卷积

卷积的通俗理解

答:  笔者的理解:“卷积”就是“加权求和”“信号与响应的卷积”体现的是:时间上的“加权求和”;“图像平滑处理的卷积”体现的是:空间上的“加权求和”一、卷积为什么叫“卷”积从数学上讲,卷积就是一种运算。某种运算,能被定义出来,至少有以下特征卷积,是我们学习高等数学之后,新接触的一种运算,因为涉及到积分、级数,所以看起来觉得很复杂。二、卷积应用实例   与 “信号与系统”和 图像平滑处理”相关
Ntou1232023-05-23 19:24:361

卷积运算公式是什么?

卷积公式是:z(t)=x(t)*y(t)=∫x(m)y(t-m)dm。这是一个定义式。卷积公式是用来求随机变量和的密度函数(pdf)的计算公式。卷积定理指出,函数卷积的傅里叶变换是函数傅里叶变换的乘积。即,一个域中的卷积相当于另一个域中的乘积,例如时域中的卷积就对应于频域中的乘积。F(g(x)*f(x)) = F(g(x))F(f(x)),其中F表示的是傅里叶变换。卷积的应用:在提到卷积之前, 重要的是要提到卷积出现的背景。卷积发生在信号和线性系统的基础上, 也不在背景中发生, 除了所谓褶皱的数学意义和积分 (或求和、离散大小) 外, 将卷积与此背景分开讨论是没有意义的公式。信号和线性系统, 讨论信号通过线性系统 (即输入和输出之间的数学关系以及所谓的通过系统) 后发生的变化。所谓线性系统的含义是, 这个所谓的系统, 产生的输出信号和输入信号之间的数学关系是一个线性计算关系。因此, 实际上, 有必要根据我们需要处理的信号形式来设计所谓的系统传递函数, 那么这个系统的传递函数和输入信号, 在数学形式上就是所谓的卷积关系。
豆豆staR2023-05-23 19:24:361

卷积公式是指什么?

卷积公式是指两个函数f和g生成第三个函数的一种数学算子。表征函数f与经过翻转和平移的g的重叠部分的累积,如果将参加卷积的一个函数看作区间的指示函数,卷积还可以被看作是滑动平均的推广。卷积公式特点在卷积神经网络中会用卷积函数表示重叠部分,这个重叠部分的面积就是特征,卷积公式是用来求随机变量和的密度函数pdf的计算公式,卷积公式是一种积分变换的数学方法,在许多方面得到了广泛应用。用卷积公式解决试井解释中的问题,早就取得了很好成果,而反褶积直到最近Schroeter,Hollaender和Gringarten等人解决了其计算方法上的稳定性问题,使反褶积方法很快引起了试井界的广泛注意。
再也不做站长了2023-05-23 19:24:361

卷积的作用

卷积是一种在信号处理和图像处理中常用的运算技术。它的作用主要有以下几个方面:1. 特征提取:卷积可以通过滑动一个卷积核(也称为滤波器)来提取输入信号的局部特征。卷积核的大小和形状不同,可以提取不同类型的特征。例如,在图像处理中,可以使用边缘检测卷积核来提取图像中的边缘特征。2. 降噪:卷积可以通过滤波器对输入信号进行平滑处理,从而去除噪声。例如,在图像处理中,可以使用高斯滤波器来对图像进行平滑处理,从而去除图像中的噪声。3. 压缩:卷积可以通过降低信号的维度来实现数据压缩。例如,在语音处理中,可以使用卷积将语音信号压缩成更小的维度,从而减少存储空间和计算成本。
铁血嘟嘟2023-05-23 19:24:361

卷积运算公式是什么?

卷积运算公式是(f *g)∧(x)=(x)*(x)。卷积公式是通过两个函数f和g生成第三个函数的一种数学算子,表征函数f与经过翻转和平移的g的重叠部分的累积。如果将参加卷积的一个函数看作区间的指示函数,卷积还可以被看作是“滑动平均”的推广。卷积与傅里叶变换有着密切的关系。掌握数学公式的方法有:1、认真听课,将公式原理听明白学生在老师讲新课时,一定要听懂,尤其是讲到公式的时候,对于公式的原理一定要听懂,并能做到解释给别人听为标准,这样公式的原理才会理解透彻,而且不太容易被忘记。可能存在个别公式需要死记硬背,无需理解其原理。2、多进行涉及公式的题型练习弄明白公式的原理与会做题不是一回事,所以在理解公式后,要想真正理解透彻,还需要多进行相关题型的练习。倘若没有运用熟练,过几天,不少学生会发现公式已经忘记了,需要翻书才知道。要知道数学知识的连贯性很强,如果之前的知识不掌握,就容易在新知识中卡壳。所以在练习时,为了更透彻地掌握,不能仅局限于简单例题级别的题来做,要由易到难地练习,遇到不懂的,思考后再问。3、定期回顾随着时间的推移,之前的公式可能并不会很快出现在新知识的练习中,所以有的学生会出现“捡了芝麻丢西瓜”这种学得快忘得快的情况。学生要做的就是定期回顾公式,在脑海中回顾公式原理,再做几个代表性的题,可以忘记的知识快速补回来。而遇到需要死记硬背的公式则需要更多练习。4、公式归纳一般情况下,只需要将所学的公式都整理起来,集中写到纸上或贴于墙上,纪录在手机里等容易随时看到的地方都可以,闲暇或需要时看看。随着运用的增加,就算个别公式没有理解透,也能很好地运用起来。
LuckySXyd2023-05-23 19:24:361

卷积运算公式是什么?

