神经网络

noip 2003 提高组 神经网络 题意

即一个按编号从小到大的循环,如果该神经元Ci>0那么输出其编号及Ci,否则不输出。如果全部都不大于0那么输出 NULL。注意,题目是“仅输出最后状态大于零的输出层神经元状态,并且按照编号由小到大顺序输出!”不是“非零”。你可以到百度文库中看看。
铁血嘟嘟2023-08-06 10:31:081

r语言神经网络怎么处理分类变量

人工神经网络有很多种,我只会最常用的BP神经网络。不同的网络有不同的结构和不同的学习算法。 简单点说,人工神经网络就是一个函数。只是这个函数有别于一般的函数。它比普通的函数多了一个学习的过程。
NerveM 2023-06-12 07:09:331

神经网络径向基函数协变量是什么

1.输入层为向量,维度为m,样本个数为n,线性函数为传输函数。2.隐藏层与输入层全连接,层内无连接,隐藏层神经元个数与样本个数相等,也就是n,传输函数为径向基函数。3.输出层为线性输出。理论基础径向基函数神经网络只要隐含层有足够多的隐含层节点,可以逼近任何非线性函数。在拟合函数的时候,我们要尽量的经过每一个点,但是当一大堆散乱数据的时候我们如果经过每一个点就造成过拟合,也就是根本无法寻找里面的隐含规律,我们需要一个权值均衡的拟合方式,这时候就要用到最小二乘法。
Chen2023-06-11 08:50:101

神经网络模型 残差百分数怎么算

public class app4_1{ public static void main(String[] args) { int a=1,b=2,c=3,max,min; if(a>b) max=a; else max=b; if(c>max) max=c; System.out.println("Max="+max); min=a<b ? a : b; min=c<min ? c : min; System.out.println("Min="+min); }}
瑞瑞爱吃桃2023-05-28 21:48:091

神经网络的学习内容是什么?

神经网络的学习内容主要包括:感知机(perceptron):是一种线性分类模型,能够解决二分类问题。多层感知机(multilayer perceptron, MLP):是一种由多个感知机堆叠而成的神经网络模型,能够解决多分类问题。卷积神经网络(convolutional neural network, CNN):是一种深度学习模型,能够自动学习数据的特征,并在图像、视频、文本等数据中进行分类、分析和识别。循环神经网络(recurrent neural network, RNN):是一种深度学习模型,能够处理序列数据,如文本、语音、时间序列等。常见的有LSTM和GRU等。
meira2023-05-26 08:18:171

神经网络的主要内容特点

(1) 神经网络的一般特点作为一种正在兴起的新型技术神经网络有着自己的优势,他的主要特点如下:① 由于神经网络模仿人的大脑,采用自适应算法。使它较之专家系统的固定的推理方式及传统计算机的指令程序方式更能够适应化环境的变化。总结规律,完成某种运算、推理、识别及控制任务。因而它具有更高的智能水平,更接近人的大脑。② 较强的容错能力,使神经网络能够和人工视觉系统一样,根据对象的主要特征去识别对象。③ 自学习、自组织功能及归纳能力。以上三个特点是神经网络能够对不确定的、非结构化的信息及图像进行识别处理。石油勘探中的大量信息就具有这种性质。因而,人工神经网络是十分适合石油勘探的信息处理的。(2) 自组织神经网络的特点 自组织特征映射神经网络作为神经网络的一种,既有神经网络的通用的上面所述的三个主要的特点又有自己的特色。① 自组织神经网络共分两层即输入层和输出层。② 采用竞争学记机制,胜者为王,但是同时近邻也享有特权,可以跟着竞争获胜的神经元一起调整权值,从而使得结果更加光滑,不想前面的那样粗糙。③ 这一网络同时考虑拓扑结构的问题,即他不仅仅是对输入数据本身的分析,更考虑到数据的拓扑机构。权值调整的过程中和最后的结果输出都考虑了这些,使得相似的神经元在相邻的位置,从而实现了与人脑类似的大脑分区响应处理不同类型的信号的功能。④ 采用无导师学记机制,不需要教师信号,直接进行分类操作,使得网络的适应性更强,应用更加的广泛,尤其是那些对于现在的人来说结果还是未知的数据的分类。顽强的生命力使得神经网络的应用范围大大加大。
西柚不是西游2023-05-26 08:18:171

什么是神经网络,举例说明神经网络的应用

我想这可能是你想要的神经网络吧!什么是神经网络:人工神经网络(Artificial Neural Networks,简写为ANNs)也简称为神经网络(NNs)或称作连接模型(Connection Model),它是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。神经网络的应用:应用在网络模型与算法研究的基础上,利用人工神经网络组成实际的应用系统,例如,完成某种信号处理或模式识别的功能、构作专家系统、制成机器人、复杂系统控制等等。纵观当代新兴科学技术的发展历史,人类在征服宇宙空间、基本粒子,生命起源等科学技术领域的进程中历经了崎岖不平的道路。我们也会看到,探索人脑功能和神经网络的研究将伴随着重重困难的克服而日新月异。神经网络的研究内容相当广泛,反映了多学科交叉技术领域的特点。主要的研究工作集中在以下几个方面:生物原型从生理学、心理学、解剖学、脑科学、病理学等方面研究神经细胞、神经网络、神经系统的生物原型结构及其功能机理。建立模型根据生物原型的研究,建立神经元、神经网络的理论模型。其中包括概念模型、知识模型、物理化学模型、数学模型等。算法在理论模型研究的基础上构作具体的神经网络模型,以实现计算机模拟或准备制作硬件,包括网络学习算法的研究。这方面的工作也称为技术模型研究。神经网络用到的算法就是向量乘法,并且广泛采用符号函数及其各种逼近。并行、容错、可以硬件实现以及自我学习特性,是神经网络的几个基本优点,也是神经网络计算方法与传统方法的区别所在。
韦斯特兰2023-05-26 08:18:171

简单介绍神经网络算法

直接简单介绍神经网络算法神经元:它是神经网络的基本单元。神经元先获得输入,然后执行某些数学运算后,再产生一个输出。神经元内输入 经历了3步数学运算, 先将两个输入乘以 权重 : 权重 指某一因素或指标相对于某一事物的重要程度,其不同于一般的比重,体现的不仅仅是某一因素或指标所占的百分比,强调的是因素或指标的相对重要程度 x1→x1 × w1 x2→x2 × w2 把两个结果相加,加上一个 偏置 : (x1 × w1)+(x2 × w2)+ b 最后将它们经过 激活函数 处理得到输出: y = f(x1 × w1 + x2 × w2 + b) 激活函数 的作用是将无限制的输入转换为可预测形式的输出。一种常用的激活函数是 sigmoid函数 sigmoid函数的输出 介于0和1,我们可以理解为它把 (−∞,+∞) 范围内的数压缩到 (0, 1)以内。正值越大输出越接近1,负向数值越大输出越接近0。神经网络: 神经网络就是把一堆神经元连接在一起 隐藏层 是夹在输入输入层和输出层之间的部分,一个神经网络可以有多个隐藏层。 前馈 是指神经元的输入向前传递获得输出的过程训练神经网络 ,其实这就是一个优化的过程,将损失最小化 损失 是判断训练神经网络的一个标准 可用 均方误差 定义损失 均方误差 是反映 估计量 与 被估计量 之间差异程度的一种度量。设t是根据子样确定的总体参数θ的一个估计量,(θ-t)2的 数学期望 ,称为估计量t的 均方误差 。它等于σ2+b2,其中σ2与b分别是t的 方差 与 偏倚 。 预测值 是由一系列网络权重和偏置计算出来的值 反向传播 是指向后计算偏导数的系统 正向传播算法 是由前往后进行的一个算法
u投在线2023-05-26 08:18:171

什么是人工神经网络

人工神经网络(Artificial Neural Network,即ANN ),是20世纪80 年代以来人工智能领域兴起的研究热点。它从信息处理角度对人脑神经元网络进行抽象, 建立某种简单模型,按不同的连接方式组成不同的网络。在工程与学术界也常直接简称为神经网络或类神经网络。神经网络是一种运算模型,由大量的节点(或称神经元)之间相互联接构成。每个节点代表一种特定的输出函数,称为激励函数(activation function)。每两个节点间的连接都代表一个对于通过该连接信号的加权值,称之为权重,这相当于人工神经网络的记忆。网络的输出则依网络的连接方式,权重值和激励函数的不同而不同。而网络自身通常都是对自然界某种算法或者函数的逼近,也可能是对一种逻辑策略的表达。最近十多年来,人工神经网络的研究工作不断深入,已经取得了很大的进展,其在模式识别、智能机器人、自动控制、预测估计、生物、医学、经济等领域已成功地解决了许多现代计算机难以解决的实际问题,表现出了良好的智能特性。
小菜G的建站之路2023-05-26 08:18:171

什么是人体神经网络?

神经系统概述神经系统nervous system是机体内起主导作用的系统。内、外环境的各种信息,由感受器接受后,通过周围神经传递到脑和脊髓的各级中枢进行整合,再经周围神经控制和调节机体各系统器官的活动,以维持机体与内、外界环境的相对平衡。人体各器官、系统的功能都是直接或间接处于神经系统的调节控制之下,神经系统是整体内起主导作用的调节系统。人体是一个复杂的机体,各器官、系统的功能不是孤立的,它们之间互相联系、互相制约;同时,人体生活在经常变化的环境中,环境的变化随时影响着体内的各种功能。这就需要对体内各种功能不断作出迅速而完善的调节,使机体适应内外环境的变化。实现这一调节功能的系统主要就是神经系统。神经系的基本结构神经系统是由神经细胞(神经元)和神经胶质所组成。1.神经元。神经元neuron是一种高度特化的细胞,是神经系统的基本结构和功能单位,它具有感受刺激和传导兴奋的功能。神经元由胞体和突起两部分构成。胞体的中央有细胞核,核的周围为细胞质,胞质内除有一般细胞所具有的细胞器如线粒体、内质网等外,还含有特有的神经原纤维及尼氏体。神经元的突起根据形状和机能又分为树突dendrite和轴突axon。树突较短但分支较多,它接受冲动,并将冲动传至细胞体,各类神经元树突的数目多少不等,形态各异。每个神经元只发出一条轴突,长短不一,胞体发生出的冲动则沿轴突传出。根据突起的数目,可将神经元从形态上分为假单极神经元、双极神经元和多极神经元三大类。根据神经元的功能,可分为感觉神经元、运动神经元和联络神经元。感觉神经元又称传入神经元,一般位于外周的感觉神经节内,为假单极或双极神经元,感觉神经元的周围突接受内外界环境的各种刺激,经胞体和中枢突将冲动传至中枢;运动神经元又名传出神经元,一般位于脑、脊髓的运动核内或周围的植物神经节内,为多极神经元,它将冲动从中枢传至肌肉或腺体等效应器;联络神经元又称中间神经元,是位于感觉和运动神经元之间的神经元,起联络、整合等作用,为多极神经元。2.神经胶质。神经胶质neuroglia数目较神经元,突起无树突、轴突之分,胞体较小,胞浆中无神经原纤维和尼氏体,不具有传导冲动的功能。神经胶质对神经元起着支持、绝缘、营养和保护等作用,并参与构成血脑屏障。3.突触。神经元间联系方式是互相接触,而不是细胞质的互相沟通。该接触部位的结构特化称为突触synapse,通常是一个神经元的轴突与另一个神经元的树突或胞体借突触发生机能上的联系,神经冲动由一个神经元通过突触传递到另一个神经元。神经系统的构成神经系统分为中枢神经系统和周围神经系统两大部分。中枢神经系统包括脑和脊髓。脑和脊髓位于人体的中轴位,它们的周围有头颅骨和脊椎骨包绕。这些骨头质地很硬,在人年龄小时还富有弹性,因此可以使脑和脊髓得到很好的保护。脑分为端脑、间脑、小脑和脑干四部分。脊髓主要是传导通路,能把外界的刺激及时传送到脑,然后再把脑发出的命令及时传送到周围器官,起到了上通下达的桥梁作用。周围神经系统包括脑神经、脊神经和植物神经。脑神经共有12对,主要支配头面部器官的感觉和运动。人能看到周围事物,听见声音,闻出香臭,尝出滋味,以及有喜怒哀乐的表情等,都必须依靠这12对脑神经的功能。 脊神经共有31对,其中包括颈神经8对,胸神经12对,腰神经5对,骶神经5对,尾神经 1对。脊神经由脊髓发出,主要支配身体和四肢的感觉、运动和反射。植物神经也称为内脏神经,主要分布于内脏、心血管和腺体。心跳、呼吸和消化活动都受它的调节。植物神经分为交感神经和副交感神经两类,两者之间相互桔抗又相互协调,组成一个配合默契的有机整体,使内脏活动能适应内外环境的需要。神经系统神经系统是人体内由神经组织构成的全部装置。主要由神经元组成。神经系统由中枢神经系统和遍布全身各处的周围神经系统两部分组成。中枢神经系统包括脑和脊髓,分别位于颅腔和椎管内,是神经组织最集中、构造最复杂的部位。存在有控制各种生理机能的中枢。周围神经系统包括各种神经和神经节。其中同脑相连的称为脑神经,与脊髓相连的为脊神经,支配内脏器官的称植物性神经。各类神经通过其末梢与其他器官系统相联系。神经系统具有重要的功能,是人体内起主导作用的系统。一方面它控制与调节各器官、系统的活动,使人体成为一个统一的整体。另一方面通过神经系统的分析与综合,使机体对环境变化的刺激作出相应的反应,达到机体与环境的统一。神经系统对生理机能调节的基本活动形式是反射。人的大脑的高度发展,使大脑皮质成为控制整个机体功能的最高级部位,并具有思维、意识等生理机能。神经系统发生于胚胎发育的早期,由外胚层发育而来。小脑、大脑和神经系统大脑的功能主要有:进行理论性的思考、判断事物、说话、掌管本能以及掌管情感。神经的功能是传递脑部的指令到身体各部位,再由末梢神经和中枢神经将身体各部位所收集的情报回传到大脑进行资料分析的。小脑的功能是由旧小脑负责保持身体的平衡,例如站立、行走、运动。而新小脑是负责将大脑所传达的粗略运动指令进行仔细调整后,通过神经细胞,以电脑的速度和准确性,传到身体的每个部位。小脑皮质每1mm2聚集了50万个神经细胞,之所以我们能够使全身的肌肉协调地进行各种动作,例如挥杆自如,全部都是因为新小脑,即神经细胞的聚合体,以千分之一秒的速度来准确地处理了大脑发出的运动指令,如果这里出了问题,就无法巧妙用手握住物体,又或无法做到协调的动作了。保护脑部的正常运作大家对脑部和神经粗略地了解了一些主要功能,现在我们要学习如何去保护及保证脑部及神经系统能发挥正常的功能。因为当它们正常操作时,我们的高尔夫球和生活才能好好享受。首先要了解脑部会有机会出现一些疾病和原因,脑部常见的疾病有脑血管阻塞或破裂即是脑中风,但它并不是单一的疾病,而是脑梗塞、脑出血、蜘蛛膜下出血等会使脑血管产生障碍的各种疾病的总称。而这些病的背景都是动脉硬化,再加上精神过度紧张、饮酒、身体过度疲劳而身体已到了最危险的时候,一触即发而造成出血的结果。而神经有可能出现的疾病就是神经痛,例如三叉神经痛、枕神经痛、肋间神经痛和坐骨神经痛等等,根据一些医书的解释是由於某些部位的神经受到压迫,例如:肌肉的过份紧张收缩和骨的移位而令某些神经受到过大的压力而痛,又或者由於颈椎、腰椎、脊椎变形、又或者由於肿痛等原因而导致神经痛,而引起这些病的根本原因通常是由於长期身体处於高度的精神紧张、饮食不健康、长期缺乏运动,而长期累积太多有害物质又排不出体外,加上工作的压力就很容易令身体去到危险程度。希望大家能够提醒自己,用聪明的方法消除精神和身体的疲劳,同时要让身体摄取各种营养素、维他命、氨基酸、矿物质等等,以及多做运动去消除精神上的压力,令坏胆固醇无法在身体囤积,同时听音乐或出去旅行,又或者种种花草、浸浸温泉、做做运动按摩和多做伸展运动和多在清新空气的地方做深呼吸,以达到最健康。
黑桃花2023-05-26 08:18:171

神经网络的一些基础知识

背景 :神经元在接收到输入之后,不会立即做出反应,而是要等输入增强到超过一个阈值,才会触发输出。也就是说,神经元不希望传递微小的噪声信号,而只是传递有意识的明显信号。 两个要点 :1. 激活函数的形式;2. 激活阈值 两种激活函数 :阶跃函数和S函数(逻辑函数) 通过改变连接权重,可以控制神经元输入值的大小。训练前对权重进行初始化,这些初始值借助误差进行学习优化,从而调整神经元之间的连接权重。 !注意 :输入神经元不使用激活函数 (1)输入,(2)权重,(3)激活函数,(4)输出     更新原则 :(1)误差均分;(2)按权重分配 以寻找二次函数的最小值为例: 步骤: (1)任取初始点;(2)求斜率;(3)往相反的梯度方向增加X值 为提高准确性 : (1)选取多个起点,多次训练神经网络; (2)选取合适的误差函数,利用梯度下降寻找误差函数极小值点,即是最优权重; 权重更新矩阵 神经元连接如下图所示: 以隐藏层和输出层之间的权重更新为例,误差函数定义为目标值与实际值之间的均方误差 (1)经验规则:从均值为零,标准方差等于节点传入链接数量平方根倒数的正态分布中进行采样。 (2)禁止将初始权重设定为相同的恒定值,禁止将初始权重设定为零。
小菜G的建站之路2023-05-26 08:18:171

深度神经网络是什么意思?

深度神经网络是机器学习(ML, Machine Learning)领域中一种技术。在监督学习中,以前的多层神经网络的问题是容易陷入局部极值点。如果训练样本足够充分覆盖未来的样本,那么学到的多层权重可以很好的用来预测新的测试样本。但是很多任务难以得到足够多的标记样本,在这种情况下,简单的模型,比如线性回归或者决策树往往能得到比多层神经网络更好的结果(更好的泛化性,更差的训练误差)。扩展资料:非监督学习中,以往没有有效的方法构造多层网络。多层神经网络的顶层是底层特征的高级表示,比如底层是像素点,上一层的结点可能表示横线,三角。而顶层可能有一个结点表示人脸。一个成功的算法应该能让生成的顶层特征最大化的代表底层的样例。如果对所有层同时训练,时间复杂度会太高; 如果每次训练一层,偏差就会逐层传递。这会面临跟上面监督学习中相反的问题,会严重欠拟合。
善士六合2023-05-26 08:18:171

神经网络的特点

不论何种类型的人工神经网络,它们共同的特点是,大规模并行处理,分布式存储,弹性拓扑,高度冗余和非线性运算。因而具有很髙的运算速度,很强的联想能力,很强的适应性,很强的容错能力和自组织能力。这些特点和能力构成了人工神经网络模拟智能活动的技术基础,并在广阔的领域获得了重要的应用。例如,在通信领域,人工神经网络可以用于数据压缩、图像处理、矢量编码、差错控制(纠错和检错编码)、自适应信号处理、自适应均衡、信号检测、模式识别、ATM流量控制、路由选择、通信网优化和智能网管理等等。人工神经网络的研究已与模糊逻辑的研究相结合,并在此基础上与人工智能的研究相补充,成为新一代智能系统的主要方向。这是因为人工神经网络主要模拟人类右脑的智能行为而人工智能主要模拟人类左脑的智能机理,人工神经网络与人工智能有机结合就能更好地模拟人类的各种智能活动。新一代智能系统将能更有力地帮助人类扩展他的智力与思维的功能,成为人类认识和改造世界的聪明的工具。因此,它将继续成为当代科学研究重要的前沿。
北境漫步2023-05-26 08:18:171

