化卷积的运算量。对于长度为n的序列,按照卷积的定义进行计算,需要做2n- 1组对位乘法,其计算复杂度为;而利用傅里叶变换将序列变换到频域上后,只需要一组对位乘法,利用傅里叶变换的快速算法之后,总的计算复杂度为。这一结果可以在快速乘法计算中得到应用。 本回答由科学教育分类达人 章斌推荐
铁血嘟嘟2023-05-23 19:24:481

线性卷积是否相当于圆周卷积?

当有限长序列x(n)和h(n)的长度分别为N1和N2,取N>=max(N1,N2),当N>=N1+N2-1,则线性卷积与圆周卷积相同。线性卷积是在时域描述线性系统输入和输出之间关系的一种运算。这种运算在线性系统分析和信号处理中应用很多,通常简称卷积。两个函数的圆周卷积是由他们的周期延伸所来定义的。周期延伸意思是把原本的函数平移某个周期T的整数倍后再全部加起来所产生的新函数。离散信号的圆周卷积可以经由圆周卷积定理使用快速傅立叶变换(FFT)而有效率的计算。因此,若原本的(线性)卷积能转换成圆周卷积来计算,会远比直接计算更快速。考虑到长度L和长度M的有限长度离散信号,做卷积之后会成为长度L+M-1的信号,因此只要把两离散信号补上适当数目的零(zero-padding)成为N点信号,其中N≥L+M-1,则它们的圆周卷积就与卷积相等。拓展资料:线性卷积在时域描述线性系统输入和输出之间关系的一种运算。这种运算在线性系统分析和信号处理中应用很多,通常简称卷积。循环卷积不同于线性卷积的一种卷积运算,是周期卷积的一种。
kikcik2023-05-23 19:24:481

一个s(f)=sin πf/πf的自相关函数,用时域卷积定理的这一步是怎么计算的?

函数f(x)在区间π/6到2π/3上函数值从1减小到-1 ∴T/2=2π/3-π/6=π/2,∴T=π 由T=2π/w=π==>w=2 ∵x=π/6时,f(x)取得最大值1 ∴sin(2*π/6+φ)=1 ∴2*π/6+φ=kπ+π/2,k∈Z ∵|φ|
瑞瑞爱吃桃2023-05-23 19:24:481

用MATLAB验证卷积定理出了问题。 两个函数分别傅氏变换相乘取逆变换的结果跟直接卷积的结果不一样!

clearclcf=[123;345;456];c=[111;110;100];s=conv2(f,c);%对f,c做卷积f(8,8)=0;c(8,8)=0;F=fft2(f);%对f做fft2C=fft2(c);%对c做fft2s1=ifft2(F.*C);%对F.*C做ifft2s1=s1(1:5,1:5);%得到了s1,等于s
gitcloud2023-05-23 19:24:481

圆周卷积有n=0时的点吗?

圆周卷积定理(Circularconvolution)1.圆周卷积和的定义:两个长度为N的序列的如下计算称为圆周卷积和,用符号N表示:N表示圆周卷积的点数。
豆豆staR2023-05-23 19:24:482

简述傅里叶变换的卷积特性

傅里叶变换的卷积特性:就是用各种频率不同的周期函数(频域)线性表示原始函数(时域),必然具有线性性。傅里叶变换,表示能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。最初傅里叶分析是作为热过程的解析分析的工具被提出的。尽管最初傅里叶分析是作为热过程的解析分析的工具,但是其思想方法仍然具有典型的还原论和分析主义的特征。"任意"的函数通过一定的分解,都能够表示为正弦函数的线性组合的形式;而正弦函数在物理上是被充分研究而相对简单的函数类,这一想法跟化学上的原子论想法何其相似!奇妙的是,现代数学发现傅里叶变换具有非常好的性质,使得它如此的好用和有用,让人不得不感叹造物的神奇:1、傅里叶变换是线性算子,若赋予适当的范数,它还是酉算子;2、傅里叶变换的逆变换容易求出,而且形式与正变换非常类似;3、正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解.在线性时不变的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取;4、著名的卷积定理指出:傅里叶变换可以化复杂的卷积运算为简单的乘积运算,从而提供了计算卷积的一种简单手段;5、离散形式的傅里叶变换可以利用数字计算机快速的算出(其算法称为快速傅里叶变换算法(FFT))。正是由于上述的良好性质,傅里叶变换在物理学、数论、组合数学、信号处理、概率、统计、密码学、声学、光学等领域都有着广泛的应用。
善士六合2023-05-23 19:24:481

求sint*cost函数的卷积 第二题利用卷积定理求拉普拉斯的逆变换 F(s)=s^2/(s^

望采纳!
FinCloud2023-05-23 19:24:481

阶跃信号卷积和公式

阶跃信号卷积和公式f(t)*u(t)=∫f(x)dx。与阶跃函数的卷积就是该函数的变上限积分,阶跃函数是个理想积分器。在电路分析中,阶跃函数是研究动态电路阶跃响应的基础。利用阶跃函数可以进行信号处理、积分变换。在其他各个领域如自然生态、计算、工程等等均有不同程度的研究。群上卷积若G是有某m测度的群(例如豪斯多夫空间上Harr测度下局部紧致的拓扑群),对于G上m-勒贝格可积的实数或复数函数f和g,可定义它们的卷积:对于这些群上定义的卷积同样可以给出诸如卷积定理等性质,但是这需要对这些群的表示理论以及调和分析的Peter-Weyl定理。
可桃可挑2023-05-23 19:24:481

矩阵的卷积怎么计算

  卷积定理指出,函数卷积的傅里叶变换是函数傅里叶变换的乘积。即,一个域中的卷积相当于另一个域中的乘积,例如时域中的卷积就对应于频域中的乘积。  F(g(x)*f(x)) = F(g(x))F(f(x))  其中F表示的是傅里叶变换。  这一定理对拉普拉斯变换、双边拉普拉斯变换、Z变换、Mellin变换和Hartley变换(参见Mellin inversion theorem)等各种傅里叶变换的变体同样成立。在调和分析中还可以推广到在局部紧致的阿贝尔群上定义的傅里叶变换。  利用卷积定理可以简化卷积的运算量。对于长度为n的序列,按照卷积的定义进行计算,需要做2n- 1组对位乘法,其计算复杂度为;而利用傅里叶变换将序列变换到频域上后,只需要一组对位乘法,利用傅里叶变换的快速算法之后,总的计算复杂度为。这一结果可以在快速乘法计算中得到应用。
hi投2023-05-23 19:24:483

卷积公式概率论是什么?