卷积积分公式是(f *g)∧(x)=(x)·(x),卷积是分析数学中一种重要的运算。设f(x), g(x)是R1上的两个可积函数,作积分,可以证明,关于几乎所有的x∈(-∞,∞) ,上述积分是存在的。这样,随着x的不同取值 ,这个积分就定义了一个新函数h(x),称为f与g的卷积,记为h(x)=(f *g)(x)。容易验证,(f *g)(x)=(g *f)(x),并且(f *g)(x)仍为可积函数。卷积(又名褶积)和反卷积(又名反褶积)是一种积分变换的数学方法,在许多方面得到了广泛应用。用卷积解决试井解释中的问题,早就取得了很好成果;而反卷积,直到最近,Schroeter、Hollaender和Gringarten等人解决了其计算方法上的稳定性问题。使反卷积方法很快引起了试井界的广泛注意。有专家认为,反卷积的应用是试井解释方法发展史上的又一次重大飞跃。他们预言,随着测试新工具和新技术的增加和应用,以及与其它专业研究成果的更紧密结合,试井在油气藏描述中的作用和重要性必将不断增大。
hi投2023-05-23 19:24:361

卷积怎么求?

问题一:什么是卷积?要怎么求两个函数的卷积? 15分 简介 褶积(又名卷积)和反褶积(又名去卷积)是一种积分变换的数学方法,在许多方面得到了广泛应用。用褶积解决试井解释中的问题,早就取得了很好成果;而反褶积,直到最近,Schroeter、Hollaender和Gringarten等人解决了其计算方法上的稳定性问题,使反褶积方法很快引起了试井界的广泛注意。有专家认为,反褶积的应用是试井解释方法发展史上的又一次重大飞跃。他们预言,随着测试新工具和新技术的增加和应用,以及与其它专业研究成果的更紧密结合,试井在油气藏描述中的作用和重要性必将不断增大[1] 。 2基本内涵 简单定义:卷积是分析数学中一种重要的运算。 设:f(x),g(x)是R1上的两个可积函数,作积分: 可以证明,关于几乎所有的实数x,上述积分是存在的。这样,随着x的不同取值,这个积分就定义了一个新函数h(x),称为函数f与g的卷积,记为h(x)=(f*g)(x)。 容易验证,(f * g)(x) = (g * f)(x),并且(f * g)(x)仍为可积函数。这就是说,把卷积代替乘法,L1(R1)空间是一个代数,甚至是巴拿赫代数。 卷积与傅里叶变换有着密切的关系。利用一点性质,即两函数的傅里叶变换的乘积等于它们卷积后的傅里叶变换,能使傅里叶分析中许多问题的处理得到简化。 由卷积得到的函数f*g一般要比f和g都光滑。特别当g为具有紧致集的光滑函数,f为局部可积时,它们的卷积f * g也是光滑函数。利用这一性质,对于任意的可积函数f,都可以简单地构造出一列逼近于f的光滑函数列fs,这种方法称为函数的光滑化或正则化。 卷积的概念还可以推广到数列、测度以及广义函数上去。 3定义 卷积是两个变量在某范围内相乘后求和的结果。如果卷积的变量是序列x(n)和h(n),则卷积的结果 , 其中星号*表示卷积。当时序n=0时,序列h(-i)是h(i)的时序i取反的结果;时序取反使得h(i)以纵轴为中心翻转180度,所以这种相乘后求和的计算法称为卷积和,简称卷积。另外,n是使h(-i)位移的量,不同的n对应不同的卷积结果。 如果卷积的变量是函数x(t)和h(t),则卷积的计算变为 , 其中p是积分变量,积分也是求和,t是使函数h(-p)位移的量,星号*表示卷积。 参考《数字信号处理》杨毅明著,p.55、p.188、p.264,机械工业出版社2012年发行。 4性质 各 perfect spaces卷积混响 种卷积算子都满足下列性质: 交换律 结合律 分配律 数乘结合律 其中a为任意实数(或复数)。 微分定理 其中Df表示f的微分,如果在离散域中则是指差分算子,包括前向差分与后向差分两种。 5卷积定理 卷积定理指出,函数卷积的傅里叶变换是函数傅里叶变换的乘积。即,一个域中的卷积相当于另一个域中的乘积,例如时域中的卷积就对应于频域中的乘积。 F(g(x)*f(x)) = F(g(x))F(f(x)) 其中F表示的是傅里叶变换。 这一定理对拉普拉斯变换、双边拉普拉斯变换、Z变换、Mellin变换和Hartley变换(参见Mellin inversion theorem)等各种傅里叶变换的变体同样成立。在调和分析中还可以推广到在局部紧致的阿贝尔群上定义的傅里叶变换。 