卷积

两个非周期的信号卷积后可周期吗?

可以的。原因:非周期时域信号在频域中为连续信号(频谱),周期时域信号在频域中为离散信号(频谱),时域信号卷积相当于频域信号乘积,两个非周期信号卷积在频域中为两个连续信号(频谱)乘积,频域中乘积之后还是连续信号,所以在时域中应该还是非周期的。卷积定理指出函数卷积的傅立叶变换是函数傅立叶变换的乘积。具体分为时域卷积定理和频域卷积定理。扩展资料:关于卷积定理的相关事项:1、F(g(x)*f(x)) = F(g(x))F(f(x)),其中F表示的是傅里叶变换。这一定理对拉普拉斯变换、双边拉普拉斯变换、Z变换、Mellin变换和Hartley变换等各种傅里叶变换的变体同样成立。2、利用卷积定理可以简化卷积的运算量。对于长度为n的序列,按照卷积的定义进行计算,需要做2n- 1组对位乘法,其计算复杂度为。3、利用傅里叶变换将序列变换到频域上后,只需要一组对位乘法,利用傅里叶变换的快速算法之后,总的计算复杂度为。参考资料来源:百度百科-卷积
小白2023-05-23 19:24:451

卷积公式的应用?

卷积公式概率论计算分布函数的时候不能用。卷积公式的使用条件是只用来计算密度函数,不能计算分布函数。在泛函分析中,卷积是通过两个函数f和g生成第三个函数的一种数学算子,表征函数f与g经过翻转和平移的重叠部分函数值乘积对重叠长度的积分。应用利用卷积定理可以简化卷积的运算量。对于长度为n的序列,按照卷积的定义进行计算,需要做(2n- 1)组对位乘法,其计算复杂度为;而利用傅里叶变换将序列变换到频域上后,只需要一组对位乘法,利用傅里叶变换的快速算法之后,总的计算复杂度为。这一结果可以在快速乘法计算中得到应用。
无尘剑 2023-05-23 19:24:451

卷积什么意思?

数学中关于两个函数的一种无穷积分运算。对于函数f1(t)和f2(t),其卷积表示为:式中:“”为卷积运算符号。
小菜G的建站之路2023-05-23 19:24:411

线性卷积和圆周卷积什么时候相等?

当有限长序列x(n)和h(n)的长度分别为N1和N2,取N>=max(N1,N2),当N>=N1+N2-1,则线性卷积与圆周卷积相同。线性卷积是在时域描述线性系统输入和输出之间关系的一种运算。这种运算在线性系统分析和信号处理中应用很多,通常简称卷积。两个函数的圆周卷积是由他们的周期延伸所来定义的。周期延伸意思是把原本的函数平移某个周期T的整数倍后再全部加起来所产生的新函数。离散信号的圆周卷积可以经由圆周卷积定理使用快速傅立叶变换(FFT)而有效率的计算。因此,若原本的(线性)卷积能转换成圆周卷积来计算,会远比直接计算更快速。考虑到长度L和长度M的有限长度离散信号,做卷积之后会成为长度L+M-1的信号,因此只要把两离散信号补上适当数目的零(zero-padding)成为N点信号,其中N≥L+M-1,则它们的圆周卷积就与卷积相等。即可接着用N点 FFT作计算。
wpBeta2023-05-23 19:24:401

卷积积分图示法的五个步骤

卷积积分  分析数学中一种重要的运算。设f(x), g(x)是R1上的两个可积函数,作积分:   可以证明,关于几乎所有的x∈(-∞,∞) ,上述积分是存在的。这样,随着x的不同取值 ,这个积分就定义了一个新函数h(x),称为f与g的卷积,记为h(x)=(f *g)(x)。容易验证,(f *g)(x)=(g *f)(x),并且(f *g)(x)仍为可积函数。这就是说,把卷积代替乘法,L1(R1)1空间是一个代数,甚至是巴拿赫代数。   卷积与傅里叶变换有着密切的关系。以(x) ,(x)表示L1(R)1中f和g的傅里叶变换,那么有如下的关系成立:(f *g)∧(x)=(x)·(x),即两函数的傅里叶变换的乘积等于它们卷积后的傅里叶变换。这个关系,使傅里叶分析中许多问题的处理得到简化。   由卷积得到的函数(f *g)(x),一般要比f,g都光滑。特别当g为具有紧支集的光滑函数,f 为局部可积时,它们的卷积(f *g)(x)也是光滑函数。利用这一性质,对于任意的可积函数 , 都可以简单地构造出一列逼近于f 的光滑函数列fs(x),这种方法称为函数的光滑化或正则化。   卷积的概念还可以推广到数列 、测度以及广义函数上去。  卷积积分的物理意义  在激励条件下,线性电路在t时刻的零状态响应=从激励函数开始作用的时刻(ξ=0)  到t时刻( ξ=t)的区间内,无穷多个强度不同的冲激响应的总和。  可见,冲激响应在卷积中占据核心地位。
kikcik2023-05-23 19:24:401

怎样用matlab求卷积

如果你要的是符号卷积那就没有直接的功能函数要自己写出卷积表达式,再用符号积分函数去积,经常积不出如果是数值积分(序列)有conv这一族函数(help里面有相关函数那些)其实你要卷积还不如直接去算F变换再去求反变换来的方便
黑桃花2023-05-23 19:24:401

卷积积分公式是什么?

卷积公式如下:卷积积分公式是(f *g)∧(x)=(x)·(x),卷积是分析数学中一种重要的运算。设f(x), g(x)是R1上的两个可积函数,作积分,可以证明,关于几乎所有的x∈(-∞,∞) ,上述积分是存在的。这样,随着x的不同取值 ,这个积分就定义了一个新函数h(x),称为f与g的卷积,记为h(x)=(f *g)(x)。容易验证,(f *g)(x)=(g *f)(x),并且(f *g)(x)仍为可积函数。简介:卷积与傅里叶变换有着密切的关系。以(x) ,(x)表示L1(R)1中f和g的傅里叶变换,那么有如下的关系成立:(f *g)∧(x)=(x)·(x),即两函数的傅里叶变换的乘积等于它们卷积后的傅里叶变换。这个关系,使傅里叶分析中许多问题的处理得到简化。由卷积得到的函数(f *g)(x),一般要比f,g都光滑。特别当g为具有紧支集的光滑函数,f 为局部可积时,它们的卷积(f *g)(x)也是光滑函数。利用这一性质,对于任意的可积函数 , 都可以简单地构造出一列逼近于f 的光滑函数列fs(x),这种方法称为函数的光滑化或正则化。
gitcloud2023-05-23 19:24:401

卷积的物理意义

卷积在泛函分析中,卷积、旋积或摺积(英语:Convolution)是通过两个函数f 和g 生成第三个函数的一种数学算子,表征函数f 与g经过翻转和平移的重叠部分的面积。
北境漫步2023-05-23 19:24:401

常数与任意函数的卷积是否为该函数?

左迁2023-05-23 19:24:406

怎样计算周期卷积

其实周期卷积就是循环卷积的周期延拓!循环卷积书上的公式乘以了一个N点的单位阶跃序列,否则周期卷积和循环卷积结果是相同的。当然周期卷积在定义上X1也是周期的但是X1(m)只取0~N-1的所以周期在结果上无意义。
此后故乡只2023-05-23 19:24:402

卷积运算是啥

http://www.baidu.com/s?cl=3&wd=%be%ed%bb%fd%d4%cb%cb%e3&tn=shnetzone_pg
陶小凡2023-05-23 19:24:404

两个函数的卷积怎么算

问题一:什么是卷积?要怎么求两个函数的卷积? 15分 简介 褶积(又名卷积)和反褶积(又名去卷积)是一种积分变换的数学方法,在许多方面得到了广泛应用。用褶积解决试井解释中的问题,早就取得了很好成果;而反褶积,直到最近,Schroeter、Hollaender和Gringarten等人解决了其计算方法上的稳定性问题,使反褶积方法很快引起了试井界的广泛注意。有专家认为,反褶积的应用是试井解释方法发展史上的又一次重大飞跃。他们预言,随着测试新工具和新技术的增加和应用,以及与其它专业研究成果的更紧密结合,试井在油气藏描述中的作用和重要性必将不断增大[1] 。 2基本内涵 简单定义:卷积是分析数学中一种重要的运算。 设:f(x),g(x)是R1上的两个可积函数,作积分: 可以证明,关于几乎所有的实数x,上述积分是存在的。这样,随着x的不同取值,这个积分就定义了一个新函数h(x),称为函数f与g的卷积,记为h(x)=(f*g)(x)。 容易验证,(f * g)(x) = (g * f)(x),并且(f * g)(x)仍为可积函数。这就是说,把卷积代替乘法,L1(R1)空间是一个代数,甚至是巴拿赫代数。 卷积与傅里叶变换有着密切的关系。利用一点性质,即两函数的傅里叶变换的乘积等于它们卷积后的傅里叶变换,能使傅里叶分析中许多问题的处理得到简化。 由卷积得到的函数f*g一般要比f和g都光滑。特别当g为具有紧致集的光滑函数,f为局部可积时,它们的卷积f * g也是光滑函数。利用这一性质,对于任意的可积函数f,都可以简单地构造出一列逼近于f的光滑函数列fs,这种方法称为函数的光滑化或正则化。 卷积的概念还可以推广到数列、测度以及广义函数上去。 3定义 卷积是两个变量在某范围内相乘后求和的结果。如果卷积的变量是序列x(n)和h(n),则卷积的结果 , 其中星号*表示卷积。当时序n=0时,序列h(-i)是h(i)的时序i取反的结果;时序取反使得h(i)以纵轴为中心翻转180度,所以这种相乘后求和的计算法称为卷积和,简称卷积。另外,n是使h(-i)位移的量,不同的n对应不同的卷积结果。 如果卷积的变量是函数x(t)和h(t),则卷积的计算变为 , 其中p是积分变量,积分也是求和,t是使函数h(-p)位移的量,星号*表示卷积。 参考《数字信号处理》杨毅明著,p.55、p.188、p.264,机械工业出版社2012年发行。 4性质 各 perfect spaces卷积混响 种卷积算子都满足下列性质: 交换律 结合律 分配律 数乘结合律 其中a为任意实数(或复数)。 微分定理 其中Df表示f的微分,如果在离散域中则是指差分算子,包括前向差分与后向差分两种。 5卷积定理 卷积定理指出,函数卷积的傅里叶变换是函数傅里叶变换的乘积。即,一个域中的卷积相当于另一个域中的乘积,例如时域中的卷积就对应于频域中的乘积。 F(g(x)*f(x)) = F(g(x))F(f(x)) 其中F表示的是傅里叶变换。 这一定理对拉普拉斯变换、双边拉普拉斯变换、Z变换、Mellin变换和Hartley变换(参见Mellin inversion theorem)等各种傅里叶变换的变体同样成立。在调和分析中还可以推广到在局部紧致的阿贝尔群上定义的傅里叶变换。 利用卷积定理可以简化卷积的运算量。对于长度为n的序列,按照卷积的定义进行计算,需要做2n- 1组对位乘法,其计算复杂度为;而利用傅里叶变换将序列变换到频域上后,只需要一组对位乘法,利用傅里叶变换的快速算法之后,总的计算复杂度为。这一结果可以在快速乘法计算中得到应用。 6群上卷积 卷积与相关分析......>> 问题二:两个函数的卷积怎么算 你好。 只要使用conv函数就可以了。 例子: u=ones(1,100); v=2*u; w = conv(u,v); plot(w); 问题三:如何用matlab求两个函数的卷积 可以用傅立叶变换 先定义g, h 然后结果就是 ifourier(fourier(g)*fourier(h)) 问题四:常数与任意函数的卷积是否为该函数? 5分 【1】常数与任意函数的卷积依然为该函数。证明如下图所示: 【2】卷积的概念:在泛函分析中,卷积、旋积或摺积(英语:Convolution)是通过两个函数f 和g 生成第三个函数的一种数学算子,表征函数f 与g经过翻转和平移的重叠部分的面积。 如果将参加卷积的一个函数看作区间的指示函数,卷积还可以被看作是“滑动平均”的推广。
kikcik2023-05-23 19:24:401

卷积怎么求

卷积怎么求的?这个东西就好像是数学公式里面找一下啊!
苏州马小云2023-05-23 19:24:401

AI数学基础26-卷积(Convolution)

卷积(Convolution)是一个应用非常广泛的函数间的数学运算,类似加、减、乘、除。之所以很多同学听到卷积二字就头皮发麻,是因为不熟悉,而且在日常生活中用的少。加、减、乘、除从小就学习,天天在使用,所以觉得简单、容易,亲切。 加、减、乘、除 用符号 +,-,×,÷,表示;同样,卷积用符号:* 表示。 如上所述,卷积是两个函数之间的数学运算,假设有两个函数f(t), g(t),其卷积运算的结果也是函数,我们记做c(t),则: c(t) = f(t)*g(t) = (f*g)(t) 注意:f(t)*g(t)和(f*g)(t)这两种写法,都是表示卷积运算,大家在学习一个数学运算的时候, 首先是要学习并熟悉其标记的含义 ,这跟学习加、减、乘、除一样。 卷积具体的计算是如何定义的呢? 两个函数f(t), g(t)是定义在实数范围内可积的函数,其卷积记作:f*g,是其中一个函数翻转并平移后与另一个函数的乘积的积分,如下图所示:咋一看,有点儿懂了,也有点儿没懂,不着急,接下来我们一步一步图解卷积运算的过程。 首先 ,已知两函数f(t)和g(t),如下图所示然后 ,根据上述的卷积运算定义,把两个函数f(t)和g(t)自变量由t换为τ,并把其中一个函数,比如g(τ),向右移动t个单位,得到g(τ-t)。 接着 ,把右移t个单位的函数,以纵轴为中心,180°翻转(Flip),得到g(-(τ-t)),即g(t-τ),如下图所示:这样,经过平移和翻转,我们得到了积分表达式中的f(τ)和g(t-τ)。 接下来 ,τ是自变量,对整个定义域,我们对f(τ)和g(t-τ)积分,如下图所示:最后 ,完成f(τ)和g(t-τ)的积分运算后,就完成了两个函数f(t)和g(t)的卷积运算。 通过上述演示过程,大家可以把两个函数的卷积运算,简单记住为:“ 卷积就是平移翻转再积分 ”,其过程如下图所示:若把g(t-τ)看作为是一个加权函数的话,卷积可以认为是对f(τ)取加权值的过程。 跟加、减、乘、除有交换律,结合律相似,卷积也有如下性质 卷积定理 指出,函数卷积的 傅里叶变换 是函数傅里叶变换的乘积。即,一个域中的卷积相当于另一个域中的乘积,例如 时域 中的卷积就对应于 频域 中的乘积。这一定理对 拉普拉斯变换 、 双边拉普拉斯变换 、 Z变换 、 Mellin变换 和 Hartley变换 (参见 Mellin inversion theorem )等各种傅里叶变换的变体同样成立。利用卷积定理可以简化卷积的运算量。对于长度为 n 的序列,按照卷积的定义进行计算,需要做 2n-1 组对位乘法,其 计算复杂度 为O(n²);而利用 傅里叶变换 将序列变换到频域上后,只需要一组对位乘法,利用傅里叶变换的 快速算法 之后,总的计算复杂度为O(n·log(n))。卷积定理简化运算在工程实现中,经常使用。 卷积在科学、工程和数学上都有很多应用 : 代数 中,整数乘法和多项式乘法都是卷积。 图像处理 中,用作图像模糊、锐化、 边缘检测 。 统计学 中,加权的滑动平均是一种卷积。 概率论 中,两个统计独立变量X与Y的和的 概率密度函数 是X与Y的概率密度函数的卷积。 声学 中, 回声 可以用源声与一个反映各种反射效应的函数的卷积表示。 电子工程 与信号处理中,任一个线性系统的输出都可以通过将输入信号与系统函数(系统的 冲激响应 )做卷积获得。 物理学 中,任何一个线性系统(符合 叠加原理 )都存在卷积。 下一节将继续介绍《 AI数学基础27-离散卷积(Discrete convolution) 》
康康map2023-05-23 19:24:401

卷积的公式是什么?