神经网络浅谈

人工智能技术是当前炙手可热的话题,而基于神经网络的深度学习技术更是热点中的热点。去年谷歌的Alpha Go 以4:1大比分的优势战胜韩国的李世石九段,展现了深度学习的强大威力,后续强化版的Alpha Master和无师自通的Alpha Zero更是在表现上完全碾压前者。不论你怎么看,以深度学习为代表的人工智能技术正在塑造未来。下图为英伟达(NVIDIA)公司近年来的股价情况, 该公司的主要产品是“图形处理器”(GPU),而GPU被证明能大大加快神经网络的训练速度,是深度学习必不可少的计算组件。英伟达公司近年来股价的飞涨足以证明当前深度学习的井喷之势。好,话不多说,下面简要介绍神经网络的基本原理、发展脉络和优势。 神经网络是一种人类由于受到生物神经细胞结构启发而研究出的一种算法体系,是机器学习算法大类中的一种。首先让我们来看人脑神经元细胞:一个神经元通常具有多个树突 ,主要用来接受传入信息,而轴突只有一条,轴突尾端有许多轴突末梢,可以给其他多个神经元传递信息。轴突末梢跟其他神经元的树突产生连接,从而传递信号。 下图是一个经典的神经网络(Artificial Neural Network,ANN):乍一看跟传统互联网的拓扑图有点类似,这也是称其为网络的原因,不同的是节点之间通过有向线段连接,并且节点被分成三层。我们称图中的圆圈为神经元,左边三个神经元组成的一列为输入层,中间神经元列为隐藏层,右边神经元列为输出层,神经元之间的箭头为权重。 神经元是计算单元,相当于神经元细胞的细胞核,利用输入的数据进行计算,然后输出,一般由一个线性计算部分和一个非线性计算部分组成;输入层和输出层实现数据的输入输出,相当于细胞的树突和轴突末梢;隐藏层指既不是输入也不是输出的神经元层,一个神经网络可以有很多个隐藏层。 神经网络的关键不是圆圈代表的神经元,而是每条连接线对应的权重。每条连接线对应一个权重,也就是一个参数。权重具体的值需要通过神经网络的训练才能获得。我们实际生活中的学习体现在大脑中就是一系列神经网络回路的建立与强化,多次重复的学习能让回路变得更加粗壮,使得信号的传递速度加快,最后对外表现为“深刻”的记忆。人工神经网络的训练也借鉴于此,如果某种映射关系出现很多次,那么在训练过程中就相应调高其权重。 1943年,心理学家McCulloch和数学家Pitts参考了生物神经元的结构,发表了抽象的神经元模型MP:符号化后的模型如下:Sum函数计算各权重与输入乘积的线性组合,是神经元中的线性计算部分,而sgn是取符号函数,当输入大于0时,输出1,反之输出0,是神经元中的非线性部分。向量化后的公式为z=sgn(w^T a)(w^T=(w_1,w_2,w_3),a=〖(a_1,a_2,a_3)〗^T)。 但是,MP模型中,权重的值都是预先设置的,因此不能学习。该模型虽然简单,并且作用有限,但已经建立了神经网络大厦的地基 1958年,计算科学家Rosenblatt提出了由两层神经元组成(一个输入层,一个输出层)的神经网络。他给它起了一个名字–“感知器”(Perceptron)感知器是当时首个可以学习的人工神经网络。Rosenblatt现场演示了其学习识别简单图像的过程,在当时引起了轰动,掀起了第一波神经网络的研究热潮。 但感知器只能做简单的线性分类任务。1969年,人工智能领域的巨擘Minsky指出这点,并同时指出感知器对XOR(异或,即两个输入相同时输出0,不同时输出1)这样的简单逻辑都无法解决。所以,明斯基认为神经网络是没有价值的。 随后,神经网络的研究进入低谷,又称 AI Winter 。 Minsky说过单层神经网络无法解决异或问题,但是当增加一个计算层以后,两层神经网络不仅可以解决异或问题,而且具有非常好的非线性分类效果。 下图为两层神经网络(输入层一般不算在内):上图中,输出层的输入是上一层的输出。 向量化后的公式为:注意: 每个神经元节点默认都有偏置变量b,加上偏置变量后的计算公式为:同时,两层神经网络不再使用sgn函数作为激励函数,而采用平滑的sigmoid函数: σ(z)=1/(1+e^(-z) ) 其图像如下:理论证明: 两层及以上的神经网络可以无限逼近真实的对应函数,从而模拟数据之间的真实关系 ,这是神经网络强大预测能力的根本。但两层神经网络的计算量太大,当时的计算机的计算能力完全跟不上,直到1986年,Rumelhar和Hinton等人提出了反向传播(Backpropagation,BP)算法,解决了两层神经网络所需要的复杂计算量问题,带动了业界使用两层神经网络研究的热潮。 但好景不长,算法的改进仅使得神经网络风光了几年,然而计算能力不够,局部最优解,调参等一系列问题一直困扰研究人员。90年代中期,由Vapnik等人发明的SVM(Support Vector Machines,支持向量机)算法诞生,很快就在若干个方面体现出了对比神经网络的优势:无需调参;高效;全局最优解。 由于以上原因,SVM迅速打败了神经网络算法成为主流。神经网络的研究再一次进入低谷, AI Winter again 。 多层神经网络一般指两层或两层以上的神经网络(不包括输入层),更多情况下指两层以上的神经网络。 2006年,Hinton提出使用 预训练 ”(pre-training)和“微调”(fine-tuning)技术能优化神经网络训练,大幅度减少训练多层神经网络的时间 并且,他给多层神经网络相关的学习方法赋予了一个新名词–“ 深度学习 ”,以此为起点,“深度学习”纪元开始了:) “深度学习”一方面指神经网络的比较“深”,也就是层数较多;另一方面也可以指神经网络能学到很多深层次的东西。研究发现,在权重参数不变的情况下,增加神经网络的层数,能增强神经网络的表达能力。 但深度学习究竟有多强大呢?没人知道。2012年,Hinton与他的学生在ImageNet竞赛中,用多层的卷积神经网络成功地对包含一千类别的一百万张图片进行了训练,取得了分类错误率15%的好成绩,这个成绩比第二名高了近11个百分点,充分证明了多层神经网络识别效果的优越性。 同时,科研人员发现GPU的大规模并行矩阵运算模式完美地契合神经网络训练的需要,在同等情况下,GPU的速度要比CPU快50-200倍,这使得神经网络的训练时间大大减少,最终再一次掀起了神经网络研究的热潮,并且一直持续到现在。 2016年基于深度学习的Alpha Go在围棋比赛中以4:1的大比分优势战胜了李世石,深度学习的威力再一次震惊了世界。 神经网络的发展历史曲折荡漾,既有被捧上神坛的高潮,也有无人问津的低谷,中间经历了数次大起大落,我们姑且称之为“三起三落”吧,其背后则是算法的改进和计算能力的持续发展。 下图展示了神经网络自发明以来的发展情况及一些重大时间节点。当然,对于神经网络我们也要保持清醒的头脑。由上图,每次神经网络研究的兴盛期持续10年左右,从最近2012年算起,或许10年后的2022年,神经网络的发展将再次遇到瓶颈。 神经网络作为机器学习的一种,其模型训练的目的,就是使得参数尽可能的与真实的模型逼近。理论证明,两层及以上的神经网络可以无限逼近真实的映射函数。因此,给定足够的训练数据和训练时间,总能通过神经网络找到无限逼近真实关系的模型。 具体做法:首先给所有权重参数赋上随机值,然后使用这些随机生成的参数值,来预测训练数据中的样本。假设样本的预测目标为yp ,真实目标为y,定义值loss,计算公式如下: loss = (yp -y) ^2 这个值称之为 损失 (loss),我们的目标就是使对所有训练数据的损失和尽可能的小,这就转化为求loss函数极值的问题。 一个常用方法是高等数学中的求导,但由于参数不止一个,求导后计算导数等于0的运算量很大,所以常用梯度下降算法来解决这样的优化问题。梯度是一个向量,由函数的各自变量的偏导数组成。 比如对二元函数 f =(x,y),则梯度∇f=(∂f/∂x,∂f/∂y)。梯度的方向是函数值上升最快的方向。梯度下降算法每次计算参数在当前的梯度,然后让参数向着梯度的反方向前进一段距离,不断重复,直到梯度接近零时截止。一般这个时候,所有的参数恰好达到使损失函数达到一个最低值的状态。下图为梯度下降的大致运行过程:在神经网络模型中,由于结构复杂,每次计算梯度的代价很大。因此还需要使用 反向传播 (Back Propagation)算法。反向传播算法利用了神经网络的结构进行计算,不一次计算所有参数的梯度,而是从后往前。首先计算输出层的梯度,然后是第二个参数矩阵的梯度,接着是中间层的梯度,再然后是第一个参数矩阵的梯度,最后是输入层的梯度。计算结束以后,所要的两个参数矩阵的梯度就都有了。当然,梯度下降只是其中一个优化算法,其他的还有牛顿法、RMSprop等。 确定loss函数的最小值后,我们就确定了整个神经网络的权重,完成神经网络的训练。 在神经网络中一样的参数数量,可以用更深的层次去表达。由上图,不算上偏置参数的话,共有三层神经元,33个权重参数。由下图,保持权重参数不变,但增加了两层神经元。 在多层神经网络中,每一层的输入是前一层的输出,相当于在前一层的基础上学习,更深层次的神经网络意味着更深入的表示特征,以及更强的函数模拟能力。更深入的表示特征可以这样理解,随着网络的层数增加,每一层对于前一层次的抽象表示更深入。如上图,第一个隐藏层学习到“边缘”的特征,第二个隐藏层学习到“边缘”组成的“形状”的特征,第三个隐藏层学习到由“形状”组成的“图案”的特征,最后的隐藏层学习到由“图案”组成的“目标”的特征。通过抽取更抽象的特征来对事物进行区分,从而获得更好的区分与分类能力。 前面提到, 明斯基认为Rosenblatt提出的感知器模型不能处理最简单的“异或”(XOR)非线性问题,所以神经网络的研究没有前途,但当增加一层神经元后,异或问题得到了很好地解决,原因何在?原来从输入层到隐藏层,数据发生了空间变换,坐标系发生了改变,因为矩阵运算本质上就是一种空间变换。 如下图,红色和蓝色的分界线是最终的分类结果,可以看到,该分界线是一条非常平滑的曲线。但是,改变坐标系后,分界线却表现为直线,如下图:同时,非线性激励函数的引入使得神经网络对非线性问题的表达能力大大加强。 对于传统的朴素贝叶斯、决策树、支持向量机SVM等分类器,提取特征是一个非常重要的前置工作。在正式训练之前,需要花费大量的时间在数据的清洗上,这样分类器才能清楚地知道数据的维度,要不然基于概率和空间距离的线性分类器是没办法进行工作的。然而在神经网络中,由于巨量的线性分类器的堆叠(并行和串行)以及卷积神经网络的使用,它对噪声的忍耐能力、对多通道数据上投射出来的不同特征偏向的敏感程度会自动重视或忽略,这样我们在处理的时候,就不需要使用太多的技巧用于数据的清洗了。有趣的是,业内大佬常感叹,“你可能知道SVM等机器学习的所有细节,但是效果并不好,而神经网络更像是一个黑盒,很难知道它究竟在做什么,但工作效果却很好”。 人类对机器学习的环节干预越少,就意味着距离人工智能的方向越近。神经网络的这个特性非常有吸引力。 1) 谷歌的TensorFlow开发了一个非常有意思的神经网络 入门教程 ,用户可以非常方便地在网页上更改神经网络的参数,并且能看到实时的学习效率和结果,非常适合初学者掌握神经网络的基本概念及神经网络的原理。网页截图如下:2) 深度学习领域大佬吴恩达不久前发布的《 神经网络和深度学习 》MOOC,现在可以在网易云课堂上免费观看了,并且还有中文字幕。 3) 《神经网络于深度学习》(Michael Nielsen著)、《白话深度学习与TensorFlow》也是不错的入门书籍。
铁血嘟嘟2023-05-26 08:18:171

神经网络的功能!

完成某种信号处理或模式识别的功能、构作专家系统、制成机器人、复杂系统控制等等。在机器学习和相关领域,人工神经网络(人工神经网络)的计算模型灵感来自动物的中枢神经系统(尤其是脑),并且被用于估计或可以依赖于大量的输入和一般的未知近似函数。人工神经网络通常呈现为相互连接的“神经元”,它可以从输入的计算值,并且能够机器学习以及模式识别由于它们的自适应性质的系统。人工神经网络的最大优势是他们能够被用作一个任意函数逼近的机制,那是从观测到的数据“学习”。然而,使用起来也不是那么简单的,一个比较好理解的基本理论是必不可少的。
黑桃花2023-05-26 08:18:171

人工智能时代,神经网络的原理及使用方法 | 微课堂

人工智能时代已经悄然来临,在计算机技术高速发展的未来,机器是否能代替人脑?也许有些读者会说,永远不可能,因为人脑的思考包含感性逻辑。事实上,神经网络算法正是在模仿人脑的思考方式。想不想知道神经网络是如何“思考”的呢?下面我向大家简单介绍一下神经网络的原理及使用方法。 所谓人工智能,就是让机器具备人的思维和意识。人工智能主要有三个学派——行为主义、符号主义和连接主义。 行为主义是基于控制论,是在构建感知动作的控制系统。理解行为主义有个很好的例子,就是让机器人单脚站立,通过感知要摔倒的方向控制两只手的动作,保持身体的平衡,这就构建了一个感知动作控制系统。 符号主义是基于算数逻辑和表达式。求解问题时,先把问题描述为表达式,再求解表达式。如果你在求解某个问题时,可以用if case这样的条件语句,和若干计算公式描述出来,这就使用了符号主义的方法,比如“专家系统”。符号主义可以认为是用公式描述的人工智能,它让计算机具备了理性思维。但是人类不仅具备理性思维,还具备无法用公式描述的感性思维。比如,如果你看过这篇推送,下回再见到“符号主义”几个字,你会觉得眼熟,会想到这是人工智能相关的知识,这是人的直觉,是感性的。 连接主义就是在模拟人的这种感性思维,是在仿造人脑内的神经元连接关系。这张图给出了人脑中的一根神经元,左侧是神经元的输入,“轴突”部分是神经元的输出。人脑就是由860亿个这样的神经元首尾相接组成的网络。 神经网络可以让计算机具备感性思维。我们首先理解一下基于连接主义的神经网络设计过程。这张图给出了人类从出生到24个月神经网络的变化: 随着我们的成长,大量的数据通过视觉、听觉涌入大脑,使我们的神经网络连接,也就是这些神经元连线上的权重发生了变化,有些线上的权重增强了,有些线上的权重减弱了。 我们要用计算机仿出这些神经网络连接关系,让计算机具备感性思维。 首先需要准备数据,数据量越大越好,以构成特征和标签对。如果想识别猫,就要有大量猫的图片和这张图片是猫的标签构成特征标签对,然后搭建神经网络的网络结构,再通过反向传播优化连接的权重,直到模型的识别准确率达到要求,得到最优的连线权重,把这个模型保存起来。最后用保存的模型输入从未见过的新数据,它会通过前向传播输出概率值,概率值最大的一个就是分类和预测的结果。 我们举个例子来感受一下神经网络的设计过程。鸢尾花可以分为三类:狗尾鸢尾、杂色鸢尾和佛吉尼亚鸢尾。我们拿出一张图,需要让计算机判断这是哪类鸢尾花。人们通过经验总结出了规律:通过测量花的花萼长、花萼宽、花瓣长、花瓣宽分辨出鸢尾花的类别,比如花萼长>花萼宽,并且花瓣长/花瓣宽>2,则可以判定为这是第一种,杂色鸢尾。看到这里,也许有些读者已经想到用if、case这样的条件语句来实现鸢尾花的分类。没错,条件语句根据这些信息可以判断鸢尾花分类,这是一个非常典型的专家系统,这个过程是理性计算。只要有了这些数据,就可以通过条件判定公式计算出是哪类鸢尾花。但是我们发现鸢尾花的种植者在识别鸢尾花的时候并不需要这么理性的计算,因为他们见识了太多的鸢尾花,一看就知道是哪种,而且随着经验的增加,识别的准确率会提高。这就是直觉,是感性思维,也是我们这篇文章想要和大家分享的神经网络方法。 这种神经网络设计过程首先需要采集大量的花萼长、花萼宽、花瓣长、花瓣宽,和它们所对应的是哪种鸢尾花。花萼长、花萼宽、花瓣长、花瓣宽叫做输入特征,它们对应的分类叫做标签。大量的输入特征和标签对构建出数据集,再把这个数据集喂入搭建好的神经网络结构,网络通过反向传播优化参数,得到模型。当有新的、从未见过的输入特征,送入神经网络时,神经网络会输出识别的结果。 展望21世纪初,在近十年神经网络理论研究趋向的背景下,神经网络理论的主要前沿领域包括: 一、对智能和机器关系问题的认识进一步增长。 研究人类智力一直是科学发展中最有意义,也是空前困难的挑战性问题。人脑是我们所知道的唯一智能系统,具有感知识别、学习、联想、记忆、推理等智能。我们通过不断 探索 人类智能的本质以及联结机制,并用人工系统复现或部分复现,制造各种智能机器,这样可使人类有更多的时间和机会从事更为复杂、更富创造性的工作。 神经网络是由大量处理单元组成的非线性、自适应、自组织系统,是在现代神经科学研究成果的基础上提出的,试图模拟神经网络加工、记忆信息的方式,设计一种新的机器,使之具有人脑风格的信息处理能力。智能理论所面对的课题来自“环境——问题——目的”,有极大的诱惑力与压力,它的发展方向将是把基于连接主义的神经网络理论、基于符号主义的人工智能专家系统理论和基于进化论的人工生命这三大研究领域,在共同追求的总目标下,自发而有机地结合起来。 二、神经计算和进化计算的重大发展。 计算和算法是人类自古以来十分重视的研究领域,本世纪30年代,符号逻辑方面的研究非常活跃。近年来,神经计算和进化计算领域很活跃,有新的发展动向,在从系统层次向细胞层次转化里,正在建立数学理论基础。随着人们不断 探索 新的计算和算法,将推动计算理论向计算智能化方向发展,在21世纪人类将全面进入信息 社会 ,对信息的获取、处理和传输问题,对网络路由优化问题,对数据安全和保密问题等等将有新的要求,这些将成为 社会 运行的首要任务。因此,神经计算和进化计算与高速信息网络理论联系将更加密切,并在计算机网络领域中发挥巨大的作用,例如大范围计算机网络的自组织功能实现就要进行进化计算。 人类的思维方式正在转变,从线性思维转到非线性思维神经元,神经网络都有非线性、非局域性、非定常性、非凸性和混沌等特性。我们在计算智能的层次上研究非线性动力系统、混沌神经网络以及对神经网络的数理研究,进一步研究自适应性子波、非线性神经场的兴奋模式、神经集团的宏观力学等。因为,非线性问题的研究是神经网络理论发展的一个最大动力,也是它面临的最大挑战。 以上就是有关神经网络的相关内容,希望能为读者带来帮助。 以上内容由苏州空天信息研究院谢雨宏提供。
u投在线2023-05-26 08:18:171

神经网络可以按什么分类

1、按照网络拓朴结构分类网络的拓朴结构,即神经元之间的连接方式。按此划分,可将神经网络结构分为两大类:层次型结构和互联型结构。 扩展资料   层次型结构的神经网络将神经元按功能和顺序的不同分为输出层、中间层(隐层)、输出层。输出层各神经元负责接收来自外界的输入信息,并传给中间各隐层神经元;隐层是神经网络的内部信息处理层,负责信息变换。根据需要可设计为一层或多层;最后一个隐层将信息传递给输出层神经元经进一步处理后向外界输出信息处理结果。   而互连型网络结构中,任意两个节点之间都可能存在连接路径,因此可以根据网络中节点的连接程度将互连型网络细分为三种情况:全互连型、局部互连型和稀疏连接型   2、按照网络信息流向分类   从神经网络内部信息传递方向来看,可以分为两种类型:前馈型网络和反馈型网络。   单纯前馈网络的结构与分层网络结构相同,前馈是因网络信息处理的方向是从输入层到各隐层再到输出层逐层进行而得名的.。前馈型网络中前一层的输出是下一层的输入,信息的处理具有逐层传递进行的方向性,一般不存在反馈环路。因此这类网络很容易串联起来建立多层前馈网络。   反馈型网络的结构与单层全互连结构网络相同。在反馈型网络中的所有节点都具有信息处理功能,而且每个节点既可以从外界接受输入,同时又可以向外界输出。
bikbok2023-05-26 08:18:171

神经网络的优化

上节回顾: 介绍了神经元、神经网络 介绍了激活函数 提到了前向传播概念 留下问题:用到的参数w和b是怎么来的,是自己随便设定的吗 本节介绍: 神经网络、反向传播的例子 损失函数和梯度下降法、学习率介绍 最重要的用途是分类 这种能自动对输入的东西进行分类的机器,就叫做 分类器 。分类器的输入是一个数值向量,叫做特征(向量)。 第一个例子里,分类器的输入是一堆0、1值,表示字典里的每一个词是否在邮件中出现,比如向量(1,1,0,0,0......)就表示这封邮件里只出现了两个词abandon和abnormal; 第二个例子里,分类器的输入是照片,假如每一张照片都是320x240像素的红绿蓝三通道彩色照片,那么分类器的输入就是一个长度为320x240x3=230400的向量。 分类器的输出也是数值。 第一个例子中,输出1表示邮件是垃圾邮件,输出0则说明邮件是正常邮件; 第二个例子中,输出0表示图片中是狗,输出1表示是猫。 分类器的目标就是让正确分类的比例尽可能高。一般我们需要首先收集一些样本, 人为标记上正确分类结果 ,然后用这些标记好的数据 训练分类器 ,训练好的分类器就可以 在新来的特征向量上工作 了。 这就是BP神经网络(back propagation)。 旨在得到最优的全局参数矩阵,进而将多层神经网络应用到分类或者回归任务中去。 前向传播 输入信号直至 输出产生误差 , 反向传播 误差信息 更新权重 矩阵。 这个地方提到的误差这个概念,其实就是对应了损失函数,损失函数说白了就是计算误差的函数。 举例:线性回归:寻找一条拟合图中数据点最好的直线 把每条小竖线的长度加起来就等于我们现在通过这条直线预测出的值与实际值之间的差距 缺点:采用梯度下降法学习时,模型一开始训练学习速率非常慢 对一个多元函数求偏导,会得到多个偏导函数.这些导函数组成的向量,就是梯度;一元函数的梯度是什么?它的梯度可以理解为就是它的导数。 求解多元函数和一元函数的道理是一样的,只不过函数是一元的时候,梯度中只有一个导函数,函数是多元的时候,梯度中有多个导函数. 当我们把梯度中的所有偏导函数都变为0的时候,就可以找到每个未知数的对应解。 梯度下降中求偏导数的未知数不是x和y,而是x的参数W。 梯度下降的方向:把这一点带入到梯度函数中,结果为正,那我们就把这一点的值变小一些,同时就是让梯度变小些;当这一点带入梯度函数中的结果为负的时候,就给这一点的值增大一些。 在这个下降的过程中.因为我们并不知道哪一个点才是最低点,也没有办法来预测下降多少次才能到最低点.这里梯度下降给出的办法是: 先随便蒙一个点出来,然后根据这个点每次下降以丢丢.什么时候下降得到的值(点带入偏导函数得到的)和上一次的值基本一样,也就是相差特别特别小的时候,我们认为就到了最低点。 让点沿着梯度方向下降慢慢求得最优解的过程我们叫做 学习 ,学习率就是用来限制他每次学习别太过"用功"的。下左图是我们所期望的,一个点按照梯度方向下降,慢慢逼近最低点,右图中展示的这个梯度值过大的时候,点下降的step就过大了,一次性迈过了最低点,导致函数无法找到最优解。学习率就是用来限制这种情况的。 更新权重的算法:每一个权重值都要减去它对应的导数和学习率的乘积 Lr 代表的是学习率 简单举例
西柚不是西游2023-05-26 08:18:171

神经网络的研究方向

神经网络的研究可以分为理论研究和应用研究两大方面。理论研究可分为以下两类:1、利用神经生理与认知科学研究人类思维以及智能机理。2、利用神经基础理论的研究成果,用数理方法探索功能更加完善、性能更加优越的神经网络模型,深入研究网络算法和性能,如:稳定性、收敛性、容错性、鲁棒性等;开发新的网络数理理论,如:神经网络动力学、非线性神经场等。应用研究可分为以下两类:1、神经网络的软件模拟和硬件实现的研究。2、神经网络在各个领域中应用的研究。这些领域主要包括:模式识别、信号处理、知识工程、专家系统、优化组合、机器人控制等。随着神经网络理论本身以及相关理论、相关技术的不断发展,神经网络的应用定将更加深入。
Ntou1232023-05-26 08:18:171

人工神经网络,人工神经网络是什么意思

人工神经网络(Artificial Neural Network,即ANN ),是20世纪80 年代以来人工智能领域兴起的研究热点。它从信息处理角度对人脑神经元网络进行抽象, 建立某种简单模型,按不同的连接方式组成不同的网络。在工程与学术界也常直接简称为神经网络或类神经网络。神经网络是一种运算模型,由大量的节点(或称神经元)之间相互联接构成。每个节点代表一种特定的输出函数,称为激励函数(activation function)。每两个节点间的连接都代表一个对于通过该连接信号的加权值,称之为权重,这相当于人工神经网络的记忆。网络的输出则依网络的连接方式,权重值和激励函数的不同而不同。而网络自身通常都是对自然界某种算法或者函数的逼近,也可能是对一种逻辑策略的表达。
水元素sl2023-05-26 08:18:172

神经网络原理及应用

神经网络原理及应用1. 什么是神经网络?神经网络是一种模拟动物神经网络行为特征,进行分布式并行信息处理的算法。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。人类的神经网络 2. 神经网络基础知识构成:大量简单的基础元件——神经元相互连接工作原理:模拟生物的神经处理信息的方式功能:进行信息的并行处理和非线性转化特点:比较轻松地实现非线性映射过程,具有大规模的计算能力神经网络的本质: 神经网络的本质就是利用计算机语言模拟人类大脑做决定的过程。3. 生物神经元结构 4. 神经元结构模型 xj为输入信号,θi为阈值,wij表示与神经元连接的权值,yi表示输出值判断xjwij是否大于阈值θi5. 什么是阈值?临界值。神经网络是模仿大脑的神经元,当外界刺激达到一定的阈值时,神经元才会受刺激,影响下一个神经元。 6. 几种代表性的网络模型单层前向神经网络——线性网络阶跃网络多层前向神经网络(反推学习规则即BP神经网络)Elman网络、Hopfield网络、双向联想记忆网络、自组织竞争网络等等7. 神经网络能干什么?运用这些网络模型可实现函数逼近、数据聚类、模式分类、优化计算等功能。因此,神经网络广泛应用于人工智能、自动控制、机器人、统计学等领域的信息处理中。虽然神经网络的应用很广,但是在具体的使用过程中到底应当选择哪种网络结构比较合适是值得考虑的。这就需要我们对各种神经网络结构有一个较全面的认识。8. 神经网络应用
此后故乡只2023-05-26 08:18:171