利用卷积定理可以简化卷积的运算量。对于长度为n的序列,按照卷积的定义进行计算,需要做2n- 1组对位乘法,其计算复杂度为;而利用傅里叶变换将序列变换到频域上后,只需要一组对位乘法,利用傅里叶变换的快速算法之后,总的计算复杂度为。这一结果可以在快速乘法计算中得到应用。 6群上卷积 卷积与相关分析......>> 问题二:二维卷积如何运算? A=[100,100,100 100,100,100 100,100,100] B=[1/9,1/9,1/9 1/9,1/9,1/9 1/9,1/9,1/9] c=conv2(A,B) 问题三:两个函数的卷积怎么算 你好。 只要使用conv函数就可以了。 例子: u=ones(1,100); v=2*u; w = conv(u,v); plot(w); 问题四:什么是矩阵卷积? 没有矩阵卷积的,只有向量卷积。当然,如果你硬要把向量理解为一个1*n的矩阵,那也说的过去。 所谓两个向量卷积,说白了就是多项式乘法。 比如:p=[1 2 3],q=[1 1]是两个向量,p和q的卷积如下: 把p的元素作为一个多项式的系数,多项式按升幂(或降幂)排列,比如就按升幂吧,写出对应的多项式:1+2x+3x^2;同样的,把q的元素也作为多项式的系数按升幂排列,写出对应的多项式:1+x。 卷积就是“两个多项式相乘取系数”。 (1+2x+3x^2)×(1+x)=1+3x+5x^2+3x^3 所以p和q卷积的结果就是[1 3 5 3]。 记住,当确定是用升幂或是降幂排列后,下面也都要按这个方式排列,否则结果是不对的。 你也可以用matlab试试 p=[1 2 3] q=[1 1] conv(p,q) 看看和计算的结果是否相同。 问题五:怎么求两个函数的卷积? clear; clc;close all; x=0:0.1:12; y=gaus *** f(x,[140 6]); figure; plot(x,y); ys=trapz(x,y) %求y对x的面积 z=gaus *** f(x,[9 6]); figure; plot(x,z); s=conv(y,z); n=linspace(0,12,length(s)); ss=trapz(n,s) %求s对x的面积 sspys=ss/ys %求s面积与y面积比值 按上面语句试试 问题六:有关卷积的问题,这两个图形的卷积怎么画? 将第二个图形翻转得到红色的矩形 然后平移t个单位 (t0时,向右平移,蓝色矩形) 对t的取值分情况讨论 在与第一个图形相交的区域内求积分,得到卷积 卷积的图形为一个梯形 卷积的计算过程如下: 卷积的图像是一个梯形 草图如下: 问题七:什么是卷积?要怎么求两个函数的卷积? 15分 简介 褶积(又名卷积)和反褶积(又名去卷积)是一种积分变换的数学方法,在许多方面得到了广泛应用。用褶积解决试井解释中的问题,早就取得了很好成果;而反褶积,直到最近,Schroeter、Hollaender和Gringarten等人解决了其计算方法上的稳定性问题,使反褶积方法很快引起了试井界的广泛注意。有专家认为,反褶积的应用是试井解释方法发展史上的又一次重大飞跃。他们预言,随着测试新工具和新技术的增加和应用,以及与其它专业研究成果的更紧密结合,试井在油气藏描述中的作用和重要性必将不断增大[1] 。 2基本内涵 简单定义:卷积是分析数学中一种重要的运算。 设:f(x),g(x)是R1上的两个可积函数,作积分: 可以证明,关于几乎所有的实数x,上述积分是存在的。这样,随着x的不同取值,这个积分就定义了一个新函数h(x),称为函数f与g的卷积,记为h(x)=(f*g)(x)。 容易验证,(f * g)(x) = (g * f)(x),并且(f * g)(x)仍为可积函数。这就是说,把卷积代替乘法,L1(R1)空间是一个代数,甚至是巴拿赫代数。 卷积与傅里叶变换有着密切的关系。利用一点性质,即两函数的傅里叶变换的乘积等于它们卷积后的傅里叶变换,能使傅里叶分析中许多问题的处理得到简化。 由卷积得到的函数f*g一般要比f和g都光滑。特别当g为具有紧致集的光滑函数,f为局部可积时,它们的卷积f * g也是光滑函数。利用这一性质,对于任意的可积函数f,都可以简单地构造出一列逼近于f的光滑函数列fs,这种方法称为函数的光滑化或正则化。 卷积的概念还可以推广到数列、测度以及广义函数上去。 