卷积的公式是f(t)∗g(t)=∫t0f(u)g(t−u)du(1)。卷积公式与拉普拉斯变换结果的关系为:F(s)G(s)=∫∞0e−st(f(t)∗g(t))dt(3)。f(t)与g(t)的拉普拉斯变换结果为:{F(s)=∫∞0e−stf(t)dtG(s)=∫∞0e−stg(t)dt(2)。卷积的性质:perfect spaces卷积混响,各种卷积算子都满足下列性质:交换律结合律分配律数乘结合律其中a为任意实数(或复数)。微分定理其中Df表示f的微分,如果在离散域中则是指差分算子,包括前向差分与后向差分两种。
真颛2023-05-23 19:24:401

卷积的性质

线性卷积的性质:符合结合律、交换律、分配律。卷积公式如下:卷积积分公式是(f *g)∧(x)=(x)·(x),卷积是分析数学中一种重要的运算。设f(x), g(x)是R1上的两个可积函数,作积分,可以证明,关于几乎所有的x∈(-∞,∞) ,上述积分是存在的。这样,随着x的不同取值 ,这个积分就定义了一个新函数h(x),称为f与g的卷积,记为h(x)=(f *g)(x)。容易验证,(f *g)(x)=(g *f)(x),并且(f *g)(x)仍为可积函数。简介:卷积与傅里叶变换有着密切的关系,以(x) ,(x)表示L1(R)1中f和g的傅里叶变换,那么有如下的关系成立:(f *g)∧(x)=(x)·(x),即两函数的傅里叶变换的乘积等于它们卷积后的傅里叶变换。这个关系,使傅里叶分析中许多问题的处理得到简化。由卷积得到的函数(f *g)(x),一般要比f,g都光滑。特别当g为具有紧支集的光滑函数,f 为局部可积时,它们的卷积(f *g)(x)也是光滑函数。利用这一性质,对于任意的可积函数 , 都可以简单地构造出一列逼近于f 的光滑函数列fs(x),这种方法称为函数的光滑化或正则化。
北营2023-05-23 19:24:401

请问下卷积怎么算的?

卷积是一种线性运算,图像处理中常见的mask运算都是卷积,广泛应用于图像滤波。castlman的书对卷积讲得很详细。 高斯变换就是用高斯函数对图像进行卷积。高斯算子可以直接从离散高斯函数得到: for(i=0; i<N; i++) { for(j=0; j<N; j++) { g[i*N+j]=exp(-((i-(N-1)/2)^2+(j-(N-1)/2)^2))/(2*delta^2)); sum += g[i*N+j]; } } 再除以 sum 得到归一化算子 N是滤波器的大小,delta自选 首先,再提到卷积之前,必须提到卷积出现的背景。卷积是在信号与线性系统的基础上或背景中出现的,脱离这个背景单独谈卷积是没有任何意义的,除了那个所谓褶反公式上的数学意义和积分(或求和,离散情况下)。 信号与线性系统,讨论的就是信号经过一个线性系统以后发生的变化(就是输入 输出 和所经过的所谓系统,这三者之间的数学关系)。所谓线性系统的含义,就是,这个所谓的系统,带来的输出信号与输入信号的数学关系式之间是线性的运算关系。 因此,实际上,都是要根据我们需要待处理的信号形式,来设计所谓的系统传递函数,那么这个系统的传递函数和输入信号,在数学上的形式就是所谓的卷积关系。 卷积关系最重要的一种情况,就是在信号与线性系统或数字信号处理 中的卷积定理。利用该定理,可以将时间域或空间域中的卷积运算等价为频率域的相乘运算,从而利用FFT等快速算法,实现有效的计算,节省运算代价。
韦斯特兰2023-05-23 19:24:402

卷积积分式如何求导

卷积是分析数学中一种重要的运算。设f(x), g(x)是R1上的两个可积函数,作积分:可以证明,关于几乎所有的x∈(-∞,∞) ,上述积分是存在的。这样,随着x的不同取值 ,这个积分就定义了一个新函数h(x),称为f与g的卷积,记为h(x)=(f *g)(x)。容易验证,(f *g)(x)=(g *f)(x),并且(f *g)(x)仍为可积函数。这就是说,把卷积代替乘法,L1(R1)1空间是一个代数,甚至是巴拿赫代数。
FinCloud2023-05-23 19:24:401

卷积公式的使用条件有哪些?

卷积公式的使用条件是:只用来计算密度函数,不能计算分布函数。在泛函分析中,卷积是通过两个函数f和g生成第三个函数的一种数学算子,表征函数f与g经过翻转和平移的重叠部分函数值乘积对重叠长度的积分。卷积是一种积分变换的数学方法,在许多方面得到了广泛应用。用卷积解决试井解释中的问题,早就取得了很好成果,而反卷积是直到最近Schroeter、Hollaender和Gringarten等人解决了其计算方法上的稳定性问题,使反卷积方法很快引起了试井界的广泛注意。简介卷积(又名褶积)和反卷积(又名反褶积)是一种积分变换的数学方法,在许多方面得到了广泛应用。用卷积解决试井解释中的问题,早就取得了很好成果;而反卷积,直到最近,Schroeter、Hollaender和Gringarten等人解决了其计算方法上的稳定性问题,使反卷积方法很快引起了试井界的广泛注意。有专家认为,反卷积的应用是试井解释方法发展史上的又一次重大飞跃。他们预言,随着测试新工具和新技术的增加和应用,以及与其它专业研究成果的更紧密结合,试井在油气藏描述中的作用和重要性必将不断增大。
墨然殇2023-05-23 19:24:391

卷积运算公式是什么?

积分运算公式:∫0dx=C(2)=ln|x|+C。积分是微分的逆运算,即知道了函数的导函数,反求原函数。在应用上,积分作用不仅如此,它被大量应用于求和,通俗的说是求曲边三角形的面积,这巧妙的求解方法是积分特殊的性质决定的。微分在数学中的定义:由函数B=f(A),得到A、B两个数集,在A中当dx靠近自己时,函数在dx处的极限叫作函数在dx处的微分,微分的中心思想是无穷分割。微分是函数改变量的线性主要部分。微积分的基本概念之一。相关内容解释:卷积运算是指从图像的左上角开始,开一个与模板同样大小的活动窗口,窗口图像与模板像元对应起来相乘再相加,并用计算结果代替窗口中心的像元亮度值。然后,活动窗口向右移动一列,并作同样的运算。以此类推,从左到右、从上到下,即可得到一幅新图像。空间域滤波: 以像元与周围邻域像元的空间关系为基础,通过卷积运算实现图像滤波的一种方法。频率域滤波: 对图像进行傅里叶变换,将图像由图像空间转换到频域空间,然后在频率域中对图像的频谱作分析处理,以改变图像的频率特征。
此后故乡只2023-05-23 19:24:391

请问卷积公式是什么?

卷积公式如下:卷积积分公式是(f *g)∧(x)=(x)·(x),卷积是分析数学中一种重要的运算。设f(x), g(x)是R1上的两个可积函数,作积分,可以证明,关于几乎所有的x∈(-∞,∞) ,上述积分是存在的。这样,随着x的不同取值 ,这个积分就定义了一个新函数h(x),称为f与g的卷积,记为h(x)=(f *g)(x)。容易验证,(f *g)(x)=(g *f)(x),并且(f *g)(x)仍为可积函数。简介:卷积与傅里叶变换有着密切的关系。以(x) ,(x)表示L1(R)1中f和g的傅里叶变换,那么有如下的关系成立:(f *g)∧(x)=(x)·(x),即两函数的傅里叶变换的乘积等于它们卷积后的傅里叶变换。这个关系,使傅里叶分析中许多问题的处理得到简化。由卷积得到的函数(f *g)(x),一般要比f,g都光滑。特别当g为具有紧支集的光滑函数,f 为局部可积时,它们的卷积(f *g)(x)也是光滑函数。利用这一性质,对于任意的可积函数 , 都可以简单地构造出一列逼近于f 的光滑函数列fs(x),这种方法称为函数的光滑化或正则化。
gitcloud2023-05-23 19:24:391

卷积的公式是什么?

卷积公式是:z(t)=x(t)*y(t)=∫x(m)y(t-m)dm。这是一个定义式。卷积公式是用来求随机变量和的密度函数(pdf)的计算公式。卷积定理指出,函数卷积的傅里叶变换是函数傅里叶变换的乘积。即,一个域中的卷积相当于另一个域中的乘积,例如时域中的卷积就对应于频域中的乘积。F(g(x)*f(x)) = F(g(x))F(f(x)),其中F表示的是傅里叶变换。卷积的应用:在提到卷积之前, 重要的是要提到卷积出现的背景。卷积发生在信号和线性系统的基础上, 也不在背景中发生, 除了所谓褶皱的数学意义和积分 (或求和、离散大小) 外, 将卷积与此背景分开讨论是没有意义的公式。信号和线性系统, 讨论信号通过线性系统 (即输入和输出之间的数学关系以及所谓的通过系统) 后发生的变化。所谓线性系统的含义是, 这个所谓的系统, 产生的输出信号和输入信号之间的数学关系是一个线性计算关系。因此, 实际上, 有必要根据我们需要处理的信号形式来设计所谓的系统传递函数, 那么这个系统的传递函数和输入信号, 在数学形式上就是所谓的卷积关系。
可桃可挑2023-05-23 19:24:391

卷积的应用

卷积在工程和数学上都有很多应用:统计学中,加权的滑动平均是一种卷积。概率论中,两个统计独立变量X与Y的和的概率密度函数是X与Y的概率密度函数的卷积。声学中,回声可以用源声与一个反映各种反射效应的函数的卷积表示。电子工程与信号处理中,任一个线性系统的输出都可以通过将输入信号与系统函数(系统的冲激响应)做卷积获得。物理学中,任何一个线性系统(符合叠加原理)都存在卷积。介绍一个实际的概率学应用例子。假设需求到位时间的到达率为poisson(λ)分布,需求的大小的分布函数为D(.),则单位时间的需求量的分布函数为 F(x):其中 D(k)(x)为k阶卷积。卷积是一种线性运算,图像处理中常见的mask运算都是卷积,广泛应用于图像滤波。castlman的书对卷积讲得很详细。高斯变换就是用高斯函数对图像进行卷积。高斯算子可以直接从离散高斯函数得到:for(i=0; i<N; i++){for(j=0; j<N; j++){g[i*N+j]=exp(-((i-(N-1)/2)^2+(j-(N-1)/2)^2))/(2*delta^2));sum += g[i*N+j];}}再除以 sum 得到归一化算子N是滤波器的大小,delta自选首先,在提到卷积之前,必须提到卷积出现的背景。卷积是在信号与线性系统的基础上或背景中出现的,脱离这个背景单独谈卷积是没有任何意义的,除了那个所谓褶反公式上的数学意义和积分(或求和,离散情况下)。信号与线性系统,讨论的就是信号经过一个线性系统以后发生的变化(就是输入 输出 和所经过的所谓系统,这三者之间的数学关系)。所谓线性系统的含义,就是,这个所谓的系统,带来的输出信号与输入信号的数学关系式之间是线性的运算关系。因此,实际上,都是要根据我们需要待处理的信号形式,来设计所谓的系统传递函数,那么这个系统的传递函数和输入信号,在数学上的形式就是所谓的卷积关系。卷积关系最重要的一种情况,就是在信号与线性系统或数字信号处理中的卷积定理。利用该定理,可以将时间域或空间域中的卷积运算等价为频率域的相乘运算,从而利用FFT等快速算法,实现有效的计算,节省运算代价。C++语言代码: void convolution(float *input1, float *input2, float *output, int mm, int nn){     float *xx = new float[mm+nn-1];     // do convolution     for (int i = 0; i < mm+nn-1; i++)    {         xx[i] = 0.0;        for (int j = 0; j < mm; j++)         {             if (i-j > 0 && i-j < nn)            xx[i] += input1[j] * input2[i-j];         }      }     // set value to the output array      for (int i = 0; i < mm; i++)      output[i] = xx[i + (nn-1) / 2];     delete[] xx;}
可桃可挑2023-05-23 19:24:391

卷积的物理意义是什么?