卷积公式是:z(t)=x(t)*y(t)=∫x(m)y(t-m)dm。这是一个定义式。卷积公式是用来求随机变量和的密度函数(pdf)的计算公式。注意卷积公式仅在Z与X、Y呈线性关系方可使用,因为小写z书写不方便,故用t代替。方法就是将y(或x)用x和t表达,替换原密度函数的y,对x(或y)积分,这样就可以消掉x和y,只剩下t。卷积定理指出,函数卷积的傅里叶变换是函数傅里叶变换的乘积。即,一个域中的卷积相当于另一个域中的乘积,例如时域中的卷积就对应于频域中的乘积。F(g(x)*f(x)) = F(g(x))F(f(x)),其中F表示的是傅里叶变换。在泛函分析中,卷积、旋积或褶积(英语:Convolution)是通过两个函数f和g生成第三个函数的一种数学算子,表征函数f与g经过翻转和平移的重叠部分函数值乘积对重叠长度的积分。如果将参加卷积的一个函数看作区间的指示函数,卷积还可以被看作是“滑动平均”的推广。卷积是两个变量在某范围内相乘后求和的结果。离散情况下是数列相乘再求和。连续情况下是函数相乘再积分。卷积是两个函数的运算方式,就是一种满足一些条件(交换律、分配率、结合律、数乘结合律、平移特性、微分特性、积分特性等)的算子。用一种方式将两个函数联系到一起。从形式上讲,就是先对g函数进行翻转,相当于在数轴上把g函数从右边翻转到左边去,然后再把g函数平移到n,在这个位置上对两个函数的对应点相乘,然后相加。这就是“卷”的过程。函数翻转,滑动叠加(积分、加权求和)。有一种学术的说法:卷积是将过去所有连续信号经过系统的响应之后得到的在观察那一刻的加权叠加。从打板子的例子来看结合前边提到的连续形式f和g的卷积,可以理解为f和g的卷积在n处的值是用来表示在时刻n 遭受的疼痛程度。f(t)是在说t这一时刻的人打的力度,g(n-t)说的是现在站在n时刻开始统计 这个t时刻打的板子本身的疼痛程度变化成了什么样子。将所有积分计算出来 就可以知道到n时刻这个人有多痛。(至于积分上下限就不能用这个时刻来理解了,毕竟现在无法知道未来。)不过从这个简单的例子中还是可以窥见一些卷积公式的奥秘,我们知道在实际推导时主要是在推导两个随机变量的和的时候推导出来的。
mlhxueli 2023-05-23 19:24:471

卷积公式的使用条件是什么?

卷积公式的使用条件解释如下:卷积公式的使用条件没有限定。在泛函分析中,卷积、旋积或摺积是通过两个函数f和g生成第三个函数的一种数学算子,表征函数f与g经过翻转和平移的重叠部分函数值乘积对重叠长度的积分。卷积定理指出,函数卷积的傅里叶变换是函数傅里叶变换的乘积。即一个域中的卷积相当于另一个域中的乘积,例如时域中的卷积就对应于频域中的乘积。卷积公式的理解含义卷积这个概念,很早以前就学过,但是一直没有搞懂。教科书上通常会给出定义,给出很多性质,也会用实例和图形进行解释,但究竟为什么要这么设计,这么计算,背后的意义是什么,往往语焉不详。卷积公式其实就是解二元随机变量的一个公式,但实际上用一般方法也可以求解,只是用卷积公式可以稍微简便一点。如果感觉公式比较麻烦的话可以忽略,对后续的刷题没有影响。
LuckySXyd2023-05-23 19:24:471

连续时间信号的频域卷积定理是什么

频域卷积定理:就是时域乘积等于1/(2pi)频域卷积
Jm-R2023-05-23 19:24:472

怎样计算周期卷积

线性卷积就是多项式系数乘法:设a的长度是m,b的长度是n,则a卷积b的长度是m+n-1,运算参见多项式乘法。“l点的圆周卷积”就是把先做线性卷积,再把结果的前l点保留不动,后面的点截下来,加到结果的头上去。如果l>m+n-1,则线性卷积和圆周卷积相同。没听说过周期卷积,是不是圆周卷积的另一种说法?
ardim2023-05-23 19:24:473

频率卷积定律

卷积定理 f(x,y)*h(x,y)<=>F(u,v)H(u,v) f(x,y)h(x,y)<=>F(u,v)*H(u,v) 二个二维连续函数在空间域中的卷积可求其相应的二个傅立叶变换乘积的反变换而得。反之,在频域中的卷积可用的在空间域中乘积的傅立叶变换而得。
u投在线2023-05-23 19:24:471

拉普拉斯卷积定理公式

f(t)?g(t)=∫t0f(u)g(t?u)du(1)。卷积的拉普拉斯变换=拉普拉斯变换后的乘积公式:L[f(t)*g(t)]=F(s)G(s)5输入的拉普拉斯变换(Laplace)×传递系数。
ardim2023-05-23 19:24:471

三个函数可以卷积吗?可以的话该怎么卷积?

你好。提问多,说明你对百度的信任,对生活的好奇心强,这是一个很好的事情,希望可以帮你学到更多的东西。谢谢!
bikbok2023-05-23 19:24:472

怎样计算周期卷积

周期长度均为N的两个周期序列y(n)和:xz (n)进行如下形式的运算:乙x} gym)·.za (n一m)称为周期卷积.通常记为:x1 (n )④iz <n ).周期卷积的结果仍然是以N为周期的序列,其运算符合交换律.卷积与傅里叶变换有着密切的关系。利用一点性质,即两函数的傅里叶变换的乘积等于它们卷积后的傅里叶变换,能使傅里叶分析中许多问题的处理得到简化。由卷积得到的函数f*g一般要比f和g都光滑。特别当g为具有紧致集的光滑函数,f为局部可积时,它们的卷积f * g也是光滑函数。利用这一性质,对于任意的可积函数f,都可以简单地构造出一列逼近于f的光滑函数列fs,这种方法称为函数的光滑化或正则化。扩展资料卷积定理:要理解卷积,不得不提convolution theorem,它将时域和空域上的复杂卷积对应到了频域中的元素间简单的乘积。这个定理非常强大,在许多科学领域中得到了广泛应用。卷积定理也是快速傅里叶变换算法被称为20世纪最重要的算法之一的一个原因。第一个等式是一维连续域上两个连续函数的卷积;第二个等式是二维离散域(图像)上的卷积。这里指的是卷积,指的是傅里叶变换,表示傅里叶逆变换,是一个正规化常量。这里的“离散”指的是数据由有限个变量构成(像素);一维指的是数据是一维的(时间),图像则是二维的,视频则是三维的。为了更好地理解卷积定理,我们还需要理解数字图像处理中的傅里叶变换。参考资料来源:百度百科-周期卷积
瑞瑞爱吃桃2023-05-23 19:24:471

为什么卷积公式在概率论里不可以?