3定义 卷积是两个变量在某范围内相乘后求和的结果。如果卷积的变量是序列x(n)和h(n),则卷积的结果 , 其中星号*表示卷积。当时序n=0时,序列h(-i)是h(i)的时序i取反的结果;时序取反使得h(i)以纵轴为中心翻转180度,所以这种相乘后求和的计算法称为卷积和,简称卷积。另外,n是使h(-i)位移的量,不同的n对应不同的卷积结果。 如果卷积的变量是函数x(t)和h(t),则卷积的计算变为 , 其中p是积分变量,积分也是求和,t是使函数h(-p)位移的量,星号*表示卷积。 参考《数字信号处理》杨毅明著,p.55、p.188、p.264,机械工业出版社2012年发行。 4性质 各 perfect spaces卷积混响 种卷积算子都满足下列性质: 交换律 结合律 分配律 数乘结合律 其中a为任意实数(或复数)。 微分定理 其中Df表示f的微分,如果在离散域中则是指差分算子,包括前向差分与后向差分两种。 5卷积定理 卷积定理指出,函数卷积的傅里叶变换是函数傅里叶变换的乘积。即,一个域中的卷积相当于另一个域中的乘积,例如时域中的卷积就对应于频域中的乘积。 F(g(x)*f(x)) = F(g(x))F(f(x)) 其中F表示的是傅里叶变换。 这一定理对拉普拉斯变换、双边拉普拉斯变换、Z变换、Mellin变换和Hartley变换(参见Mellin inversion theorem)等各种傅里叶变换的变体同样成立。在调和分析中还可以推广到在局部紧致的阿贝尔群上定义的傅里叶变换。 利用卷积定理可以简化卷积的运算量。对于长度为n的序列,按照卷积的定义进行计算,需要做2n- 1组对位乘法,其计算复杂度为;而利用傅里叶变换将序列变换到频域上后,只需要一组对位乘法,利用傅里叶变换的快速算法之后,总的计算复杂度为。这一结果可以在快速乘法计算中得到应用。 6群上卷积 卷积与相关分析......>> 问题八:请问u(t)*u(t-1)卷积怎么算??? u(t)*u(t-1)=u(t)*u(t)*δ(t-1) =tu(t)*δ(t-1) =(t-1)u(t-1) 问题九:信号与系统---卷积是怎么回事? 楼主,我来说一下吧: 卷积是一种公式(在信号中很重要)...一般是利用这个公式来进行运算,例如:给你f1(t),f2(t)他们具体的函数,让你求f1(t),f2(t)两者的卷积是多少,只要把公式记住,把f1(t),f2(t)带入就行,再计算...(公式形式:f1(t)卷积f2(t)=∫f1(г)*f2(t-г)dг 积分从负无穷到正无穷) 卷积的实际意义:《信号与系统》中用的很多的就是:零状态响应=激励 卷积 冲击响应;有关证明楼主参考吴大正的信号与线性系统的P60的卷积积分(证明实在太多,就不写了)... 楼主若还有什么问题,再联系吧... 问题十:怎样理解卷积积分 对于非数学系学生来说,只要懂怎么用卷积就可以了,研究什么是卷积其实意义不大,它就是一种微元相乘累加的极限形式。卷积本身不过就是一种数学运算而已。就跟“蝶形运算”一样,怎么证明,这是数学系的人的工作。 在信号与系统里,f(t)的零状态响应y(t)可用f(t)与其单位冲激响应h(t)的卷积积分求解得,即y(t)=f(t)*h(t)。学过信号与系统的都应该知道,时域的卷积等于频域的乘积,即有Y(s)=F(s)×H(s)。(s=jw,拉氏变换后等到的函数其实就是信号的频域表达式) 有一点你必须明白,在通信系统里,我们关心的以及要研究的是信号的频域,不是时域,原因是因为信号的频率是携带有信息的量。 所以,我们需要的是Y(s)这个表达式,但是实际上,我们往往不能很容易的得到F(s)和H(s)这两个表达式,但是能直接的很容易的得到f(t)和h(t),所以为了找到Y(s)和y(t)的对应关系,就要用到卷积运算。 复频域。 s=jw,当中的j是复数单位,所以使用的是复频域。通俗的解释方法是,因为系统中有电感X=jwL、电容X=1/jwC,物理意义是,系统H(s)对不同的频率分量有不同的衰减,即这种衰减是发生在频域的,所以为了与时域区别,引入复数的运算。但是在复频域计算的形式仍然满足欧姆定理、KCL、KVL、叠加法。 负的频率。 之所以会出现负的频率,这只是数学运算的结果,只存在于数学运算中,实际中不会有负的频率。
善士六合2023-05-23 19:24:361