卷积的物理意义:卷积可代表某种系统对某个物理量或输入的调制或污染。在泛函分析中,卷积、旋积或褶积(英语:Convolution)是通过两个函数f和g生成第三个函数的一种数学算子,表征函数f与g经过翻转和平移的重叠部分函数值乘积对重叠长度的积分。如果将参加卷积的一个函数看作区间的指示函数,卷积还可以被看作是“滑动平均”的推广。卷积定理卷积定理指出,函数卷积的傅里叶变换是函数傅里叶变换的乘积。即,一个域中的卷积相当于另一个域中的乘积,例如时域中的卷积就对应于频域中的乘积。这一定理对拉普拉斯变换、双边拉普拉斯变换、Z变换、Mellin变换和Hartley变换(参见Mellin inversion theorem)等各种傅里叶变换的变体同样成立。在调和分析中还可以推广到在局部紧致的阿贝尔群上定义的傅里叶变换。利用卷积定理可以简化卷积的运算量。对于长度为n的序列,按照卷积的定义进行计算,需要做(2n- 1)组对位乘法,其计算复杂度为;而利用傅里叶变换将序列变换到频域上后,只需要一组对位乘法,利用傅里叶变换的快速算法之后,总的计算复杂度为。这一结果可以在快速乘法计算中得到应用。
Chen2023-05-23 19:24:391

怎样理解卷积积分?

对于非数学系学生来说,只要懂怎么用卷积就可以了,研究什么是卷积其实意义不大,它就是一种微元相乘累加的极限形式。卷积本身不过就是一种数学运算而已。就跟“蝶形运算”一样,怎么证明,这是数学系的人的工作。 在信号与系统里,f(t)的零状态响应y(t)可用f(t)与其单位冲激响应h(t)的卷积积分求解得,即y(t)=f(t)*h(t)。学过信号与系统的都应该知道,时域的卷积等于频域的乘积,即有Y(s)=F(s)×H(s)。(s=jw,拉氏变换后等到的函数其实就是信号的频域表达式)有一点你必须明白,在通信系统里,我们关心的以及要研究的是信号的频域,不是时域,原因是因为信号的频率是携带有信息的量。 所以,我们需要的是Y(s)这个表达式,但是实际上,我们往往不能很容易的得到F(s)和H(s)这两个表达式,但是能直接的很容易的得到f(t)和h(t),所以为了找到Y(s)和y(t)的对应关系,就要用到卷积运算。 复频域。 s=jw,当中的j是复数单位,所以使用的是复频域。通俗的解释方法是,因为系统中有电感X=jwL、电容X=1/jwC,物理意义是,系统H(s)对不同的频率分量有不同的衰减,即这种衰减是发生在频域的,所以为了与时域区别,引入复数的运算。但是在复频域计算的形式仍然满足欧姆定理、KCL、KVL、叠加法。 负的频率。 之所以会出现负的频率,这只是数学运算的结果,只存在于数学运算中,实际中不会有负的频率。
小菜G的建站之路2023-05-23 19:24:392

卷积 含义

不知道为什么很多人将如此简单点的问题,回答得如此之复杂,难道真是那句话,什么是教授,教授就是将人人都懂的问题,解释得人人都听不懂,看来很多学生继承了这种传统,这是教育的悲哀!什么是卷积,为什么要用卷积?原因很简单,任何一个输入信号都可以看成是一个个冲激信号的叠加,那么对应的输出也可以看做是一个个冲激响应的叠加将这一个个冲激响应叠加起来就是一个卷积吗!之所以引入卷积,是因为引入了冲激,将这些冲激响应叠加起来,就是卷积
瑞瑞爱吃桃2023-05-23 19:24:394

卷积的性质

卷积的性质是交换律、结合律、分配律。在泛函分析中,卷积、旋积或摺积(英语:Convolution)是通过两个函数f 和g 生成第三个函数的一种数学算子,表征函数f 与g经过翻转和平移的重叠部分的面积。如果将参加卷积的一个函数看作区间的指示函数,卷积还可以被看作是“滑动平均”的推广。褶积(又名卷积)和反褶积(又名去卷积)是一种积分变换的数学方法,在许多方面得到了广泛应用。用褶积解决试并解释中的问题,早就取得了很好成果;而反褶积,直到最近,Schroeter、Hollaender和Gringarten等人解决了其计算方法上的稳定性问题,使反褶积方法很快引起了试井界的广泛注意。有专家认为,反褶积的应用是试井解释方法发展史上的又一次重大飞跃。他们预言,随着测试新工具和新技术的增加和应用,以及与其它专业研究成果的更紧密结合,试井在油气藏描述中的作用和重要性必将不断增大。简单定义:卷积是分析数学中一种重要的运算。卷积与傅里叶变换有着密切的关系。利用一点性质,即两函数的傅里叶变换的乘积等于它们卷积后的傅里叶变换,能使傅里叶分析中许多问题的处理得到简化。
Jm-R2023-05-23 19:24:391

卷积公式是什么意思?

卷积公式是:z(t)=x(t)*y(t)=∫x(m)y(t-m)dm。这是一个定义式。卷积公式是用来求随机变量和的密度函数(pdf)的计算公式。卷积定理指出,函数卷积的傅里叶变换是函数傅里叶变换的乘积。即,一个域中的卷积相当于另一个域中的乘积,例如时域中的卷积就对应于频域中的乘积。F(g(x)*f(x)) = F(g(x))F(f(x)),其中F表示的是傅里叶变换。卷积的应用:在提到卷积之前, 重要的是要提到卷积出现的背景。卷积发生在信号和线性系统的基础上, 也不在背景中发生, 除了所谓褶皱的数学意义和积分 (或求和、离散大小) 外, 将卷积与此背景分开讨论是没有意义的公式。信号和线性系统, 讨论信号通过线性系统 (即输入和输出之间的数学关系以及所谓的通过系统) 后发生的变化。所谓线性系统的含义是, 这个所谓的系统, 产生的输出信号和输入信号之间的数学关系是一个线性计算关系。因此, 实际上, 有必要根据我们需要处理的信号形式来设计所谓的系统传递函数, 那么这个系统的传递函数和输入信号, 在数学形式上就是所谓的卷积关系。
Chen2023-05-23 19:24:391

三个函数卷积怎么计算

http://baike.baidu.com/view/523298.htm设: f(x),g(x)是R1上的两个可积函数,作积分(如右图):  可以证明,关于几乎所有的实数x,上述积分是存在的。这样,随着 x 的不同取值,这个积分就定义了一个新函数h(x),称为函数f 与g 的卷积,记为h(x)=(f*g)(x)。容易验证,(f * g)(x) = (g * f)(x),并且(f * g)(x) 仍为可积函数。这就是说,把卷积代替乘法,L1(R1)1空间是一个代数,甚至是巴拿赫代数。 卷积与傅里叶变换有着密切的关系。利用一点性质,即两函数的傅里叶变换的乘积等于它们卷积后的傅里叶变换,能使傅里叶分析中许多问题的处理得到简化。由卷积得到的函数f*g 一般要比f 和g 都光滑。特别当g 为具有紧致集的光滑函数,f 为局部可积时,它们的卷积f * g 也是光滑函数。利用这一性质,对于任意的可积函数f,都可以简单地构造出一列逼近于f 的光滑函数列fs,这种方法称为函数的光滑化或正则化。 卷积的概念还可以推广到数列、测度以及广义函数上去。  很高兴为您解答,祝你学习进步!【梦华幻斗】团队为您答题。有不明白的可以追问!如果您认可我的回答。请点击下面的【选为满意回答】按钮,谢谢! 
此后故乡只2023-05-23 19:24:391

卷积的英文

卷积的英文如下:folding。双语例句:1、对IP核所采用的结构、卷积运算的硬件实现进行研究。The structure of IP core and the hardware implementation of convolution were investigated. www.joca.cn2、用MATLAB计算连续时间信号的卷积Convolution of Continuous-time Signals Using MATLAB dict.cnki.net3、磁场CT的卷积反投影方法Filtered back projection method of CT technique for magnetic field imaging dict.cnki.net4、基于卷积反投影CT重建的一种新型实用滤波函数A New Filter Function Based On Convolutional Back-projection CT Reconstruction dict.cnki.net5、Fuzzy积分与Fuzzy卷积Fuzzy integrals and fuzzy convolutions dict.cnki.net
小菜G的建站之路2023-05-23 19:24:391

卷积的定义

卷积是两个变量在某范围内相乘后求和的结果。如果卷积的变量是序列x(n)和h(n),则卷积的结果,其中星号*表示卷积。当时序n=0时,序列h(-i)是h(i)的时序i取反的结果;时序取反使得h(i)以纵轴为中心翻转180度,所以这种相乘后求和的计算法称为卷积和,简称卷积。另外,n是使h(-i)位移的量,不同的n对应不同的卷积结果。如果卷积的变量是函数x(t)和h(t),则卷积的计算变为,其中p是积分变量,积分也是求和,t是使函数h(-p)位移的量,星号*表示卷积。参考《数字信号处理》杨毅明著,p.55、p.188、p.264,机械工业出版社2012年发行。
大鱼炖火锅2023-05-23 19:24:391

线性代数里什么叫卷积?

科技名词定义中文名称:卷积 英文名称:convolution 定义:数学中关于两个函数的一种无穷积分运算。对于函数f1(t)和f2(t),其卷积表示为:式中:“”为卷积运算符号。 所属学科: 电力(一级学科) ;通论(二级学科) 本内容由全国科学技术名词审定委员会审定公布 百科名片卷积运算图在泛函分析中,卷积(卷积)、旋积或摺积(英语:Convolution)是通过两个函数f 和g 生成第三个函数的一种数学算子,表徵函数f 与经过翻转和平移与g 的重叠部分的累积。如果将参加卷积的一个函数看作区间的指示函数,卷积还可以被看作是“滑动平均”的推广。目录[隐藏]基本内涵定义快速卷积算法多元函数卷积性质卷积定理在群上的卷积应用基本内涵 定义 快速卷积算法 多元函数卷积性质 卷积定理 在群上的卷积 应用 [编辑本段]基本内涵 简单介绍 卷积是分析数学中一种重要的运算。设: f(x),g(x)是R1上的两个可积函数,作积分: 可以证明,关于几乎所有的 ,上述积分是存在的。这样,随着 x 的不同取值,这个积分就定义了一个新函数h(x),称为函数f 与g 的卷积,记为h(x)=(f*g)(x)。容易验证,(f * g)(x) = (g * f)(x),并且(f * g)(x) 仍为可积函数。这就是说,把卷积代替乘法,L1(R1)1空间是一个代数,甚至是巴拿赫代数。 卷积与傅里叶变换有着密切的关系。利用一点性质,即两函数的傅里叶变换的乘积等于它们卷积后的傅里叶变换,能使傅里叶分析中许多问题的处理得到简化。 由卷积得到的函数f*g 一般要比f 和g 都光滑。特别当g 为具有紧支集的光滑函数,f 为局部可积时,它们的卷积f * g 也是光滑函数。利用这一性质,对于任意的可积函数f,都可以简单地构造出一列逼近于f 的光滑函数列fs,这种方法称为函数的光滑化或正则化。 卷积的概念还可以推广到数列、测度以及广义函数上去。[编辑本段]定义 函数f 与g 的卷积记作,它是其中一个函数翻转并平移后与另一个函数的乘积的积分,是一个对平移量的函数。 积分区间取决于f 与g 的定义域。 对于定义在离散域的函数,卷积定义为快速卷积算法 当 是有限长度 N ,需要约 N 次运算。藉由一些快速算法可以降到 O(N log N) 复杂度。 最常见的快速卷积算法是藉由圆周摺积利用快速傅里叶变换。也可藉由其它不包含 FFT 的做法,如数论转换。多元函数卷积 按照翻转、平移、积分的定义,还可以类似的定义多元函数上的积分:[编辑本段]性质 各种卷积算子都满足下列性质: 交换律 结合律 分配律 数乘结合律 其中a为任意实数(或复数)。 微分定理 其中Df 表示f的微分,如果在离散域中则是指差分算子,包括前向差分与后向差分两种: 前向差分: 后向差分:[编辑本段]卷积定理 卷积定理指出,函数卷积的傅里叶变换是函数傅里叶变换的乘积。即,一个域中的卷积相当于另一个域中的乘积,例如时域中的卷积就对应于频域中的乘积。 其中表示f 的傅里叶变换。 这一定理对拉普拉斯变换、双边拉普拉斯变换、Z变换、Mellin变换和Hartley变换(参见Mellin inversion theorem)等各种傅里叶变换的变体同样成立。在调和分析中还可以推广到在局部紧致的阿贝尔群上定义的傅里叶变换。 利用卷积定理可以简化卷积的运算量。对于长度为n的序列,按照卷积的定义进行计算,需要做2n - 1组对位乘法,其计算复杂度为;而利用傅里叶变换将序列变换到频域上后,只需要一组对位乘法,利用傅里叶变换的快速算法之后,总的计算复杂度为。这一结果可以在快速乘法计算中得到应用。[编辑本段]在群上的卷积 若G 是有某m测度的群(例如豪斯多夫空间上Harr测度下局部紧致的拓扑群),对于G 上m-勒贝格可积的实数或复数函数f 和g,可定义它们的卷积: 对于这些群上定义的卷积同样可以给出诸如卷积定理等性质,但是这需要对这些群的表示理论以及调和分析的Peter-Weyl定理。[编辑本段]应用 卷积在工程和数学上都有很多应用: 统计学中,加权的滑动平均是一种卷积。 概率论中,两个统计独立变量X与Y的和的概率密度函数是X与Y的概率密度函数的卷积。 声学中,回声可以用源声与一个反映各种反射效应的函数的卷积表示。 电子工程与信号处理中,任一个线性系统的输出都可以通过将输入信号与系统函数(系统的冲激响应)做卷积获得。 物理学中,任何一个线性系统(符合叠加原理)都存在卷积。 卷积是一种线性运算,图像处理中常见的mask运算都是卷积,广泛应用于图像滤波。castlman的书对卷积讲得很详细。 高斯变换就是用高斯函数对图像进行卷积。高斯算子可以直接从离散高斯函数得到: for(i=0; i<N; i++) { for(j=0; j<N; j++) { g[i*N+j]=exp(-((i-(N-1)/2)^2+(j-(N-1)/2)^2))/(2*delta^2)); sum += g[i*N+j]; } } 再除以 sum 得到归一化算子 N是滤波器的大小,delta自选 首先,再提到卷积之前,必须提到卷积出现的背景。卷积是在信号与线性系统的基础上或背景中出现的,脱离这个背景单独谈卷积是没有任何意义的,除了那个所谓褶反公式上的数学意义和积分(或求和,离散情况下)。 信号与线性系统,讨论的就是信号经过一个线性系统以后发生的变化(就是输入 输出 和所经过的所谓系统,这三者之间的数学关系)。所谓线性系统的含义,就是,这个所谓的系统,带来的输出信号与输入信号的数学关系式之间是线性的运算关系。 因此,实际上,都是要根据我们需要待处理的信号形式,来设计所谓的系统传递函数,那么这个系统的传递函数和输入信号,在数学上的形式就是所谓的卷积关系。 卷积关系最重要的一种情况,就是在信号与线性系统或数字信号处理 中的卷积定理。利用该定理,可以将时间域或空间域中的卷积运算等价为频率域的相乘运算,从而利用FFT等快速算法,实现有效的计算,节省运算代价。
肖振2023-05-23 19:24:392