卷积公式概率论计算分布函数的时候不能用。卷积公式的使用条件是只用来计算密度函数,不能计算分布函数。在泛函分析中,卷积是通过两个函数f和g生成第三个函数的一种数学算子,表征函数f与g经过翻转和平移的重叠部分函数值乘积对重叠长度的积分。应用利用卷积定理可以简化卷积的运算量。对于长度为n的序列,按照卷积的定义进行计算,需要做(2n- 1)组对位乘法,其计算复杂度为;而利用傅里叶变换将序列变换到频域上后,只需要一组对位乘法,利用傅里叶变换的快速算法之后,总的计算复杂度为。这一结果可以在快速乘法计算中得到应用。
此后故乡只2023-05-23 19:24:471

线性卷积和4点线性卷积,8点线性卷积的区别

x1=[10-12],长度l1=4x2=[20001],长度l2=5首先是线性卷积,很简单,本质就是多项式乘法,结果是:[20-2410-12]线性卷积的长度是l1+l2-1,此处就是8,要求7点圆周卷积,就是把上面结果的最后一位拿下来加到前面第一位,就是:[40-1410-1]若要n点线性卷积等于圆周卷积,只有n大于等于线性卷积的长度,这样就不必截下尾巴再添加到头上了。所以就是n>=l1+l2-1,即n>=8
韦斯特兰2023-05-23 19:24:472

带绝对值的卷积公式

带绝对值的卷积公式:∫(-4,3)|x+2|dx(∫(-4,3)表示从-4到3积分)。乘除法的卷积公式就是有绝对值的,xy独立的情况下。z=x+y加法的卷积公式是f(x)f(z-x)。z=xy乘法的卷积公式是(1/|x|)f(x)f(z/x)。z=y/x除法的卷积公式是|x|f(x)f(xz)。利用卷积定理可以简化卷积的运算量。对于长度为n的序列,按照卷积的定义进行计算,需要做(2n- 1)组对位乘法,其计算复杂度为;而利用傅里叶变换将序列变换到频域上后,只需要一组对位乘法,利用傅里叶变换的快速算法之后,总的计算复杂度为。这一结果可以在快速乘法计算中得到应用。
黑桃花2023-05-23 19:24:471

关于信号分析 卷积

特别具体的内容,你可以随便找一部 信号与线性系统方面的教材阅读。首先,再提到卷积之前,必须提到卷积出现的背景。卷积是在信号与线性系统的基础上或背景中出现的,脱离这个背景单独谈卷积是没有任何意义的,除了那个所谓褶反公式上的数学意义和积分(或求和,离散情况下)。信号与线性系统,讨论的就是信号经过一个线性系统以后发生的变化(就是输入 输出 和所经过的所谓系统,这三者之间的数学关系)。所谓线性系统的含义,就是,这个所谓的系统,带来的输出信号与输入信号的数学关系式之间是线性的运算关系。因此,实际上,都是要根据我们需要待处理的信号形式,来设计所谓的系统传递函数,那么这个系统的传递函数和输入信号,在数学上的形式就是所谓的卷积关系。卷积关系最重要的一种情况,就是在信号与线性系统或数字信号处理 中的卷积定理。利用该定理,可以将时间域或空间域中的卷积运算等价为频率域的相乘运算,从而利用FFT等快速算法,实现有效的计算,节省运算代价。
gitcloud2023-05-23 19:24:471

卷积公式概率论什么时候不能用

卷积公式概率论计算分布函数的时候不能用。卷积公式的使用条件是只用来计算密度函数,不能计算分布函数。在泛函分析中,卷积是通过两个函数f和g生成第三个函数的一种数学算子,表征函数f与g经过翻转和平移的重叠部分函数值乘积对重叠长度的积分。应用利用卷积定理可以简化卷积的运算量。对于长度为n的序列,按照卷积的定义进行计算,需要做(2n- 1)组对位乘法,其计算复杂度为;而利用傅里叶变换将序列变换到频域上后,只需要一组对位乘法,利用傅里叶变换的快速算法之后,总的计算复杂度为。这一结果可以在快速乘法计算中得到应用。
墨然殇2023-05-23 19:24:471

考研卷积公式推荐用吗

考研卷积公式推荐用,因为计算速度会更快,但是如果对卷积公式不是精通,则不推荐,不精通者推荐使用定义法。所谓的卷积公式就是求二维的情况下, Z=X+Y的概率密度,卷积公式你可以不会,因为用定义法F(z)=P{g(X,Y)<=z}也是可以做出来的;但会卷积公式,能做的更快。要知道,考场上时间是很宝贵的,节约5分钟可能就会多10分。如果要用,请一定要搞清楚、弄熟练,卷积公式的限制还是很多的,所以一般还是推荐用定义法。卷积与相关分析若G是有某m测度的群(例如豪斯多夫空间上Harr测度下局部紧致的拓扑群),对于G上m-勒贝格可积的实数或复数函数f和g,可定义它们的卷积:对于这些群上定义的卷积同样可以给出诸如卷积定理等性质,但是这需要对这些群的表示理论以及调和分析的Peter-Weyl定理。专业老师在线权威答疑 zy.offercoming.com
tt白2023-05-23 19:24:471

卷积公式有什么用处?