卷积为什么叫卷积?

在泛函分析中,卷积(卷积)、旋积或摺积(英语:Convolution)是通过两个函数f 和g 生成第三个函数的一种数学算子,表徵函数f 与经过翻转和平移的g 的重叠部分的累积。如果将参加卷积的一个函数看作区间的指示函数,卷积还可以被看作是“滑动平均”的推广。 简单介绍 卷积是分析数学中一种重要的运算。设: f(x),g(x)是R1上的两个可积函数,作积分: 可以证明,关于几乎所有的 ,上述积分是存在的。这样,随着 x 的不同取值,这个积分就定义了一个新函数h(x),称为函数f 与g 的卷积,记为h(x)=(f*g)(x)。容易验证,(f * g)(x) = (g * f)(x),并且(f * g)(x) 仍为可积函数。这就是说,把卷积代替乘法,L1(R1)1空间是一个代数,甚至是巴拿赫代数。 卷积与傅里叶变换有着密切的关系。利用一点性质,即两函数的傅里叶变换的乘积等于它们卷积后的傅里叶变换,能使傅里叶分析中许多问题的处理得到简化。 由卷积得到的函数f*g 一般要比f 和g 都光滑。特别当g 为具有紧支集的光滑函数,f 为局部可积时,它们的卷积f * g 也是光滑函数。利用这一性质,对于任意的可积函数f,都可以简单地构造出一列逼近于f 的光滑函数列fs,这种方法称为函数的光滑化或正则化。 卷积的概念还可以推广到数列、测度以及广义函数上去。[编辑本段][编辑] 定义 函数f 与g 的卷积记作,它是其中一个函数翻转并平移后与另一个函数的乘积的积分,是一个对平移量的函数。 积分区间取决于f 与g 的定义域。 对于定义在离散域的函数,卷积定义为[编辑] 快速卷积算法 当 是有限长度 N ,需要约 N 次运算。藉由一些快速算法可以降到 O(N log N) 复杂度。 最常见的快速卷积算法是藉由圆周摺积利用快速傅里叶变换。也可藉由其它不包含 FFT 的做法,如数论转换。[编辑] 多元函数卷积 按照翻转、平移、积分的定义,还可以类似的定义多元函数上的积分:[编辑本段][编辑] 性质 各种卷积算子都满足下列性质: 交换律 结合律 分配律 数乘结合律 其中a为任意实数(或复数)。 微分定理 其中Df 表示f的微分,如果在离散域中则是指差分算子,包括前向差分与后向差分两种: 前向差分: 后向差分:[编辑本段][编辑] 卷积定理 卷积定理指出,函数卷积的傅里叶变换是函数傅里叶变换的乘积。即,一个域中的卷积相当于另一个域中的乘积,例如时域中的卷积就对应于频域中的乘积。 其中表示f 的傅里叶变换。 这一定理对拉普拉斯变换、双边拉普拉斯变换、Z变换、Mellin变换和Hartley变换(参见Mellin inversion theorem)等各种傅里叶变换的变体同样成立。在调和分析中还可以推广到在局部紧致的阿贝尔群上定义的傅里叶变换。 利用卷积定理可以简化卷积的运算量。对于长度为n的序列,按照卷积的定义进行计算,需要做2n - 1组对位乘法,其计算复杂度为;而利用傅里叶变换将序列变换到频域上后,只需要一组对位乘法,利用傅里叶变换的快速算法之后,总的计算复杂度为。这一结果可以在快速乘法计算中得到应用。[编辑本段][编辑] 在群上的卷积 若G 是有某m测度的群(例如豪斯多夫空间上Harr测度下局部紧致的拓扑群),对于G 上m-勒贝格可积的实数或复数函数f 和g,可定义它们的卷积: 对于这些群上定义的卷积同样可以给出诸如卷积定理等性质,但是这需要对这些群的表示理论以及调和分析的Peter-Weyl定理。[编辑本段][编辑] 应用 卷积在工程和数学上都有很多应用: 统计学中,加权的滑动平均是一种卷积。 概率论中,两个统计独立变量X与Y的和的概率密度函数是X与Y的概率密度函数的卷积。 声学中,回声可以用源声与一个反映各种反射效应的函数的卷积表示。 电子工程与信号处理中,任一个线性系统的输出都可以通过将输入信号与系统函数(系统的冲激响应)做卷积获得。 物理学中,任何一个线性系统(符合叠加原理)都存在卷积。 卷积是一种线性运算,图像处理中常见的mask运算都是卷积,广泛应用于图像滤波。castlman的书对卷积讲得很详细。 高斯变换就是用高斯函数对图像进行卷积。高斯算子可以直接从离散高斯函数得到: for(i=0; i<N; i++) { for(j=0; j<N; j++) { g[i*N+j]=exp(-((i-(N-1)/2)^2+(j-(N-1)/2)^2))/(2*delta^2)); sum += g[i*N+j]; } } 再除以 sum 得到归一化算子 N是滤波器的大小,delta自选 首先,再提到卷积之前,必须提到卷积出现的背景。卷积是在信号与线性系统的基础上或背景中出现的,脱离这个背景单独谈卷积是没有任何意义的,除了那个所谓褶反公式上的数学意义和积分(或求和,离散情况下)。 信号与线性系统,讨论的就是信号经过一个线性系统以后发生的变化(就是输入 输出 和所经过的所谓系统,这三者之间的数学关系)。所谓线性系统的含义,就是,这个所谓的系统,带来的输出信号与输入信号的数学关系式之间是线性的运算关系。 因此,实际上,都是要根据我们需要待处理的信号形式,来设计所谓的系统传递函数,那么这个系统的传递函数和输入信号,在数学上的形式就是所谓的卷积关系。 卷积关系最重要的一种情况,就是在信号与线性系统或数字信号处理 中的卷积定理。利用该定理,可以将时间域或空间域中的卷积运算等价为频率域的相乘运算,从而利用FFT等快速算法,实现有效的计算,节省运算代价。
西柚不是西游2023-05-23 19:24:362

如何理解卷积运算

卷积运算是指从图像的左上角开始,开一个与模板同样大小的活动窗口,窗口图像与模板像元对应起来相乘再相加,并用计算结果代替窗口中心的像元亮度值。然后,活动窗口向右移动一列,并作同样的运算。以此类推,从左到右、从上到下,即可得到一幅新图像。 空间域滤波: 以像元与周围邻域像元的空间关系为基础,通过卷积运算实现图像滤波的一种方法。频率域滤波: 对图像进行傅里叶变换,将图像由图像空间转换到频域空间,然后在频率域中对图像的频谱作分析处理,以改变图像的频率特征。
mlhxueli 2023-05-23 19:24:361

卷积公式是什么?

如图
gitcloud2023-05-23 19:24:363

卷积名词解释

卷积云的解释云层或云片的形状像鱼鳞,云块较小,常排列 成行 或成群。色白,无阴暗部分。卷积云或卷层云等连在一起,天气就会转坏。谚有“鱼鳞天,不雨也风癫”之说。 为白色无影,呈细波、小球或鱼鳞状的云块。常和卷层云或卷云伴见。大半在多变天气前出现。 词语分解 卷的解释 卷 à 可以 舒展 和弯转成圆筒形的书画:长卷。画卷。手卷。 书籍的册本或篇章:上卷。第一卷。藏书十万卷。卷帙(书卷成束,用布裹或布囊装起来称“帙”,即书套。现一般指书籍)。 考试用的纸:试卷。 机关 里分 积云的解释 云的一种。云体垂直向上发展,顶部成圆弧形,底部成水平状。按云体发展的强弱,可分为淡积云、中积云和浓积云。浓积云多见降雨。
Ntou1232023-05-23 19:24:361

什么是矩阵卷积?