人工神经网络有哪些类型

工神经网络(Artificial Neural Networks, ANN),一种模范动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。人工神经网络具有自学习和自适应的能力,可以通过预先提供的一批相互对应的输入-输出数据,分析掌握两者之间潜在的规律,最终根据这些规律,用新的输入数据来推算输出结果,这种学习分析的过程被称为“训练”。(引自《环球科学》2007年第一期《神经语言:老鼠胡须下的秘密》)概念由大量处理单元互联组成的非线性、自适应信息处理系统。它是在现代神经科学研究成果的基础上提出的,试图通过模拟大脑神经网络处理、记忆信息的方式进行信息处理。人工神经网络具有四个基本特征:(1)非线性 非线性关系是自然界的普遍特性。大脑的智慧就是一种非线性现象。人工神经元处于激活或抑制二种不同的状态,这种行为在数学上表现为一种非线性关系。具有阈值的神经元构成的网络具有更好的性能,可以提高容错性和存储容量。(2)非局限性 一个神经网络通常由多个神经元广泛连接而成。一个系统的整体行为不仅取决于单个神经元的特征,而且可能主要由单元之间的相互作用、相互连接所决定。通过单元之间的大量连接模拟大脑的非局限性。联想记忆是非局限性的典型例子。(3)非常定性 人工神经网络具有自适应、自组织、自学习能力。神经网络不但处理的信息可以有各种变化,而且在处理信息的同时,非线性动力系统本身也在不断变化。经常采用迭代过程描写动力系统的演化过程。(4)非凸性 一个系统的演化方向,在一定条件下将取决于某个特定的状态函数。例如能量函数,它的极值相应于系统比较稳定的状态。非凸性是指这种函数有多个极值,故系统具有多个较稳定的平衡态,这将导致系统演化的多样性。人工神经网络中,神经元处理单元可表示不同的对象,例如特征、字母、概念,或者一些有意义的抽象模式。网络中处理单元的类型分为三类:输入单元、输出单元和隐单元。输入单元接受外部世界的信号与数据;输出单元实现系统处理结果的输出;隐单元是处在输入和输出单元之间,不能由系统外部观察的单元。神经元间的连接权值反映了单元间的连接强度,信息的表示和处理体现在网络处理单元的连接关系中。人工神经网络是一种非程序化、适应性、大脑风格的信息处理,其本质是通过网络的变换和动力学行为得到一种并行分布式的信息处理功能,并在不同程度和层次上模仿人脑神经系统的信息处理功能。它是涉及神经科学、思维科学、人工智能、计算机科学等多个领域的交叉学科。人工神经网络是并行分布式系统,采用了与传统人工智能和信息处理技术完全不同的机理,克服了传统的基于逻辑符号的人工智能在处理直觉、非结构化信息方面的缺陷,具有自适应、自组织和实时学习的特点。历史沿革1943年,心理学家W.S.McCulloch和数理逻辑学家W.Pitts建立了神经网络和数学模型,称为MP模型。他们通过MP模型提出了神经元的形式化数学描述和网络结构方法,证明了单个神经元能执行逻辑功能,从而开创了人工神经网络研究的时代。1949年,心理学家提出了突触联系强度可变的设想。60年代,人工神经网络的到了进一步发展,更完善的神经网络模型被提出,其中包括感知器和自适应线性元件等。M.Minsky等仔细分析了以感知器为代表的神经网络系统的功能及局限后,于1969年出版了《Perceptron》一书,指出感知器不能解决高阶谓词问题。他们的论点极大地影响了神经网络的研究,加之当时串行计算机和人工智能所取得的成就,掩盖了发展新型计算机和人工智能新途径的必要性和迫切性,使人工神经网络的研究处于低潮。在此期间,一些人工神经网络的研究者仍然致力于这一研究,提出了适应谐振理论(ART网)、自组织映射、认知机网络,同时进行了神经网络数学理论的研究。以上研究为神经网络的研究和发展奠定了基础。1982年,美国加州工学院物理学家J.J.Hopfield提出了Hopfield神经网格模型,引入了“计算能量”概念,给出了网络稳定性判断。 1984年,他又提出了连续时间Hopfield神经网络模型,为神经计算机的研究做了开拓性的工作,开创了神经网络用于联想记忆和优化计算的新途径,有力地推动了神经网络的研究,1985年,又有学者提出了波耳兹曼模型,在学习中采用统计热力学模拟退火技术,保证整个系统趋于全局稳定点。1986年进行认知微观结构地研究,提出了并行分布处理的理论。人工神经网络的研究受到了各个发达国家的重视,美国国会通过决议将1990年1月5日开始的十年定为“脑的十年”,国际研究组织号召它的成员国将“脑的十年”变为全球行为。在日本的“真实世界计算(RWC)”项目中,人工智能的研究成了一个重要的组成部分。基本内容人工神经网络模型主要考虑网络连接的拓扑结构、神经元的特征、学习规则等。目前,已有近40种神经网络模型,其中有反传网络、感知器、自组织映射、Hopfield网络、波耳兹曼机、适应谐振理论等。根据连接的拓扑结构,神经网络模型可以分为:(1)前向网络 网络中各个神经元接受前一级的输入,并输出到下一级,网络中没有反馈,可以用一个有向无环路图表示。这种网络实现信号从输入空间到输出空间的变换,它的信息处理能力来自于简单非线性函数的多次复合。网络结构简单,易于实现。反传网络是一种典型的前向网络。(2)反馈网络 网络内神经元间有反馈,可以用一个无向的完备图表示。这种神经网络的信息处理是状态的变换,可以用动力学系统理论处理。系统的稳定性与联想记忆功能有密切关系。Hopfield网络、波耳兹曼机均属于这种类型。学习是神经网络研究的一个重要内容,它的适应性是通过学习实现的。根据环境的变化,对权值进行调整,改善系统的行为。由Hebb提出的Hebb学习规则为神经网络的学习算法奠定了基础。Hebb规则认为学习过程最终发生在神经元之间的突触部位,突触的联系强度随着突触前后神经元的活动而变化。在此基础上,人们提出了各种学习规则和算法,以适应不同网络模型的需要。有效的学习算法,使得神经网络能够通过连接权值的调整,构造客观世界的内在表示,形成具有特色的信息处理方法,信息存储和处理体现在网络的连接中。根据学习环境不同,神经网络的学习方式可分为监督学习和非监督学习。在监督学习中,将训练样本的数据加到网络输入端,同时将相应的期望输出与网络输出相比较,得到误差信号,以此控制权值连接强度的调整,经多次训练后收敛到一个确定的权值。当样本情况发生变化时,经学习可以修改权值以适应新的环境。使用监督学习的神经网络模型有反传网络、感知器等。非监督学习时,事先不给定标准样本,直接将网络置于环境之中,学习阶段与工作阶段成为一体。此时,学习规律的变化服从连接权值的演变方程。非监督学习最简单的例子是Hebb学习规则。竞争学习规则是一个更复杂的非监督学习的例子,它是根据已建立的聚类进行权值调整。自组织映射、适应谐振理论网络等都是与竞争学习有关的典型模型。研究神经网络的非线性动力学性质,主要采用动力学系统理论、非线性规划理论和统计理论,来分析神经网络的演化过程和吸引子的性质,探索神经网络的协同行为和集体计算功能,了解神经信息处理机制。为了探讨神经网络在整体性和模糊性方面处理信息的可能,混沌理论的概念和方法将会发挥作用。混沌是一个相当难以精确定义的数学概念。一般而言,“混沌”是指由确定性方程描述的动力学系统中表现出的非确定性行为,或称之为确定的随机性。“确定性”是因为它由内在的原因而不是外来的噪声或干扰所产生,而“随机性”是指其不规则的、不能预测的行为,只可能用统计的方法描述。混沌动力学系统的主要特征是其状态对初始条件的灵敏依赖性,混沌反映其内在的随机性。混沌理论是指描述具有混沌行为的非线性动力学系统的基本理论、概念、方法,它把动力学系统的复杂行为理解为其自身与其在同外界进行物质、能量和信息交换过程中内在的有结构的行为,而不是外来的和偶然的行为,混沌状态是一种定态。混沌动力学系统的定态包括:静止、平稳量、周期性、准同期性和混沌解。混沌轨线是整体上稳定与局部不稳定相结合的结果,称之为奇异吸引子。一个奇异吸引子有如下一些特征:(1)奇异吸引子是一个吸引子,但它既不是不动点,也不是周期解;(2)奇异吸引子是不可分割的,即不能分为两个以及两个以上的吸引子;(3)它对初始值十分敏感,不同的初始值会导致极不相同的行为。发展趋势人工神经网络特有的非线性适应性信息处理能力,克服了传统人工智能方法对于直觉,如模式、语音识别、非结构化信息处理方面的缺陷,使之在神经专家系统、模式识别、智能控制、组合优化、预测等领域得到成功应用。人工神经网络与其它传统方法相结合,将推动人工智能和信息处理技术不断发展。近年来,人工神经网络正向模拟人类认知的道路上更加深入发展,与模糊系统、遗传算法、进化机制等结合,形成计算智能,成为人工智能的一个重要方向,将在实际应用中得到发展。将信息几何应用于人工神经网络的研究,为人工神经网络的理论研究开辟了新的途径。神经计算机的研究发展很快,已有产品进入市场。光电结合的神经计算机为人工神经网络的发展提供了良好条件。
黑桃花2023-05-26 08:18:172

一文看懂四种基本的神经网络架构

原文链接: http://blackblog.tech/2018/02/23/Eight-Neural-Network/ 更多干货就在我的个人博客 http://blackblog.tech 欢迎关注 刚刚入门神经网络,往往会对众多的神经网络架构感到困惑,神经网络看起来复杂多样,但是这么多架构无非也就是三类,前馈神经网络,循环网络,对称连接网络,本文将介绍四种常见的神经网络,分别是CNN,RNN,DBN,GAN。通过这四种基本的神经网络架构,我们来对神经网络进行一定的了解。 神经网络是机器学习中的一种模型,是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。 一般来说,神经网络的架构可以分为三类: 前馈神经网络: 这是实际应用中最常见的神经网络类型。第一层是输入,最后一层是输出。如果有多个隐藏层,我们称之为“深度”神经网络。他们计算出一系列改变样本相似性的变换。各层神经元的活动是前一层活动的非线性函数。 循环网络: 循环网络在他们的连接图中定向了循环,这意味着你可以按照箭头回到你开始的地方。他们可以有复杂的动态,使其很难训练。他们更具有生物真实性。 循环网络的目的使用来处理序列数据。在传统的神经网络模型中,是从输入层到隐含层再到输出层,层与层之间是全连接的,每层之间的节点是无连接的。但是这种普通的神经网络对于很多问题却无能无力。例如,你要预测句子的下一个单词是什么,一般需要用到前面的单词,因为一个句子中前后单词并不是独立的。 循环神经网路,即一个序列当前的输出与前面的输出也有关。具体的表现形式为网络会对前面的信息进行记忆并应用于当前输出的计算中,即隐藏层之间的节点不再无连接而是有连接的,并且隐藏层的输入不仅包括输入层的输出还包括上一时刻隐藏层的输出。 对称连接网络: 对称连接网络有点像循环网络,但是单元之间的连接是对称的(它们在两个方向上权重相同)。比起循环网络,对称连接网络更容易分析。这个网络中有更多的限制,因为它们遵守能量函数定律。没有隐藏单元的对称连接网络被称为“Hopfield 网络”。有隐藏单元的对称连接的网络被称为玻尔兹曼机。 其实之前的帖子讲过一些关于感知机的内容,这里再复述一下。 首先还是这张图 这是一个M-P神经元 一个神经元有n个输入,每一个输入对应一个权值w,神经元内会对输入与权重做乘法后求和,求和的结果与偏置做差,最终将结果放入激活函数中,由激活函数给出最后的输出,输出往往是二进制的,0 状态代表抑制,1 状态代表激活。 可以把感知机看作是 n 维实例空间中的超平面决策面,对于超平面一侧的样本,感知器输出 1,对于另一侧的实例输出 0,这个决策超平面方程是 w⋅x=0。 那些可以被某一个超平面分割的正反样例集合称为线性可分(linearly separable)样例集合,它们就可以使用图中的感知机表示。 与、或、非问题都是线性可分的问题,使用一个有两输入的感知机能容易地表示,而异或并不是一个线性可分的问题,所以使用单层感知机是不行的,这时候就要使用多层感知机来解决疑惑问题了。 如果我们要训练一个感知机,应该怎么办呢? 我们会从随机的权值开始,反复地应用这个感知机到每个训练样例,只要它误分类样例就修改感知机的权值。重复这个过程,直到感知机正确分类所有的样例。每一步根据感知机训练法则来修改权值,也就是修改与输入 xi 对应的权 wi,法则如下: 这里 t 是当前训练样例的目标输出,o 是感知机的输出,η 是一个正的常数称为学习速率。学习速率的作用是缓和每一步调整权的程度,它通常被设为一个小的数值(例如 0.1),而且有时会使其随着权调整次数的增加而衰减。 多层感知机,或者说是多层神经网络无非就是在输入层与输出层之间加了多个隐藏层而已,后续的CNN,DBN等神经网络只不过是将重新设计了每一层的类型。感知机可以说是神经网络的基础,后续更为复杂的神经网络都离不开最简单的感知机的模型, 谈到机器学习,我们往往还会跟上一个词语,叫做模式识别,但是真实环境中的模式识别往往会出现各种问题。比如: 图像分割:真实场景中总是掺杂着其它物体。很难判断哪些部分属于同一个对象。对象的某些部分可以隐藏在其他对象的后面。 物体光照:像素的强度被光照强烈影响。 图像变形:物体可以以各种非仿射方式变形。例如,手写也可以有一个大的圆圈或只是一个尖头。 情景支持:物体所属类别通常由它们的使用方式来定义。例如,椅子是为了让人们坐在上面而设计的,因此它们具有各种各样的物理形状。 卷积神经网络与普通神经网络的区别在于,卷积神经网络包含了一个由卷积层和子采样层构成的特征抽取器。在卷积神经网络的卷积层中,一个神经元只与部分邻层神经元连接。在CNN的一个卷积层中,通常包含若干个特征平面(featureMap),每个特征平面由一些矩形排列的的神经元组成,同一特征平面的神经元共享权值,这里共享的权值就是卷积核。卷积核一般以随机小数矩阵的形式初始化,在网络的训练过程中卷积核将学习得到合理的权值。共享权值(卷积核)带来的直接好处是减少网络各层之间的连接,同时又降低了过拟合的风险。子采样也叫做池化(pooling),通常有均值子采样(mean pooling)和最大值子采样(max pooling)两种形式。子采样可以看作一种特殊的卷积过程。卷积和子采样大大简化了模型复杂度,减少了模型的参数。 卷积神经网络由三部分构成。第一部分是输入层。第二部分由n个卷积层和池化层的组合组成。第三部分由一个全连结的多层感知机分类器构成。 这里举AlexNet为例: ·输入:224×224大小的图片,3通道 ·第一层卷积:11×11大小的卷积核96个,每个GPU上48个。 ·第一层max-pooling:2×2的核。 ·第二层卷积:5×5卷积核256个,每个GPU上128个。 ·第二层max-pooling:2×2的核。 ·第三层卷积:与上一层是全连接,3*3的卷积核384个。分到两个GPU上个192个。 ·第四层卷积:3×3的卷积核384个,两个GPU各192个。该层与上一层连接没有经过pooling层。 ·第五层卷积:3×3的卷积核256个,两个GPU上个128个。 ·第五层max-pooling:2×2的核。 ·第一层全连接:4096维,将第五层max-pooling的输出连接成为一个一维向量,作为该层的输入。 ·第二层全连接:4096维 ·Softmax层:输出为1000,输出的每一维都是图片属于该类别的概率。 卷积神经网络在模式识别领域有着重要应用,当然这里只是对卷积神经网络做了最简单的讲解,卷积神经网络中仍然有很多知识,比如局部感受野,权值共享,多卷积核等内容,后续有机会再进行讲解。 传统的神经网络对于很多问题难以处理,比如你要预测句子的下一个单词是什么,一般需要用到前面的单词,因为一个句子中前后单词并不是独立的。RNN之所以称为循环神经网路,即一个序列当前的输出与前面的输出也有关。具体的表现形式为网络会对前面的信息进行记忆并应用于当前输出的计算中,即隐藏层之间的节点不再无连接而是有连接的,并且隐藏层的输入不仅包括输入层的输出还包括上一时刻隐藏层的输出。理论上,RNN能够对任何长度的序列数据进行处理。 这是一个简单的RNN的结构,可以看到隐藏层自己是可以跟自己进行连接的。 那么RNN为什么隐藏层能够看到上一刻的隐藏层的输出呢,其实我们把这个网络展开来开就很清晰了。 从上面的公式我们可以看出,循环层和全连接层的区别就是循环层多了一个权重矩阵 W。 如果反复把式2带入到式1,我们将得到: 在讲DBN之前,我们需要对DBN的基本组成单位有一定的了解,那就是RBM,受限玻尔兹曼机。 首先什么是玻尔兹曼机? [图片上传失败...(image-d36b31-1519636788074)] 如图所示为一个玻尔兹曼机,其蓝色节点为隐层,白色节点为输入层。 玻尔兹曼机和递归神经网络相比,区别体现在以下几点: 1、递归神经网络本质是学习一个函数,因此有输入和输出层的概念,而玻尔兹曼机的用处在于学习一组数据的“内在表示”,因此其没有输出层的概念。 2、递归神经网络各节点链接为有向环,而玻尔兹曼机各节点连接成无向完全图。 而受限玻尔兹曼机是什么呢? 最简单的来说就是加入了限制,这个限制就是将完全图变成了二分图。即由一个显层和一个隐层构成,显层与隐层的神经元之间为双向全连接。 h表示隐藏层,v表示显层 在RBM中,任意两个相连的神经元之间有一个权值w表示其连接强度,每个神经元自身有一个偏置系数b(对显层神经元)和c(对隐层神经元)来表示其自身权重。 具体的公式推导在这里就不展示了 DBN是一个概率生成模型,与传统的判别模型的神经网络相对,生成模型是建立一个观察数据和标签之间的联合分布,对P(Observation|Label)和 P(Label|Observation)都做了评估,而判别模型仅仅而已评估了后者,也就是P(Label|Observation)。 DBN由多个限制玻尔兹曼机(Restricted Boltzmann Machines)层组成,一个典型的神经网络类型如图所示。这些网络被“限制”为一个可视层和一个隐层,层间存在连接,但层内的单元间不存在连接。隐层单元被训练去捕捉在可视层表现出来的高阶数据的相关性。 生成对抗网络其实在之前的帖子中做过讲解,这里在说明一下。 生成对抗网络的目标在于生成,我们传统的网络结构往往都是判别模型,即判断一个样本的真实性。而生成模型能够根据所提供的样本生成类似的新样本,注意这些样本是由计算机学习而来的。 GAN一般由两个网络组成,生成模型网络,判别模型网络。 生成模型 G 捕捉样本数据的分布,用服从某一分布(均匀分布,高斯分布等)的噪声 z 生成一个类似真实训练数据的样本,追求效果是越像真实样本越好;判别模型 D 是一个二分类器,估计一个样本来自于训练数据(而非生成数据)的概率,如果样本来自于真实的训练数据,D 输出大概率,否则,D 输出小概率。 举个例子:生成网络 G 好比假币制造团伙,专门制造假币,判别网络 D 好比警察,专门检测使用的货币是真币还是假币,G 的目标是想方设法生成和真币一样的货币,使得 D 判别不出来,D 的目标是想方设法检测出来 G 生成的假币。 传统的判别网络: 生成对抗网络: 下面展示一个cDCGAN的例子(前面帖子中写过的) 生成网络 判别网络 最终结果,使用MNIST作为初始样本,通过学习后生成的数字,可以看到学习的效果还是不错的。 本文非常简单的介绍了四种神经网络的架构,CNN,RNN,DBN,GAN。当然也仅仅是简单的介绍,并没有深层次讲解其内涵。这四种神经网络的架构十分常见,应用也十分广泛。当然关于神经网络的知识,不可能几篇帖子就讲解完,这里知识讲解一些基础知识,帮助大家快速入(zhuang)门(bi)。后面的帖子将对深度自动编码器,Hopfield 网络长短期记忆网络(LSTM)进行讲解。
FinCloud2023-05-26 08:18:171

CNN是什么 详解卷积神经网络?

CNN的核心思想是卷积操作,它可以有效地提取图像的局部特征。卷积操作是指在输入数据上滑动一个固定大小的窗口,对窗口内的数据进行处理,得到一个新的特征图。在CNN中,卷积操作通常与池化操作一起使用,池化操作可以将特征图的大小降低,从而减少计算量和参数数量。总之,CNN是一种强大的深度学习模型,它可以自动提取图像的特征,从而减轻了人工特征提取的负担。在计算机视觉领域中,CNN的应用非常广泛,未来它还将在更多领域中得到应用。CNN的结构一般包括卷积层、池化层和全连接层。卷积层和池化层可以提取图像的局部特征,全连接层则可以将这些特征通过多个神经元组合起来,得到最终的分类结果。CNN的核心思想是卷积操作,它可以有效地提取图像的局部特征。卷积操作是指在输入数据上滑动一个固定大小的窗口,对窗口内的数据进行处理,得到一个新的特征图。在CNN中,卷积操作通常与池化操作一起使用,池化操作可以将特征图的大小降低,从而减少计算量和参数数量。CNN的结构一般包括卷积层、池化层和全连接层。卷积层和池化层可以提取图像的局部特征,全连接层则可以将这些特征通过多个神经元组合起来,得到最终的分类结果。
余辉2023-05-26 08:18:161

什么是神经网络计算机

这个其实你安静下来查查百度也挺快的,人讲的话漏洞还是蛮多的。神经网络可以想象成机器人脑。尽量简单讲吧,神经网络的初衷是人希望计算机能模拟人的思维方式解决这些问题:识别物体,识别数据类型——》进而做到预测物体发展,预测数据变化。比如预测股票,电影票房等等。那人的思维方式是怎样的呢?是多维的网状的。比如,识别一个杯子只需要一瞬间,但你判断的过程是通过杯子的各种特征综合反映出来是一个杯子的。这种各种特征的综合反映就是神经网络的基本特点。抽象一点,你输入一组能代表杯子的特征,经过神经网络的处理,它能告诉你这是一个杯子。神经网络就算成了。其中,你输入的一组特征就是输入向量;神经网络是由你自己设计的,包括层数和节点数,都是模拟人脑复杂程度的。解决什么样的问题,就用适当的复杂程度。处理指的是各种函数。最后能告诉你是个杯子,就算是输出了。当然,神经网络并不是很准确的网络,因为这是和人自己对大脑的研究成正比的。但因为兼容性强,建模方便的特征,使神经网络的使用范围还是相当广的。希望没有误导你。
大鱼炖火锅2023-05-26 08:18:161

神经网络的历史是什么?