卷积公式概率论计算分布函数的时候不能用。卷积公式的使用条件是只用来计算密度函数,不能计算分布函数。在泛函分析中,卷积是通过两个函数f和g生成第三个函数的一种数学算子,表征函数f与g经过翻转和平移的重叠部分函数值乘积对重叠长度的积分。应用利用卷积定理可以简化卷积的运算量。对于长度为n的序列,按照卷积的定义进行计算,需要做(2n- 1)组对位乘法,其计算复杂度为;而利用傅里叶变换将序列变换到频域上后,只需要一组对位乘法,利用傅里叶变换的快速算法之后,总的计算复杂度为。这一结果可以在快速乘法计算中得到应用。
meira2023-05-23 19:24:471

sinat与sinat的卷积

sinat与sinat的卷积:sin(at)*cos(at)=∫sin(ax)cos(a(t-x)dx,积分限从0到T。积分得=tsinat/2。cos(α-π)=-cosα。假设α是一个锐角,那么,-α就是一个负角,位于第四象限,而cos在第一第四象限是正的,那么cos(-α)就等于cos(α)。积化和差得和差,余弦在后要相加;异名函数取正弦,正弦相乘取负号。利用卷积定理可以简化卷积的运算量。对于长度为n的序列,按照卷积的定义进行计算,需要做(2n- 1)组对位乘法,其计算复杂度为;而利用傅里叶变换将序列变换到频域上后,只需要一组对位乘法,利用傅里叶变换的快速算法之后,总的计算复杂度为。这一结果可以在快速乘法计算中得到应用。
大鱼炖火锅2023-05-23 19:24:471

说明两个空间域上连续函数的卷积运算步骤?

f(x,y) * h(x,y)<=>F(u,v)H(u,v) f(x,y)h(x,y)<=>[F(u,v) * H(u,v)]/2π (A * B 表示做A与B的卷积) 二个二维连续函数在空间域中的卷积可求其相应的二个傅立叶变换乘积的反变换而得。反之,在频域中的卷积可用的在空间域中乘积的傅立叶变换而得。 这一定理对拉普拉斯变换、双边拉普拉斯变换、Z变换、Mellin变换和Hartley变换等各种傅里叶变换的变体同样成立。在调和分析中还可以推广到在局部紧致的阿贝尔群上定义的傅里叶变换。 利用卷积定理可以简化卷积的运算量。对于长度为n的序列,按照卷积的定义进行计算,需要做2N - 1组对位乘法,其计算复杂度为O(N * N);而利用傅里叶变换将序列变换到频域上后,只需要一组对位乘法,利用傅里叶变换的快速算法之后,总的计算复杂度为O(N * log N)。这一结果可以在快速乘法计算中得到应用。
bikbok2023-05-23 19:24:471

卷积公式概率论计算分布函数的时候是否适用

卷积公式概率论计算分布函数的时候不能用。卷积公式的使用条件是只用来计算密度函数,不能计算分布函数。在泛函分析中,卷积是通过两个函数f和g生成第三个函数的一种数学算子,表征函数f与g经过翻转和平移的重叠部分函数值乘积对重叠长度的积分。应用利用卷积定理可以简化卷积的运算量。对于长度为n的序列,按照卷积的定义进行计算,需要做(2n- 1)组对位乘法,其计算复杂度为;而利用傅里叶变换将序列变换到频域上后,只需要一组对位乘法,利用傅里叶变换的快速算法之后,总的计算复杂度为。这一结果可以在快速乘法计算中得到应用。
kikcik2023-05-23 19:24:471

圆周卷积的算法

离散信号的圆周卷积可以经由圆周卷积定理使用快速傅立叶变换(FFT)而有效率的计算。因此,若原本的(线性)卷积能转换成圆周卷积来计算,会远比直接计算更快速。考虑到长度L 和长度 M 的有限长度离散信号,做卷积之后会成为长度 的信号,因此只要把两离散信号补上适当数目的零(zero-padding)成为 N 点信号,其中 ,则它们的圆周卷积就与卷积相等。即可接着用 N 点 FFT 作计算。用以上方法计算卷积时,若两个信号长度相差很多,则较短者须补上相当多的零,太不经济。而且在某些情况下,例如较短的 h[n] 是一个 FIR 滤波器而较长的 x[n] 是未知长度的输入(像语音)时,直接用以上方法要等所有的输入都收到后才能开始算输出信号,太不方便。这时可以把 x[n] 分割成许多适当长度的区块(称为 block convolution),然后一段一段的处理。经过滤波后的段落再仔细的连接起来,借由输入或输出的重叠来处理区块连接的部份。这两种做法分别称为重叠-储存之卷积法和重叠-相加之卷积法。
bikbok2023-05-23 19:24:471

卷积的求导公式!!!

我也要问这个啊
西柚不是西游2023-05-23 19:24:471

考研卷积公式推荐用吗

考研卷积公式推荐用,因为计算速度会更快,但是如果对卷积公式不是精通,则不推荐,不精通者推荐使用定义法。所谓的卷积公式就是求二维的情况下, Z=X+Y的概率密度,卷积公式你可以不会,因为用定义法F(z)=P{g(X,Y)<=z}也是可以做出来的;但会卷积公式,能做的更快。要知道,考场上时间是很宝贵的,节约5分钟可能就会多10分。如果要用,请一定要搞清楚、弄熟练,卷积公式的限制还是很多的,所以一般还是推荐用定义法。卷积与相关分析若G是有某m测度的群(例如豪斯多夫空间上Harr测度下局部紧致的拓扑群),对于G上m-勒贝格可积的实数或复数函数f和g,可定义它们的卷积:对于这些群上定义的卷积同样可以给出诸如卷积定理等性质,但是这需要对这些群的表示理论以及调和分析的Peter-Weyl定理。
真颛2023-05-23 19:24:471

拉普拉斯变换的卷积定理

卷积的拉普拉斯变换等于各自拉普拉斯变换的乘积.拉普拉斯乘积的逆变换等于卷积.
NerveM 2023-05-23 19:24:461

时域卷积等于频域相乘公式

可以这样说. 只是“时域上的乘积相当于频域上的卷积”右端要除以2π.
gitcloud2023-05-23 19:24:462

随机变量之和的概率分布:卷积定理的简单应用

我们在 《一个最大化条件概率问题》 一文中提到,为了满足商品采购业务的需要,我们首先预测每一天的需求所服从的概率分布,然后计算若干天总需求所服从的概率分布。那么,如何将日需求的分布转化为总需求的分布呢? 考虑一组独立的随机变量 ,令 则 也就是说,多个随机变量的和总可以还原回两个随机变量的和的情况。因此,我们只需要知道如何计算两个随机变量的和的分布就可以了。 假设 和 是两个独立的随机变量,令 。 卷积怎么算呢?根据定义直接算,可以,但没必要。复习一下卷积定理: 对于离散型随机变量,我们只需要用 FFT 算法计算 和 的概率质量函数的离散傅里叶变换,然后作乘积,再作一次逆变换,即可求得 的概率质量函数。对于连续型随机变量,则可以先离散化,然后用上述方法近似求解 的概率密度函数。 作为调包工程师,我们直接调用 scipy.signal.fftconvolve 实现来上述操作。 我们来验证一下。 假设 , ,则 。 再看一个例子。 考虑一组独立的随机变量 ,满足 ,即每个 均服从成功概率 的伯努利分布。令 ,即 是 100 次独立重复试验中成功的次数。根据定义, 服从二项分布。 最后看看实际计算总需求时的效果: 附上卷积定理的简单推导: 考虑函数 和 ,以及它们的卷积 。 和 的傅里叶变换分别为而 的傅里叶变换为 令 ,则 ,
苏州马小云2023-05-23 19:24:461