LDAP是轻量目录访问协议
FinCloud2023-05-23 19:24:366

什么是卷积定理? 卷积定理用通俗的话怎么解释?

卷积定理 f(x,y)*h(x,y)F(u,v)H(u,v) f(x,y)h(x,y)F(u,v)*H(u,v) 二个二维连续函数在空间域中的卷积可求其相应的二个傅立叶变换乘积的反变换而得.反之,在频域中的卷积可用的在空间域中乘积的傅立叶变换而得.
拌三丝2023-05-23 19:24:361

请问卷积和傅里叶函数是属于哪个数学分支?

傅里叶变换和傅里叶级数,在高等数学和工程数学里都有。可以参考同济大学编写的《高等数学》(推荐第五版或第六版)和华中科技大学的出版的《复变函数与积分变换》。这两本书都比较有代表性。
拌三丝2023-05-23 19:24:344

傅立叶变换的卷积公式是什么?

卷积公式如下:卷积积分公式是(f *g)∧(x)=(x)·(x),卷积是分析数学中一种重要的运算。设f(x), g(x)是R1上的两个可积函数,作积分,可以证明,关于几乎所有的x∈(-∞,∞) ,上述积分是存在的。这样,随着x的不同取值 ,这个积分就定义了一个新函数h(x),称为f与g的卷积,记为h(x)=(f *g)(x)。容易验证,(f *g)(x)=(g *f)(x),并且(f *g)(x)仍为可积函数。简介:卷积与傅里叶变换有着密切的关系。以(x) ,(x)表示L1(R)1中f和g的傅里叶变换,那么有如下的关系成立:(f *g)∧(x)=(x)·(x),即两函数的傅里叶变换的乘积等于它们卷积后的傅里叶变换。这个关系,使傅里叶分析中许多问题的处理得到简化。由卷积得到的函数(f *g)(x),一般要比f,g都光滑。特别当g为具有紧支集的光滑函数,f 为局部可积时,它们的卷积(f *g)(x)也是光滑函数。利用这一性质,对于任意的可积函数 , 都可以简单地构造出一列逼近于f 的光滑函数列fs(x),这种方法称为函数的光滑化或正则化。
mlhxueli 2023-05-23 19:24:321