如何使用tensorflow实现卷积神经网络

没有卷积神经网络的说法,只有卷积核的说法。电脑图像处理的真正价值在于:一旦图像存储在电脑上,就可以对图像进行各种有效的处理。如减小像素的颜色值,可以解决曝光过度的问题,模糊的图像也可以进行锐化处理,清晰的图像可以使用模糊处理模拟摄像机滤色镜产生的柔和效果。用Photoshop等图像处理,施展的魔法几乎是无止境的。四种基本图像处理效果是模糊、锐化、浮雕和水彩。?这些效果是不难实现的,它们的奥妙部分是一个称为卷积核的小矩阵。这个3*3的核含有九个系数。为了变换图像中的一个像素,首先用卷积核中心的系数乘以这个像素值,再用卷积核中其它八个系数分别乘以像素周围的八个像素,最后把这九个乘积相加,结果作为这个像素的值。对图像中的每个像素都重复这一过程,对图像进行了过滤。采用不同的卷积核,就可以得到不同的处理效果。?用PhotoshopCS6,可以很方便地对图像进行处理。模糊处理——模糊的卷积核由一组系数构成,每个系数都小于1,但它们的和恰好等于1,每个像素都吸收了周围像素的颜色,每个像素的颜色分散给了它周围的像素,最后得到的图像中,一些刺目的边缘变得柔和。锐化卷积核中心的系数大于1,周围八个系数和的绝对值比中间系数小1,这将扩大一个像素与之周围像素颜色之间的差异,最后得到的图像比原来的图像更清晰。浮雕卷积核中的系数累加和等于零,背景像素的值为零,非背景像素的值为非零值。照片上的图案好像金属表面的浮雕一样,轮廓似乎凸出于其表面。要进行水彩处理,首先要对图像中的色彩进行平滑处理,把每个像素的颜色值和它周围的二十四个相邻的像素颜色值放在一个表中,然后由小到大排序,把表中间的一个颜色值作为这个像素的颜色值。然后用锐化卷积核对图像中的每个像素进行处理,以使得轮廓更加突出,最后得到的图像很像一幅水彩画。我们把一些图像处理技术结合起来使用,就能产生一些不常见的光学效果,例如光晕等等。希望我能帮助你解疑释惑。
康康map2023-05-23 19:24:391

卷积的公式是怎样计算的啊?

卷积公式如下:卷积积分公式是(f *g)∧(x)=(x)·(x),卷积是分析数学中一种重要的运算。设f(x), g(x)是R1上的两个可积函数,作积分,可以证明,关于几乎所有的x∈(-∞,∞) ,上述积分是存在的。这样,随着x的不同取值 ,这个积分就定义了一个新函数h(x),称为f与g的卷积,记为h(x)=(f *g)(x)。容易验证,(f *g)(x)=(g *f)(x),并且(f *g)(x)仍为可积函数。简介:卷积与傅里叶变换有着密切的关系。以(x) ,(x)表示L1(R)1中f和g的傅里叶变换,那么有如下的关系成立:(f *g)∧(x)=(x)·(x),即两函数的傅里叶变换的乘积等于它们卷积后的傅里叶变换。这个关系,使傅里叶分析中许多问题的处理得到简化。由卷积得到的函数(f *g)(x),一般要比f,g都光滑。特别当g为具有紧支集的光滑函数,f 为局部可积时,它们的卷积(f *g)(x)也是光滑函数。利用这一性质,对于任意的可积函数 , 都可以简单地构造出一列逼近于f 的光滑函数列fs(x),这种方法称为函数的光滑化或正则化。
肖振2023-05-23 19:24:391

卷积运算公式是什么?

卷积公式为:f(t)∗g(t)=∫t0f(u)g(t−u)du。卷积(Convolution)是通过两个函数f(t)和g(t)生成第三个函数的一种数学算子,表征函数f(t)与g(t)经过翻转和平移的重叠部分的面积。简介褶积(又名卷积)和反褶积(又名去卷积)是一种积分变换的数学方法,在许多方面得到了广泛应用。用褶积解决试井解释中的问题,早就取得了很好成果;而反褶积,直到最近,Schroeter、Hollaender和Gringarten等人解决了其计算方法上的稳定性问题,使反褶积方法很快引起了试井界的广泛注意。有专家认为,反褶积的应用是试井解释方法发展史上的又一次重大飞跃。他们预言,随着测试新工具和新技术的增加和应用,以及与其它专业研究成果的更紧密结合,试井在油气藏描述中的作用和重要性必将不断增大。
wpBeta2023-05-23 19:24:391

卷积定理定义是什么?

f(x,y) * h(x,y)<=>F(u,v)H(u,v)   f(x,y)h(x,y)<=>[F(u,v) * H(u,v)]/2π (A * B 表示做A与B的卷积)   二个二维连续函数在空间域中的卷积可求其相应的二个傅立叶变换乘积的反变换而得。反之,在频域中的卷积可用的在空间域中乘积的傅立叶变换而得。   这一定理对拉普拉斯变换、双边拉普拉斯变换、Z变换、Mellin变换和Hartley变换等各种傅里叶变换的变体同样成立。在调和分析中还可以推广到在局部紧致的阿贝尔群上定义的傅里叶变换。 利用卷积定理可以简化卷积的运算量。对于长度为n的序列,按照卷积的定义进行计算,需要做2N - 1组对位乘法,其计算复杂度为O(N * N);而利用傅里叶变换将序列变换到频域上后,只需要一组对位乘法,利用傅里叶变换的快速算法之后,总的计算复杂度为O(N * log N)。这一结果可以在快速乘法计算中得到应用。
无尘剑 2023-05-23 19:24:391

概率论 卷积的使用

阿啵呲嘚2023-05-23 19:24:391

卷积的计算

不知道为什么很多人将如此简单点的问题,回答得如此之复杂,难道真是那句话,什么是教授,教授就是将人人都懂的问题,解释得人人都听不懂,看来很多学生继承了这种传统,这是教育的悲哀!什么是卷积,为什么要用卷积?原因很简单,任何一个输入信号都可以看成是一个个冲激信号的叠加,那么对应的输出也可以看做是一个个冲激响应的叠加将这一个个冲激响应叠加起来就是一个卷积吗!之所以引入卷积,是因为引入了冲激,将这些冲激响应叠加起来,就是卷积
NerveM 2023-05-23 19:24:392

卷积的定义

在泛函分析中,卷积、旋积或摺积(英语:Convolution)是通过两个函数f和g生成第三个函数的一种数学算子,表征函数f与经过翻转和平移的g的重叠部分的累积。如果将参加卷积的一个函数看作区间的指示函数,卷积还可以被看作是“滑动平均”的推广。褶积(又名卷积)和反褶积(又名去卷积)是一种积分变换的数学方法,在许多方面得到了广泛应用。用褶积解决试井解释中的问题,早就取得了很好成果;而反褶积,直到最近,Schroeter、Hollaender和Gringarten等人解决了其计算方法上的稳定性问题,使反褶积方法很快引起了试井界的广泛注意。有专家认为,反褶积的应用是试井解释方法发展史上的又一次重大飞跃。他们预言,随着测试新工具和新技术的增加和应用,以及与其它专业研究成果的更紧密结合,试井在油气藏描述中的作用和重要性必将不断增大。简单定义:卷积是分析数学中一种重要的运算。[1]设:f(x),g(x)是R1上的两个可积函数,作积分:卷积可以证明,关于几乎所有的实数x,上述积分是存在的。这样,随着x的不同取值,这个积分就定义了一个新函数h(x),称为函数f与g的卷积,记为h(x)=(f*g)(x)。容易验证,(f * g)(x) = (g * f)(x),并且(f * g)(x)仍为可积函数。这就是说,把卷积代替乘法,L1(R1)空间是一个代数,甚至是巴拿赫代数。
大鱼炖火锅2023-05-23 19:24:381

卷积的基本原理

在泛函分析中,卷积(旋积或摺积,英语:Convolution)是通过两个函数f 和g 生成第三个函数的一种数学算子,表征函数f 与经过翻转和平移的g 的重叠部分的累积。如果将参加卷积的一个函数看作区间的指示函数,卷积还可以被看作是“滑动平均”的推广。 卷积定理指出,函数卷积的傅里叶变换是函数傅里叶变换的乘积。即,一个域中的卷积相当于另一个域中的乘积,例如时域中的卷积就对应于频域中的乘积。其中表示f 的傅里叶变换。这一定理对拉普拉斯变换、双边拉普拉斯变换、Z变换、Mellin变换和Hartley变换(参见Mellin inversion theorem)等各种傅里叶变换的变体同样成立。在调和分析中还可以推广到在局部紧致的阿贝尔群上定义的傅里叶变换。利用卷积定理可以简化卷积的运算量。对于长度为n的序列,按照卷积的定义进行计算,需要做2n - 1组对位乘法,其计算复杂度为;而利用傅里叶变换将序列变换到频域上后,只需要一组对位乘法,利用傅里叶变换的快速算法之后,总的计算复杂度为。这一结果可以在快速乘法计算中得到应用。 卷积的概念还可以推广到数列、测度以及广义函数上去。
Jm-R2023-05-23 19:24:381

卷积的意义

卷积的意义如下:在泛函分析中,卷积、旋积或褶积是通过两个函数f和g生成第三个函数的一种数学运算,其本质是一种特殊的积分变换,表征函数f与g经过翻转和平移的重叠部分函数值乘积对重叠长度的积分。如果将参加卷积的一个函数看作区间的指示函数,卷积还可以被看作是“滑动平均”的推广。卷积(又名褶积)和反卷积(又名反褶积)是一种积分变换的数学方法,在许多方面得到了广泛应用。用卷积解决试井解释中的问题,早就取得了很好成果。卷积的定理卷积定理指出,函数卷积的傅里叶变换是函数傅里叶变换的乘积。即,一个域中的卷积相当于另一个域中的乘积,例如时域中的卷积就对应于频域中的乘积。这一定理对拉普拉斯变换、双边拉普拉斯变换、Z变换、Mellin变换和Hartley变换(参见Mellin inversion theorem)等各种傅里叶变换的变体同样成立。在调和分析中还可以推广到在局部紧致的阿贝尔群上定义的傅里叶变换。利用卷积定理可以简化卷积的运算量。对于长度为n的序列,按照卷积的定义进行计算,需要做(2n- 1)组对位乘法,其计算复杂度为;而利用傅里叶变换将序列变换到频域上后,只需要一组对位乘法,利用傅里叶变换的快速算法之后,总的计算复杂度为。这一结果可以在快速乘法计算中得到应用。
大鱼炖火锅2023-05-23 19:24:381

卷积公式的用法

这不是考研概率题么,你好好看看复习大全,有很多这种类型题的解法,光会做一道题没有用啊,这种题型在考研中很常见,你要掌握啊。李永乐的复习大全里面讲的很详细
FinCloud2023-05-23 19:24:3810

卷积积分公式是什么?

公式如下:卷积积分公式是(f *g)∧(x)=(x)·(x),卷积是分析数学中一种重要的运算。设f(x), g(x)是R1上的两个可积函数,作积分,可以证明,关于几乎所有的x∈(-∞,∞) ,上述积分是存在的。这样,随着x的不同取值 ,这个积分就定义了一个新函数h(x),称为f与g的卷积,记为h(x)=(f *g)(x)。容易验证,(f *g)(x)=(g *f)(x),并且(f *g)(x)仍为可积函数。简介:卷积与傅里叶变换有着密切的关系。以(x) ,(x)表示L1(R)1中f和g的傅里叶变换,那么有如下的关系成立:(f *g)∧(x)=(x)·(x),即两函数的傅里叶变换的乘积等于它们卷积后的傅里叶变换。这个关系,使傅里叶分析中许多问题的处理得到简化。由卷积得到的函数(f *g)(x),一般要比f,g都光滑。特别当g为具有紧支集的光滑函数,f 为局部可积时,它们的卷积(f *g)(x)也是光滑函数。利用这一性质,对于任意的可积函数 , 都可以简单地构造出一列逼近于f 的光滑函数列fs(x),这种方法称为函数的光滑化或正则化。卷积的概念还可以推广到数列 、测度以及广义函数上去。
善士六合2023-05-23 19:24:381

卷积公式是什么

卷积公式是:z(t)=x(t)*y(t)=∫x(m)y(t-m)dm。这是一个定义式。卷积公式是用来求随机变量和的密度函数(pdf)的计算公式。 卷积定理指出,函数卷积的傅里叶变换是函数傅里叶变换的乘积。即,一个域中的卷积相当于另一个域中的乘积,例如时域中的卷积就对应于频域中的乘积。F(g(x)*f(x)) = F(g(x))F(f(x)),其中F表示的是傅里叶变换。
人类地板流精华2023-05-23 19:24:381