考研卷积公式推荐用吗

考研卷积公式推荐用,因为计算速度会更快,但是如果对卷积公式不是精通,则不推荐,不精通者推荐使用定义法。所谓的卷积公式就是求二维的情况下, Z=X+Y的概率密度,卷积公式你可以不会,因为用定义法F(z)=P{g(X,Y)<=z}也是可以做出来的;但会卷积公式,能做的更快。要知道,考场上时间是很宝贵的,节约5分钟可能就会多10分。如果要用,请一定要搞清楚、弄熟练,卷积公式的限制还是很多的,所以一般还是推荐用定义法。卷积与相关分析若G是有某m测度的群(例如豪斯多夫空间上Harr测度下局部紧致的拓扑群),对于G上m-勒贝格可积的实数或复数函数f和g,可定义它们的卷积:对于这些群上定义的卷积同样可以给出诸如卷积定理等性质,但是这需要对这些群的表示理论以及调和分析的Peter-Weyl定理。
可桃可挑2023-05-23 19:24:461

卷积的用途和卷积器的发展历史是什么

卷积在实践中产生、应用、发展,但基本特性不变卷积是分析数学中一种重要的运算。设: f(t),g(t)是R1上的两个可积函数,以其积为核作积分:积分区间取决于f 与g 的定义域。可以证明:关于几乎所有的 ,这种积分都是存在的。这样,随着 t 的不同取值的这个积分就定义了一个新函数h(t),称为函数f 与g 的卷积,记为h(t)=(f*g)(t)。容易验证,(f * g)(t) = (g * f)(t),并且(f * g)(t) 仍为可积函数。这就是说,卷积相当于L1(R1)空间代数,甚至是巴拿赫代数,的一个乘法。卷积的德文Faltung和英文convolution,都表明:它有卷、摺,的意思。卷积,实际上,是在各种实际问题的实践中,例如:统计学中加权的滑动平均; 物理学中任何一个线性系统(符合叠加原理);声学中回声由源声与各种反射效应表达; 电子工程与信号处理中线性系统的输出由输入信号与系统的冲激响应表达; 概率论中两个统计独立的概率密度,等等 的需要而产生,并在相应的实践中应用的。因有,卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积。任何卷积都可表达为:含有傅里叶函数(函数傅里叶变换)为因子。这一定理对拉普拉斯变换、双边拉普拉斯变换、Z变换、Mellin变换和Hartley变换(参见Mellin inversion theorem)等各种傅里叶变换的变体同样成立。在调和分析中还可以推广到在局部紧致的阿贝尔群上定义的傅里叶变换。这些都表明:傅里叶函数与卷积的重要关系与作用。人们熟知:傅里叶函数是由正弦函数与余弦函数组成的级数,而正弦函数与余弦函数都是周期函数,傅里叶函数也有相应的周期性。因而,卷积就必有周期循环或周期衰减循环的特性。这也就更具体的从时空都表明:卷积必有卷的特性!卷积不会不卷。特别是,当h(t)变成h(t-τ),而τ为相应的常量时,τ就相当于它的周期!利用卷积定理可以简化卷积的运算量。对于长度为n的序列,按照卷积的定义进行计算,需要做2n-1组对位乘法,其计算复杂度为O(n^2);而利用傅里叶变换将序列变换到频域上后,只需要一组对位乘法,利用傅里叶变换的快速算法之后,总的计算复杂度为O(nlogn)。因而,这一结果就又使卷积应用到快速乘法的计算。卷积中,两个函数的乘积,按乘积的一般规则,可以分别是任意相同或不同性质的量,但是,在实际的应用中,就必须由卷积及其两个函数的性质分别具体地确定,而不能随意。在实践中,卷积中两个函数乘积的积分,还被进而扩展为数列卷积的两个数列乘积的求和,a*b=<( a*b)n>={(i=负无穷大到正无穷大求和}a(i,n)b(i))(n=0,+-1,+-2,…)α={αn},b={bn}(n=0,±1,±2,…)为两个数列甚至在概率论中扩展为随机变量的点集,例如,已知独立随机变量ξ和η的概率分布为Pξ(A)和Pη(A),随机变量ξ+η的分布 由下式给出 :,式中A-y表示点集{x|x+y∈A};A为直线上任意的波莱尔集。这就使得其中的连续函数发展为离散的数列,甚至随机变量的点集。 但是,卷积定理仍能成立,傅里叶函数与卷积的重要关系与作用仍然存在,卷积就仍然必有周期循环或周期衰减循环的特性。卷积,作为运算,还具有十分重要的所谓平移不变性。例如以τα表示平移算子,即(ταƒ)(x)=ƒ(x-α),那么就有利用这性质,可以刻画出l(R)到 有界的平移不变算子的特征,即当作用在施瓦兹函数类(记为S(R))时,这种算子一定是某个缓增广义函数u与函数φ∈S的卷积u*φ 还可以推广到矢量场函数的卷积,按照翻转、平移、积分的定义,类似地定义多元函数上的积分:(f*g)(t1,t2,…,tn)=(n重积分)f(τ1, τ2,…, τn)g(t1-τ1,t2-τ2,…,tn-τn)dτ1dτ2…dτn) 而且,两个函数还可以是不同τ的多元,例如:其一为标量的1元函数;另一为3维矢量场的3元函数,的3个卷积,组成3维矢量场的卷积。其一为标量的1元函数;另一为4维矢量场的4元函数,的4个卷积,组成4维矢量场的卷积。 还可以有,例如:两个n维矢量场点乘的卷积应是其各分量卷积的平方和。两个n维矢量场点乘的卷积应是其各分量卷积的平方和,两个n维矢量场叉乘的卷积应是其各分量两两交叉乘积卷积之差的矢量和,等等。 但是,卷积的这些发展、变化,作为卷积如上的基本特性也不会改变。
陶小凡2023-05-23 19:24:461