matlab 先做卷积Z(n)=conv(X(n)*Y(n)),n=1,2,3……100,现在利用Y(n)和Z(n)将X(n)求出来

zn=conv(xn,yn)xn=deconv(zn.yn)主要的语句就是这两句
wpBeta2023-05-20 14:31:252

张量和卷积神经网络

几何代数中定义的张量是基于向量和矩阵的推广,通俗一点理解的话,我们可以将标量视为零阶张量,矢量视为一阶张量,那么矩阵就是二阶张量。 设 A 为m*p的矩阵, B 为p*n 的矩阵,那么称m*n的矩阵C为矩阵A与B的乘积,  记作 C = AB  其中矩阵C中的第 行第 列元素可以表示为:  m*n矩阵 A 与m*n矩阵 B 的Hadamard积记为A*B. 其元素定义为两个矩阵对应元素的乘积:  Kronecker积是两个任意大小的矩阵间的运算,又称为直积或张量积 CNN: 是一类包含 卷积 计算且具有深度结构的 前馈神经网络 (Feedforward Neural Networks),是 深度学习 (deep learning)的代表算法之一。 图中是一个图形识别的CNN模型。可以看出最左边的船的图像就是我们的输入层,计算机理解为输入若干个矩阵,这点和DNN基本相同。 接着是卷积层(Convolution Layer),这个是CNN特有的,我们后面专门来讲。卷积层的激活函数使用的是ReLU。我们在DNN中介绍过ReLU的激活函数,它其实很简单,就是ReLU(x)=max(0,x)ReLU(x)=max(0,x)。在卷积层后面是池化层(Pooling layer),这个也是CNN特有的,我们后面也会专门来讲。需要注意的是,池化层没有激活函数。   卷积层+池化层的组合可以在隐藏层出现很多次,上图中出现两次。而实际上这个次数是根据模型的需要而来的。当然我们也可以灵活使用使用卷积层+卷积层,或者卷积层+卷积层+池化层的组合,这些在构建模型的时候没有限制。但是最常见的CNN都是若干卷积层+池化层的组合,如上图中的CNN结构。   在若干卷积层+池化层后面是全连接层(Fully Connected Layer, 简称FC),全连接层其实就是我们前面讲的DNN结构,只是输出层使用了Softmax激活函数来做图像识别的分类,这点我们在DNN中也有讲述。   从上面CNN的模型描述可以看出,CNN相对于DNN,比较特殊的是卷积层和池化层,如果我们熟悉DNN,只要把卷积层和池化层的原理搞清楚了,那么搞清楚CNN就容易很多了。 首先,我们去学习卷积层的模型原理,在学习卷积层的模型原理前,我们需要了解什么是卷积,以及CNN中的卷积是什么样子的。 大家学习数学时都有学过卷积的知识,微积分中卷积的表达式为:  S(t)=∫x(t−a)w(a)daS(t)=∫x(t−a)w(a)da 离散形式是:  s(t)=∑ax(t−a)w(a)s(t)=∑ax(t−a)w(a) 这个式子如果用矩阵表示可以为:  s(t)=(X∗W)(t)s(t)=(X∗W)(t) 其中星号表示卷积。 如果是二维的卷积,则表示式为: s(i,j)=(X∗W)(i,j)=∑m∑nx(i−m,j−n)w(m,n)s(i,j)=(X∗W)(i,j)=∑m∑nx(i−m,j−n)w(m,n)         在CNN中,虽然我们也是说卷积,但是我们的卷积公式和严格意义数学中的定义稍有不同,比如对于二维的卷积,定义为: s(i,j)=(X∗W)(i,j)=∑m∑nx(i+m,j+n)w(m,n)s(i,j)=(X∗W)(i,j)=∑m∑nx(i+m,j+n)w(m,n)         这个式子虽然从数学上讲不是严格意义上的卷积,但是大牛们都这么叫了,那么我们也跟着这么叫了。后面讲的CNN的卷积都是指的上面的最后一个式子。   其中,我们叫W为我们的卷积核,而X则为我们的输入。如果X是一个二维输入的矩阵,而W也是一个二维的矩阵。但是如果X是多维张量,那么W也是一个多维的张量。   有了卷积的基本知识,我们现在来看看CNN中的卷积,假如是对图像卷积,回想我们的上一节的卷积公式,其实就是对输出的图像的不同局部的矩阵和卷积核矩阵各个位置的元素相乘,然后相加得到。 举个例子如下,图中的输入是一个二维的3x4的矩阵,而卷积核是一个2x2的矩阵。这里我们假设卷积是一次移动一个像素来卷积的,那么首先我们对输入的左上角2x2局部和卷积核卷积,即各个位置的元素相乘再相加,得到的输出矩阵S的S00S00的元素,值为aw+bx+ey+fzaw+bx+ey+fz。接着我们将输入的局部向右平移一个像素,现在是(b,c,f,g)四个元素构成的矩阵和卷积核来卷积,这样我们得到了输出矩阵S的S01S01的元素,同样的方法,我们可以得到输出矩阵S的S02,S10,S11,S12S02,S10,S11,S12的元素。  最终我们得到卷积输出的矩阵为一个2x3的矩阵S。 再举一个:这里面输入是3个7x7的矩阵。实际上原输入是3个5x5的矩阵。只是在原来的输入周围加上了1的padding,即将周围都填充一圈的0,变成了3个7x7的矩阵。   例子里面使用了两个卷积核,我们先关注于卷积核W0。和上面的例子相比,由于输入是3个7x7的矩阵,或者说是7x7x3的张量,则我们对应的卷积核W0也必须最后一维是3的张量,这里卷积核W0的单个子矩阵维度为3x3。那么卷积核W0实际上是一个3x3x3的张量。同时和上面的例子比,这里的步幅为2,也就是每次卷积后会移动2个像素的位置。   最终的卷积过程和上面的2维矩阵类似,上面是矩阵的卷积,即两个矩阵对应位置的元素相乘后相加。这里是张量的卷积,即两个张量的3个子矩阵卷积后,再把卷积的结果相加后再加上偏倚b。   7x7x3的张量和3x3x3的卷积核张量W0卷积的结果是一个3x3的矩阵。由于我们有两个卷积核W0和W1,因此最后卷积的结果是两个3x3的矩阵。或者说卷积的结果是一个3x3x2的张量。 仔细回味下卷积的过程,输入是7x7x3的张量,卷积核是两个3x3x3的张量。卷积步幅为2,最后得到了输出是3x3x2的张量。如果把上面的卷积过程用数学公式表达出来就是: s(i,j)=(X∗W)(i,j)+b=∑k=1n_in(Xk∗Wk)(i,j)+bs(i,j)=(X∗W)(i,j)+b=∑k=1n_in(Xk∗Wk)(i,j)+b 其中,n_inn_in为输入矩阵的个数,或者是张量的最后一维的维数。XkXk代表第k个输入矩阵。WkWk代表卷积核的第k个子卷积核矩阵。s(i,j)s(i,j)即卷积核WW对应的输出矩阵的对应位置元素的值。 对于卷积后的输出,一般会通过ReLU激活函数,将输出的张量中的小于0的位置对应的元素值都变为0。         