沃伦·麦卡洛克和沃尔特·皮茨(1943)基于数学和一种称为阈值逻辑的算法创造了一种神经网络的计算模型。这种模型使得神经网络的研究分裂为两种不同研究思路。一种主要关注大脑中的生物学过程,另一种主要关注神经网络在人工智能里的应用。一、赫布型学习二十世纪40年代后期,心理学家唐纳德·赫布根据神经可塑性的机制创造了一种对学习的假说,现在称作赫布型学习。赫布型学习被认为是一种典型的非监督式学习规则,它后来的变种是长期增强作用的早期模型。从1948年开始,研究人员将这种计算模型的思想应用到B型图灵机上。法利和韦斯利·A·克拉克(1954)首次使用计算机,当时称作计算器,在MIT模拟了一个赫布网络。纳撒尼尔·罗切斯特(1956)等人模拟了一台 IBM 704计算机上的抽象神经网络的行为。弗兰克·罗森布拉特创造了感知机。这是一种模式识别算法,用简单的加减法实现了两层的计算机学习网络。罗森布拉特也用数学符号描述了基本感知机里没有的回路,例如异或回路。这种回路一直无法被神经网络处理,直到保罗·韦伯斯(1975)创造了反向传播算法。在马文·明斯基和西摩尔·派普特(1969)发表了一项关于机器学习的研究以后,神经网络的研究停滞不前。他们发现了神经网络的两个关键问题。第一是基本感知机无法处理异或回路。第二个重要的问题是电脑没有足够的能力来处理大型神经网络所需要的很长的计算时间。直到计算机具有更强的计算能力之前,神经网络的研究进展缓慢。二、反向传播算法与复兴后来出现的一个关键的进展是保罗·韦伯斯发明的反向传播算法(Werbos 1975)。这个算法有效地解决了异或的问题,还有更普遍的训练多层神经网络的问题。在二十世纪80年代中期,分布式并行处理(当时称作联结主义)流行起来。戴维·鲁姆哈特和詹姆斯·麦克里兰德的教材对于联结主义在计算机模拟神经活动中的应用提供了全面的论述。神经网络传统上被认为是大脑中的神经活动的简化模型,虽然这个模型和大脑的生理结构之间的关联存在争议。人们不清楚人工神经网络能多大程度地反映大脑的功能。支持向量机和其他更简单的方法(例如线性分类器)在机器学习领域的流行度逐渐超过了神经网络,但是在2000年代后期出现的深度学习重新激发了人们对神经网络的兴趣。三、2006年之后的进展人们用CMOS创造了用于生物物理模拟和神经形态计算的计算设备。最新的研究显示了用于大型主成分分析和卷积神经网络的纳米设备具有良好的前景。如果成功的话,这会创造出一种新的神经计算设备,因为它依赖于学习而不是编程,并且它从根本上就是模拟的而不是数字化的,虽然它的第一个实例可能是数字化的CMOS设备。在2009到2012年之间,Jürgen Schmidhuber在Swiss AI Lab IDSIA的研究小组研发的循环神经网络和深前馈神经网络赢得了8项关于模式识别和机器学习的国际比赛。例如,Alex Graves et al.的双向、多维的LSTM赢得了2009年ICDAR的3项关于连笔字识别的比赛,而且之前并不知道关于将要学习的3种语言的信息。IDSIA的Dan Ciresan和同事根据这个方法编写的基于GPU的实现赢得了多项模式识别的比赛,包括IJCNN 2011交通标志识别比赛等等。他们的神经网络也是第一个在重要的基准测试中(例如IJCNN 2012交通标志识别和NYU的扬·勒丘恩(Yann LeCun)的MNIST手写数字问题)能达到或超过人类水平的人工模式识别器。类似1980年Kunihiko Fukushima发明的neocognitron和视觉标准结构(由David H. Hubel和Torsten Wiesel在初级视皮层中发现的那些简单而又复杂的细胞启发)那样有深度的、高度非线性的神经结构可以被多伦多大学杰弗里·辛顿实验室的非监督式学习方法所训练。2012年,神经网络出现了快速的发展,主要原因在于计算技术的提高,使得很多复杂的运算变得成本低廉。以AlexNet为标志,大量的深度网络开始出现。2014年出现了残差神经网络,该网络极大解放了神经网络的深度限制,出现了深度学习的概念。构成典型的人工神经网络具有以下三个部分:1、结构(Architecture)结构指定了网络中的变量和它们的拓扑关系。例如,神经网络中的变量可以是神经元连接的权重(weights)和神经元的激励值(activities of the neurons)。2、激励函数(Activation Rule)大部分神经网络模型具有一个短时间尺度的动力学规则,来定义神经元如何根据其他神经元的活动来改变自己的激励值。一般激励函数依赖于网络中的权重(即该网络的参数)。3、学习规则(Learning Rule)学习规则指定了网络中的权重如何随着时间推进而调整。这一般被看做是一种长时间尺度的动力学规则。一般情况下,学习规则依赖于神经元的激励值。它也可能依赖于监督者提供的目标值和当前权重的值。例如,用于手写识别的一个神经网络,有一组输入神经元。输入神经元会被输入图像的数据所激发。在激励值被加权并通过一个函数(由网络的设计者确定)后,这些神经元的激励值被传递到其他神经元。这个过程不断重复,直到输出神经元被激发。最后,输出神经元的激励值决定了识别出来的是哪个字母。
小白2023-05-26 08:18:161

人工神经网络

本文讨论的神经网络是从生物学领域引入计算机科学和工程领域的一个仿生学概念,又称人工神经网络(英语:artificial neural network,缩写ANN)。是一种模仿生物神经网络(动物的中枢神经系统,特别是大脑)的结构和功能的数学模型或计算模型,用于对函数进行估计或近似。参考 wiki定义 。 如图,一个神经元通常具有多个树突,主要用来接受传入信息;而轴突只有一条,轴突尾端有许多轴突末梢可以给其他多个神经元传递信息。轴突末梢跟其他神经元的树突产生连接,从而传递信号。这个连接的位置在生物学上叫做“突触”。 基于此,1943年,心理学家McCulloch和数学家Pitts参考了生物神经元的结构,发表了抽象的神经元模型MP,神经元模型是一个包含输入,输出与计算功能的模型。输入可以类比为神经元的树突,而输出可以类比为神经元的轴突,计算则可以类比为细胞核。如下图: 图中X代表输入信号,W代表权重,∑代表将X和W的矩阵运算,ψ对运算结果应用sgn函数,最终得到输出y。 然而,改模型对权限W是通过指定好的,因此不存在在计算工程中动态调配权限W的能力,也就是不存在学习的能力。 1958年,计算科学家Rosenblatt提出了由两层神经元组成的神经网络:“感知器”(Perceptron)。 可以看到,一个感知器有如下组成部分: 输入权值: 一个感知器可以接收多个输入,每个输入上有一个权值,此外还有一个偏置项,就是上图中的。 激活函数: 感知器的激活函数可以有很多选择,比如我们可以选择Sigmoid函数来作为激活函数。 其中,因为生物学上,外接信号传导到神经元上,神经元不会立刻做出反应,而是会抑制输入,直到输入增强,强大到可以触发输出。也就是说,在产生输出之前,输入必须达到一个阈值。在数学上,这种随着变量值增大,函数值发生跳跃的函数成为激活函数。下图是一个常用的激活函数,Sigmoid函数曲线图: 上节我们看到,感知器其实是单层的神经网络,神经网络可以理解成多个感知器组合而成的一个结构,如下图:神经网络的学习过程就是对权重矩阵的更新过程。所谓的训练过程就是比较当前网络的预测值和我们真正想要的目标值,再根据两者差异来更新每一层的权重矩阵。因此,必须先定义好如何比较预测值和目标值的差异,这便是损失函数(loss function)。损失函数输出值loss越高表示差异性越大,神经网络的训练就变成了尽可能的缩小loss的过程。 所谓梯度下降法,就是通过使loss值向当前点对应梯度点反方向不断移动,来降低loss。一次移动多少通过学习率(learning rate)控制。 通俗来讲,所谓梯度下降法,其实就如同漆黑的夜晚拿着手电筒站在山顶,每次只能看到眼前的一米远距离,想要下到山脚,我们采用每次都选择最陡峭的地方向下挪动,反复这一过程,最终到达山脚。
瑞瑞爱吃桃2023-05-26 08:18:161

神经网络中Belief Net和标准的神经网络有什么区别

这两个概念实际上是互相交叉的,例如,卷积神经网络(Convolutional neural networks,简称CNNs)就是一种深度的监督学习下的机器学习模型,而深度置信网(Deep Belief Nets,简称DBNs)就是一种无监督学习下的机器学习模型。深度学习的概念源于人工神经网络的研究。含多隐层的多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。深度学习的概念由Hinton等人于2006年提出。基于深信度网(DBN)提出非监督贪心逐层训练算法,为解决深层结构相关的优化难题带来希望,随后提出多层自动编码器深层结构。此外Lecun等人提出的卷积神经网络是第一个真正多层结构学习算法,它利用空间相对关系减少参数数目以提高训练性能。
LuckySXyd2023-05-26 08:18:162

基于神经网络的故障诊断

神经网络的是我的毕业论文的一部分4.人工神经网络人的思维有逻辑性和直观性两种不同的基本方式。逻辑性的思维是指根据逻辑规则进行推理的过程;它先将信息化成概念,并用符号表示,然后,根据符号运算按串行模式进行逻辑推理。这一过程可以写成串行的指令,让计算机执行。然而,直观性的思维是将分布式存储的信息综合起来,结果是忽然间产生想法或解决问题的办法。这种思维方式的根本之点在于以下两点:1.信息是通过神经元上的兴奋模式分布在网络上;2.信息处理是通过神经元之间同时相互作用的动态过程来完成的。 人工神经网络就是模拟人思维的第二种方式。这是一个非线性动力学系统,其特色在于信息的分布式存储和并行协同处理。虽然单个神经元的结构极其简单,功能有限,但大量神经元构成的网络系统所能实现的行为却是极其丰富多彩的。4.1人工神经网络学习的原理人工神经网络首先要以一定的学习准则进行学习,然后才能工作。现以人工神经网络对手写“A”、“B”两个字母的识别为例进行说明,规定当“A”输入网络时,应该输出“1”,而当输入为“B”时,输出为“0”。 所以网络学习的准则应该是:如果网络做出错误的判决,则通过网络的学习,应使得网络减少下次犯同样错误的可能性。首先,给网络的各连接权值赋予(0,1)区间内的随机值,将“A”所对应的图像模式输入给网络,网络将输入模式加权求和、与门限比较、再进行非线性运算,得到网络的输出。在此情况下,网络输出为“1”和“0”的概率各为50%,也就是说是完全随机的。这时如果输出为“1”(结果正确),则使连接权值增大,以便使网络再次遇到“A”模式输入时,仍然能做出正确的判断。 如果输出为“0”(即结果错误),则把网络连接权值朝着减小综合输入加权值的方向调整,其目的在于使网络下次再遇到“A”模式输入时,减小犯同样错误的可能性。如此操作调整,当给网络轮番输入若干个手写字母“A”、“B”后,经过网络按以上学习方法进行若干次学习后,网络判断的正确率将大大提高。这说明网络对这两个模式的学习已经获得了成功,它已将这两个模式分布地记忆在网络的各个连接权值上。当网络再次遇到其中任何一个模式时,能够做出迅速、准确的判断和识别。一般说来,网络中所含的神经元个数越多,则它能记忆、识别的模式也就越多。4.2人工神经网络的优缺点人工神经网络由于模拟了大脑神经元的组织方式而具有了人脑功能的一些基本特征,为人工智能的研究开辟了新的途径,神经网络具有的优点在于:(1)并行分布性处理因为人工神经网络中的神经元排列并不是杂乱无章的,往往是分层或以一种有规律的序列排列,信号可以同时到达一批神经元的输入端,这种结构非常适合并行计算。同时如果将每一个神经元看作是一个小的处理单元,则整个系统可以是一个分布式计算系统,这样就避免了以往的“匹配冲突”,“组合爆炸”和“无穷递归”等题,推理速度快。(2)可学习性一个相对很小的人工神经网络可存储大量的专家知识,并且能根据学习算法,或者利用样本指导系统来模拟现实环境(称为有教师学习),或者对输入进行自适应学习(称为无教师学习),不断地自动学习,完善知识的存储。(3)鲁棒性和容错性由于采用大量的神经元及其相互连接,具有联想记忆与联想映射能力,可以增强专家系统的容错能力,人工神经网络中少量的神经元发生失效或错误,不会对系统整体功能带来严重的影响。而且克服了传统专家系统中存在的“知识窄台阶”问题。(4)泛化能力人工神经网络是一类大规模的非线形系统,这就提供了系统自组织和协同的潜力。它能充分逼近复杂的非线形关系。当输入发生较小变化,其输出能够与原输入产生的输出保持相当小的差距。(5)具有统一的内部知识表示形式,任何知识规则都可以通过对范例的学习存储于同一个神经网络的各连接权值中,便于知识库的组织管理,通用性强。虽然人工神经网络有很多优点,但基于其固有的内在机理,人工神经网络也不可避免的存在自己的弱点:(1)最严重的问题是没能力来解释自己的推理过程和推理依据。(2)神经网络不能向用户提出必要的询问,而且当数据不充分的时候,神经网络就无法进行工作。(3)神经网络把一切问题的特征都变为数字,把一切推理都变为数值计算,其结果势必是丢失信息。(4)神经网络的理论和学习算法还有待于进一步完善和提高。4.3神经网络的发展趋势及在柴油机故障诊断中的可行性神经网络为现代复杂大系统的状态监测和故障诊断提供了全新的理论方法和技术实现手段。神经网络专家系统是一类新的知识表达体系,与传统专家系统的高层逻辑模型不同,它是一种低层数值模型,信息处理是通过大量的简单处理元件(结点) 之间的相互作用而进行的。由于它的分布式信息保持方式,为专家系统知识的获取与表达以及推理提供了全新的方式。它将逻辑推理与数值运算相结合,利用神经网络的学习功能、联想记忆功能、分布式并行信息处理功能,解决诊断系统中的不确定性知识表示、获取和并行推理等问题。通过对经验样本的学习,将专家知识以权值和阈值的形式存储在网络中,并且利用网络的信息保持性来完成不精确诊断推理,较好地模拟了专家凭经验、直觉而不是复杂的计算的推理过程。但是,该技术是一个多学科知识交叉应用的领域,是一个不十分成熟的学科。一方面,装备的故障相当复杂;另一方面,人工神经网络本身尚有诸多不足之处:(1)受限于脑科学的已有研究成果。由于生理实验的困难性,目前对于人脑思维与记忆机制的认识还很肤浅。(2)尚未建立起完整成熟的理论体系。目前已提出了众多的人工神经网络模型,归纳起来,这些模型一般都是一个由结点及其互连构成的有向拓扑网,结点间互连强度所构成的矩阵,可通过某种学习策略建立起来。但仅这一共性,不足以构成一个完整的体系。这些学习策略大多是各行其是而无法统一于一个完整的框架之中。(3)带有浓厚的策略色彩。这是在没有统一的基础理论支持下,为解决某些应用,而诱发出的自然结果。(4)与传统计算技术的接口不成熟。人工神经网络技术决不能全面替代传统计算技术,而只能在某些方面与之互补,从而需要进一步解决与传统计算技术的接口问题,才能获得自身的发展。虽然人工神经网络目前存在诸多不足,但是神经网络和传统专家系统相结合的智能故障诊断技术仍将是以后研究与应用的热点。它最大限度地发挥两者的优势。神经网络擅长数值计算,适合进行浅层次的经验推理;专家系统的特点是符号推理,适合进行深层次的逻辑推理。智能系统以并行工作方式运行,既扩大了状态监测和故障诊断的范围,又可满足状态监测和故障诊断的实时性要求。既强调符号推理,又注重数值计算,因此能适应当前故障诊断系统的基本特征和发展趋势。随着人工神经网络的不断发展与完善,它将在智能故障诊断中得到广泛的应用。根据神经网络上述的各类优缺点,目前有将神经网络与传统的专家系统结合起来的研究倾向,建造所谓的神经网络专家系统。理论分析与使用实践表明,神经网络专家系统较好地结合了两者的优点而得到更广泛的研究和应用。离心式制冷压缩机的构造和工作原理与离心式鼓风机极为相似。但它的工作原理与活塞式压缩机有根本的区别,它不是利用汽缸容积减小的方式来提高汽体的压力,而是依靠动能的变化来提高汽体压力。离心式压缩机具有带叶片的工作轮,当工作轮转动时,叶片就带动汽体运动或者使汽体得到动能,然后使部分动能转化为压力能从而提高汽体的压力。这种压缩机由于它工作时不断地将制冷剂蒸汽吸入,又不断地沿半径方向被甩出去,所以称这种型式的压缩机为离心式压缩机。其中根据压缩机中安装的工作轮数量的多少,分为单级式和多级式。如果只有一个工作轮,就称为单级离心式压缩机,如果是由几个工作轮串联而组成,就称为多级离心式压缩机。在空调中,由于压力增高较少,所以一般都是采用单级,其它方面所用的离心式制冷压缩机大都是多级的。单级离心式制冷压缩机的构造主要由工作轮、扩压器和蜗壳等所组成。 压缩机工作时制冷剂蒸汽由吸汽口轴向进入吸汽室,并在吸汽室的导流作用引导由蒸发器(或中间冷却器)来的制冷剂蒸汽均匀地进入高速旋转的工作轮3(工作轮也称叶轮,它是离心式制冷压缩机的重要部件,因为只有通过工作轮才能将能量传给汽体)。汽体在叶片作用下,一边跟着工作轮作高速旋转,一边由于受离心力的作用,在叶片槽道中作扩压流动,从而使汽体的压力和速度都得到提高。由工作轮出来的汽体再进入截面积逐渐扩大的扩压器4(因为汽体从工作轮流出时具有较高的流速,扩压器便把动能部分地转化为压力能,从而提高汽体的压力)。汽体流过扩压器时速度减小,而压力则进一步提高。经扩压器后汽体汇集到蜗壳中,再经排气口引导至中间冷却器或冷凝器中。 二、离心式制冷压缩机的特点与特性 离心式制冷压缩机与活塞式制冷压缩机相比较,具有下列优点: (1)单机制冷量大,在制冷量相同时它的体积小,占地面积少,重量较活塞式轻5~8倍。 (2)由于它没有汽阀活塞环等易损部件,又没有曲柄连杆机构,因而工作可靠、运转平稳、噪音小、操作简单、维护费用低。 (3)工作轮和机壳之间没有摩擦,无需润滑。故制冷剂蒸汽与润滑油不接触,从而提高了蒸发器和冷凝器的传热性能。 (4)能经济方便的调节制冷量且调节的范围较大。 (5)对制冷剂的适应性差,一台结构一定的离心式制冷压缩机只能适应一种制冷剂。 (6)由于适宜采用分子量比较大的制冷剂,故只适用于大制冷量,一般都在25~30万大卡/时以上。如制冷量太少,则要求流量小,流道窄,从而使流动阻力大,效率低。但近年来经过不断改进,用于空调的离心式制冷压缩机,单机制冷量可以小到10万大卡/时左右。 制冷与冷凝温度、蒸发温度的关系。 由物理学可知,回转体的动量矩的变化等于外力矩,则 T=m(C2UR2-C1UR1) 两边都乘以角速度ω,得 Tω=m(C2UωR2-C1UωR1) 也就是说主轴上的外加功率N为: N=m(U2C2U-U1C1U) 上式两边同除以m则得叶轮给予单位质量制冷剂蒸汽的功即叶轮的理论能量头。 U2 C2 ω2 C2U R1 R2 ω1 C1 U1 C2r β 离心式制冷压缩机的特性是指理论能量头与流量之间变化关系,也可以表示成制冷 W=U2C2U-U1C1U≈U2C2U (因为进口C1U≈0) 又C2U=U2-C2rctgβ C2r=Vυ1/(A2υ2) 故有 W= U22(1- Vυ1 ctgβ) A2υ2U2 式中:V—叶轮吸入蒸汽的容积流量(m3/s) υ1υ2 ——分别为叶轮入口和出口处的蒸汽比容(m3/kg) A2、U2—叶轮外缘出口面积(m2)与圆周速度(m/s) β—叶片安装角 由上式可见,理论能量头W与压缩机结构、转速、冷凝温度、蒸发温度及叶轮吸入蒸汽容积流量有关。对于结构一定、转速一定的压缩机来说,U2、A2、β皆为常量,则理论能量头W仅与流量V、蒸发温度、冷凝温度有关。 按照离心式制冷压缩机的特性,宜采用分子量比较大的制冷剂,目前离心式制冷机所用的制冷剂有F—11、F—12、F—22、F—113和F—114等。我国目前在空调用离心式压缩机中应用得最广泛的是F—11和F—12,且通常是在蒸发温度不太低和大制冷量的情况下,选用离心式制冷压缩机。此外,在石油化学工业中离心式的制冷压缩机则采用丙烯、乙烯作为制冷剂,只有制冷量特别大的离心式压缩机才用氨作为制冷剂。 三、离心式制冷压缩机的调节 离心式制冷压缩机和其它制冷设备共同构成一个能量供给与消耗的统一系统。制冷机组在运行时,只有当通过压缩机的制冷剂的流量与通过设备的流量相等时,以及压缩机所产生的能量头与制冷设备的阻力相适应时,制冷系统的工况才能保持稳定。但是制冷机的负荷总是随外界条件与用户对冷量的使用情况而变化的,因此为了适应用户对冷负荷变化的需要和安全经济运行,就需要根据外界的变化对制冷机组进行调节,离心式制冷机组制冷量的调节有:1°改变压缩机的转速;2°采用可转动的进口导叶;3°改变冷凝器的进水量;4°进汽节流等几种方式,其中最常用的是转动进口导叶调节和进汽节流两种调节方法。所谓转动进口导叶调节,就是转动压缩机进口处的导流叶片以使进入到叶轮去的汽体产生旋绕,从而使工作轮加给汽体的动能发生变化来调节制冷量。所谓进汽节流调节,就是在压缩机前的进汽管道上安装一个调节阀,如要改变压缩机的工况时,就调节阀门的大小,通过节流使压缩机进口的压力降低,从而实现调节制冷量。离心式压缩机制冷量的调节最经济有效的方法就是改变进口导叶角度,以改变蒸汽进入叶轮的速度方向(C1U)和流量V。但流量V必须控制在稳定工作范围内,以免效率下降。
小白2023-05-26 08:18:161

人工神经网络的基本思想

你好,人工神经网络的基本思想就是把对生物神经网络的认识与数学统计模型相结合,借助数学统计工具来实现。把这种网络看作一种运算模型,由大量的节点(或称神经元)之间相互联接构成。每个节点代表一种特定的输出函数,称为激活函数。每两个节点间的连接都代表一个对于通过该连接信号的加权值,称之为权重(weight),神经网络就是通过这种方式来模拟人类的记忆。人工神经网络是一种非程序化、适应性、大脑风格的信息处理,其本质是通过网络的变换和动力学行为得到一种并行分布式的信息处理功能,并在不同程度和层次上模仿人脑神经系统的信息处理功能。
北有云溪2023-05-26 08:18:161