急求:傅里叶变换中的频域卷积定理的证明

在形式上,变换两端(时域和频域上)的序列是有限长的,而实际上这两组序列都应当被认为是离散周期信号的主值序列。即使对有限长的离散信号作DFT,也应当将其看作其周期延拓的变换。在实际应用中通常采用快速傅里叶变换计算DFT。 下面给出离散傅里叶变换的变换对: 对于N点序列,它的离散傅里叶变换(DFT)为 其中e 是自然对数的底数,i 是虚数单位。通常以符号表示这一变换,即 离散傅里叶变换的逆变换(IDFT)为:可以记为:实际上,DFT和IDFT变换式中和式前面的归一化系数并不重要。在上面的定义中,DFT和IDFT前的系数分别为1 和1/N。有时会将这两个系数都改成。
FinCloud2023-05-23 19:24:461

什么样的系统能够应用卷积定理?

应该是线性时不变系统
黑桃花2023-05-23 19:24:461

拉普拉斯变换、卷积定理

卷积的拉普拉斯变换等于各自拉普拉斯变换的乘积.拉普拉斯乘积的逆变换等于卷积.求采纳为满意回答。
拌三丝2023-05-23 19:24:461

信号与系统---卷积是怎么回事?

移位乘积的连加和
小白2023-05-23 19:24:463

利用卷积定理求解傅立叶逆变换

记y=(1+x^2)^(1/2),利用Taylor展开得到y=1+1/2*x^2+o(x^3)1/ln(x+y)-1/ln(1+x)=[ln(1+x)-ln(x+y)]/[ln(1+x)ln(x+y)]再做Taylor展开得到ln(1+x)=x-1/2*x^2+o(x^3)ln(x+y)=ln(1+x+1/2*x^2+o(x^3))=x+1/2*x^2+o(x^3)-1/2*[x+1/2*x^2+o(x^3)]^2+o[x+1/2*x^2+o(x^3)]^3=x+o(x^3)代进去得到ln(1+x)-ln(x+y)=-1/2*x^2+o(x^3)ln(1+x)ln(x+y)=x^2+o(x^3)所以[ln(1+x)-ln(x+y)]/[ln(1+x)ln(x+y)]-> -1/2
再也不做站长了2023-05-23 19:24:461

请问一下时域卷积和频域卷积有什么区别吗?在实际应用中怎么体现出来?

卷积本身并没有什么区别,只需要弄清楚时域和频域的区别与联系。
人类地板流精华2023-05-23 19:24:464

傅里叶积分变换的卷积定理,这里做w-x=u后为什么积分上下限变了,在下一步又把上下限变回来了(红线处)

怎么又问呢,亲第一次上、下限交换是因为换元导致的,第二次交换是用到积分的性质,积分的上、下限交换位置的时候,积分变号,而d前的负号刚好用在变号上,所以就没有了。哎,早知是求助,不该来回答的
肖振2023-05-23 19:24:462

两个序列卷积结果,0点处怎么确定?

两个序列卷积结果,0点处确定:2个信号k=0左边的幅值个数之和=卷积结果的k=0左边的幅值个数。循环卷积又称圆周卷积,它的计算方法是翻转,周期化,相乘,求和。前提是两序列长度是一样的,假设都为N,则卷积后的序列长度仍为N。它是周期卷积的特例,若要N点线性卷积等于圆周卷积,只有N大于等于线性卷积的长度,这样就不必截下尾巴再添加到头上了。利用卷积定理可以简化卷积的运算量。对于长度为n的序列,按照卷积的定义进行计算,需要做(2n- 1)组对位乘法,其计算复杂度为;而利用傅里叶变换将序列变换到频域上后,只需要一组对位乘法,利用傅里叶变换的快速算法之后,总的计算复杂度为。这一结果可以在快速乘法计算中得到应用。
西柚不是西游2023-05-23 19:24:461

傅里叶积分变换的卷积定理逆定理是怎么证明的

我教材的原版证明。。其实就是个微积分的练习其实逆定理吧 就是两边同时取逆,正的证明了两边同时取逆傅里叶变换。因此要证的就是正的,逆和正都是一样。
墨然殇2023-05-23 19:24:461

一维卷积与多维卷积概念介绍(一)

卷积的内涵以及卷积定理,多维卷积的过程待补充 卷积分为连续卷积和离散卷积,这里以离散卷积进行举例 从数学角度来看,卷积运算的公式定义如下: 一个更加详细和直观的例子: 同样的,三维卷积也有类似的概念: 一维卷积常用于序列模型,自然语言处理领域。 二维卷积常用于计算机视觉、图像处理领域。 三维卷积常用于医学领域(CT影响),视频处理领域(检测动作及人物行为)参考资料: 【1】https://www.jianshu.com/p/5a93c14cd7fc    一维卷积与循环卷积的使用(离散数据+具体例子) 【2】https://www.cnblogs.com/lhuser/p/8414759.html     多维卷积与一维卷积的统一性(运算篇)
苏萦2023-05-23 19:24:461

信号与系统:利用卷积定理求序列的卷积

利用卷积定义和分部积分方法即可
肖振2023-05-23 19:24:461

请问一下时域卷积和频域卷积有什么区别吗?在实际应用中怎么体现出来?

时域卷积在泛函分析中,卷积、旋积或摺积(英语:Convolution)是通过两个函数f 和g 生成第三个函数的一种数学算子,表征函数f 与g经过翻转和平移的重叠部分的面积。如果将参加卷积的一个函数看作区间的指示函数,卷积还可以被看作是“滑动平均”的推广。时域卷积应用卷积在工程和数学上都有很多应用:统计学中,加权的滑动平均是一种卷积。概率论中,两个统计独立变量X与Y的和的概率密度函数是X与Y的概率密度函数的卷积。声学中,回声可以用源声与一个反映各种反射效应的函数的卷积表示。电子工程与信号处理中,任一个线性系统的输出都可以通过将输入信号与系统函数(系统的冲激响应)做卷积获得。物理学中,任何一个线性系统(符合叠加原理)都存在卷积。频域卷积:卷积定理是傅立叶变换满足的一个重要性质。卷积定理指出,函数卷积的傅立叶变换是函数傅立叶变换的乘积。具体分为时域卷积定理和频域卷积定理,时域卷积定理即时域内的卷积对应频域内的乘积;频域卷积定理即频域内的卷积对应时域内的乘积,两者具有对偶关系。应用卷积定理的应用在很多涉及积分变换、积分方程的文章中都有所体现。常见的一些重要的积分变换,例如:Mellin变换、Laplace变换、Fourier变换等都具有所谓的卷积性质(Convolution Property)。这里要注意的是,针对不同的积分变换,卷积性质的形式不是完全相同的,只要一些基本的结构得到保留就可以了。
hi投2023-05-23 19:24:461

F(S)=S/(S^2+1)(S^2+4) 用卷积定理求f(t)

这个用卷积定理做肯定麻烦 你看结果,它不是乘积的形式【当然,你可以改写为乘积的形式,但是那更复杂】 不行追问,望采纳
九万里风9 2023-05-23 19:24:461

如何证明频域卷积定理

请点击图片看大图
kikcik2023-05-23 19:24:464

什么是卷积定理?