什么是卷积

你是通信与信息工程专业的吗? 对于非数学系学生来说,只要懂怎么用卷积就可以了,研究什么是卷积其实意义不大,它就是一种微元相乘累加的极限形式。卷积本身不过就是一种数学运算而已。就跟“蝶形运算”一样,怎么证明,这是数学系的人的工作。简单定义:卷积是分析数学中一种重要的运算。设:f(x),g(x)是R1上的两个可积函数,作积分:可以证明,关于几乎所有的实数x,上述积分是存在的。这样,随着x的不同取值,这个积分就定义了一个新函数h(x),称为函数f与g的卷积,记为h(x)=(f*g)(x)。容易验证,(f * g)(x) = (g * f)(x),并且(f * g)(x)仍为可积函数。这就是说,把卷积代替乘法,L1(R1)空间是一个代数,甚至是巴拿赫代数。卷积与傅里叶变换有着密切的关系。利用一点性质,即两函数的傅里叶变换的乘积等于它们卷积后的傅里叶变换,能使傅里叶分析中许多问题的处理得到简化。由卷积得到的函数f*g一般要比f和g都光滑。特别当g为具有紧致集的光滑函数,f为局部可积时,它们的卷积f * g也是光滑函数。利用这一性质,对于任意的可积函数f,都可以简单地构造出一列逼近于f的光滑函数列fs,这种方法称为函数的光滑化或正则化。卷积的概念还可以推广到数列、测度以及广义函数上去。卷积算子都满足下列性质:交换律 结合律 分配律 数乘结合律 其中a为任意实数(或复数)。微分定理 其中Df表示f的微分,如果在离散域中则是指差分算子,包括前向差分与后向差分两种。
tt白2023-05-23 19:24:381

卷积公式是什么啊

卷积公式是:z(t)=x(t)*y(t)=∫x(m)y(t-m)dm。这是一个定义式。卷积公式是用来求随机变量和的密度函数(pdf)的计算公式。卷积定理指出,函数卷积的傅里叶变换是函数傅里叶变换的乘积。即,一个域中的卷积相当于另一个域中的乘积,例如时域中的卷积就对应于频域中的乘积。F(g(x)*f(x)) = F(g(x))F(f(x)),其中F表示的是傅里叶变换。卷积的应用:在提到卷积之前, 重要的是要提到卷积出现的背景。卷积发生在信号和线性系统的基础上, 也不在背景中发生, 除了所谓褶皱的数学意义和积分 (或求和、离散大小) 外, 将卷积与此背景分开讨论是没有意义的公式。信号和线性系统, 讨论信号通过线性系统 (即输入和输出之间的数学关系以及所谓的通过系统) 后发生的变化。所谓线性系统的含义是, 这个所谓的系统, 产生的输出信号和输入信号之间的数学关系是一个线性计算关系。因此, 实际上, 有必要根据我们需要处理的信号形式来设计所谓的系统传递函数, 那么这个系统的传递函数和输入信号, 在数学形式上就是所谓的卷积关系。
gitcloud2023-05-23 19:24:381

怎样通俗易懂地解释卷积?

在2015中国计算机大会特邀报告上,中国人工智能学会理事长李德毅院士的主题报告。在报告中提到了卷积的理解问题。他举例说,在一根铁丝某处不停地弯曲,假设发热函数是f(t) ,散热函数是 g(t) ,此时此刻的温度就是 f(t) 跟g(t)的卷积。在一个特定环境下,发声体的声源函数是f(t) ,该环境下对声源的反射效应函数是 g(t) ,那么这个环境下的接受到声音就是 f(t) 和 g(t) 的卷积。
FinCloud2023-05-23 19:24:3813

什么是卷积公式?

卷积公式的使用条件是:只用来计算密度函数,不能计算分布函数。在泛函分析中,卷积是通过两个函数f和g生成第三个函数的一种数学算子,表征函数f与g经过翻转和平移的重叠部分函数值乘积对重叠长度的积分。有一种学术的说法:卷积是将过去所有连续信号经过系统的响应之后得到的在观察那一刻的加权叠加。从打板子的例子来看结合前边提到的连续形式f和g的卷积,可以理解为f和g的卷积在n处的值是用来表示在时刻n遭受的疼痛程度。f(t)是在说t这一时刻的人打的力度,g(n-t)说的是现在站在n时刻开始统计这个t时刻打的板子本身的疼痛程度变化成了什么样子。将所有积分计算出来就可以知道到n时刻这个人有多痛。卷积是一种积分变换的数学方法,在许多方面得到了广泛应用。用卷积解决试井解释中的问题,早就取得了很好成果,而反卷积是直到最近Schroeter、Hollaender和Gringarten等人解决了其计算方法上的稳定性问题,使反卷积方法很快引起了试井界的广泛注意。
小菜G的建站之路2023-05-23 19:24:381

卷积公式指的是什么?

卷积公式是指两个函数f和g生成第三个函数的一种数学算子。表征函数f与经过翻转和平移的g的重叠部分的累积,如果将参加卷积的一个函数看作区间的指示函数,卷积还可以被看作是滑动平均的推广。卷积公式特点在卷积神经网络中会用卷积函数表示重叠部分,这个重叠部分的面积就是特征,卷积公式是用来求随机变量和的密度函数pdf的计算公式,卷积公式是一种积分变换的数学方法,在许多方面得到了广泛应用。用卷积公式解决试井解释中的问题,早就取得了很好成果,而反褶积直到最近Schroeter,Hollaender和Gringarten等人解决了其计算方法上的稳定性问题,使反褶积方法很快引起了试井界的广泛注意。
苏州马小云2023-05-23 19:24:381

卷积的卷积定理

卷积定理指出,函数卷积的傅里叶变换是函数傅里叶变换的乘积。即,一个域中的卷积相当于另一个域中的乘积,例如时域中的卷积就对应于频域中的乘积。F(g(x)*f(x)) = F(g(x))F(f(x))其中F表示的是傅里叶变换。这一定理对拉普拉斯变换、双边拉普拉斯变换、Z变换、Mellin变换和Hartley变换(参见Mellin inversion theorem)等各种傅里叶变换的变体同样成立。在调和分析中还可以推广到在局部紧致的阿贝尔群上定义的傅里叶变换。利用卷积定理可以简化卷积的运算量。对于长度为n的序列,按照卷积的定义进行计算,需要做2n- 1组对位乘法,其计算复杂度为;而利用傅里叶变换将序列变换到频域上后,只需要一组对位乘法,利用傅里叶变换的快速算法之后,总的计算复杂度为。这一结果可以在快速乘法计算中得到应用。
人类地板流精华2023-05-23 19:24:381

卷积计算公式是怎样的?

卷积公式如下:卷积积分公式是(f *g)∧(x)=(x)·(x),卷积是分析数学中一种重要的运算。设f(x), g(x)是R1上的两个可积函数,作积分,可以证明,关于几乎所有的x∈(-∞,∞) ,上述积分是存在的。这样,随着x的不同取值 ,这个积分就定义了一个新函数h(x),称为f与g的卷积,记为h(x)=(f *g)(x)。容易验证,(f *g)(x)=(g *f)(x),并且(f *g)(x)仍为可积函数。简介:卷积与傅里叶变换有着密切的关系。以(x) ,(x)表示L1(R)1中f和g的傅里叶变换,那么有如下的关系成立:(f *g)∧(x)=(x)·(x),即两函数的傅里叶变换的乘积等于它们卷积后的傅里叶变换。这个关系,使傅里叶分析中许多问题的处理得到简化。由卷积得到的函数(f *g)(x),一般要比f,g都光滑。特别当g为具有紧支集的光滑函数,f 为局部可积时,它们的卷积(f *g)(x)也是光滑函数。利用这一性质,对于任意的可积函数 , 都可以简单地构造出一列逼近于f 的光滑函数列fs(x),这种方法称为函数的光滑化或正则化。
mlhxueli 2023-05-23 19:24:381

卷积公式是什么?

卷积公式是:z(t)=x(t)*y(t)=∫x(m)y(t-m)dm。这是一个定义式。卷积公式是用来求随机变量和的密度函数(pdf)的计算公式。卷积定理指出,函数卷积的傅里叶变换是函数傅里叶变换的乘积。即,一个域中的卷积相当于另一个域中的乘积,例如时域中的卷积就对应于频域中的乘积。F(g(x)*f(x)) = F(g(x))F(f(x)),其中F表示的是傅里叶变换。卷积的应用:在提到卷积之前, 重要的是要提到卷积出现的背景。卷积发生在信号和线性系统的基础上, 也不在背景中发生, 除了所谓褶皱的数学意义和积分 (或求和、离散大小) 外, 将卷积与此背景分开讨论是没有意义的公式。信号和线性系统, 讨论信号通过线性系统 (即输入和输出之间的数学关系以及所谓的通过系统) 后发生的变化。所谓线性系统的含义是, 这个所谓的系统, 产生的输出信号和输入信号之间的数学关系是一个线性计算关系。因此, 实际上, 有必要根据我们需要处理的信号形式来设计所谓的系统传递函数, 那么这个系统的传递函数和输入信号, 在数学形式上就是所谓的卷积关系。
bikbok2023-05-23 19:24:381

卷积是什么?

中文名称:卷积英文名称:convolution定义:数学中关于两个函数的一种无穷积分运算。对于函数f1(t)和f2(t),其卷积表示为:式中:“”为卷积运算符号。应用学科:电力(一级学科);通论(二级学科)以上内容由全国科学技术名词审定委员会审定公布求助编辑百科名片卷积运算图在泛函分析中,卷积(卷积)、旋积或摺积(英语:Convolution)是通过两个函数f 和g 生成第三个函数的一种数学算子,表徵函数f 与经过翻转和平移与g 的重叠部分的累积。如果将参加卷积的一个函数看作区间的指示函数,卷积还可以被看作是“滑动平均”的推广。
Jm-R2023-05-23 19:24:381

卷积运算公式是什么?

x(t)*h(t) = h(t)*x(t);x(t)*[g(t)+h(t)] = x(t)*g(t)+x(t)*h(t);[x(t)*g(t)]*h(t) = x(t)*[g(t)*h(t)]。在泛函分析中,卷积、旋积或褶积(英语:Convolution)是通过两个函数f和g生成第三个函数的一种数学算子,表征函数f与g经过翻转和平移的重叠部分函数值乘积对重叠长度的积分。应用:用卷积解决试井解释中的问题,早就取得了很好成果;而反卷积,直到最近,Schroeter、Hollaender和Gringarten等人解决了其计算方法上的稳定性问题,使反卷积方法很快引起了试井界的广泛注意。有专家认为,反卷积的应用是试井解释方法发展史上的又一次重大飞跃。他们预言,随着测试新工具和新技术的增加和应用,以及与其它专业研究成果的更紧密结合,试井在油气藏描述中的作用和重要性必将不断增大。   
CarieVinne 2023-05-23 19:24:381

卷积的基本内涵

简单定义:卷积是分析数学中一种重要的运算。设:f(x),g(x)是R1上的两个可积函数,作积分: 可以证明,关于几乎所有的实数x,上述积分是存在的。这样,随着x的不同取值,这个积分就定义了一个新函数h(x),称为函数f与g的卷积,记为h(x)=(f*g)(x)。容易验证,(f * g)(x) = (g * f)(x),并且(f * g)(x)仍为可积函数。这就是说,把卷积代替乘法,L1(R1)空间是一个代数,甚至是巴拿赫代数。卷积与傅里叶变换有着密切的关系。利用一点性质,即两函数的傅里叶变换的乘积等于它们卷积后的傅里叶变换,能使傅里叶分析中许多问题的处理得到简化。由卷积得到的函数f*g一般要比f和g都光滑。特别当g为具有紧致集的光滑函数,f为局部可积时,它们的卷积f * g也是光滑函数。利用这一性质,对于任意的可积函数f,都可以简单地构造出一列逼近于f的光滑函数列fs,这种方法称为函数的光滑化或正则化。卷积的概念还可以推广到数列、测度以及广义函数上去。
此后故乡只2023-05-23 19:24:381

求下列函数的卷积积分 求步骤?

卷积积分  分析数学中一种重要的运算。设f(x), g(x)是R1上的两个可积函数,作积分:   可以证明,关于几乎所有的x∈(-∞,∞) ,上述积分是存在的。这样,随着x的不同取值 ,这个积分就定义了一个新函数h(x),称为f与g的卷积,记为h(x)=(f *g)(x)。容易验证,(f *g)(x)=(g *f)(x),并且(f *g)(x)仍为可积函数。这就是说,把卷积代替乘法,L1(R1)1空间是一个代数,甚至是巴拿赫代数。   卷积与傅里叶变换有着密切的关系。以(x) ,(x)表示L1(R)1中f和g的傅里叶变换,那么有如下的关系成立:(f *g)∧(x)=(x)·(x),即两函数的傅里叶变换的乘积等于它们卷积后的傅里叶变换。这个关系,使傅里叶分析中许多问题的处理得到简化。   由卷积得到的函数(f *g)(x),一般要比f,g都光滑。特别当g为具有紧支集的光滑函数,f 为局部可积时,它们的卷积(f *g)(x)也是光滑函数。利用这一性质,对于任意的可积函数 , 都可以简单地构造出一列逼近于f 的光滑函数列fs(x),这种方法称为函数的光滑化或正则化。   卷积的概念还可以推广到数列 、测度以及广义函数上去。  卷积积分的物理意义  在激励条件下,线性电路在t时刻的零状态响应=从激励函数开始作用的时刻(ξ=0)  到t时刻( ξ=t)的区间内,无穷多个强度不同的冲激响应的总和。  可见,冲激响应在卷积中占据核心地位
余辉2023-05-23 19:24:381

什么是卷积运算?有什么用处?