神经网络算法

20 世纪五、六⼗年代,科学家 Frank Rosenblatt其受到 Warren McCulloch 和 Walter Pitts早期的⼯作的影响,发明了感知机(Perceptrons)。 ⼀个感知器接受⼏个⼆进制输⼊, ,并产⽣⼀个⼆进制输出: 如上图所示的感知机有三个输⼊: 。通常可以有更多或更少输⼊。 我们再引⼊权重: ,衡量输入对输出的重要性。感知机的输出为0 或者 1,则由分配权重后的总和 ⼩于等于或者⼤于阈值决定。和权重⼀样,阈值(threshold)是⼀个实数,⼀个神经元的参数。⽤更精确的代数形式如下: 给三个因素设置权重来作出决定: 可以把这三个因素对应地⽤⼆进制变量 来表⽰。例如,如果天⽓好,我们把 ,如果不好, 。类似地,如果你的朋友陪你去, ,否则 。 也类似。 这三个对于可能对你来说,“电影好不好看”对你来说最重要,而天气显得不是那么的重要。所以你会这样分配权值: ,然后定义阈值threshold=5。 现在,你可以使⽤感知器来给这种决策建⽴数学模型。 例如: 随着权重和阈值的变化,你可以得到不同的决策模型。很明显,感知机不是⼈做出决策使⽤的全部模型。但是这个例⼦说明了⼀个感知机如何能权衡不同的依据来决策。这看上去也可以⼤致解释⼀个感知机⽹络有时确实能够做出一些不错的决定。 现在我们队上面的结构做一点变化,令b=-threshold,即把阈值移到不等号左边,变成偏置, 那么感知器的规则可以重写为: 引⼊偏置只是我们描述感知器的⼀个很⼩的变动,但是我们后⾯会看到它引导更进⼀步的符号简化。因此,我们不再⽤阈值,⽽总是使⽤偏置。 感知机是首个可以学习的人工神经网络,它的出现引起的神经网络的第一层高潮。需要指出的是,感知机只能做简单的线性分类任务,而且Minsky在1969年出版的《Perceptron》书中,证明了感知机对XOR(异或)这样的问题都无法解决。但是感知机的提出,对神经网络的发展是具有重要意义的。 通过上面的感知机的观察我们发现一个问题,每个感知机的输出只有0和1,这就意味着有时我们只是在单个感知机上稍微修改了一点点权值w或者偏置b,就可能造成最终输出完全的反转。也就是说,感知机的输出是一个阶跃函数。如下图所示,在0附近的时候,输出的变化是非常明显的,而在远离0的地方,我们可能调整好久参数也不会发生输出的变化。 这样阶跃的跳变并不是我们想要的,我们需要的是当我们队权值w或者偏置b做出微小的调整后,输出也相应的发生微小的改变。这同时也意味值我们的输出不再只是0和1,还可以输出小数。由此我们引入了S型神经元。 S型神经元使用 S 型函数,也叫Sigmoid function函数,我们用它作为激活函数。其表达式如下: 图像如下图所示: 利⽤实际的 σ 函数,我们得到⼀个,就像上⾯说明的,平滑的感知器。 σ 函数的平滑特性,正是关键因素,⽽不是其细部形式。 σ 的平滑意味着权重和偏置的微⼩变化,即 ∆w 和 ∆b,会从神经元产⽣⼀个微⼩的输出变化 ∆output。实际上,微积分告诉我们 ∆output 可以很好地近似表⽰为: 上面的式子是⼀个反映权重、偏置变化和输出变化的线性函数。这⼀线性使得我们可以通过选择权重和偏置的微⼩变化来达到输出的微⼩变化。所以当 S 型神经元和感知器本质上是相同的,但S型神经元在计算处理如何变化权重和偏置来使输出变化的时候会更加容易。 有了对S型神经元的了解,我们就可以介绍神经网络的基本结构了。具体如下: 在⽹络中最左边的称为输⼊层,其中的神经元称为输⼊神经元。最右边的,即输出层包含有输出神经元,在图中,输出层只有⼀个神经元。中间层,既然这层中的神经元既不是输⼊也不是输出,则被称为隐藏层。 这就是神经网络的基本结构,随着后面的发展神经网络的层数也随之不断增加和复杂。 我们回顾一下神经网络发展的历程。神经网络的发展历史曲折荡漾,既有被人捧上天的时刻,也有摔落在街头无人问津的时段,中间经历了数次大起大落。 从单层神经网络(感知机)开始,到包含一个隐藏层的两层神经网络,再到多层的深度神经网络,一共有三次兴起过程。详见下图。 我们希望有⼀个算法,能让我们找到权重和偏置,以⾄于⽹络的输出 y(x) 能够拟合所有的 训练输⼊ x。为了量化我们如何实现这个⽬标,我们定义⼀个代价函数: 这⾥ w 表⽰所有的⽹络中权重的集合, b 是所有的偏置, n 是训练输⼊数据的个数, a 是表⽰当输⼊为 x 时输出的向量,求和则是在总的训练输⼊ x 上进⾏的。当然,输出 a 取决于 x, w和 b,但是为了保持符号的简洁性,我没有明确地指出这种依赖关系。符号 ∥v∥ 是指向量 v 的模。我们把 C 称为⼆次代价函数;有时也称被称为均⽅误差或者 MSE。观察⼆次代价函数的形式我们可以看到 C(w, b) 是⾮负的,因为求和公式中的每⼀项都是⾮负的。此外,代价函数 C(w,b)的值相当⼩,即 C(w; b) ≈ 0,精确地说,是当对于所有的训练输⼊ x, y(x) 接近于输出 a 时。因 此如果我们的学习算法能找到合适的权重和偏置,使得 C(w; b) ≈ 0,它就能很好地⼯作。相反,当 C(w; b) 很⼤时就不怎么好了,那意味着对于⼤量地输⼊, y(x) 与输出 a 相差很⼤。因此我们的训练算法的⽬的,是最⼩化权重和偏置的代价函数 C(w; b)。换句话说,我们想要找到⼀系列能让代价尽可能⼩的权重和偏置。我们将采⽤称为梯度下降的算法来达到这个⽬的。 下面我们将代价函数简化为C(v)。它可以是任意的多元实值函数, 。 注意我们⽤ v 代替了 w 和 b 以强调它可能是任意的函数,我们现在先不局限于神经⽹络的环境。 为了使问题更加简单我们先考虑两个变量的情况,想象 C 是⼀个只有两个变量 和 的函数,我们的目的是找到 和 使得C最小。 如上图所示,我们的目的就是找到局部最小值。对于这样的一个问题,一种方法就是通过微积分的方法来解决,我们可以通过计算导数来求解C的极值点。但是对于神经网络来说,我们往往面对的是非常道的权值和偏置,也就是说v的维数不只是两维,有可能是亿万维的。对于一个高维的函数C(v)求导数几乎是不可能的。 在这种情况下,有人提出了一个有趣的算法。想象一下一个小球从山顶滚下山谷的过程, 我们的⽇常经验告诉我们这个球最终会滚到⾕底。我们先暂时忽略相关的物理定理, 对球体的⾁眼观察是为了激发我们的想象⽽不是束缚我们的思维。因此与其陷进物理学⾥凌乱的细节,不如我们就这样问⾃⼰:如果我们扮演⼀天的上帝,能够构造⾃⼰的物理定律,能够⽀配球体可以如何滚动,那么我们将会采取什么样的运动学定律来让球体能够总是滚落到⾕底呢? 为了更精确地描述这个问题,让我们思考⼀下,当我们在 和 ⽅向分别将球体移动⼀个很⼩的量,即 ∆ 和 ∆ 时,球体将会发⽣什么情况。微积分告诉我们 C 将会有如下变化: 也可以用向量表示为 现在我们的问题就转换为不断寻找一个小于0的∆C,使得C+∆C不断变小。 假设我们选取: 这⾥的 η 是个很⼩的正数(称为学习速率),于是 由于 ∥∇C∥2 ≥ 0,这保证了 ∆C ≤ 0,即,如果我们按照上述⽅程的规则去改变 v,那么 C 会⼀直减⼩,不会增加。 所以我们可以通过不断改变v来C的值不断下降,是小球滚到最低点。 总结⼀下,梯度下降算法⼯作的⽅式就是重复计算梯度 ∇C,然后沿着相反的⽅向移动,沿着⼭⾕“滚落”。我们可以想象它像这样: 为了使梯度下降能够正确地运⾏,我们需要选择合适的学习速率η,确保C不断减少,直到找到最小值。 知道了两个变量的函数 C 的梯度下降方法,我们可以很容易的把它推广到多维。我们假设 C 是⼀个有 m 个变量 的多元函数。 ∆C 将会变为: 其中, ∇C为 ∆v为: 更新规则为: 在回到神经网络中,w和b的更新规则为: 前面提到神经⽹络如何使⽤梯度下降算法来学习他们⾃⾝的权重和偏置。但是,这⾥还留下了⼀个问题:我们并没有讨论如何计算代价函数的梯度。这里就需要用到一个非常重要的算法:反向传播算法(backpropagation)。 反向传播算法的启示是数学中的链式法则。 四个方程: 输出层误差方程: 当前层误差方程: 误差方程关于偏置的关系: 误差方程关于权值的关系 算法描述: 检视这个算法,你可以看到为何它被称作反向传播。我们从最后⼀层开始向后计算误差向量δ。这看起来有点奇怪,为何要从后⾯开始。但是如果你认真思考反向传播的证明,这种反向移动其实是代价函数是⽹络输出的函数的结果。为了理解代价随前⾯层的权重和偏置变化的规律,我们需要重复作⽤链式法则,反向地获得需要的表达式。 参考链接: http://neuralnetworksanddeeplearning.com/
墨然殇2023-05-26 08:18:161

Hopfield神经网络

Hopfield神经网络(Hopfield Neural Network,简称 HNN),是美国加州理工学院物理学家Hopfield教授1982年提出的一种反馈型神经网络,信号不但能向前,还能向后传递(输出信号又反馈回来变成输入信号。而前面所介绍的BP网络是一种前馈网络,信号只能向前传递)。他在Hopfield神经网络中引入了“能量函数”概念,使网络的运行稳定性的判断有了可靠依据。Hopfield神经网络的权值不是经过反复学习获得的,而是按照一定规则计算出来的,一经确定就不再改变,而Hopfield神经网络的状态(输入、输出信号)会在运行过程中不断更新,网络演变到稳态时各神经元的状态便是问题的解。1985年,Hopfield和Tank研制了电子线路来模拟Hopfield网络,较好地解决了优化组合问题中著名的TSP(旅行商)问题,找到了最佳解的近似解,为神经网络的复兴建立了不可磨灭的功劳。对于地球物理反演这种最优化问题,可以很方便地用Hopfield网络来实现。反演的目标函数等于Hopfield网络的“能量函数”,网络的状态(输入、输出信号)就是模型的参数,网络演变到稳态时各神经元的输入输出值便是反演问题的解。Hopfield神经网络分为离散型和连续型两种网络模型,分别记为DHNN(Discrete Hopfield Neural Network)和CHNN(Continues Hopfield Neural Network)。在前馈型网络中无论是离散的还是连续的,一般均不考虑输入与输出之间在时间上的滞后性,而只表达两者之间的映射关系。但在连续Hopfield神经网络中,考虑了输出与输入之间的延迟因素,因此需要用微分方程或差分方程来描述网络的动态数学模型。8.5.4.1 离散Hopfield神经网络离散Hopfield神经网络的拓扑结构如图8.12所示。这是一种单层全反馈网络,共有n个神经元。图8.12的特点是任意一个神经元的输出xi只能是0或1,均通过连接权wij反馈至所有神经元j作为它的输入xj。也就是说,每个神经元都通过连接权接收所有其他神经元输出反馈的信息,这样每一个神经元的输出都受其他所有神经元输出的控制,从而每个神经元的输出相互制约。每个神经元均设一个阀值Ti,以反映对输入噪声的控制。图8.12 离散Hopfield神经网络的拓扑结构[8]8.5.4.1.1 网络的状态离散Hopfield神经网络任意一个神经元的输出xj称为网络的状态,它只能是0或1。变化规律由下式规定:xj=f(netj) j=1,2,…,n  (8.33)f( )为转移函数,离散 Hopfield神经网络的转移函数常用符号函数表示:地球物理反演教程其中netj为净输入:地球物理反演教程对离散Hopfield神经网络,一般有wij=0,wij=wji (8.36)这说明神经元没有自反馈,两个神经元的相互控制权值相同。离散Hopfield神经网络稳定时,每个神经元的状态都不再改变。此时的稳定状态就是网络的输出,记为地球物理反演教程8.5.4.1.2 网络的异步工作方式它是一种串行方式,网络运行时每次只改变一个神经元的状态,其他神经元的状态保持不变。8.5.4.1.3 网络的同步工作方式它是一种并行同步工作方式,所有神经元同时调整状态。8.5.4.1.4 网络的吸引子网络达到稳定状态时的输出X,称为网络的吸引子。8.5.4.1.5 网络的能量函数网络的能量函数定义为地球物理反演教程以上是矩阵形式,考虑无自反馈的具体展开形式为地球物理反演教程当网络收敛到稳定状态时,有ΔE(t)=E(t+1)-E(t)=0 (8.40)或者说:地球物理反演教程理论证明了如下两个定理[8]:定理1.对于DHNN,若按异步方式调整网络状态,且连接权矩阵W为对称阵,则对任意初始状态,网络都能最终收敛到一个吸引子。定理2.对于DHNN,若按同步方式调整网络状态,且连接权矩阵W为非负定对称阵,则对任意初始状态,网络都能最终收敛到一个吸引子。8.5.4.1.6 利用离散Hopfield神经网络进行反演在地球物理线性反演中,设有如下目标函数:地球物理反演教程对比式(8.38)和式(8.42)发现它们在形式上有很多相似之处。王家映的《地球物理反演理论》一书中,直接用式(8.42)和式(8.38)类比,公式显得复杂。本书设立一个新的目标函数ϕ,公式将会变得简洁得多:地球物理反演教程再对比式(8.38)和式(8.43),发现它们完全一样,只要设:X(t)=m,W=GTG,T=GTd (8.44)注意:式(8.43)的目标函数ϕ的极大值解就是原来目标函数φ极小值的解,它们是同解的。如果待反演的模型参数是离散的0或1值,那么可以直接应用离散Hopfield神经网络进行反演。但是一般它们都是连续的数值,所以还要将模型参数表示为二进制[1]:地球物理反演教程其中:Bij=0或1为二进制数;D和U为整数,取决于模型参数的大小和精度。这样第i个模型参数就用Bij表示为了二进制数。将式(8.45)代入目标函数式(8.43)后再与离散Hopfield神经网络的能量函数进行对比,确立新的等价关系后,就可以进行反演了。这个新的等价关系式可以参见王家映的《地球物理反演理论》[1]一书。反演的过程大致如下:(1)根据模型参数的大小范围和精度确定D和U,将初始输入模型参数变为二进制数。设立一个拟合精度标准,如相对均方差ε,设定一个最大迭代次数N(所有神经元的输出都修改一次称为一次迭代)。(2)利用数据方程的G矩阵(在一般情况下需用偏导数矩阵获得)计算网络的权值和阀值。(3)将二进制初始模型参数输入网络并运行网络。(4)把每次迭代网络输出值变为十进制模型参数,进行正演计算。如果拟合满足精度ε,则停止网络运行并输出反演结果。否则重复(2)~(4)步直到满足精度或达到最多迭代次数N为止。在一般情况下,地球物理数据方程的G矩阵是无法用解析式写出的,需要用偏导数矩阵获得,它是依赖于输入参数的,因此网络的每次迭代都要重新计算偏导数矩阵。这个计算量是很大的。因此他的反演过程和最小二乘法相似。此外,用Hopfield神经网络进行反演同样有可能陷入局部极值点(吸引子)。因此同样受初始模型的影响,需要尽量让初始模型接近真实模型。8.5.4.2 连续Hopfield神经网络(CHNN)[8]1984年,Hopfield把离散Hopfield神经网络发展为连续Hopfield神经网络。但所有神经元都同步工作,各输入输出量为随时间变化的连续的模拟量,这就使得CHNN比DHNN在信息处理的并行性、实时性方面更接近实际的生物神经网络工作机理。因此利用CHNN进行地球物理反演更加方便。CHNN可以用常系数微分方程来描述,但用模拟电子线路来描述,则更加形象直观,易于理解。图8.13为连续Hopfield神经网络的拓扑结构[8]。图8.13 连续Hopfield神经网络的拓扑结构[8]图8.13中每个神经元用一个运算放大器模拟,神经元的输入输出用放大器的输入输出电压表示,连接权用电导表示。每个放大器有一个正向输出和一个反向输出,分别表示兴奋和抑制。每个神经元还有一个用于设置激活电平的外界输入偏置电流作为阀值。这里由于篇幅关系不再累述。感兴趣的读者可以参考其他文献。
ardim2023-05-26 08:18:161

神经网络、深度学习、机器学习是什么?有什么区别和联系?

深度学习是由深层神经网络+机器学习造出来的词。深度最早出现在deep belief network(深度(层)置信网络)。其出现使得沉寂多年的神经网络又焕发了青春。GPU使得深层网络随机初始化训练成为可能。resnet的出现打破了层次限制的魔咒,使得训练更深层次的神经网络成为可能。深度学习是神经网络的唯一发展和延续。在现在的语言环境下,深度学习泛指神经网络,神经网络泛指深度学习。在当前的语境下没有区别。定义生物神经网络主要是指人脑的神经网络,它是人工神经网络的技术原型。人脑是人类思维的物质基础,思维的功能定位在大脑皮层,后者含有大约10^11个神经元,每个神经元又通过神经突触与大约103个其它神经元相连,形成一个高度复杂高度灵活的动态网络。作为一门学科,生物神经网络主要研究人脑神经网络的结构、功能及其工作机制,意在探索人脑思维和智能活动的规律。人工神经网络是生物神经网络在某种简化意义下的技术复现,作为一门学科,它的主要任务是根据生物神经网络的原理和实际应用的需要建造实用的人工神经网络模型,设计相应的学习算法,模拟人脑的某种智能活动,然后在技术上实现出来用以解决实际问题。因此,生物神经网络主要研究智能的机理;人工神经网络主要研究智能机理的实现,两者相辅相成。
Jm-R2023-05-26 08:18:161

BP神经网络的原理的BP什么意思

Back PropagationBP (Back Propagation)神经网络,即误差反传误差反向传播算法的学习过程,由信息的正向传播和误差的反向传播两个过程组成。输入层各神经元负责接收来自外界的输入信息,并传递给中间层各神经元;中间层是内部信息处理层,负责信息变换,根据信息变化能力的需求,中间层(隐含层)可以设计为单隐层或者多隐层结构;最后一个隐层传递到输出层各神经元的信息,经进一步处理后,完成一次学习的正向传播处理过程,由输出层向外界输出信息处理结果。神经网络很多种,BP神经网络最常用。
北境漫步2023-05-26 08:18:163

神经网络的神经元怎么定义?

神经元:即神经细胞,是神经系统最基本的结构和功能单位。
Jm-R2023-05-26 08:18:161

如何理解循环神经网络实现预测

神经系统(nervous system)是机体内起主导作用的系统,分为中枢神经系统和周围神经系统两大部分。神经系统是人体内起主导作用的功能调节系统。人体的结构与功能均极为复杂,体内各器官、系统的功能和各种生理过程都不是各自孤立地进行,而是在神经系统的直接或间接调节控制下,互相联系、相互影响、密切配合,使人体成为一个完整统一的有机体,实现和维持正常的生命活动。同时,人体又是生活在经常变化的环境中,神经系统能感受到外部环境的变化对体内各种功能不断进行迅速而完善的调整,使人体适应体内外环境的变化。可见,神经系统在人体生命活动中起着主导的调节作用,人类的神经系统高度发展,特别是大脑皮层不仅进化成为调节控制的最高中枢,而且进化成为能进行思维活动的器官。因此,人类不但能适应环境,还能认识和改造世界。神经系统由中枢部分及其外周部分所组成。中枢部分包括脑和脊髓,分别位于颅腔和椎管内,两者在结构和功能上紧密联系,组成中枢神经系统。外周部分包括12对脑神经和31对脊神经,它们组成外周神经系统。外周神经分布于全身,把脑和脊髓与全身其他器官联系起来,使中枢神经系统既能感受内外环境的变化(通过传入神经传输感觉信息),又能调节体内各种功能(通过传出神经传达调节指令),以保证人体的完整统一及其对环境的适应。神经系统的基本结构和功能单位是神经元(神经细胞),而神经元的活动和信息在神经系统中的传输则表现为一定的生物电变化及其传播。例如,外周神经中的传入神经纤维把感觉信息传入中枢,传出神经纤维把中枢发出的指令信息传给效应器,都是以神经冲动的形式传送的,而神经冲动就是一种称为动作电位的生物电变化,是神经兴奋的标志。中枢神经通过周围神经与人体其他各个器官、系统发生极其广泛复杂的联系。神经系统在维持机体内环境稳定,保持机体完整统一性及其与外环境的协调平衡中起着主导作用。在社会劳动中,人类的大脑皮层得到了高速发展和不断完善,产生了语言、思维、学习、记忆等高级功能活动,使人不仅能适应环境的变化,而且能认识和主动改造环境。内、外环境的各种信息,由感受器接受后,通过周围神经传递到脑和脊髓的各级中枢进行整合,再经周围神经控制和调节机体各系统器官的活动,以维持机体与内、外界环境的相对平衡。神经系统是由神经细胞(神经元)和神经胶质所组成。中枢神经通过周围神经与人体其他各个器官、系统发生极其广泛复杂的联系。神经系统在维持机体内环境稳定,保持机体完整统一性及其与外环境的协调平衡中起着主导作用。在社会劳动中,人类的大脑皮层得到了高速发展和不断完善,产生了语言、思维、学习、记忆等高级功能活动,使人不仅能适应环境的变化,而且能认识和主动改造环境。内、外环境的各种信息,由感受器接受后,通过周围神经传递到脑和脊髓的各级中枢进行整合,再经周围神经控制和调节机体各系统器官的活动,以维持机体与内、外界环境的相对平衡。神经系统是由神经细胞(神经元)和神经胶质所组成。中枢神经系统central nervous system包括位于颅腔内的脑和位于椎管内的脊髓。脑brain是中枢神经系统的头端膨大部分,位于颅腔内。人脑可分为端脑、间脑、中脑、脑桥、小脑和延髓六个部分。通常把中脑、脑桥和延髓合称为脑干,延髓向下经枕骨大孔连接脊髓。脑的内腔称为腔室,内含脑脊髓液。端脑包括左、右大脑半球。每个半球表层为灰质所覆叫大脑皮质。人类的大脑皮质在长期的进化过程中高度发展,它不仅是人类各种机能活动的高级中枢,也是人类思维和意识活动的物质基础。脊髓spinal cord呈前后扁的圆柱体,位于椎管内,上端在平齐枕骨大孔处与延髓相续,下端终于第1腰椎下缘水平。脊髓前、后面的两侧发出许多条细的神经纤维束,叫做根丝。一定范围的根丝向外方集中成束,形成脊神经的前根和后根。前、后根在椎间孔处合并形成脊神经。脊髓以每对脊神经根根丝的出入范围为准,划分为31个节段,即颈髓8节(C1-8),胸髓12节(T1-12),腰髓5节(L1-5),骶髓(S1-5),尾髓1节(Co1)。周围神经系统peripheral nervous system联络于中枢神经和其它各系统器官之间,包括与脑相连的12对脑神经cranial nerves和与脊髓相连的31对脊神经spinal nerves。按其所支配的周围器官的性质可分为分布于体表和骨骼肌的躯体神经系和分布于内脏、心血管和腺体的内脏神经系。
余辉2023-05-26 08:18:161

属于卷积神经网络(CNN)的有()

属于卷积神经网络(CNN)的有() A.VGGNetB.ResNetC.AlexNetD.GoogleNet正确答案:ABCD
康康map2023-05-26 08:18:161