相比卷积层的复杂,池化层则要简单的多,所谓的池化,个人理解就是对输入张量的各个子矩阵进行压缩。假如是2x2的池化,那么就将子矩阵的每2x2个元素变成一个元素,如果是3x3的池化,那么就将子矩阵的每3x3个元素变成一个元素,这样输入矩阵的维度就变小了。   要想将输入子矩阵的每nxn个元素变成一个元素,那么需要一个池化标准。常见的池化标准有2个,MAX或者是Average。即取对应区域的最大值或者平均值作为池化后的元素值。   下面这个例子采用取最大值的池化方法。同时采用的是2x2的池化。步幅为2。   首先对红色2x2区域进行池化,由于此2x2区域的最大值为6.那么对应的池化输出位置的值为6,由于步幅为2,此时移动到绿色的位置去进行池化,输出的最大值为8.同样的方法,可以得到黄色区域和蓝色区域的输出值。最终,我们的输入4x4的矩阵在池化后变成了2x2的矩阵。进行了压缩。 以AlexNet网络为例,以下是该网络的参数结构图 AlexNet网络的层结构如下: 1.Input:  图像的尺寸是227*227*3. 2.Conv-1:  第1层卷积层的核大小11*11,96个核。步长(stride)为4,边缘填充(padding)为0。 3.MaxPool-1:  池化层-1对Conv-1进行池化,尺寸为3*3,步长为2. 4.Conv-2:  核尺寸:5*5,数量:256,步长:1,填充:2 5. MaxPool-2:  尺寸:3*3,步长:2 6.Conv-3:  核尺寸:3*3,数量:384,步长:1,填充:1 7: Conv-4:  结构同Conv-3. 8. Conv-5:  核尺寸:3*3,数量:256,步长:1,填充:1 9. MaxPool-3 : 尺寸:3*3,步长:2 10.FC-1:  全连接层1共有4096个神经元。 11.FC-1:  全连接层2共有4096个神经元。 12.FC-3:  全连接层3共有1000个神经元。 接下来,我们对以上的网络结构进行描述: 1.如何计算张量(图像)的尺寸; 2.如何计算网络的总参数; 卷积层(Conv Layer)的输出张量(图像)的大小 定义如下: O=输出图像的尺寸。 I=输入图像的尺寸。 K=卷积层的核尺寸 N=核数量 S=移动步长 P =填充数 输出图像尺寸的计算公式如下: 输出图像的通道数等于核数量N。 示例:AlexNet中输入图像的尺寸为227*227*3.第一个卷积层有96个尺寸为11*11*3的核。步长为4,填充为0. 输出的图像为55*55*96(每个核对应1个通道)。 池化层(MaxPool Layer)的输出张量(图像)的大小 定义如下: O=输出图像的尺寸。 I=输入图像的尺寸。 S=移动步长 PS=池化层尺寸 输出图像尺寸的计算公式如下: 不同于卷积层,池化层的输出通道数不改变。 示例:每1层卷积层后的池化层的池化层尺寸为3*3,步长为2。根据前面卷积层的输出为55*55*96。池化层的输出图像尺寸如下: 输出尺寸为27*27*96。 全连接层(Fully Connected Layer)的输出张量(图像)的大小 全连接层输出向量长度等于神经元的数量。 通过AlexNet改变张量(图像)的尺寸的结构如下: 在AlexNet网络中,输出的图像尺寸为227*227*3. Conv-1,尺寸变为55*55*96,池化层后变为27*27*96。 Conv-2,尺寸变为27*27*256,池化层后变为13*13*256. Conv-3,尺寸变为13*13*384,经过Conv-4和Conv-5变回13*13*256. 最后,MaxPool-3尺寸缩小至6*6*256. 图像通过FC-1转换为向量4096*1.通过FC-2尺寸未改变.最终,通过FC-3输出1000*1的尺寸张量. 接下来,计算每层的参数数量. Conv Layer参数数量 在CNN中,每层有两种类型的参数:weights 和biases.总参数数量为所有weights和biases的总和. 定义如下: WC=卷积层的weights数量 BC=卷积层的biases数量 PC=所有参数的数量 K=核尺寸 N=核数量 C =输入图像通道数 卷积层中,核的深度等于输入图像的通道数.于是每个核有K*K个参数.并且有N个核.由此得出以下的公式. 示例:AlexNet网络中,第1个卷积层,输入图像的通道数(C)是3,核尺寸(K)是11*11,核数量是96. 该层的参数计算如下: 计算出Conv-2, Conv-3, Conv-4, Conv-5 的参数分别为 614656 , 885120, 1327488 和884992.卷积层的总参数就达到3,747,200. MaxPool Layer参数数量 没有与MaxPool layer相关的参数量.尺寸,步长和填充数都是超参数. Fully Connected (FC) Layer参数数量 在CNN中有两种类型的全连接层.第1种是连接到最后1个卷积层,另外1种的FC层是连接到其他的FC层.两种情况我们分开讨论. 类型1: 连接到Conv Layer 定义如下: Wcf= weights的数量 Bcf= biases的数量 O= 前卷积层的输出图像的尺寸 N = 前卷积层的核数量 F = 全连接层的神经元数量 示例:  AlexNet网络中第1个FC层连接至Conv Layer.该层的O为6,N为256,F为4096. 参数数目远大于所有Conv Layer的参数和. 类型2: 连接到FC Layer 定义如下: Wff= weights的数量 Bff= biases的数量 Pff= 总参数的数量 F= 当前FC层的神经元数量 F-1= 前FC层的神经元数量 示例: AlexNet的最后1个全连接层,  F-1=4096,F=1000. AlexNet网络中张量(图像)尺寸和参数数量 AlexNet网络中总共有5个卷积层和3个全连接层.总共有62,378,344个参数.以下是汇总表.         TensorFlow是谷歌基于DistBelief进行研发的第二代人工智能学习系统,其命名来源于本身的运行原理。Tensor(张量)意味着N维数组,Flow(流)意味着基于数据流图的计算,TensorFlow为张量从流图的一端流动到另一端计算过程。TensorFlow是将复杂的数据结构传输至人工智能神经网中进行分析和处理过程的系统。TensorFlow可被用于语音识别或图像识别等多项机器深度学习领域,对2011年开发的深度学习基础架构DistBelief进行了各方面的改进,它可在小到一部智能手机、大到数千台数据中心服务器的各种设备上运行。
凡尘2023-05-20 08:57:491
 首页 上一页  1 2 3