在泛函分析中,卷积(卷积)、旋积或摺积(英语:Convolution)是通过两个函数f 和g 生成第三个函数的一种数学算子,表徵函数f 与经过翻转和平移与g 的重叠部分的累积。如果将参加卷积的一个函数看作区间的指示函数,卷积还可以被看作是“滑动平均”的推广。 简单介绍 卷积是分析数学中一种重要的运算。设: f(x),g(x)是R1上的两个可积函数,作积分: 可以证明,关于几乎所有的 ,上述积分是存在的。这样,随着 x 的不同取值,这个积分就定义了一个新函数h(x),称为函数f 与g 的卷积,记为h(x)=(f*g)(x)。容易验证,(f * g)(x) = (g * f)(x),并且(f * g)(x) 仍为可积函数。这就是说,把卷积代替乘法,L1(R1)1空间是一个代数,甚至是巴拿赫代数。 卷积与傅里叶变换有着密切的关系。利用一点性质,即两函数的傅里叶变换的乘积等于它们卷积后的傅里叶变换,能使傅里叶分析中许多问题的处理得到简化。 由卷积得到的函数f*g 一般要比f 和g 都光滑。特别当g 为具有紧支集的光滑函数,f 为局部可积时,它们的卷积f * g 也是光滑函数。利用这一性质,对于任意的可积函数f,都可以简单地构造出一列逼近于f 的光滑函数列fs,这种方法称为函数的光滑化或正则化。 卷积的概念还可以推广到数列、测度以及广义函数上去。卷积在工程和数学上都有很多应用: 统计学中,加权的滑动平均是一种卷积。 概率论中,两个统计独立变量X与Y的和的概率密度函数是X与Y的概率密度函数的卷积。 声学中,回声可以用源声与一个反映各种反射效应的函数的卷积表示。 电子工程与信号处理中,任一个线性系统的输出都可以通过将输入信号与系统函数(系统的冲激响应)做卷积获得。 物理学中,任何一个线性系统(符合叠加原理)都存在卷积。 卷积是一种线性运算,图像处理中常见的mask运算都是卷积,广泛应用于图像滤波。castlman的书对卷积讲得很详细。 高斯变换就是用高斯函数对图像进行卷积。高斯算子可以直接从离散高斯函数得到: for(i=0; i<N; i++) { for(j=0; j<N; j++) { g[i*N+j]=exp(-((i-(N-1)/2)^2+(j-(N-1)/2)^2))/(2*delta^2)); sum += g[i*N+j]; } } 再除以 sum 得到归一化算子 N是滤波器的大小,delta自选 首先,再提到卷积之前,必须提到卷积出现的背景。卷积是在信号与线性系统的基础上或背景中出现的,脱离这个背景单独谈卷积是没有任何意义的,除了那个所谓褶反公式上的数学意义和积分(或求和,离散情况下)。 信号与线性系统,讨论的就是信号经过一个线性系统以后发生的变化(就是输入 输出 和所经过的所谓系统,这三者之间的数学关系)。所谓线性系统的含义,就是,这个所谓的系统,带来的输出信号与输入信号的数学关系式之间是线性的运算关系。 因此,实际上,都是要根据我们需要待处理的信号形式,来设计所谓的系统传递函数,那么这个系统的传递函数和输入信号,在数学上的形式就是所谓的卷积关系。 卷积关系最重要的一种情况,就是在信号与线性系统或数字信号处理 中的卷积定理。利用该定理,可以将时间域或空间域中的卷积运算等价为频率域的相乘运算,从而利用FFT等快速算法,实现有效的计算,节省运算代价。
善士六合2023-05-23 19:24:373

卷积是什么意思

卷积云的解释云层或云片的形状像鱼鳞,云块较小,常排列 成行 或成群。色白,无阴暗部分。卷积云或卷层云等连在一起,天气就会转坏。谚有“鱼鳞天,不雨也风癫”之说。 为白色无影,呈细波、小球或鱼鳞状的云块。常和卷层云或卷云伴见。大半在多变天气前出现。 词语分解 卷的解释 卷 à 可以 舒展 和弯转成圆筒形的书画:长卷。画卷。手卷。 书籍的册本或篇章:上卷。第一卷。藏书十万卷。卷帙(书卷成束,用布裹或布囊装起来称“帙”,即书套。现一般指书籍)。 考试用的纸:试卷。 机关 里分 积云的解释 云的一种。云体垂直向上发展,顶部成圆弧形,底部成水平状。按云体发展的强弱,可分为淡积云、中积云和浓积云。浓积云多见降雨。
韦斯特兰2023-05-23 19:24:371

卷积的性质有哪些

卷积代数三大性质:1.交换律2.分配律3.结合律
u投在线2023-05-23 19:24:371

什么叫线性卷积?

当有限长序列x(n)和h(n)的长度分别为N1和N2,取N>=max(N1,N2),当N>=N1+N2-1,则线性卷积与圆周卷积相同。线性卷积是在时域描述线性系统输入和输出之间关系的一种运算。这种运算在线性系统分析和信号处理中应用很多,通常简称卷积。两个函数的圆周卷积是由他们的周期延伸所来定义的。周期延伸意思是把原本的函数平移某个周期T的整数倍后再全部加起来所产生的新函数。离散信号的圆周卷积可以经由圆周卷积定理使用快速傅立叶变换(FFT)而有效率的计算。因此,若原本的(线性)卷积能转换成圆周卷积来计算,会远比直接计算更快速。考虑到长度L和长度M的有限长度离散信号,做卷积之后会成为长度L+M-1的信号,因此只要把两离散信号补上适当数目的零(zero-padding)成为N点信号,其中N≥L+M-1,则它们的圆周卷积就与卷积相等。拓展资料:线性卷积在时域描述线性系统输入和输出之间关系的一种运算。这种运算在线性系统分析和信号处理中应用很多,通常简称卷积。循环卷积不同于线性卷积的一种卷积运算,是周期卷积的一种。
ardim2023-05-23 19:24:371

常用信号的卷积公式表

常用信号的卷积公式表是:z(t)=x(t)*y(t)=∫x(m)y(t-m)dm。这是一个定义式。卷积公式是用来求随机变量和的密度函数(pdf)的计算公式。注意卷积公式仅在Z与X、Y呈线性关系方可使用,因为小写z书写不方便,故用t代替。方法就是将y(或x)用x和t表达,替换原密度函数的y,对x(或y)积分,这样就可以消掉x和y,只剩下t。卷积定理指出,函数卷积的傅里叶变换是函数傅里叶变换的乘积。即,一个域中的卷积相当于另一个域中的乘积,例如时域中的卷积就对应于频域中的乘积。F(g(x)*f(x)) = F(g(x))F(f(x)),其中F表示的是傅里叶变换。在泛函分析中,卷积、旋积或褶积(英语:Convolution)是通过两个函数f和g生成第三个函数的一种数学算子,表征函数f与g经过翻转和平移的重叠部分函数值乘积对重叠长度的积分。如果将参加卷积的一个函数看作区间的指示函数,卷积还可以被看作是“滑动平均”的推广。卷积是两个变量在某范围内相乘后求和的结果。离散情况下是数列相乘再求和。连续情况下是函数相乘再积分。卷积是两个函数的运算方式,就是一种满足一些条件(交换律、分配率、结合律、数乘结合律、平移特性、微分特性、积分特性等)的算子。用一种方式将两个函数联系到一起。从形式上讲,就是先对g函数进行翻转,相当于在数轴上把g函数从右边翻转到左边去,然后再把g函数平移到n,在这个位置上对两个函数的对应点相乘,然后相加。这就是“卷”的过程。函数翻转,滑动叠加(积分、加权求和)。有一种学术的说法:卷积是将过去所有连续信号经过系统的响应之后得到的在观察那一刻的加权叠加。从打板子的例子来看结合前边提到的连续形式f和g的卷积,可以理解为f和g的卷积在n处的值是用来表示在时刻n 遭受的疼痛程度。f(t)是在说t这一时刻的人打的力度,g(n-t)说的是现在站在n时刻开始统计 这个t时刻打的板子本身的疼痛程度变化成了什么样子。将所有积分计算出来 就可以知道到n时刻这个人有多痛。(至于积分上下限就不能用这个时刻来理解了,毕竟现在无法知道未来。)不过从这个简单的例子中还是可以窥见一些卷积公式的奥秘,我们知道在实际推导时主要是在推导两个随机变量的和的时候推导出来的。
苏州马小云2023-05-23 19:24:371

关于信号与系统里如何判断卷积是否存在。请解释下图片里这个卷积为什么不存在,麻烦详细点解说下。谢谢

  信号与线性系统,讨论的就是信号经过一个线性系统以后发生的变化(就是输入、输出和所经过的所谓系统,这三者之间的数学关系)。所谓线性系统的含义,就是这个所谓的系统带来的输出信号与输入信号的数学关系式之间是线性的运算关系。  因此,实际上都是要根据我们需要待处理的信号形式,来设计所谓的系统传递函数,那么这个系统的传递函数和输入信号,在数学上的形式就是所谓的卷积关系。  卷积关系最重要的一种情况,就是在信号与线性系统或数字信号处理中的卷积定理。利用该定理,可以将时间域或空间域中的卷积运算等价为频率域的相乘运算,从而利用FFT等快速算法,实现有效的计算,节省运算代价。  参考资料:
真颛2023-05-23 19:24:372

卷积积分公式是什么?

卷积公式是:z(t)=x(t)*y(t)=∫x(m)y(t-m)dm。卷积是分析数学中一种重要的运算。设f(x), g(x)是R1上的两个可积函数,作积分:可以证明,关于几乎所有的x∈(-∞,∞) ,上述积分是存在的。这样,随着x的不同取值 ,这个积分就定义了一个新函数h(x),称为f与g的卷积,记为h(x)=(f *g)(x)。容易验证,(f *g)(x)=(g *f)(x),并且(f *g)(x)仍为可积函数。这就是说,把卷积代替乘法,L1(R1)1空间是一个代数,甚至是巴拿赫代数。数学定理:卷积定理指出,函数卷积的傅里叶变换是函数傅里叶变换的乘积。即,一个域中的卷积相当于另一个域中的乘积,例如时域中的卷积就对应于频域中的乘积。F(g(x)*f(x)) = F(g(x))F(f(x))。其中F表示的是傅里叶变换。这一定理对拉普拉斯变换、双边拉普拉斯变换、Z变换、Mellin变换和Hartley变换(参见Mellin inversion theorem)等各种傅里叶变换的变体同样成立。在调和分析中还可以推广到在局部紧致的阿贝尔群上定义的傅里叶变换。利用卷积定理可以简化卷积的运算量。对于长度为n的序列,按照卷积的定义进行计算,需要做2n- 1组对位乘法,其计算复杂度为;而利用傅里叶变换将序列变换到频域上后,只需要一组对位乘法,利用傅里叶变换的快速算法之后,总的计算复杂度为。这一结果可以在快速乘法计算中得到应用。
CarieVinne 2023-05-23 19:24:371

什么是卷积定理? 卷积定理用通俗的话怎么解释?

卷积定理 f(x,y)*h(x,y)F(u,v)H(u,v) f(x,y)h(x,y)F(u,v)*H(u,v) 二个二维连续函数在空间域中的卷积可求其相应的二个傅立叶变换乘积的反变换而得.反之,在频域中的卷积可用的在空间域中乘积的傅立叶变换而得.
无尘剑 2023-05-23 19:24:371

matlab怎么表示卷积

用conv2函数
左迁2023-05-23 19:24:372

有人能告诉我卷积和、卷积积分的物理意义,谢谢,诸位!

卷积和的物理意义:在LTI离散系统中,可用与上述大致相同的方法进行分析。由于离散信号本身是一个序列,因此,激励信号分解为单位序列的工作很容易完成。如果系统的单位序列响应为已知,那么,把这些序列相加就得到系统对于该激励信号的零状态响应。卷积积分的物理意义:在激励条件下,线性电路在t时刻的零状态响应=从激励函数开始作用的时刻(ξ=0);到t时刻( ξ=t)的区间内,无穷多个强度不同的冲激响应的总和。可见,冲激响应在卷积中占据核心地位。扩展资料:卷积积分的应用:卷积积分法已知电路的冲激响应为h(t),则任意激励e(t)的零状态响应r(t)求得拉普拉斯变换法(也称运算法);即:(1)先将表示电压或电流的时域形式的任意激励f()做拉氏变换,得到复频域的电压或电流激励的象,从等效运算电路求解以象函数为变量的线性代数方程,得到电压或电流响应的象函数。(2)再利用拉氏反变换(通常可以查表)求原函数,即可得任意激励e(t)的时域形式的零状态响应。参考资料来源:百度百科-卷积和参考资料来源:百度百科-卷积积分
Ntou1232023-05-23 19:24:371

卷积 什么意思

卷积是一种线性运算,图象处理中常见的mask运算都是卷积,广泛应用于图象滤波。castlman的书对卷积讲得很详细。高斯变换就是用高斯函数对图象进行卷积。高斯算子可以直接从离散高斯函数得到:for(i=0; i<N; i++){ for(j=0; j<N; j++) { g[i*N+j]=exp(-((i-(N-1)/2)^2+(j-(N-1)/2)^2))/(2*delta^2)); sum += g[i*N+j]; }}再除以 sum 得到归一化算子N是滤波器的大小,delta自己选
NerveM 2023-05-23 19:24:372

matlab怎样求卷积?

function[f,k]=sconv(f1,f2,k1,k2,p)%计算连续信号卷积积分f(t)=f1(t)*f2(t)%f:卷积积分f(t)对应的非零样值向量%k:f(t)的对应时间向量%f1:f1(t)非零样值向量%f2:f2(t)的非零样值向量%k1:f1(t)的对应时间向量%k2:f2(t)的对应时间向量%p:取样时间间隔f=conv(f1,f2);f=f*p;k0=k1(1)+k2(1);k3=length(f1)+length(f2)-2;k=k0:p:k0+k3*p;subplot(2,2,1)plot(k1,f1);title("f1(t)");xlabel("t");ylabel("f1(t)");subplot(2,2,2);plot(k2,f2);title("f2(t)")subplot(2,2,3)plot(k,f);h=get(gca,"position");h(3)=2.5*h(3);set(gca,"position",h);title("f(t)=f1(t)*f2(t)")xlabel("t");ylabel("f(t)")如果你就当这两个都是从1开始的,直接卷积掉,结果是5个数,第一个数就是x(1)*h(1),这也是你要的卷积当中的一个,只是在你要的结果里,这个是x(0)*h(-1),所以在结果的序号是-1而不是1,所以你只要把结果平移就可以了因为matlab不支持负数序号的数组,所以你最好只是“在心里平移”就好了,就是说你保存的还是这个结果,只是写程序的时候记住了,这个是从-1开始的你只需要在画图的时候指定横坐标plot(-1:3,conv(x,h))
阿啵呲嘚2023-05-23 19:24:371