卷积定理 f(x,y)*h(x,y)<=>F(u,v)H(u,v) f(x,y)h(x,y)<=>F(u,v)*H(u,v) 二个二维连续函数在空间域中的卷积可求其相应的二个傅立叶变换乘积的反变换而得。反之,在频域中的卷积可用的在空间域中乘积的傅立叶变换而得。
gitcloud2023-05-23 19:24:451

什么是卷积定理 卷积定理介绍

1、卷积定理是傅立叶变换满足的一个重要性质。卷积定理指出,函数卷积的傅立叶变换是函数傅立叶变换的乘积。 2、具体分为时域卷积定理和频域卷积定理,时域卷积定理即时域内的卷积对应频域内的乘积;频域卷积定理即频域内的卷积对应时域内的乘积,两者具有对偶关系。
FinCloud2023-05-23 19:24:451

相关卷积定理

将前面推导出的式(1-103)和式(1-104)重写如下地球物理信息处理基础该公式用语言叙述如下:x(n)与h(n)卷积的自相关函数等于x(n)的自相关函数和h(n)的自相关函数的卷积。或者简单地说,卷积的相关等于相关的卷积。用一般公式表示如下如果e(n)=a(n)*b(n),f(n)=c(n)*d(n) (1-119)那么ref(m)=rac(m)*rbd(n) (1-120)将上面的关系式称为相关卷积定理。该关系式在许多信号处理中是一个有用的公式。[例1-1]假设实平稳白噪声x(n)的方差是 ,均值μx=0,让x(n)通过一个系统(网络),系统的差分方程为y(n)=x(n)+ay(n-1)式中a是实数。求出该系统的输出功率谱和自相关函数。解:先用归纳法求出该系统的输出自相关函数ryy(m)=E[y(n+m)y(n)]取m=0,那么ryy(0)=E[y(n)y(n)]=E[(x(n)+ay(n-1))2]ryy(0)=E[x2(n)]+a2E[y2(n-1)]+2aE[x(n)y(n-1)]式中y(n-1)发生在x(n)之前,它只和x(n-1),x(n-2),…有关,而且x(n)是白噪声,x(n)和x(n-1)x(n-2),…无关,因此,该式中的第三项等于0,那么地球物理信息处理基础当m=1,则ryy(1)=E[y(n+1)y(n)]=E[(ay(n)+x(n+1))y(n)]=aryy(0)当m=2,则ryy(2)=E[y(n+2)y(n)]=E[(ay(n+1)+x(n+2))y(n)]=a2ryy(0)由此可以得出地球物理信息处理基础由给定的系统差分方程,得出该系统函数地球物理信息处理基础则该系统的输出功率谱为地球物理信息处理基础式中a是系统函数的极点,当|a|<l时,系统才能稳定。a越趋于1,即越接近于单位圆,则功率谱峰就越尖锐,频带的带宽越窄,而相关函数衰减也就越慢;反之,a趋于0,功率谱下降缓慢,自相关函数衰减则加快。
凡尘2023-05-23 19:24:451