神经网络Kohonen模型

一、Kohonen模型概述1981年芬兰赫尔辛基大学Kohonen教授提出了一个比较完整的,分类性能较好的自组织特征影射(Self-Organizing Feature Map)人工神经网络(简称SOM网络)方案。这种网络也称为Kohonen特征影射网络。这种网络模拟大脑神经系统自组织特征影射功能,它是一种竞争式学习网络,在学习中能无监督地进行自组织学习。二、Hohonen模型原理1.概述SOM网络由输入层和竞争层组成。输入层神经元数为N,竞争层由M=R×C神经元组成,构成一个二维平面阵列或一个一维阵列(R=1)。输入层和竞争层之间实现全互连接。SOM网络的基本思想是网络竞争层各神经元竞争对输入模式的响应机会,最后仅有一个神经元成为竞争的胜者,并对那些与获胜神经元有关的各连接权朝着更有利于它竞争的方向调整,这一获胜神经元就表示对输入模式的分类。SOM算法是一种无教师示教的聚类方法,它能将任意输入模式在输出层映射成一维或二维离散图形,并保持其拓扑结构不变。即在无教师的情况下,通过对输入模式的自组织学习,在竞争层将分类结果表示出来。此外,网络通过对输入模式的反复学习,可以使连接权矢量空间分布密度与输入模式的概率分布趋于一致,即连接权矢量空间分布能反映输入模式的统计特征。2.网络权值初始化因为网络输入很可能出现在中间区,因此,如果竞争层的初始权值选择在输入空间的中间区,则其学习效果会更加有效。3.邻域距离矩阵SOM网络中的神经元可以按任何方式排列,这种排列可以用表示同一层神经元间的Manhattan距离的邻域距离矩阵D来描述,而两神经元的Manhattan距离是指神经元坐标相减后的矢量中,其元素绝对值之和。4.Kohonen竞争学习规则设SOM网络的输入模式为Xp=( , ,…, ),p=1,2.…,P。竞争层神经元的输出值为Yj(j=1,2,…,M),竞争层神经元j与输入层神经元之间的连接权矢量为Wj=(wj1,wj2,…,wjN),j=1,2,…,M。Kohonen网络自组织学习过程包括两个部分:一是选择最佳匹配神经元,二是权矢量自适应变化的更新过程。确定输入模式Xp与连接权矢量Wj的最佳匹配的评价函数是两个矢量的欧氏距离最小,即 ,j=1,2,…,M,]]<![CDATA[找出最小距离dg,确定获胜神经元g。dg=mjin(dj),j=1,2,…,M。求输入模式Xp在竞争层的获胜神经元g及其在邻域距离nd内的神经元的输出。中国矿产资源评价新技术与评价新模型dgm为邻域距离矩阵D的元素,为竞争层中获胜神经元g与竞争层中其它神经元的距离。求输入模式Xp在竞争层的获胜神经元g及其在邻域距离nd内的神经元的权值修正值。中国矿产资源评价新技术与评价新模型式中:i=1,2,…,N;lr为学习速率;t为学习循环次数。Δwjt(t+1)的其余元素赋值为0。进行连接权的调整wji(t+1)=wji(t)+Δwji(t+1)。5.权值学习中学习速率及邻域距离的更新(1)SOM网络的学习过程分为两个阶段第一阶段为粗学习与粗调整阶段。在这一阶段内,连接权矢量朝着输入模式的方向进行调整,神经元的权值按照期望的方向在适应神经元位置的输入空间建立次序,大致确定输入模式在竞争层中所对应的影射位置。一旦各输入模式在竞争层有了相对的影射位置后,则转入精学习与细调整阶段,即第二阶段。在这一阶段内,网络学习集中在对较小的范围内的连接权进行调整,神经元的权值按照期望的方向在输入空间伸展,直到保留到他们在粗调整阶段所建立的拓扑次序。学习速率应随着学习的进行不断减小。(2)邻域的作用与更新在SOM网络中,脑神经细胞接受外界信息的刺激产生兴奋与抑制的变化规律是通过邻域的作用来体现的邻域规定了与获胜神经元g连接的权向量Wg进行同样调整的其他神经元的范围。在学习的最初阶段,邻域的范围较大,随着学习的深入进行,邻域的范围逐渐缩小。(3)学习速率及邻域距离的更新在粗调整阶段,学习参数初始化最大学习循环次数 MAX_STEP1=1000,粗调整阶段学习速率初值 LR1=1.4,细调整阶段学习速率初值 LR2=0.02,最大邻域距离 MAX_ND1=Dmax,Dmax为邻域距离矩阵D的最大元素值。粗调阶段学习循环次数step≤MAX_STEP1,学习速率lr从LR1调整到LR2,邻域距离nd 从MAX_ND1调整到1,求更新系数r,r=1-step/MAX_STEP1,邻域距离nd更新,nd=1.00001+(MAX_ND1-1)×r。学习速率lr更新,lr=LR2+(LR1-LR2)×r。在细调整阶段,学习参数初始化,最大学习循环次数 MAX_STEP2=2000,学习速率初值 LR2=0.02,最大邻域距离 MAX_ND2=1。细调阶段MAX_STEP1<step≤MAX_STEP1+MAX_STEP2,学习速率lr慢慢从LR2减少,邻域距离nd设为1,邻域距离nd更新,nd=MAX_ND2+0.00001。学习速率lr更新,lr=LR2×(MAX_STEP1/step)。6.网络的回想——预测SOM网络经学习后按照下式进行回想:中国矿产资源评价新技术与评价新模型Yj=0,j=1,2,…,M,(j≠g)。将需要分类的输入模式提供给网络的输入层,按照上述方法寻找出竞争层中连接权矢量与输入模式最接近的神经元,此时神经元有最大的激活值1,而其它神经元被抑制而取0值。这时神经元的状态即表示对输入模式的分类。三、总体算法1.SOM权值学习总体算法(1)输入参数X[N][P]。(2)构造权值矩阵W[M][N]。1)由X[N][P]求Xmid[N],2)由Xmid[N]构造权值W[M][N]。(3)构造竞争层。1)求竞争层神经元数M,2)求邻域距离矩阵D[M][M],3)求矩阵D[M][M]元素的最大值Dmax。(4)学习参数初始化。(5)学习权值W[M][N]。1)学习参数学习速率lr,邻域距离nd更新,分两阶段:(i)粗调阶段更新;(ii)细调阶段更新。2)求输入模式X[N][p]在竞争层的获胜神经元win[p]。(i)求X[N][p]与W[m][N]的欧氏距离dm;(ii)按距离dm最短,求输入模式X[N][p]在竞争层的获胜神经元win[p]。3)求输入模式X[N][p]在竞争层的获胜神经元win[p]及其在邻域距离nd内的神经元的输出Y[m][p]。4)求输入模式X[N][p]在竞争层的获胜神经元win[p]及其在邻域距离nd内的神经元的权值修正值ΔW[m][N],从而得到输入模式X[N][p]产生的权值修正值ΔW[M][N]。5)权值修正W[M][N]=W[M][N]+ΔW[M][N]。6)学习结束条件:(i)学习循环到MAX_STEP次;(ii)学习速率lr达到用户指定的LR_MIN;(iii)学习时间time达到用户指定的TIME_LIM。(6)输出。1)学习得到的权值矩阵W[M][N];2)邻域距离矩阵D[M][M]。(7)结束。2.SOM预测总体算法(1)输入需分类数据X[N][P],邻域距离矩阵D[M][M]。(2)求输入模式X[N][p]在竞争层的获胜神经元win[p]。1)求X[N][p]与W[m][N]的欧氏距离dm;2)按距离dm最短,求输入模式X[N][p]在竞争层的获胜神经元win[p]。(3)求获胜神经元win[p]在竞争层排列的行列位置。(4)输出与输入数据适应的获胜神经元win[p]在竞争层排列的行列位置,作为分类结果。(5)结束。四、总体算法流程图Kohonen总体算法流程图见附图4。五、数据流图Kohonen数据流图见附图4。六、无模式识别总体算法假定有N个样品,每个样品测量M个变量,则有原始数据矩阵:X=(xij)N×M,i=1,2,…,N,j=1,2,…,M。(1)原始数据预处理X=(xij)N×M处理为Z=(zij)N×M,分3种处理方法:1)衬度;2)标准化;3)归一化。程序默认用归一化处理。(2)构造Kohonen网竞争层与输入层之间的神经元的连接权值构成矩阵WQ×M。WQ×M初始化。(3)进入Kohonen网学习分类循环,用epoch记录循环次数,epoch=1。(4)在每个epoch循环中,对每个样品n(n=1,2,…,N)进行分类。从1个样品n=1开始。(5)首先计算输入层的样品n的输入数据znm(m=1,2,…,M)与竞争层Q个神经元对应权值wqm的距离。(6)寻找输入层的样品n与竞争层Q个神经元的最小距离,距离最小的神经元Win[n]为获胜神经元,将样品n归入获胜神经元Win[n]所代表的类型中,从而实现对样品n的分类。(7)对样品集中的每一个样品进行分类:n=n+1。(如果n≤N,转到5。否则,转到8。)(8)求分类后各神经元所对应的样品的变量的重心,用对应的样品的变量的中位数作为重心,用对应的样品的变量的重心来更新各神经元的连接权值。(9)epoch=epoch+1;一次学习分类循环结束。(10)如果满足下列两个条件之一,分类循环结束,转到11;否则,分类循环继续进行,转到4。1)全部样品都固定在某个神经元上,不再改变了;2)学习分类循环达到最大迭代次数。(11)输出:1)N个样品共分成多少类,每类多少样品,记录每类的样品编号;2)如果某类中样品个数超过1个,则输出某类的样品原始数据的每个变量的均值、最小值、最大值和均方差;3)如果某类中样品个数为1个,则输出某类的样品原始数据的各变量值;4)输出原始数据每个变量(j=1,2,…,M)的均值,最小值,最大值和均方差。(12)结束。七、无模式识别总体算法流程图Kohonen无模式总体算法流程图见附图5。
kikcik2023-05-26 08:18:161

神经网络 的四个基本属性是什么?

人工神经网络具有四个基本特征:1非线性 非线性关系是自然界的普遍特性。大脑的智慧就是一种非线性现象。人工神经元处于激活或抑制二种不同的状态,这种行为在数学上表现为一种非线性关系。具有阈值的神经元构成的网络具有更好的性能,可以提高容错性和存储容量。2非局限性 一个神经网络通常由多个神经元广泛连接而成。一个系统的整体行为不仅取决于单个神经元的特征,而且可能主要由单元之间的相互作用、相互连接所决定。通过单元之间的大量连接模拟大脑的非局限性。联想记忆是非局限性的典型例子。3非常定性人工神经网络具有自适应、自组织、自学习能力。神经网络不但处理的信息可以有各种变化,而且在处理信息的同时,非线性动力系统本身也在不断变化。经常采用迭代过程描写动力系统的演化过程。4 非凸性一个系统的演化方向,在一定条件下将取决于某个特定的状态函数。例如能量函数,它的极值相应于系统比较稳定的状态。非凸性是指这种函数有多个极值,故系统具有多个较稳定的平衡态,这将导致系统演化的多样性。
FinCloud2023-05-26 08:18:163

什么叫数据挖掘、神经网络

数据分析中的神经网络就是数据挖掘的一种分析方法。数据挖掘是从数据中发现有价值的内容加以利用解决实际问题。有很多模型分析方法,如神经网络,层次分析法,灰度预测,回归,偏回归,主成分分析,因子分析等。
余辉2023-05-26 08:18:163

一文详解图神经网络(二)

《The Graph Neural Network Model》 图领域的应用主要可以分为两种类型 :专注于 图的应用(graph-focused) 和 专注于节点的应用(node-focused) 。对于graph-focused的应用,函数 和具体的节点无关,(即 ),训练时,在一个图的数据集中进行分类或回归。对于node-focused的应用, 函数依赖于具体的节点 ,即 在一个图-节点对的集合 , 表示图的集合, 表示节点集合,图领域问题可以表示成一个有如下数据集的监督学习框架: 其中, 表示集合 中的第 个节点, 表示节点 的期望目标(即标签)。节点 的状态用 表示,该节点的输出用 表示, 为 local transition function , 为 local output function ,那么 和 的更新方式如下: 其中, 分别表示节点 的特征向量、与节点 相连的边的特征向量、节点 邻居节点的状态向量、节点 邻居节点的特征向量。 分别为所有的状态、所有的输出、所有的特征向量、所有节点的特征向量的叠加起来的向量,那么上面函数可以写成如下形式: 其中, 为 global transition function , 为 global output function ,分别是 和 的叠加形式 根据 Banach的不动点理论 ,假设 是一个压缩映射函数,那么式子有唯一不动点解,而且可以通过迭代方式逼近该不动点 其中, 表示 在第 个迭代时刻的值,对于任意初值,迭代的误差是以指数速度减小的,使用迭代的形式写出状态和输出的更新表达式为: GNN的学习就是估计参数 ,使得函数 能够近似估计训练集 其中, 表示在图 中监督学习的节点,对于graph-focused的任务,需要增加一个特殊的节点,该节点用来作为目标节点,这样, graph-focused 任务和 node-focused 任务都能统一到节点预测任务上,学习目标可以是最小化如下二次损失函数 优化算法基于随机梯度下降的策略,优化步骤按照如下几步进行: 在GNN中,函数 不需要满足特定的约束,直接使用多层前馈神经网络,对于函数 ,则需要着重考虑,因为 需要满足压缩映射的条件,而且与不动点计算相关。下面提出两种神经网络和不同的策略来满足这些需求 对于节点n nn状态的计算,将 改成如下形式 相当于是对节点 的每一个邻居节点使用 ,并将得到的值求和来作为节点 的状态,由此,对上式中的函数 按照如下方式实现: 其中,向量 ,矩阵 定义为两个前向神经网络的输出。更确切地说,令产生矩阵 的网络为transition network,产生向量 的网络为forcing network 其中, , , 表示将 维的向量整理(reshape)成 的矩阵,也就是说,将transition network的输出整理成方形矩阵,然后乘以一个系数就得到 , 就是forcing network的输出 在这里,假定 ,这个可以通过设定transition function的激活函数来满足,比如设定激活函数为 tanh() 。在这种情况下, , 和 分别是 的块矩阵形式和 的堆叠形式,可得: 该式表示 对于任意的参数 是一个压缩映射,矩阵 的 1-norm 定义为: 在这个结构中, 通过多层前馈网络实现,但是,并不是所有的参数 都会被使用,因为同样需要保证 是一个压缩映射函数,这个可以通过惩罚项来实现 其中,惩罚项 在 时为 ,在 时为0,参数 定义为希望的 的压缩系数 NLP新人,欢迎大家一起交流,互相学习,共同成长~~
wpBeta2023-05-26 08:18:161

有哪些深度神经网络模型?

卷积神经元(Convolutional cells)和前馈神经元非常相似,除了它们只跟前一神经细胞层的部分神经元有连接。因为它们不是和某些神经元随机连接的,而是与特定范围内的神经元相连接,通常用来保存空间信息。这让它们对于那些拥有大量局部信息,比如图像数据、语音数据(但多数情况下是图像数据),会非常实用。解卷积神经元恰好相反:它们是通过跟下一神经细胞层的连接来解码空间信息。这两种神经元都有很多副本,它们都是独立训练的;每个副本都有自己的权重,但连接方式却完全相同。可以认为,这些副本是被放在了具备相同结构的不同的神经网络中。这两种神经元本质上都是一般意义上的神经元,但是,它们的使用方式却不同。池化神经元和插值神经元(Pooling and interpolating cells)经常和卷积神经元结合起来使用。它们不是真正意义上的神经元,只能进行一些简单的操作。池化神经元接受到来自其它神经元的输出过后,决定哪些值可以通过,哪些值不能通过。在图像领域,可以理解成是把一个图像缩小了(在查看图片的时候,一般软件都有一个放大、缩小的功能;这里的图像缩小,就相当于软件上的缩小图像;也就是说我们能看到图像的内容更加少了;在这个池化的过程当中,图像的大小也会相应地减少)。这样,你就再也不能看到所有的像素了,池化函数会知道什么像素该保留,什么像素该舍弃。插值神经元恰好是相反的操作:它们获取一些信息,然后映射出更多的信息。额外的信息都是按照某种方式制造出来的,这就好像在一张小分辨率的图片上面进行放大。插值神经元不仅仅是池化神经元的反向操作,而且,它们也是很常见,因为它们运行非常快,同时,实现起来也很简单。池化神经元和插值神经元之间的关系,就像卷积神经元和解卷积神经元之间的关系。均值神经元和标准方差神经元(Mean and standard deviation cells)(作为概率神经元它们总是成对地出现)是一类用来描述数据概率分布的神经元。均值就是所有值的平均值,而标准方差描述的是这些数据偏离(两个方向)均值有多远。比如:一个用于图像处理的概率神经元可以包含一些信息,比如:在某个特定的像素里面有多少红色。举个例来说,均值可能是0.5,同时标准方差是0.2。当要从这些概率神经元取样的时候,你可以把这些值输入到一个高斯随机数生成器,这样就会生成一些分布在0.4和0.6之间的值;值离0.5越远,对应生成的概率也就越小。它们一般和前一神经元层或者下一神经元层是全连接,而且,它们没有偏差(bias)。循环神经元(Recurrent cells )不仅仅在神经细胞层之间有连接,而且在时间轴上也有相应的连接。每一个神经元内部都会保存它先前的值。它们跟一般的神经元一样更新,但是,具有额外的权重:与当前神经元之前值之间的权重,还有大多数情况下,与同一神经细胞层各个神经元之间的权重。当前值和存储的先前值之间权重的工作机制,与非永久性存储器(比如RAM)的工作机制很相似,继承了两个性质:第一,维持一个特定的状态;第二:如果不对其持续进行更新(输入),这个状态就会消失。由于先前的值是通过激活函数得到的,而在每一次的更新时,都会把这个值和其它权重一起输入到激活函数,因此,信息会不断地流失。实际上,信息的保存率非常的低,以至于仅仅四次或者五次迭代更新过后,几乎之前所有的信息都会流失掉。
豆豆staR2023-05-26 08:18:161

深度学习中经常提到的神经网络是什么

介绍深度学习就必须要介绍神经网络,因为深度学习是基于神经网络算法的,其实最开始只有神经网络算法,上文也提到2006年Geoffrey Hinton老爷子提出了Deep Learning,核心还是人工神经网络算法,换了一个新的叫法,最基本的算法没有变。通过神经元接收外界信号,达到一定阈值,触发动作电位,通过突触释放神经递质,可以是兴奋或抑制,影响突触后神经元。通过此实现大脑的计算、记忆、逻辑处理等,进行做出一系列行为等。同时不断地在不同神经元之间构建新的突触连接和对现有突触进行改造,来进行调整。有时候不得不感叹大自然的鬼斧神工,900亿神经元组成的神经网络可以让大脑实现如此复杂的计算和逻辑处理。
水元素sl2023-05-26 08:18:161

神经网络原理

神经网络是一种受到人类神经系统启发而设计的机器学习模型。它由多个称为神经元的单元组成,这些神经元通过连接权重相互连接。神经网络利用输入数据和这些连接权重来进行信息处理和模式识别。以下是神经网络的基本原理:结构:神经网络由多个层级组成,包括输入层、隐藏层(可以有多个)和输出层。输入层接收外部输入数据,输出层产生最终的预测结果或输出。隐藏层位于输入层和输出层之间,其中每个隐藏层由多个神经元组成。神经元:神经网络的基本单元是神经元。每个神经元接收来自上一层神经元的输入,并通过连接权重对这些输入进行加权求和。然后,应用一个激活函数来确定神经元的输出。激活函数可以是简单的阈值函数、Sigmoid函数、ReLU函数等,用于引入非线性特性。前向传播:神经网络的前向传播是指从输入层到输出层的信息传递过程。输入数据通过网络中的连接和加权求和,逐层传递到输出层,最终生成预测结果。反向传播:反向传播是神经网络用于训练和调整连接权重的过程。它基于损失函数来度量预测结果与真实标签之间的误差。通过计算误差梯度,反向传播将误差从输出层向后传播到隐藏层和输入层,然后根据梯度更新连接权重,以减小误差。训练:神经网络的训练是通过不断迭代前向传播和反向传播来调整连接权重,以使网络的预测结果与真实标签更加接近。常用的训练算法包括梯度下降和其变体,以最小化损失函数。通过逐渐调整连接权重,神经网络能够学习到输入数据中的模式和特征,从而实现识别、分类、预测等任务。它在各个领域中都有广泛的应用,如图像识别、自然语言处理、语音识别等。                                    
NerveM 2023-05-26 08:18:161

神经网络的内容简介

神经网络是智能控制技术的主要分支之一。本书的主要内容有:神经网络的概念,神经网络的分类与学习方法,前向神经网络模型及其算法,改进的BP网络及其控制、辨识建模,基于遗传算法的神经网络,基于模糊理论的神经网络,RBF网络及其在混沌背景下对微弱信号的测量与控制,反馈网络,Hopfield网络及其在字符识别中的应用,支持向量机及其故障诊断,小波神经网络及其在控制与辨识中的应用。本书内容全面,重点突出,以讲明基本概念和方法为主,尽量减少繁琐的数学推导,并给出一些结合工程应用的例题。本书附有光盘,其中包括结合各章节内容所开发的30多个源程序,可直接在MATLAB界面下运行,此外,还包括用Authorware和Flash软件制作的动画课件。本书既可作为自动化和电气自动化专业及相关专业的研究生教材,也可供机电类工程技术人员选用,还可作为有兴趣的读者自学与应用的参考书。
善士六合2023-05-26 08:18:161

求助:用神经网络做一个数据预测

下列代码为BP神经网络预测37-56周的销售量的代码:% x为原始序列load 销售量.matdata=Cx=data";t=1:length(x);lag=2; fn=length(t);[f_out,iinput]=BP(x,lag,fn);%预测年份或某一时间段t1=fn:fn+20;n=length(t1);t1=length(x)+1:length(x)+n;%预测步数为fnfn=length(t1);     [f_out,iinput]=BP(x,lag,fn);P=vpa(f_out,5);[t1" P"]% 画出预测图figure(6),plot(t,x,"b*-"),hold onplot(t(end):t1(end),[iinput(end),f_out],"rp-"),grid onxlabel("周数"),ylabel("销售量");str=["BP神经网络预测",num2str(length(x)+1),"-",num2str(length(x)+20),"周的销售量"];title(str)str1=["1-",num2str(length(x)),"周的销售量"];str2=[num2str(length(x)+1),"-",num2str(length(x)+20),"周的预测销售量"];legend(str1,str2)运行结果
大鱼炖火锅2023-05-26 08:18:161

细胞神经网络的介绍

BP(Back Propagation)网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。
hi投2023-05-26 08:18:151

“深度学习”和“多层神经网络”的区别

"深度学习"是为了让层数较多的多层神经网络可以训练,能够work而演化出来的一系列的 新的结构和新的方法。新的网络结构中最著名的就是CNN,它解决了传统较深的网络参数太多,很难训练的问题,使用了“局部感受野”和“权植共享”的概念,大大减少了网络参数的数量。关键是这种结构确实很符合视觉类任务在人脑上的工作原理。新的结构还包括了:LSTM,ResNet等。多层神经网络传统意义上的多层神经网络是只有输入层、隐藏层、输出层。其中隐藏层的层数根据需要而定,没有明确的理论推导来说明到底多少层合适。而深度学习中最著名的卷积神经网络CNN,在原来多层神经网络的基础上,加入了特征学习部分,这部分是模仿人脑对信号处理上的分级的。具体操作就是在原来的全连接的层前面加入了部分连接的卷积层与降维层,而且加入的是一个层级。 输入层 - 卷积层 -降维层 -卷积层 - 降维层 -- .... -- 隐藏层 -输出层简单来说,原来多层神经网络做的步骤是:特征映射到值。特征是人工挑选。深度学习做的步骤是 信号->特征->值。 特征是由网络自己选择。
铁血嘟嘟2023-05-26 08:18:151

神经网络是什么

生物神经网络主要是指人脑的神经网络,它是人工神经网络的技术原型。人脑是人类思维的物质基础,思维的功能定位在大脑皮层,后者含有大约10^11个神经元,每个神经元又通过神经突触与大约103个其它神经元相连,形成一个高度复杂高度灵活的动态网络。作为一门学科,生物神经网络主要研究人脑神经网络的结构、功能及其工作机制,意在探索人脑思维和智能活动的规律。人工神经网络是生物神经网络在某种简化意义下的技术复现,作为一门学科,它的主要任务是根据生物神经网络的原理和实际应用的需要建造实用的人工神经网络模型,设计相应的学习算法,模拟人脑的某种智能活动,然后在技术上实现出来用以解决实际问题。因此,生物神经网络主要研究智能的机理;人工神经网络主要研究智能机理的实现,两者相辅相成。
康康map2023-05-26 08:18:152

什么是神经网络

神经网络可以指向两种,一个是生物神经网络,一个是人工神经网络。生物神经网络:一般指生物的大脑神经元,细胞,触点等组成的网络,用于产生生物的意识,帮助生物进行思考和行动。人工神经网络(ArtificialNeuralNetworks,简写为ANNs)也简称为神经网络(NNs)或称作连接模型(ConnectionModel),它是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。人工神经网络:是一种应用类似于大脑神经突触联接的结构进行信息处理的数学模型。在工程与学术界也常直接简称为“神经网络”或类神经网络。
瑞瑞爱吃桃2023-05-26 08:18:151

神经网络到底是什么

 神经网络可以指向两种,一个是生物神经网络,一个是人工神经网络。  生物神经网络:一般指生物的大脑神经元,细胞,触点等组成的网络,用于产生生物的意识,帮助生物进行思考和行动。  人工神经网络也简称为神经网络(NNs)或称作连接模型,它是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。人工神经网络是一种应用类似于大脑神经突触联接的结构进行信息处理的数学模型。在工程与学术界也常直接简称为“神经网络”或类神经网络。人工神经网络  人工神经网络(Artificial Neural Network,即ANN ),是20世纪80 年代以来人工智能领域兴起的研究热点。它从信息处理角度对人脑神经元网络进行抽象, 建立某种简单模型,按不同的连接方式组成不同的网络。在工程与学术界也常直接简称为神经网络或类神经网络。
善士六合2023-05-26 08:18:152