matlab怎样算序列卷积

如何利用matlab实现两个有限长序列的卷积胖博士分享2017-10-02 24024人看过 卷积运算可以说是一种有别于其他运算的新型运算,在信号处理工作中,它是一种常用的工具。随着信号与系统理论研究的深入以及计算机技术的发展,卷积运算被广泛地运用到诸多新处理领域中,如:现代地震勘测,超声诊断,光学诊断,光学成像,系统辨识及其他。 信号的卷积是针对时域信号处理的一种分析方法,它一般用于求取信号通过某系统后的响应。在信号与系统中,我们通常求取某系统的单位冲激响应,所求得的h(k)可作为系统的时域表征。任意系统的系统响应可用卷积的方法求得:y(k)=x(k)*h(k) 本片经验我们就来说说如何利用matlab来实现两个有限长序列的卷积。工具/原料more配置不错的电脑 正常工作的matlab软件原理方法1/3 分步阅读基本数学原理 我们假设有两个长度有限的任意序列A(n)和B(n),其中A(n)和B(n)的具体数学表达式可以看下图一。那么这两个有限长序列的卷积就应该为C(n)=A(n)*B(n),其具体表达式请参看一下图二。查看剩余1张图2/3相关函数指令 Matlab中的conv和deconv指令不仅可以用于多项式的乘除运算,还可以用于两个有限长序列的卷积和解积运算。 Matlab提供的函数conv,语法格式:w=conv(u,v),其中u和v分别是有限长度序列向量,w是u和v的卷积结果序列向量。如果向量u和v的长度分别为N和M,则向量w的长度为N+M-1.如果向量u和v是两个多项式的系数,则w就是这两个多项式乘积的系数。下面我们看一下deconv指令。功能:求向量反褶积和进行多项式除法运算。语法格式:[q,r]=deconv(v,u) ,参数q和r分别返回多项式v除以多项式u的商多项式和余多项式。具体实例请看下一步。3/3conv和deconv指令实例 具体实例请看下图,这里我们求多项式(x2+2x+1)与多项式(2x2+x+3)的积,再求积与(x2+2x+1)的商。需要注意的是向量c代表多项式(2x4+5x3+7x2+7x+3)。两个有限长序列的卷积实例1/6具体序列的数学形式 在这一步我们将具体的有限长时间序列按数学方式显示,具体请看下图。2/6解法一:循环求合法求卷积 在本例中我们将按照原理方法第一步中图二的方式进行卷积计算,即循环求合法求卷积。具体的代码及结果请看下图。图一是是生成有限长度时间序列,图二是根据原理方法第一步中图二的方式即循环求合法求卷积的具体代码,图三是是图二的计算结果。查看剩余2张图3/6解法二:0起点序列法 下面就说一下第二种方法,即“0起点序列法”,所采用的指令就是我们在原理方法中介绍的conv函数指令。具体代码看下图。4/6解法三:非平凡区间序列法 下面就说一下第二种方法,即“0起点序列法”,所采用的指令就是我们在原理方法中介绍的conv函数指令。具体代码看下图。图一为计算代码,图二为计算结果。查看剩余1张图5/6绘图比较这一步我们将解法二和解法三的计算结果绘制在一张图片中进行比较,其中第一幅是“0起点法”的计算结果图,第二幅是“非平凡区间法”的计算结果图。其中画图代码为:subplot(2,1,1),stem(kc,c),text(20,6,"0 起点法") %画解法二的结果CC=[zeros(1,KC(1)),C]; %补零是为了两子图一致subplot(2,1,2),stem(kc,CC),text(18,6,"非平凡区间法") %画解法三的结果xlabel("n") 6/6小结有以上可以得出如下结论:1、“解法三”最简洁、通用;2、“解法二”使用于序列起点时刻N1或(和)M1小于0的情况,比较困难;3、“解法一”最繁琐,效率低下。注意事项现在有matlab的中文版本:matlab r2016a,大家可以试试。安装激活教程为:http://jingyan.baidu.com/article/e75057f2f099fcebc91a8906.htmlMATLAB 卷积编辑于2017-10-02,内容仅供参考并受版权保护 赞 踩分享阅读全文相关经验
北有云溪2023-05-23 19:24:371

什么是卷积

最近有一个项目要用到图像检测,所以现在系统的开始入手深度学习的知识。本来打算用 Google 的 TensorFlow 来实现,毕竟 TFBoy 近几年热度不减,但考虑到项目实施周期,打算前期用百度的 EasyDL 来实现,和百度 AI 的产品经理聊了几次,说是类似的项目,200张样本训练,识别能达到80%,应该算是一个不错的识别率了。 当然,一些基础知识还是要了解一下,这里面有不少的概念还挺不好理解的。深度学习,有专门的卷积神经网络,在图像领域取得了非常好的实际效果,已经把传统的图像处理的方法快干趴下了。看了很多关于卷积的解释,在这里整理一下。 网上流传的一个段子,非常形象。比如说你的老板命令你干活,你却到楼下打台球去了,后来被老板发现,他非常气愤,扇了你一巴掌(注意,这就是输入信号,脉冲),于是你的脸上会渐渐地鼓起来一个包,你的脸就是一个系统,而鼓起来的包就是你的脸对巴掌的响应,好,这样就和信号系统建立起来意义对应的联系。 下面还需要一些假设来保证论证的严谨:假定你的脸是线性时不变系统,也就是说,无论什么时候老板打你一巴掌,打在你脸的同一位置,你的脸上总是会在相同的时间间隔内鼓起来一个相同高度的包来,并且假定以鼓起来的包的大小作为系统输出。好了,那么,下面可以进入核心内容——卷积了! 如果你每天都到楼下去打台球,那么老板每天都要扇你一巴掌,不过当老板打你一巴掌后,你5分钟就消肿了,所以时间长了,你甚至就适应这种生活了……。如果有一天,老板忍无可忍,以0.5秒的间隔开始不间断的扇你,这样问题就来了,第一次扇你鼓起来的包还没消肿,第二个巴掌就来了,你脸上的包就可能鼓起来两倍高,老板不断扇你,脉冲不断作用在你脸上,效果不断叠加了,这样这些效果就可以求和了,结果就是你脸上的包的高度随时间变化的一个函数了(注意理解)。 如果老板再狠一点,频率越来越高,以至于你都辨别不清时间间隔了,那么,求和就变成积分了。可以这样理解,在这个过程中的某一固定的时刻,你的脸上的包的鼓起程度和什么有关呢?和之前每次打你都有关!但是各次的贡献是不一样的,越早打的巴掌,贡献越小,所以这就是说,某一时刻的输出是之前很多次输入乘以各自的衰减系数之后的叠加而形成某一点的输出,然后再把不同时刻的输出点放在一起,形成一个函数,这就是卷积,卷积之后的函数就是你脸上的包的大小随时间变化的函数。 本来你的包几分钟就可以消肿,可是如果连续打,几个小时也消不了肿了,这难道不是一种平滑过程么?反映到剑桥大学的公式上,f(a) 就是第 a 个巴掌,g(x-a)就是第 a 个巴掌在x时刻的作用程度,乘起来再叠加就 ok 了。 从数学上讲,卷积就是一种运算。通俗易懂的说,卷积就是 ** 输出 = 输入 * 系统** 虽然它看起来只是个简单的数学公式,但是却有着重要的物理意义,因为自然界这样的系统无处不在,计算一个系统的输出最好的方法就是运用卷积。更一般的,我们还有很多其他领域的应用: 统计学中,加权的滑动平均是一种卷积。 概率论中,两个统计独立变量X与Y的和的概率密度函数是X与Y的概率密度函数的卷积。 声学中,回声可以用源声与一个反映各种反射效应的函数的卷积表示。 电子工程与信号处理中,任一个线性系统的输出都可以通过将输入信号与系统函数(系统的冲激响应)做卷积获得。 物理学中,任何一个线性系统(符合叠加原理)都存在卷积。 计算机科学中,卷积神经网络(CNN)是深度学习算法中的一种,近年来被广泛用到模式识别、图像处理等领域中。 这6个领域中,卷积起到了至关重要的作用。在面对一些复杂情况时,作为一种强有力的处理方法,卷积给出了简单却有效的输出。对于机器学习领域,尤其是深度学习,最著名的CNN卷积神经网络(Convolutional Neural Network, CNN),在图像领域取得了非常好的实际效果,始一出现便横扫各类算法。 其定义如下: 我们称 (f * g)(n) 为 f,g 的卷积 其连续的定义为: 其离散的定义为: 再通俗的说,看起来像把一张二维的地毯从角沿45度斜线卷起来。 以下是一张正方形地毯,上面保存着f和g在区间[a,]的张量积,即U(x,y)=f(x)g(y)。 再看下面最简单的一个例子。 考虑到函数 f 和 g 应该地位平等,或者说变量 x 和 y 应该地位平等,一种可取的办法就是沿直线 x+y = t 卷起来: 卷了有什么用?可以用来做多位数乘法,比如: 要解决的问题是:有两枚骰子,把它们都抛出去,两枚骰子点数加起来为4的概率是多少? 分析一下,两枚骰子点数加起来为4的情况有三种情况:1+3=4, 2+2=4, 3+1=4 因此,两枚骰子点数加起来为4的概率为: 在这里我想进一步用上面的翻转滑动叠加的逻辑进行解释。 首先,因为两个骰子的点数和是4,为了满足这个约束条件,我们还是把函数 g 翻转一下,然后阴影区域上下对应的数相乘,然后累加,相当于求自变量为4的卷积值,如下图所示: 楼下早点铺子生意太好了,供不应求,就买了一台机器,不断的生产馒头。 假设馒头的生产速度是 f(t),那么一天后生产出来的馒头总量为: 馒头生产出来之后,就会慢慢腐败,假设腐败函数为 g(t),比如,10个馒头,24小时会腐败: 用一个模板和一幅图像进行卷积,对于图像上的一个点,让模板的原点和该点重合,然后模板上的点和图像上对应的点相乘,然后各点的积相加,就得到了该点的卷积值。对图像上的每个点都这样处理。由于大多数模板都是对称的,所以模板不旋转。卷积是一种积分运算,用来求两个曲线重叠区域面积。可以看作加权求和,可以用来消除噪声、特征增强。 把一个点的像素值用它周围的点的像素值的加权平均代替。 卷积是一种线性运算,图像处理中常见的mask运算都是卷积,广泛应用于图像滤波。 卷积关系最重要的一种情况,就是在信号与线性系统或数字信号处理中的卷积定理。利用该定理,可以将时间域或空间域中的卷积运算等价为频率域的相乘运算,从而利用FFT等快速算法,实现有效的计算,节省运算代价。 有这么一副图像,可以看到,图像上有很多噪点:自然图像有其固有特性,也就是说,图像的一部分的统计特性与其他部分是一样的。这也意味着我们在这一部分学习的特征也能用在另一部分上,所以对于这个图像上的所有位置,我们都能使用同样的学习特征。 更恰当的解释是,当从一个大尺寸图像中随机选取一小块,比如说 8x8 作为样本,并且从这个小块样本中学习到了一些特征,这时我们可以把从这个 8x8 样本中学习到的特征作为探测器,应用到这个图像的任意地方中去。特别是,我们可以用从 8x8 样本中所学习到的特征跟原本的大尺寸图像作卷积,从而对这个大尺寸图像上的任一位置获得一个不同特征的激活值。 下面给出一个具体的例子:假设你已经从一个 96x96 的图像中学习到了它的一个 8x8 的样本所具有的特征,假设这是由有 100 个隐含单元的自编码完成的。为了得到卷积特征,需要对 96x96 的图像的每个 8x8 的小块图像区域都进行卷积运算。也就是说,抽取 8x8 的小块区域,并且从起始坐标开始依次标记为(1,1),(1,2),...,一直到(89,89),然后对抽取的区域逐个运行训练过的稀疏自编码来得到特征的激活值。在这个例子里,显然可以得到 100 个集合,每个集合含有 89x89 个卷积特征。以上,未知来源出处无法一一注明。
ardim2023-05-23 19:24:371

卷积与相关函数

与阶跃函数的卷积就是该函数的变上限积分,阶跃函数是个理想积分器。f(t)*u(t)=∫f(x)dx, 下限是负无穷,上限是t,结果仍是以t为自变量的。如果两个阶跃函数卷积,结果是阶跃函数的积分,即斜坡函数R(t)
瑞瑞爱吃桃2023-05-23 19:24:371

卷积的理解

如何充分的理解卷积? 知乎卷积话题 其中解释的最好的是 palet的回答 如何通俗易懂的理解这个公式呢? palet的回答 下面是对这个回答的自我总结。 对于 可以看做是 经过变换后的结果: 所以卷积的公式是计算 与 经过 翻转 再 **向左平移 ** 个单位的 乘积 累加 的结果。 那么 经过这么一番操作究竟是为了做什么? 通过下面的例子来介绍。 假设 表示的是 时刻发生的信号, 是一个信号从产生经过 时间单位后的衰减系数。 注意 和 的 是不同的含义。 例如: 表示 时刻发生的信号, 表示经过 时间单位后衰减的结果,显然 是最大的, 因为 表示的是没有衰减。那么,看看在第5个时刻, 表示 时刻发生的信号, 在第 时刻的信号衰减因子 (因为 从 时刻发生,要经历 时间衰减), 第5时刻的信号强度就是 . 整理下就是 , 这个公式表示的含义就是: 从 时刻发生的信号, 经过了 个时间单位后的衰减系数是 , 时刻的信号强度就是 . 当计算 的时候, 从 , , 三个时刻发出了信号, 表示经过了几个时间单位,分别结果了 , , 个时间单位, 所以有, 当 时刻的信号强度是将前面所有的信号加起来, 所以有 写成积分的形式就是 前面的卷积是一个参数的卷积而对于图像来说是空间上针对每一个点处的卷积,所以定义上就是二维的 对于图像来说是离散的表达方式。由于 是一个矩阵,比如 的矩阵, 那么对于 来说经过: 1. 沿 翻转,后再向左平移 个单位. 因为 是 的矩阵, 所以 , 所以对于 来说,仅仅计算的是也是 那一小块方阵。看看具体的例子: 那么就有 . 全部写下来就是: 很明确,但是回想在深度学习中的CNN,貌似没有进行翻转和平移?那是因为,在深度学习中 实际上是 是 经过翻转后的结果, 所以将 作为权重参数和直接使用 也就是 翻转后的结果是一回事,没有什么区别,为了简单就直接使用了 , 而实际上我们应该知道 是 翻转后的结果,这一本质。
无尘剑 2023-05-23 19:24:371

如何通俗易懂地解释卷积?