卷积怎么计算

问题一:二维卷积如何运算? A=[100,100,100 100,100,100 100,100,100] B=[1/9,1/9,1/9 1/9,1/9,1/9 1/9,1/9,1/9] c=conv2(A,B) 问题二:两个函数的卷积怎么算 你好。 只要使用conv函数就可以了。 例子: u=ones(1,100); v=2*u; w = conv(u,v); plot(w); 问题三:什么是卷积?要怎么求两个函数的卷积? 15分 简介 褶积(又名卷积)和反褶积(又名去卷积)是一种积分变换的数学方法,在许多方面得到了广泛应用。用褶积解决试井解释中的问题,早就取得了很好成果;而反褶积,直到最近,Schroeter、Hollaender和Gringarten等人解决了其计算方法上的稳定性问题,使反褶积方法很快引起了试井界的广泛注意。有专家认为,反褶积的应用是试井解释方法发展史上的又一次重大飞跃。他们预言,随着测试新工具和新技术的增加和应用,以及与其它专业研究成果的更紧密结合,试井在油气藏描述中的作用和重要性必将不断增大[1] 。 2基本内涵 简单定义:卷积是分析数学中一种重要的运算。 设:f(x),g(x)是R1上的两个可积函数,作积分: 可以证明,关于几乎所有的实数x,上述积分是存在的。这样,随着x的不同取值,这个积分就定义了一个新函数h(x),称为函数f与g的卷积,记为h(x)=(f*g)(x)。 容易验证,(f * g)(x) = (g * f)(x),并且(f * g)(x)仍为可积函数。这就是说,把卷积代替乘法,L1(R1)空间是一个代数,甚至是巴拿赫代数。 卷积与傅里叶变换有着密切的关系。利用一点性质,即两函数的傅里叶变换的乘积等于它们卷积后的傅里叶变换,能使傅里叶分析中许多问题的处理得到简化。 由卷积得到的函数f*g一般要比f和g都光滑。特别当g为具有紧致集的光滑函数,f为局部可积时,它们的卷积f * g也是光滑函数。利用这一性质,对于任意的可积函数f,都可以简单地构造出一列逼近于f的光滑函数列fs,这种方法称为函数的光滑化或正则化。 卷积的概念还可以推广到数列、测度以及广义函数上去。 3定义 卷积是两个变量在某范围内相乘后求和的结果。如果卷积的变量是序列x(n)和h(n),则卷积的结果 , 其中星号*表示卷积。当时序n=0时,序列h(-i)是h(i)的时序i取反的结果;时序取反使得h(i)以纵轴为中心翻转180度,所以这种相乘后求和的计算法称为卷积和,简称卷积。另外,n是使h(-i)位移的量,不同的n对应不同的卷积结果。 如果卷积的变量是函数x(t)和h(t),则卷积的计算变为 , 其中p是积分变量,积分也是求和,t是使函数h(-p)位移的量,星号*表示卷积。 参考《数字信号处理》杨毅明著,p.55、p.188、p.264,机械工业出版社2012年发行。 4性质 各 perfect spaces卷积混响 种卷积算子都满足下列性质: 交换律 结合律 分配律 数乘结合律 其中a为任意实数(或复数)。 微分定理 其中Df表示f的微分,如果在离散域中则是指差分算子,包括前向差分与后向差分两种。 5卷积定理 卷积定理指出,函数卷积的傅里叶变换是函数傅里叶变换的乘积。即,一个域中的卷积相当于另一个域中的乘积,例如时域中的卷积就对应于频域中的乘积。 F(g(x)*f(x)) = F(g(x))F(f(x)) 其中F表示的是傅里叶变换。 这一定理对拉普拉斯变换、双边拉普拉斯变换、Z变换、Mellin变换和Hartley变换(参见Mellin inversion theorem)等各种傅里叶变换的变体同样成立。在调和分析中还可以推广到在局部紧致的阿贝尔群上定义的傅里叶变换。 利用卷积定理可以简化卷积的运算量。对于长度为n的序列,按照卷积的定义进行计算,需要做2n- 1组对位乘法,其计算复杂度为;而利用傅里叶变换将序列变换到频域上后,只需要一组对位乘法,利用傅里叶变换的快速算法之后,总的计算复杂度为。这一结果可以在快速乘法计算中得到应用。 6群上卷积 卷积与相关分析......>> 问题四:信号与系统,这个卷积按定义怎么算?求详细过程,谢谢。 卷积计算方法如上。 你的题里面 f1(tau)=e^(-2tau) (tau>0), =0 (tau0) =0 (tau 问题五:请问u(t)*u(t-1)卷积怎么算??? u(t)*u(t-1)=u(t)*u(t)*δ(t-1) =tu(t)*δ(t-1) =(t-1)u(t-1) 问题六:遥感图像卷积计算怎么搞? 通过对信号与线性系统中离散卷积及其运算方法的分析,研究序列形式的离散信号的卷积运算过程,在图解法基础上提出了较为简便的运算方法―――列表法.此列表法与图解法所得结果完全相同,却使运算过程大为简化 问题七:怎样理解卷积积分 对于非数学系学生来说,只要懂怎么用卷积就可以了,研究什么是卷积其实意义不大,它就是一种微元相乘累加的极限形式。卷积本身不过就是一种数学运算而已。就跟“蝶形运算”一样,怎么证明,这是数学系的人的工作。 在信号与系统里,f(t)的零状态响应y(t)可用f(t)与其单位冲激响应h(t)的卷积积分求解得,即y(t)=f(t)*h(t)。学过信号与系统的都应该知道,时域的卷积等于频域的乘积,即有Y(s)=F(s)×H(s)。(s=jw,拉氏变换后等到的函数其实就是信号的频域表达式) 有一点你必须明白,在通信系统里,我们关心的以及要研究的是信号的频域,不是时域,原因是因为信号的频率是携带有信息的量。 所以,我们需要的是Y(s)这个表达式,但是实际上,我们往往不能很容易的得到F(s)和H(s)这两个表达式,但是能直接的很容易的得到f(t)和h(t),所以为了找到Y(s)和y(t)的对应关系,就要用到卷积运算。 复频域。 s=jw,当中的j是复数单位,所以使用的是复频域。通俗的解释方法是,因为系统中有电感X=jwL、电容X=1/jwC,物理意义是,系统H(s)对不同的频率分量有不同的衰减,即这种衰减是发生在频域的,所以为了与时域区别,引入复数的运算。但是在复频域计算的形式仍然满足欧姆定理、KCL、KVL、叠加法。 负的频率。 之所以会出现负的频率,这只是数学运算的结果,只存在于数学运算中,实际中不会有负的频率。
小菜G的建站之路2023-05-23 19:24:451

用卷积定理求 sinx*sin*

(sinxsinx)=(1/2)·2113sin²x·sin²x·2cos²x≤5261(1/2)·[(sin²x+sin²x+2cos²x)/3]³=4/27.∴所求最大值4102为:(2√16533)/9。扩展资料:卷积与傅里叶变换有着密切的关系。利用一点性质,即两函数的傅里叶变换的乘积等于它们卷积后的傅里叶变换,能使傅里叶分析中许多问题的处理得到简化。由卷积得到的函数f*g一般要比f和g都光滑。特别当g为具有紧致集的光滑函数,f为局部可积时,它们的卷积f * g也是光滑函数。利用这一性质,对于任意的可积函数f,都可以简单地构造出一列逼近于f的光滑函数列fs,这种方法称为函数的光滑化或正则化。
wpBeta2023-05-23 19:24:451

卷积定理公式不明白 请教大家

卷积实际上就是将其中一个曲线换个个
康康map2023-05-23 19:24:454

离散变换的卷积定理实现二维离散卷积运算

close all;clear all;A=[1/9 1/9 1/9;1/9 1/9 1/9;1/9 1/9 1/9];B=[0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1];fA=fft2(A,10,10); %8*8的 3*3的 8+3-1=10 考试的同学有福咯~~fB=fft2(B,10,10);fC=fA.*fB; %点乘C=real(ifft2(fC));subplot(2,2,1),imshow(B);subplot(2,2,2),imshow(C);D=conv2(B,A);subplot(2,2,3),imshow(D);
可桃可挑2023-05-23 19:24:451

详细写出调制定理推导过程,就是一个卷积,谢啦

设f(t)的傅里叶变换为F(ω),h(t)的傅里叶变换为H(ω),由时域卷积定理可知,f(t)*h(t)=F(ω)H(ω)=Y(ω);又由傅里叶变换的性质可知f(2t)的傅里叶变换为F(ω/2)/2,h(2t)的傅里叶变换为H(ω/2)/2;所以f(2t)*h(2t)=[F(ω/2)/2][H(ω/2)/2]=F(ω/2)H(ω/2)/4。
大鱼炖火锅2023-05-23 19:24:451
 1 2 3  下一页  尾页