什么是神经网络

人工神经网络算法的作用机理还是比较难理解,现在以一个例子来说明其原理。这个例子是关于人的识别技术的,在门禁系统,逃犯识别,各种验证码破译,银行预留印鉴签名比对,机器人设计等领域都有比较好的应用前景,当然也可以用来做客户数据的挖掘工作,比如建立一个能筛选满足某种要求的客户群的模型。 机器识别人和我们人类识别人的机理大体相似,看到一个人也就是识别对象以后,我们首先提取其关键的外部特征比如身高,体形,面部特征,声音等等。根据这些信息大脑迅速在内部寻找相关的记忆区间,有这个人的信息的话,这个人就是熟人,否则就是陌生人。 人工神经网络就是这种机理。假设上图中X(1)代表我们为电脑输入的人的面部特征,X(2)代表人的身高特征X(3)代表人的体形特征X(4)代表人的声音特征W(1)W(2)W(3)W(4)分别代表四种特征的链接权重,这个权重非常重要,也是人工神经网络起作用的核心变量。 现在我们随便找一个人阿猫站在电脑面前,电脑根据预设变量提取这个人的信息,阿猫面部怎么样,身高多少,体形胖瘦,声音有什么特征,链接权重初始值是随机的,假设每一个W均是0.25,这时候电脑按这个公式自动计算,Y=X(1)*W(1)+X(2)*W(2)+X(3)*W(3)+X(4)*W(4)得出一个结果Y,这个Y要和一个门槛值(设为Q)进行比较,如果Y>Q,那么电脑就判定这个人是阿猫,否则判定不是阿猫.由于第一次计算电脑没有经验,所以结果是随机的.一般我们设定是正确的,因为我们输入的就是阿猫的身体数据啊. 现在还是阿猫站在电脑面前,不过阿猫怕被电脑认出来,所以换了一件衣服,这个行为会影响阿猫的体形,也就是X(3)变了,那么最后计算的Y值也就变了,它和Q比较的结果随即发生变化,这时候电脑的判断失误,它的结论是这个人不是阿猫.但是我们告诉它这个人就是阿猫,电脑就会追溯自己的判断过程,到底是哪一步出错了,结果发现原来阿猫体形X(3)这个体征的变化导致了其判断失误,很显然,体形X(3)欺骗了它,这个属性在人的识别中不是那么重要,电脑自动修改其权重W(3),第一次我对你是0.25的相信,现在我降低信任值,我0.10的相信你.修改了这个权重就意味着电脑通过学习认为体形在判断一个人是否是自己认识的人的时候并不是那么重要.这就是机器学习的一个循环.我们可以要求阿猫再穿一双高跟皮鞋改变一下身高这个属性,让电脑再一次进行学习,通过变换所有可能变换的外部特征,轮换让电脑学习记忆,它就会记住阿猫这个人比较关键的特征,也就是没有经过修改的特征.也就是电脑通过学习会总结出识别阿猫甚至任何一个人所依赖的关键特征.经过阿猫的训练电脑,电脑已经非常聪明了,这时你在让阿猫换身衣服或者换双鞋站在电脑前面,电脑都可以迅速的判断这个人就是阿猫.因为电脑已经不主要依据这些特征识别人了,通过改变衣服,身高骗不了它.当然,有时候如果电脑赖以判断的阿猫关键特征发生变化,它也会判断失误.我们就不要要求这么高了,不要说电脑,就是人类也无能为力,你的一个好朋友你经过多次的识记肯定认识吧,但是他整了容你们在大街上邂逅.你可能觉得这个人声音好熟悉,体形好熟悉,----都像自己一个朋友,就是脸长的不像.你不敢贸然上去搭讪吧(否定的判断).因为我们判定一个人是否是自己的朋友的时候依靠的关键的特征就是面部特征,而他恰恰就是改变了这一特征.当然也存在我们把一个拥有和我们朋友足够多相似特征的人判定为我们的朋友,这就是认错人的现象了.这些问题电脑也会出现.不过这个算法还是有比较积极的意义的,实现了一定程度上的智能化.
wpBeta2023-05-26 08:18:154

神经网络的基本原理是什么?

神经网络的基本原理是:每个神经元把最初的输入值乘以一定的权重,并加上其他输入到这个神经元里的值(并结合其他信息值),最后算出一个总和,再经过神经元的偏差调整,最后用激励函数把输出值标准化。基本上,神经网络是由一层一层的不同的计算单位连接起来的。我们把计算单位称为神经元,这些网络可以把数据处理分类,就是我们要的输出。神经网络常见的工具:以上内容参考:在众多的神经网络工具中,NeuroSolutions始终处于业界领先位置。它是一个可用于windows XP/7高度图形化的神经网络开发工具。其将模块化,基于图标的网络设计界面,先进的学习程序和遗传优化进行了结合。该款可用于研究和解决现实世界的复杂问题的神经网络设计工具在使用上几乎无限制。以上内容参考:百度百科-神经网络
可桃可挑2023-05-26 08:18:151

神经网络优缺点,

优点:(1)具有自学习功能。例如实现图像识别时,只在先把许多不同的图像样板和对应的应识别的结果输入人工神经网络,网络就会通过自学习功能,慢慢学会识别类似的图像。自学习功能对于预测有特别重要的意义。预期未来的人工神经网络计算机将为人类提供经济预测、市场预测、效益预测,其应用前途是很远大的。(2)具有联想存储功能。用人工神经网络的反馈网络就可以实现这种联想。(3)具有高速寻找优化解的能力。寻找一个复杂问题的优化解,往往需要很大的计算量,利用一个针对某问题而设计的反馈型人工神经网络,发挥计算机的高速运算能力,可能很快找到优化解。缺点:(1)最严重的问题是没能力来解释自己的推理过程和推理依据。(2)不能向用户提出必要的询问,而且当数据不充分的时候,神经网络就无法进行工作。(3)把一切问题的特征都变为数字,把一切推理都变为数值计算,其结果势必是丢失信息。(4)理论和学习算法还有待于进一步完善和提高。扩展资料:神经网络发展趋势人工神经网络特有的非线性适应性信息处理能力,克服了传统人工智能方法对于直觉,如模式、语音识别、非结构化信息处理方面的缺陷,使之在神经专家系统、模式识别、智能控制、组合优化、预测等领域得到成功应用。人工神经网络与其它传统方法相结合,将推动人工智能和信息处理技术不断发展。近年来,人工神经网络正向模拟人类认知的道路上更加深入发展,与模糊系统、遗传算法、进化机制等结合,形成计算智能,成为人工智能的一个重要方向,将在实际应用中得到发展。将信息几何应用于人工神经网络的研究,为人工神经网络的理论研究开辟了新的途径。神经计算机的研究发展很快,已有产品进入市场。光电结合的神经计算机为人工神经网络的发展提供了良好条件。神经网络在很多领域已得到了很好的应用,但其需要研究的方面还很多。其中,具有分布存储、并行处理、自学习、自组织以及非线性映射等优点的神经网络与其他技术的结合以及由此而来的混合方法和混合系统,已经成为一大研究热点。由于其他方法也有它们各自的优点,所以将神经网络与其他方法相结合,取长补短,继而可以获得更好的应用效果。目前这方面工作有神经网络与模糊逻辑、专家系统、遗传算法、小波分析、混沌、粗集理论、分形理论、证据理论和灰色系统等的融合。参考资料:百度百科-人工神经网络
苏萦2023-05-26 08:18:151

神经网络中epoch与iteration相等吗

是的都是ann的代数
gitcloud2023-05-26 08:18:154

神经网络的工作原理

“人脑是如何工作的?”“人类能否制作模拟人脑的人工神经元?”多少年以来,人们从医学、生物学、生理学、哲学、信息学、计算机科学、认知学、组织协同学等各个角度企图认识并解答上述问题。在寻找上述问题答案的研究过程中,逐渐形成了一个新兴的多学科交叉技术领域,称之为“神经网络”。神经网络的研究涉及众多学科领域,这些领域互相结合、相互渗透并相互推动。不同领域的科学家又从各自学科的兴趣与特色出发,提出不同的问题,从不同的角度进行研究。人工神经网络首先要以一定的学习准则进行学习,然后才能工作。现以人工神经网络对于写“A”、“B”两个字母的识别为例进行说明,规定当“A”输入网络时,应该输出“1”,而当输入为“B”时,输出为“0”。所以网络学习的准则应该是:如果网络作出错误的判决,则通过网络的学习,应使得网络减少下次犯同样错误的可能性。首先,给网络的各连接权值赋予(0,1)区间内的随机值,将“A”所对应的图象模式输入给网络,网络将输入模式加权求和、与门限比较、再进行非线性运算,得到网络的输出。在此情况下,网络输出为“1”和“0”的概率各为50%,也就是说是完全随机的。这时如果输出为“1”(结果正确),则使连接权值增大,以便使网络再次遇到“A”模式输入时,仍然能作出正确的判断。普通计算机的功能取决于程序中给出的知识和能力。显然,对于智能活动要通过总结编制程序将十分困难。人工神经网络也具有初步的自适应与自组织能力。在学习或训练过程中改变突触权重值,以适应周围环境的要求。同一网络因学习方式及内容不同可具有不同的功能。人工神经网络是一个具有学习能力的系统,可以发展知识,以致超过设计者原有的知识水平。通常,它的学习训练方式可分为两种,一种是有监督或称有导师的学习,这时利用给定的样本标准进行分类或模仿;另一种是无监督学习或称无为导师学习,这时,只规定学习方式或某些规则,则具体的学习内容随系统所处环境 (即输入信号情况)而异,系统可以自动发现环境特征和规律性,具有更近似人脑的功能。神经网络就像是一个爱学习的孩子,您教她的知识她是不会忘记而且会学以致用的。我们把学习集(Learning Set)中的每个输入加到神经网络中,并告诉神经网络输出应该是什么分类。在全部学习集都运行完成之后,神经网络就根据这些例子总结出她自己的想法,到底她是怎么归纳的就是一个黑盒了。之后我们就可以把测试集(Testing Set)中的测试例子用神经网络来分别作测试,如果测试通过(比如80%或90%的正确率),那么神经网络就构建成功了。我们之后就可以用这个神经网络来判断事务的分类了。神经网络是通过对人脑的基本单元——神经元的建模和联接,探索模拟人脑神经系统功能的模型,并研制一种具有学习、联想、记忆和模式识别等智能信息处理功能的人工系统。神经网络的一个重要特性是它能够从环境中学习,并把学习的结果分布存储于网络的突触连接中。神经网络的学习是一个过程,在其所处环境的激励下,相继给网络输入一些样本模式,并按照一定的规则(学习算法)调整网络各层的权值矩阵,待网络各层权值都收敛到一定值,学习过程结束。然后我们就可以用生成的神经网络来对真实数据做分类。
拌三丝2023-05-26 08:18:151

什么是人工神经网络及其算法实现方式

人工神经网络(Artificial Neural Network,即ANN ),是20世纪80 年代以来人工智能领域兴起的研究热点。它从信息处理角度对人脑神经元网络进行抽象, 建立某种简单模型,按不同的连接方式组成不同的网络。在工程与学术界也常直接简称为神经网络或类神经网络。神经网络是一种运算模型,由大量的节点(或称神经元)之间相互联接构成。每个节点代表一种特定的输出函数,称为激励函数(activation function)。每两个节点间的连接都代表一个对于通过该连接信号的加权值,称之为权重,这相当于人工神经网络的记忆。网络的输出则依网络的连接方式,权重值和激励函数的不同而不同。而网络自身通常都是对自然界某种算法或者函数的逼近,也可能是对一种逻辑策略的表达。最近十多年来,人工神经网络的研究工作不断深入,已经取得了很大的进展,其在模式识别、智能机器人、自动控制、预测估计、生物、医学、经济等领域已成功地解决了许多现代计算机难以解决的实际问题,表现出了良好的智能特性。
北营2023-05-26 08:18:151

构建神经网络的两个方向

神经网络的研究方向:神经网络的研究内容相当广泛,反映了多学科交叉技术领域的特点。主要的研究工作集中在以下几个方面:(1)生物原型研究。从生理学、心理学、解剖学、脑科学、病理学等生物科学方面研究神经细胞、神经网络、神经系统的生物原型结构及其功能机理。(2)建立理论模型。根据生物原型的研究,建立神经元、神经网络的理论模型。其中包括概念模型、知识模型、物理化学模型、数学模型等。(3)网络模型与算法研究。在理论模型研究的基础上构作具体的神经网络模型,以实现计算机模拟或准备制作硬件,包括网络学习算法的研究。这方面的工作也称为技术模型研究。(4)人工神经网络应用系统。在网络模型与算法研究的基础上,利用人工神经网络组成实际的应用系统,例如,完成某种信号处理或模式识别的功能、构作专家系统、制成机器人等等。纵观当代新兴科学技术的发展历史,人类在征服宇宙空间、基本粒子,生命起源等科学技术领域的进程中历经了崎岖不平的道路。我们也会看到,探索人脑功能和神经网络的研究将伴随着重重困难的克服而日新月异。
tt白2023-05-26 08:18:151

神经网络有什么理论支持

神经网络(Artificial Neural Networks,简写为ANNs)也简称为神经网络(NNs)或称作连接模型(Connection Model),它是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。神经网络可以用于模式识别、信号处理、知识工程、专家系统、优化组合、机器人控制等。随着神经网络理论本身以及相关理论、相关技术的不断发展,神经网络的应用定将更加深入。神经网络的研究可以分为理论研究和应用研究两大方面。理论研究可分为以下两类:1、利用神经生理与认知科学研究人类思维以及智能机理。2、利用神经基础理论的研究成果,用数理方法探索功能更加完善、性能更加优越的神经网络模型,深入研究网络算法和性能,如:稳定性、收敛性、容错性、鲁棒性等;开发新的网络数理理论,如:神经网络动力学、非线性神经场等。应用研究可分为以下两类:1、神经网络的模拟和硬件实现的研究。2、神经网络在各个领域中应用的研究。
人类地板流精华2023-05-26 08:18:151

神经网络主要用于什么问题的求解?

神经网络的研究可以分为理论研究和应用研究两大方面。  理论研究可分为以下两类:  1、利用神经生理与认知科学研究人类思维以及智能机理。  2、利用神经基础理论的研究成果,用数理方法探索功能更加完善、性能更加优越的神经网络模型,深入研究网络算法和性能,如:稳定性、收敛性、容错性、鲁棒性等;开发新的网络数理理论,如:神经网络动力学、非线性神经场等。  应用研究可分为以下两类:  1、神经网络的软件模拟和硬件实现的研究。  2、神经网络在各个领域中应用的研究。这些领域主要包括:  模式识别、信号处理、知识工程、专家系统、优化组合、机器人控制等。随着神经网络理论本身以及相关理论、相关技术的不断发展,神经网络的应用定将更加深入。http://baike.baidu.com/view/5348.htm?fr=ala0_1
wpBeta2023-05-26 08:18:151

神经网络是计算智能还是人工智能

神经网络是新技术领域中的一个时尚词汇。很多人听过这个词,但很少人真正明白它是什么。本文的目的是介绍所有关于神经网络的基本包括它的功能、一般结构、相关术语、类型及其应用。 “神经网络”这个词实际是来自于生物学,而我们所指的神经网络正确的名称应该是“人工神经网络(ANNs)”。在本文,我会同时使用这两个互换的术语。 一个真正的神经网络是由数个至数十亿个被称为神经元的细胞(组成我们大脑的微小细胞)所组成,它们以不同方式连接而型成网络。人工神经网络就是尝试模拟这种生物学上的体系结构及其操作。在这里有一个难题:我们对生物学上的神经网络知道的不多!因此,不同类型之间的神经网络体系结构有很大的不同,我们所知道的只是神经元基本的结构
墨然殇2023-05-26 08:18:151

神经网络的工作原理

“人脑是如何工作的?”“人类能否制作模拟人脑的人工神经元?”多少年以来,人们从医学、生物学、生理学、哲学、信息学、计算机科学、认知学、组织协同学等各个角度企图认识并解答上述问题。在寻找上述问题答案的研究过程中,逐渐形成了一个新兴的多学科交叉技术领域,称之为“神经网络”。神经网络的研究涉及众多学科领域,这些领域互相结合、相互渗透并相互推动。不同领域的科学家又从各自学科的兴趣与特色出发,提出不同的问题,从不同的角度进行研究。人工神经网络首先要以一定的学习准则进行学习,然后才能工作。现以人工神经网络对于写“A”、“B”两个字母的识别为例进行说明,规定当“A”输入网络时,应该输出“1”,而当输入为“B”时,输出为“0”。所以网络学习的准则应该是:如果网络作出错误的判决,则通过网络的学习,应使得网络减少下次犯同样错误的可能性。首先,给网络的各连接权值赋予(0,1)区间内的随机值,将“A”所对应的图象模式输入给网络,网络将输入模式加权求和、与门限比较、再进行非线性运算,得到网络的输出。在此情况下,网络输出为“1”和“0”的概率各为50%,也就是说是完全随机的。这时如果输出为“1”(结果正确),则使连接权值增大,以便使网络再次遇到“A”模式输入时,仍然能作出正确的判断。普通计算机的功能取决于程序中给出的知识和能力。显然,对于智能活动要通过总结编制程序将十分困难。人工神经网络也具有初步的自适应与自组织能力。在学习或训练过程中改变突触权重值,以适应周围环境的要求。同一网络因学习方式及内容不同可具有不同的功能。人工神经网络是一个具有学习能力的系统,可以发展知识,以致超过设计者原有的知识水平。通常,它的学习训练方式可分为两种,一种是有监督或称有导师的学习,这时利用给定的样本标准进行分类或模仿;另一种是无监督学习或称无为导师学习,这时,只规定学习方式或某些规则,则具体的学习内容随系统所处环境 (即输入信号情况)而异,系统可以自动发现环境特征和规律性,具有更近似人脑的功能。神经网络就像是一个爱学习的孩子,您教她的知识她是不会忘记而且会学以致用的。我们把学习集(Learning Set)中的每个输入加到神经网络中,并告诉神经网络输出应该是什么分类。在全部学习集都运行完成之后,神经网络就根据这些例子总结出她自己的想法,到底她是怎么归纳的就是一个黑盒了。之后我们就可以把测试集(Testing Set)中的测试例子用神经网络来分别作测试,如果测试通过(比如80%或90%的正确率),那么神经网络就构建成功了。我们之后就可以用这个神经网络来判断事务的分类了。神经网络是通过对人脑的基本单元——神经元的建模和联接,探索模拟人脑神经系统功能的模型,并研制一种具有学习、联想、记忆和模式识别等智能信息处理功能的人工系统。神经网络的一个重要特性是它能够从环境中学习,并把学习的结果分布存储于网络的突触连接中。神经网络的学习是一个过程,在其所处环境的激励下,相继给网络输入一些样本模式,并按照一定的规则(学习算法)调整网络各层的权值矩阵,待网络各层权值都收敛到一定值,学习过程结束。然后我们就可以用生成的神经网络来对真实数据做分类。人工神经网络早期的研究工作应追溯至20世纪40年代。下面以时间顺序,以著名的人物或某一方面突出的研究成果为线索,简要介绍
阿啵呲嘚2023-05-26 08:18:151

神经网络的来源

       神经网络技术起源于上世纪五、六十年代,当时叫 感知机 (perceptron),包含有输入层、输出层和一个隐藏层。输入的特征向量通过隐藏层变换到达输出层,由输出层得到分类结果。但早期的单层感知机存在一个严重的问题——它对稍微复杂一些的函数都无能为力(如异或操作)。直到上世纪八十年代才被Hition、Rumelhart等人发明的多层感知机克服,就是具有多层隐藏层的感知机。       多层感知机可以摆脱早期离散传输函数的束缚,使用sigmoid或tanh等连续函数模拟神经元对激励的响应,在训练算法上则使用Werbos发明的反向传播BP算法。这就是现在所说的神经网络NN。       神经网络的层数直接决定了它对现实的刻画能力 ——利用每层更少的神经元拟合更加复杂的函数。但问题出现了——随着神经网络层数的加深, 优化函数越来越容易陷入局部最优解 ,并且这个“陷阱”越来越偏离真正的全局最优。利用有限数据训练的深层网络,性能还不如较浅层网络。同时,另一个不可忽略的问题是随着网络层数增加, “梯度消失”现象更加严重 。(具体来说,我们常常使用sigmoid作为神经元的输入输出函数。对于幅度为1的信号,在BP反向传播梯度时,每传递一层,梯度衰减为原来的0.25。层数一多,梯度指数衰减后低层基本上接受不到有效的训练信号。)       2006年,Hition提出了深度学习的概念,引发了深度学习的热潮。具体是利用预训练的方式缓解了局部最优解的问题,将隐藏层增加到了7层,实现了真正意义上的“深度”。 DNN形成         为了克服梯度消失,ReLU、maxout等传输函数代替了sigmoid,形成了如今DNN的基本形式。结构跟多层感知机一样,如下图所示:        我们看到 全连接DNN的结构里下层神经元和所有上层神经元都能够形成连接,从而导致参数数量膨胀 。假设输入的是一幅像素为1K*1K的图像,隐含层有1M个节点,光这一层就有10^12个权重需要训练,这不仅容易过拟合,而且极容易陷入局部最优。 CNN形成        由于图像中存在固有的局部模式(如人脸中的眼睛、鼻子、嘴巴等),所以将图像处理和神将网络结合引出卷积神经网络CNN。CNN是通过卷积核将上下层进行链接,同一个卷积核在所有图像中是共享的,图像通过卷积操作后仍然保留原先的位置关系。        通过一个例子简单说明卷积神经网络的结构。假设我们需要识别一幅彩色图像,这幅图像具有四个通道ARGB(透明度和红绿蓝,对应了四幅相同大小的图像),假设卷积核大小为100*100,共使用100个卷积核w1到w100(从直觉来看,每个卷积核应该学习到不同的结构特征)。        用w1在ARGB图像上进行卷积操作,可以得到隐含层的第一幅图像;这幅隐含层图像左上角第一个像素是四幅输入图像左上角100*100区域内像素的加权求和,以此类推。 同理,算上其他卷积核,隐含层对应100幅“图像”。每幅图像对是对原始图像中不同特征的响应。按照这样的结构继续传递下去。CNN中还有max-pooling等操作进一步提高鲁棒性。       注意到最后一层实际上是一个全连接层,在这个例子里,我们注意到输入层到隐藏层的参数瞬间降低到了100*100*100=10^6个!这使得我们能够用已有的训练数据得到良好的模型。题主所说的适用于图像识别,正是由于CNN模型限制参数了个数并挖掘了局部结构的这个特点。顺着同样的思路,利用语音语谱结构中的局部信息,CNN照样能应用在语音识别中。 RNN形成       DNN无法对时间序列上的变化进行建模。然而,样本出现的时间顺序对于自然语言处理、语音识别、手写体识别等应用非常重要。为了适应这种需求,就出现了大家所说的另一种神经网络结构——循环神经网络RNN。       在普通的全连接网络或CNN中,每层神经元的信号只能向上一层传播,样本的处理在各个时刻独立,因此又被成为前向神经网络(Feed-forward Neural Networks)。而在RNN中,神经元的输出可以在下一个时间段直接作用到自身,即第i层神经元在m时刻的输入,除了(i-1)层神经元在该时刻的输出外,还包括其自身在(m-1)时刻的输出!表示成图就是这样的: 为方便分析,按照时间段展开如下图所示: (t+1)时刻网络的最终结果O(t+1)是该时刻输入和所有历史共同作用的结果!这就达到了对时间序列建模的目的。RNN可以看成一个在时间上传递的神经网络,它的深度是时间的长度!正如我们上面所说,“梯度消失”现象又要出现了,只不过这次发生在时间轴上。        所以RNN存在无法解决长时依赖的问题。为解决上述问题,提出了LSTM(长短时记忆单元),通过cell门开关实现时间上的记忆功能,并防止梯度消失,LSTM单元结构如下图所示:        除了DNN、CNN、RNN、ResNet(深度残差)、LSTM之外,还有很多其他结构的神经网络。如因为在序列信号分析中,如果我能预知未来,对识别一定也是有所帮助的。因此就有了双向RNN、双向LSTM,同时利用历史和未来的信息。        事实上,不论是哪种网络,他们在实际应用中常常都混合着使用,比如CNN和RNN在上层输出之前往往会接上全连接层,很难说某个网络到底属于哪个类别。不难想象随着深度学习热度的延续,更灵活的组合方式、更多的网络结构将被发展出来。 参考链接:https://www.leiphone.com/news/201702/ZwcjmiJ45aW27ULB.html
大鱼炖火锅2023-05-26 08:18:141

神经网络算法的三大类分别是?