简单定义:设:f(x),g(x)是R1上的两个可积函数,作积分:可以证明,关于几乎所有的实数x,上述积分是存在的。这样,随着x的不同取值,这个积分就定义了一个新函数h(x),称为函数f与g的卷积,记为h(x)=(f*g)(x)。容易验证,(f * g)(x) = (g * f)(x),并且(f * g)(x)仍为可积函数。这就是说,把卷积代替乘法,L1(R1)空间是一个代数,甚至是巴拿赫代数。卷积与傅里叶变换有着密切的关系。利用一点性质,即两函数的傅里叶变换的乘积等于它们卷积后的傅里叶变换,能使傅里叶分析中许多问题的处理得到简化。由卷积得到的函数f*g一般要比f和g都光滑。特别当g为具有紧致集的光滑函数,f为局部可积时,它们的卷积f * g也是光滑函数。利用这一性质,对于任意的可积函数f,都可以简单地构造出一列逼近于f的光滑函数列fs,这种方法称为函数的光滑化或正则化。卷积的概念还可以推广到数列、测度以及广义函数上去。应用领域1、 在数字图像处理中,卷积滤波在边缘检测和相关过程的许多重要算法中起着重要作用。2、 在光学领域,离焦照片是清晰图像与镜头功能的卷积。摄影的术语是背景虚化。3、 在分析化学中,Savitzky-Golay平滑滤镜用于分析光谱数据。它们可以在使频谱失真最小的情况下提高信噪比4、 在统计中,加权移动平均值是一个卷积。5、 在声学中,混响是原始声音与来自声源周围物体的回声的卷积。6、 在数字信号处理中,使用卷积将真实房间的冲激响应映射到数字音频信号上。7、 在电子音乐中,卷积是在声音上施加频谱或节奏结构。通常,这种包络或结构取自另一种声音。两个信号的卷积就是一个到另一个的滤波。8、 在电气工程中,一个函数(输入信号)与第二个函数(脉冲响应)的卷积给出了线性时不变系统(LTI)的输出。在任何给定时刻,输出都是输入函数的所有先前值的累加效果,而最新值通常具有最大的影响力(表示为乘数)。脉冲响应函数根据每个输入值出现后所经过的时间来提供该因数。9、 在物理学中,凡是存在具有“叠加原理”的线性系统的地方,都会出现卷积运算。例如,在光谱学中,由于多普勒效应本身而引起的线展宽给出了高斯谱线形状,而仅碰撞展宽给出了洛伦兹谱线形状。当两种效果都起作用时,线形是高斯函数和洛伦兹函数的卷积,即Voigt函数。以上内容参考 百度百科-卷积
左迁2023-05-23 19:24:371

卷积公式是什么呢?

卷积公式如下:卷积积分公式是(f *g)∧(x)=(x)·(x),卷积是分析数学中一种重要的运算。设f(x), g(x)是R1上的两个可积函数,作积分,可以证明,关于几乎所有的x∈(-∞,∞) ,上述积分是存在的。这样,随着x的不同取值 ,这个积分就定义了一个新函数h(x),称为f与g的卷积,记为h(x)=(f *g)(x)。容易验证,(f *g)(x)=(g *f)(x),并且(f *g)(x)仍为可积函数。简介:卷积与傅里叶变换有着密切的关系。以(x) ,(x)表示L1(R)1中f和g的傅里叶变换,那么有如下的关系成立:(f *g)∧(x)=(x)·(x),即两函数的傅里叶变换的乘积等于它们卷积后的傅里叶变换。这个关系,使傅里叶分析中许多问题的处理得到简化。由卷积得到的函数(f *g)(x),一般要比f,g都光滑。特别当g为具有紧支集的光滑函数,f 为局部可积时,它们的卷积(f *g)(x)也是光滑函数。利用这一性质,对于任意的可积函数 , 都可以简单地构造出一列逼近于f 的光滑函数列fs(x),这种方法称为函数的光滑化或正则化。
凡尘2023-05-23 19:24:371

卷积的本质及物理意义

卷积的本质及物理意义如下:在泛函分析中,卷积、旋积或褶积(英语:Convolution)是通过两个函数f和g生成第三个函数的一种数学运算,其本质是一种特殊的积分变换,表征函数f与g经过翻转和平移的重叠部分函数值乘积对重叠长度的积分。如果将参加卷积的一个函数看作区间的指示函数,卷积还可以被看作是“滑动平均”的推广。卷积(又名褶积)和反卷积(又名反褶积)是一种积分变换的数学方法,在许多方面得到了广泛应用。用卷积解决试井解释中的问题,早就取得了很好成果;而反卷积,直到最近,Schroeter、Hollaender和Gringarten等人解决了其计算方法上的稳定性问题,使反卷积方法很快引起了数学界的广泛注意。有专家认为,反卷积的应用是试井解释方法发展史上的又一次重大飞跃。他们预言,随着测试新工具和新技术的增加和应用,以及与其它专业研究成果的更紧密结合,试井在油气藏描述中的作用和重要性必将不断增大。卷积定理指出,函数卷积的傅里叶变换是函数傅里叶变换的乘积。即,一个域中的卷积相当于另一个域中的乘积,例如时域中的卷积就对应于频域中的乘积。
善士六合2023-05-23 19:24:371

卷积是什么意思

卷积是分析数学中一种重要的运算。在泛函分析中,卷积、旋积或摺积(英语:Convolution)是通过两个函数f和g生成第三个函数的一种数学算子,表征函数f与经过翻转和平移的g的重叠部分的累积。如果将参加卷积的一个函数看作区间的指示函数,卷积还可以被看作是“滑动平均”的推广。卷积算法设:f(x),g(x)是R1上的两个可积函数可以证明,关于几乎所有的实数x,上述积分是存在的。这样,随着x的不同取值,这个积分就定义了一个新函数h(x),称为函数f与g的卷积,记为h(x)=(f*g)(x)。容易验证,(f*g)(x)=(g*f)(x),并且(f*g)(x)仍为可积函数。这就是说,把卷积代替乘法,L1(R1)空间是一个代数,甚至是巴拿赫代数。卷积与傅里叶变换有着密切的关系。利用一点性质,即两函数的傅里叶变换的乘积等于它们卷积后的傅里叶变换,能使傅里叶分析中许多问题的处理得到简化。由卷积得到的函数f*g一般要比f和g都光滑。特别当g为具有紧致集的光滑函数,f为局部可积时,它们的卷积f*g也是光滑函数。利用这一性质,对于任意的可积函数f,都可以简单地构造出一列逼近于f的光滑函数列fs,这种方法称为函数的光滑化或正则化。卷积的概念还可以推广到数列、测度以及广义函数上去。
Ntou1232023-05-23 19:24:361

卷积的通俗理解

卷积的通俗理解就是所谓两个函数的卷积,本质上就是先将一个函数翻转,然后进行滑动叠加。应用场景:1. 信号分析。一个输入信号f(t),经过一个线性系统(其特征可以用单位冲击响应函数g(t)描述)以后,输出信号应该是什么?实际上通过卷积运算就可以得到输出信号。2. 图像处理。输入一幅图像f(x,y),经过特定设计的卷积核g(x,y)进行卷积处理以后,输出图像将会得到模糊,边缘强化等各种效果。卷积的“卷”,指的的函数的翻转,从 g(t)变成 g(-t)的这个过程;同时,“卷”还有滑动的意味在里面(吸取了网友李文清的建议)。如果把卷积翻译为“褶积”,那么这个“褶”字就只有翻转的含义了。1、从“积”的过程可以看到,我们得到的叠加值,是个全局的概念。以信号分析为例,卷积的结果是不仅跟当前时刻输入信号的响应值有关,也跟过去所有时刻输入信号的响应都有关系,考虑了对过去的所有输入的效果的累积。在图像处理的中,卷积处理的结果,其实就是把每个像素周边的,甚至是整个图像的像素都考虑进来,对当前像素进行某种加权处理。所以说,“积”是全局概念,或者说是一种“混合”,把两个函数在时间或者空间上进行混合。2. 那为什么要进行“卷”?直接相乘不好吗?我的理解,进行“卷”(翻转)的目的其实是施加一种约束,它指定了在“积”的时候以什么为参照。在信号分析的场景,它指定了在哪个特定时间点的前后进行“积”,在空间分析的场景,它指定了在哪个位置的周边进行累积处理。
u投在线2023-05-23 19:24:361

卷积是什么意思?

卷积是一种积分变换的数学方法,在许多方面得到了广泛应用。用卷积解决试井解释中的问题,早就取得了很好成果。在泛函分析中,卷积、旋积或褶积(英语:Convolution)是通过两个函数f和g生成第三个函数的一种数学算子,表征函数f与g经过翻转和平移的重叠部分函数值乘积对重叠长度的积分。卷积应用统计学中,加权的滑动平均是一种卷积。概率论中,两个统计独立变量X与Y的和的概率密度函数是X与Y的概率密度函数的卷积。光学中,反射光可以用光源与一个反映各种反射效应的函数的卷积表示。电子工程与信号处理中,任一个线性系统的输出都可以通过将输入信号与系统函数(系统的冲激响应)做卷积获得。物理学中,任何一个线性系统(符合叠加原理)都存在卷积。以上内容参考:百度百科-卷积
meira2023-05-23 19:24:361

什么是卷积

卷积是分析数学中一种重要的运算。卷积公式的使用条件是只用来计算密度函数,不能计算分布函数。在泛函分析中,卷积、旋积或摺积(英语:Convolution)是通过两个函数f和g生成第三个函数的一种数学算子,表征函数f与经过翻转和平移的g的重叠部分的累积。如果将参加卷积的一个函数看作区间的指示函数,卷积还可以被看作是“滑动平均”的推广。卷积是一种积分变换的数学方法,在许多方面得到了广泛应用。用卷积解决试井解释中的问题,早就取得了很好成果,而反卷积是直到最近Schroeter、Hollaender和Gringarten等人解决了其计算方法上的稳定性问题,使反卷积方法很快引起了试井界的广泛注意。离散卷积的公式:这里i的定义域为负无穷到正无穷,当然具体的问题要具体分析,比如成绩(100分满分),那么i的定义域就是(0-100)。连续卷积的公式:这里定积分的下限是负无穷,上限是正无穷,同理,还是具体情况具体分析,如果还是那个打分情况,那么就是下限为0,上限为100。
Jm-R2023-05-23 19:24:361

对卷积的理解

姓名:马鑫蕊 学号:19011210098 【嵌牛导读】在泛函分析中,卷积(Convolution)是通过两个函数f 和g 生成第三个函数的一种数学算子,表征函数f 与g经过翻转和平移的重叠部分的面积。从数学上讲,卷积就是一种运算,因为涉及到积分、级数,所以看起来觉得很复杂。机器学习、信号处理、通信、或自动控制相关的专业也都会碰到卷积这个概念,就连当前最热门的人工智能中的卷积神经网络,都含有卷积这个词。那么,卷积到底是什么呢?有什么用呢? 【嵌牛鼻子】卷积 离散 连续 【嵌牛提问】如何通俗易懂地理解卷积呢? 【嵌牛正文】 卷积的定义: 我们称 为 , 的卷积 其连续的定义为:其离散的定义为:这两个式子有一个共同的特征: 只看数学符号,卷积是抽象的,不好理解的,但是,我们可以通过现实中的意义,来习惯卷积这种运算,正如我们小学的时候,学习加减乘除需要各种苹果、糖果来帮助我们习惯一样。 下面我们看看现实中,这样的定义有什么意义? 离散卷积的例子:掷骰子 有两枚骰子,把这两枚骰子都抛出去,求:这两枚骰子点数加起来为4的概率是多少? 表示第一枚骰子, 表示投出1的概率, 表示投出2的概率,依次类推 ,同理, 表示第二枚骰子。那么,两枚骰子点数加起来为4的情况有:因此,两枚骰子点数加起来为4的概率为:把该情况写成卷积的标准形式就是:连续卷积的例子:做馒头 楼下早点铺子生意太好了,供不应求,就买了一台机器,不断的生产馒头。  假设馒头的生产速度是 f(t) ,那么一天后生产出来的馒头总量为:馒头生产出来之后,就会慢慢腐败,假设腐败函数为  ,比如,10个馒头,24小时会腐败:第一个小时生产出来的馒头,一天后会经历24小时的腐败,第二个小时生产出来的馒头,一天后会经历23小时的腐败。  如此,我们可以知道,一天后,馒头总共腐败了: 这就是把该例子写成连续卷积的标准形式。 如果还是对卷积的含义不太明白,下面是 对卷积的另外解释 : 卷积表示为y(n)=x(n)∗h(n) ,x(n)表示的是系统的输入,y(n)表示的是系统的输出,h(n)表示的是相应函数。 使用离散数列来理解卷积会更形象一点,我们把y(n)的序列表示成y(0),y(1),y(2),⋯, 这是系统响应出来的信号。  同理,x(n)的对应时刻的序列为x(0),x(1),x(2),⋯  其实我们如果没有学过信号与系统,就常识来讲,系统的响应不仅与当前时刻系统的输入有关,也跟之前若干时刻的输入有关,因为我们可以理解为这是之前时刻的输入信号经过一种过程(这种过程可以是递减,削弱,或其他)对现在时刻系统输出的影响,那么显然,我们计算系统输出时就必须考虑现在时刻的信号输入的响应以及之前若干时刻信号输入的响应之“残留”影响的一个叠加效果。  假设0时刻系统响应为y(0),若其在1时刻时,此种响应未改变,则1时刻的响应就变成了y(0)+y(1),叫序列的累加和(与序列的和不一样)。但常常系统中不是这样的,因为0时刻的响应不太可能在1时刻仍旧未变化,那么怎么表述这种变化呢,就通过h(t)这个响应函数与x(0)相乘来表述,表述为x(m)×h(m−n),具体表达式不用多管,只要记着有大概这种关系,引入这个函数就能够表述y(0)在1时刻究竟削弱了多少,然后削弱后的值才是y(0)在1时刻的真实值,再通过累加和运算,才得到真实的系统响应。  再拓展点,某时刻的系统响应往往不一定是由当前时刻和前一时刻这两个响应决定的,也可能是再加上前前时刻,前前前时刻,前前前前时刻,等等,那么怎么约束这个范围呢,就是通过对h(n)这个函数在表达式中变化后的h(m−n)中的m的范围来约束的。即说白了,就是当前时刻的系统响应与多少个之前时刻的响应的“残留影响”有关。  当考虑这些因素后,就可以描述成一个系统响应了,而这些因素都可以通过一个表达式(卷积)描述出来。 参考资料: https://baike.baidu.com/item/卷积/9411006?fr=kg_qa https://www.zhihu.com/question/22298352
u投在线2023-05-23 19:24:361
 首页 上一页  1 2 3  下一页  尾页