神经网络算法的三大类分别是:1、前馈神经网络:这是实际应用中最常见的神经网络类型。第一层是输入,最后一层是输出。如果有多个隐藏层,我们称之为“深度”神经网络。他们计算出一系列改变样本相似性的变换。各层神经元的活动是前一层活动的非线性函数。2、循环网络:循环网络在他们的连接图中定向了循环,这意味着你可以按照箭头回到你开始的地方。他们可以有复杂的动态,使其很难训练。他们更具有生物真实性。循环网络的目的是用来处理序列数据。在传统的神经网络模型中,是从输入层到隐含层再到输出层,层与层之间是全连接的,每层之间的节点是无连接的。但是这种普通的神经网络对于很多问题却无能无力。循环神经网路,即一个序列当前的输出与前面的输出也有关。具体的表现形式为网络会对前面的信息进行记忆并应用于当前输出的计算中,即隐藏层之间的节点不再无连接而是有连接的,并且隐藏层的输入不仅包括输入层的输出还包括上一时刻隐藏层的输出。3、对称连接网络:对称连接网络有点像循环网络,但是单元之间的连接是对称的(它们在两个方向上权重相同)。比起循环网络,对称连接网络更容易分析。这个网络中有更多的限制,因为它们遵守能量函数定律。没有隐藏单元的对称连接网络被称为“Hopfield 网络”。有隐藏单元的对称连接的网络被称为玻尔兹曼机。扩展资料:应用及发展:心理学家和认知科学家研究神经网络的目的在于探索人脑加工、储存和搜索信息的机制,弄清人脑功能的机理,建立人类认知过程的微结构理论。生物学、医学、脑科学专家试图通过神经网络的研究推动脑科学向定量、精确和理论化体系发展,同时也寄希望于临床医学的新突破;信息处理和计算机科学家研究这一问题的目的在于寻求新的途径以解决不能解决或解决起来有极大困难的大量问题,构造更加逼近人脑功能的新一代计算机。
拌三丝2023-05-26 08:18:141

神经网络优缺点,

神经网络的搭建,输入,隐藏与输出的设置。应用到遗传算法中,我们制定一个规则,什么样的坦克是好坦克:比如杀一个坦克+15,按存活时间+10,死亡后-25;这样判别优秀的坦克基因;然后遗传给下一代重新训练。应用越来越多,但都以战斗系统,自动优化路径为主要应用方向,缺少新的方向与研究内容。将遗传算法与宠物养成游戏相结合,不仅可以增加游戏可玩性,给游戏玩家带来新鲜的游戏体验,丰富游戏玩家渴求惊喜与刺激的游戏心理,又可以丰富遗传算法的应用领域与辐射面。将优质宠物模拟为食物,模仿鸟群吃食物的行为,每三名宠物为一个单位,构建排名二、三名的宠物向第一名求偶的路径,并在达到一定距离时发出摇尾巴的动作。第二三名宠物有概率和第一名的宠物繁衍出新的一代,不断迭代。在屏幕活动范围内,对靠近,对齐,避免碰撞的三个原则设置参数、权重,以此获取宠物下一时刻位置。
再也不做站长了2023-05-26 08:18:144

一文读懂神经网络

要说近几年最引人注目的技术,无疑的,非人工智能莫属。无论你是否身处科技互联网行业,随处可见人工智能的身影:从 AlphaGo 击败世界围棋冠军,到无人驾驶概念的兴起,再到科技巨头 All in AI,以及各大高校向社会输送海量的人工智能专业的毕业生。以至于人们开始萌生一个想法:新的革命就要来了,我们的世界将再次发生一次巨变;而后开始焦虑:我的工作是否会被机器取代?我该如何才能抓住这次革命? 人工智能背后的核心技术是深度神经网络(Deep Neural Network),大概是一年前这个时候,我正在回老家的高铁上学习 3Blue1Brown 的 Neural Network 系列视频课程,短短 4 集 60 多分钟的时间,就把神经网络从 High Level 到推导细节说得清清楚楚,当时的我除了获得新知的兴奋之外,还有一点新的认知,算是给头脑中的革命性的技术泼了盆冷水:神经网络可以解决一些复杂的、以前很难通过写程序来完成的任务——例如图像、语音识别等,但它的实现机制告诉我,神经网络依然没有达到生物级别的智能,短期内期待它来取代人也是不可能的。 一年后的今天,依然在这个春运的时间点,将我对神经网络的理解写下来,算是对这部分知识的一个学习笔记,运气好的话,还可以让不了解神经网络的同学了解起来。 维基百科这样解释 神经网络 : 这个定义比较宽泛,你甚至还可以用它来定义其它的机器学习算法,例如之前我们一起学习的逻辑回归和 GBDT 决策树。下面我们具体一点,下图是一个逻辑回归的示意图: 其中 x1 和 x2 表示输入,w1 和 w2 是模型的参数,z 是一个线性函数: 接着我们对 z 做一个 sigmod 变换(图中蓝色圆),得到输出 y: 其实,上面的逻辑回归就可以看成是一个只有 1 层 输入层 , 1 层 输出层 的神经网络,图中容纳数字的圈儿被称作 神经元 ;其中,层与层之间的连接 w1、w2 以及 b,是这个 神经网络的参数 ,层之间如果每个神经元之间都保持着连接,这样的层被称为 全连接层 (Full Connection Layer),或 稠密层 (Dense Layer);此外,sigmoid 函数又被称作 激活函数 (Activation Function),除了 sigmoid 外,常用的激活函数还有 ReLU、tanh 函数等,这些函数都起到将线性函数进行非线性变换的作用。我们还剩下一个重要的概念: 隐藏层 ,它需要把 2 个以上的逻辑回归叠加起来加以说明: 如上图所示,除输入层和输出层以外,其他的层都叫做 隐藏层 。如果我们多叠加几层,这个神经网络又可以被称作 深度神经网络 (Deep Neural Network),有同学可能会问多少层才算“深”呢?这个没有绝对的定论,个人认为 3 层以上就算吧:) 以上,便是神经网络,以及神经网络中包含的概念,可见,神经网络并不特别,广义上讲,它就是 可见,神经网络和人脑神经也没有任何关联,如果我们说起它的另一个名字—— 多层感知机(Mutilayer Perceptron) ,就更不会觉得有多么玄乎了,多层感知机创造于 80 年代,可为什么直到 30 年后的今天才爆发呢?你想得没错,因为改了个名字……开个玩笑;实际上深度学习这项技术也经历过很长一段时间的黑暗低谷期,直到人们开始利用 GPU 来极大的提升训练模型的速度,以及几个标志性的事件:如 AlphaGo战胜李世石、Google 开源 TensorFlow 框架等等,感兴趣的同学可以翻一下这里的历史。 就拿上图中的 3 个逻辑回归组成的神经网络作为例子,它和普通的逻辑回归比起来,有什么优势呢?我们先来看下单逻辑回归有什么劣势,对于某些情况来说,逻辑回归可能永远无法使其分类,如下面数据: 这 4 个样本画在坐标系中如下图所示 因为逻辑回归的决策边界(Decision Boundary)是一条直线,所以上图中的两个分类,无论你怎么做,都无法找到一条直线将它们分开,但如果借助神经网络,就可以做到这一点。 由 3 个逻辑回归组成的网络(这里先忽略 bias)如下: 观察整个网络的计算过程,在进入输出层之前,该网络所做的计算实际上是: 即把输入先做了一次线性变换(Linear Transformation),得到 [z1, z2] ,再把 [z1, z2] 做了一个非线性变换(sigmoid),得到 [x1", x2"] ,(线性变换的概念可以参考 这个视频 )。从这里开始,后面的操作就和一个普通的逻辑回归没有任何差别了,所以它们的差异在于: 我们的数据在输入到模型之前,先做了一层特征变换处理(Feature Transformation,有时又叫做特征抽取 Feature Extraction),使之前不可能被分类的数据变得可以分类了 。 我们继续来看下特征变换的效果,假设 为 ,带入上述公式,算出 4 个样本对应的 [x1", x2"] 如下: 再将变换后的 4 个点绘制在坐标系中: 显然,在做了特征变换之后,这两个分类就可以很容易的被一条决策边界分开了。 所以, 神经网络的优势在于,它可以帮助我们自动的完成特征变换或特征提取 ,尤其对于声音、图像等复杂问题,因为在面对这些问题时,人们很难清晰明确的告诉你,哪些特征是有用的。 在解决特征变换的同时,神经网络也引入了新的问题,就是我们需要设计各式各样的网络结构来针对性的应对不同的场景,例如使用卷积神经网络(CNN)来处理图像、使用长短期记忆网络(LSTM)来处理序列问题、使用生成式对抗网络(GAN)来写诗和作图等,就连去年自然语言处理(NLP)中取得突破性进展的 Transformer/Bert 也是一种特定的网络结构。所以, 学好神经网络,对理解其他更高级的网络结构也是有帮助的 。 上面说了,神经网络可以看作一个非线性函数,该函数的参数是连接神经元的所有的 Weights 和 Biases,该函数可以简写为 f(W, B) ,以手写数字识别的任务作为例子:识别 MNIST 数据集 中的数字,数据集(MNIST 数据集是深度学习中的 HelloWorld)包含上万张不同的人写的数字图片,共有 0-9 十种数字,每张图片为 28*28=784 个像素,我们设计一个这样的网络来完成该任务: 把该网络函数所具备的属性补齐: 接下来的问题是,这个函数是如何产生的?这个问题本质上问的是这些参数的值是怎么确定的。 在机器学习中,有另一个函数 c 来衡量 f 的好坏,c 的参数是一堆数据集,你输入给 c 一批 Weights 和 Biases,c 输出 Bad 或 Good,当结果是 Bad 时,你需要继续调整 f 的 Weights 和 Biases,再次输入给 c,如此往复,直到 c 给出 Good 为止,这个 c 就是损失函数 Cost Function(或 Loss Function)。在手写数字识别的列子中,c 可以描述如下: 可见,要完成手写数字识别任务,只需要调整这 12730 个参数,让损失函数输出一个足够小的值即可,推而广之,绝大部分神经网络、机器学习的问题,都可以看成是定义损失函数、以及参数调优的问题。 在手写识别任务中,我们既可以使用交叉熵(Cross Entropy)损失函数,也可以使用 MSE(Mean Squared Error)作为损失函数,接下来,就剩下如何调优参数了。 神经网络的参数调优也没有使用特别的技术,依然是大家刚接触机器学习,就学到的梯度下降算法,梯度下降解决了上面迭代过程中的遗留问题——当损失函数给出 Bad 结果时,如何调整参数,能让 Loss 减少得最快。 梯度可以理解为: 把 Loss 对应到 H,12730 个参数对应到 (x,y),则 Loss 对所有参数的梯度可以表示为下面向量,该向量的长度为 12730: $$ abla L(w,b) = left[ frac{partial L}{partial w_1}, frac{partial L}{partial w_2},..., frac{partial L}{partial b_{26}} ight] ^ op $$ 所以,每次迭代过程可以概括为 用梯度来调整参数的式子如下(为了简化,这里省略了 bias): 上式中, 是学习率,意为每次朝下降最快的方向前进一小步,避免优化过头(Overshoot)。 由于神经网络参数繁多,所以需要更高效的计算梯度的算法,于是,反向传播算法(Backpropagation)呼之欲出。 在学习反向传播算法之前,我们先复习一下微积分中的链式法则(Chain Rule):设 g = u(h) , h = f(x) 是两个可导函数,x 的一个很小的变化 △x 会使 h 产生一个很小的变化 △h,从而 g 也产生一个较小的变化 △g,现要求 △g/△x,可以使用链式法则: 有了以上基础,理解反向传播算法就简单了。 假设我们的演示网络只有 2 层,输入输出都只有 2 个神经元,如下图所示: 其中 是输入, 是输出, 是样本的目标值,这里使用的损失函数 L 为 MSE;图中的上标 (1) 或 (2) 分别表示参数属于第 (1) 层或第 (2) 层,下标 1 或 2 分别表示该层的第 1 或 第 2 个神经元。 现在我们来计算 和 ,掌握了这 2 个参数的偏导数计算之后,整个梯度的计算就掌握了。 所谓反向传播算法,指的是从右向左来计算每个参数的偏导数,先计算 ,根据链式法则 对左边项用链式法则展开 又 是输出值, 可以直接通过 MSE 的导数算出: 而 ,则 就是 sigmoid 函数的导数在 处的值,即 于是 就算出来了: 再来看 这一项,因为 所以 注意:上面式子对于所有的 和 都成立,且结果非常直观,即 对 的偏导为左边的输入 的大小;同时,这里还隐含着另一层意思:需要调整哪个 来影响 ,才能使 Loss 下降得最快,从该式子可以看出,当然是先调整较大的 值所对应的 ,效果才最显著 。 于是,最后一层参数 的偏导数就算出来了 我们再来算上一层的 ,根据链式法则 : 继续展开左边这一项 你发现没有,这几乎和计算最后一层一摸一样,但需要注意的是,这里的 对 Loss 造成的影响有多条路径,于是对于只有 2 个输出的本例来说: 上式中, 都已经在最后一层算出,下面我们来看下 ,因为 于是 同理 注意:这里也引申出梯度下降的调参直觉:即要使 Loss 下降得最快,优先调整 weight 值比较大的 weight。 至此, 也算出来了 观察上式, 所谓每个参数的偏导数,通过反向传播算法,都可以转换成线性加权(Weighted Sum)计算 ,归纳如下: 式子中 n 代表分类数,(l) 表示第 l 层,i 表示第 l 层的第 i 个神经元。 既然反向传播就是一个线性加权,那整个神经网络就可以借助于 GPU 的矩阵并行计算了 。 最后,当你明白了神经网络的原理,是不是越发的认为,它就是在做一堆的微积分运算,当然,作为能证明一个人是否学过微积分,神经网络还是值得学一下的。Just kidding .. 本文我们通过 这四点,全面的学习了神经网络这个知识点,希望本文能给你带来帮助。 参考:
再也不做站长了2023-05-26 08:18:141

人工神经网络的作用

人工神经网络(Artificial Neural Network,即ANN ),是20世纪80 年代以来人工智能领域兴起的研究热点。它从信息处理角度对人脑神经元网络进行抽象, 建立某种简单模型,按不同的连接方式组成不同的网络。在工程与学术界也常直接简称为神经网络或类神经网络。神经网络是一种运算模型,由大量的节点(或称神经元)之间相互联接构成。每个节点代表一种特定的输出函数,称为激励函数(activation function)。每两个节点间的连接都代表一个对于通过该连接信号的加权值,称之为权重,这相当于人工神经网络的记忆。网络的输出则依网络的连接方式,权重值和激励函数的不同而不同。而网络自身通常都是对自然界某种算法或者函数的逼近,也可能是对一种逻辑策略的表达。最近十多年来,人工神经网络的研究工作不断深入,已经取得了很大的进展,其在模式识别、智能机器人、自动控制、预测估计、生物、医学、经济等领域已成功地解决了许多现代计算机难以解决的实际问题,表现出了良好的智能特性。中文名人工神经网络外文名artificial neural network别称ANN应用学科人工智能适用领域范围模式分类精品荐读“蠢萌”的神经网络作者:牛油果进化论快速导航基本特征发展历史网络模型学习类型分析方法特点优点研究方向发展趋势应用分析神经元如图所示a1~an为输入向量的各个分量w1~wn为神经元各个突触的权值b为偏置f为传递函数,通常为非线性函数。以下默认为hardlim()t为神经元输出数学表示 t=f(WA"+b)W为权向量A为输入向量,A"为A向量的转置b为偏置f为传递函数可见,一个神经元的功能是求得输入向量与权向量的内积后,经一个非线性传递函数得到一个标量结果。单个神经元的作用:把一个n维向量空间用一个超平面分割成两部分(称之为判断边界),给定一个输入向量,神经元可以判断出这个向量位于超平面的哪一边。该超平面的方程: Wp+b=0W权向量b偏置p超平面上的向量基本特征人工神经网络是由大量处理单元互联组成的非线性、自适应信息处理系统。它是在现代神经科学研究成果的基础上提出的,试图通过模拟大脑神经网络处理、记忆信息的方式进行信息处理。人工神经网络具有四个基本特征:(1)非线性 非线性关系是自然界的普遍特性。大脑的智慧就是一种非线性现象。人工神经元处于激活或抑制二种不同的状态,这种行为在数学上表现为一种非线性关系。具有阈值的神经元构成的网络具有更好的性能,可以提高容错性和存储容量。人工神经网络(2)非局限性 一个神经网络通常由多个神经元广泛连接而成。一个系统的整体行为不仅取决于单个神经元的特征,而且可能主要由单元之间的相互作用、相互连接所决定。通过单元之间的大量连接模拟大脑的非局限性。联想记忆是非局限性的典型例子。(3)非常定性 人工神经网络具有自适应、自组织、自学习能力。神经网络不但处理的信息可以有各种变化,而且在处理信息的同时,非线性动力系统本身也在不断变化。经常采用迭代过程描写动力系统的演化过程。(4)非凸性 一个系统的演化方向,在一定条件下将取决于某个特定的状态函数。例如能量函数,它的极值相应于系统比较稳定的状态。非凸性是指这种函数有多个极值,故系统具有多个较稳定的平衡态,这将导致系统演化的多样性
再也不做站长了2023-05-26 08:18:141

神经网络的研究内容

神经网络的研究内容相当广泛,反映了多学科交叉技术领域的特点。主要的研究工作集中在以下几个方面: 在理论模型研究的基础上构作具体的神经网络模型,以实现计算机模拟或准备制作硬件,包括网络学习算法的研究。这方面的工作也称为技术模型研究。神经网络用到的算法就是向量乘法,并且广泛采用符号函数及其各种逼近。并行、容错、可以硬件实现以及自我学习特性,是神经网络的几个基本优点,也是神经网络计算方法与传统方法的区别所在。 在网络模型与算法研究的基础上,利用人工神经网络组成实际的应用系统,例如,完成某种信号处理或模式识别的功能、构作专家系统、制成机器人、复杂系统控制等等。纵观当代新兴科学技术的发展历史,人类在征服宇宙空间、基本粒子,生命起源等科学技术领域的进程中历经了崎岖不平的道路。我们也会看到,探索人脑功能和神经网络的研究将伴随着重重困难的克服而日新月异。
西柚不是西游2023-05-26 08:18:141

BP神经网络的梳理

BP神经网络被称为“深度学习之旅的开端”,是神经网络的入门算法。 各种高大上的神经网络都是基于BP网络出发的,最基础的原理都是由BP网络而来 [1] ,另外由于BP神经网络结构简单,算法经典, 是神经网络中应用最广泛的一种。 BP神经网络(back propagation neural network)全称是反向传播神经网络。 神经网络发展部分背景如下 [2] : 为解决非线性问题,BP神经网络应运而生。 那么什么是BP神经网络?稍微专业点的解释要怎么说呢? 很喜欢 最简单的神经网络--Bp神经网络 一文对算法原理的解释,语言活泼,案例简单,由浅入深。 文中提到所谓的 AI 技术,本质上是一种数据处理处理技术,它的强大来自于两方面:1.互联网的发展带来的海量数据信息;2.计算机深度学习算法的快速发展。AI 其实并没有什么神秘,只是在算法上更为复杂 [3] 。 我们从上面的定义出发来解释BP神经网络的原理。 BP神经网络整个网络结构包含了:一层输入层,一到多层隐藏层,一层输出层。 一般说L层神经网络,指的是有L个隐层,输入层和输出层都不计算在内的 [6] 。 BP神经网络模型训练的学习过程由信号的 正向传播 和误差的 反向传播 两个过程组成。 什么是信号的正向传播?顾名思义,就是结构图从左到右的运算过程。 我们来看看结构图中每个小圆圈是怎么运作的。我们把小圈圈叫做神经元,是组成神经网络的基本单元。 正向传播就是输入数据经过一层一层的神经元运算、输出的过程,最后一层输出值作为算法预测值y"。 前面正向传播的时候我们提到权重w、偏置b,但我们并不知道权重w、偏置b的值应该是什么。关于最优参数的求解,我们在 线性回归 、 逻辑回归 两章中有了详细说明。大致来讲就是: BP神经网络全称 back propagation neural network,back propagation反向传播是什么? 反向传播的建设本质上就是寻找最优的参数组合,和上面的流程差不多,根据算法预测值和实际值之间的损失函数L(y",y),来反方向地计算每一层的z、a、w、b的偏导数,从而更新参数。 对反向传播而言,输入的内容是预测值和实际值的误差,输出的内容是对参数的更新,方向是从右往左,一层一层的更新每一层的参数。 BP神经网络通过先正向传播,构建参数和输入值的关系,通过预测值和实际值的误差,反向传播修复权重;读入新数据再正向传播预测,再反向传播修正,...,通过多次循环达到最小损失值,此时构造的模型拥有最优的参数组合。 以一个简单的BP神经网络为例,由3个输入层,2层隐藏层,每层2个神经元,1个输出层组成。 【输入层】传入 【第一层隐藏层】 对于 神经元而言,传入 ,加权求和加偏置激活函数处理后,输出 ; 对于 神经元而言,传入 ,加权求和加偏置函数处理后,输出 ; 输出: 【第二层隐藏层】 对于 神经元而言,传入 ,加权求和加偏置激活函数处理后,输出 ; 对于 神经元而言,传入 ,加权求和加偏置激活函数处理后,输出 ; 输出: 【输出层】 对于输出层神经元而言,输入 ,加权求和加偏置激活函数处理后,输出 ,输出的是一个值 第一次运行正向传播这个流程时随用随机参数就好,通过反向传播不断优化。因此需要在一开始对 设置一个随机的初始值。 首先计算正向传播输出值 与实际值的损失 ,是一个数值。所谓反向是从右到左一步步来的,先回到 ,修正参数 。以此类推,通过对损失函数求偏导跟新参数 ,再跟新参数 。这时又回到了起点,新的数据传入又可以开始正向传播了。 keras可以快速搭建神经网络,例如以下为输入层包含7129个结点,一层隐藏层,包含128个结点,一个输出层,是二分类模型。 神经网络反向传播的优化目标为loss,可以观察到loss的值在不断的优化。 可以通过model.get_layer().get_weights()获得每一层训练后的参数结果。通过model.predict()预测新数据。 至此,BP神经网络的整个运算流程已经过了一遍。之前提到BP神经网络是为解决非线性问题应运而生的,那么为什么BP神经网络可以解决非线性问题呢? 还记得神经元里有一个激活函数的操作吗?神经网络通过激活函数的使用加入非线性因素。 通过使用非线性的激活函数可以使神经网络随意逼近复杂函数,从而使BP神经网络既可以处理线性问题,也可以处理非线性问题。 为什么激活函数的使用可以加入非线性因素 [7] ? 其实逻辑回归算法可以看作只有一个神经元的单层神经网络,只对线性可分的数据进行分类。 输入参数,加权求和,sigmoid作为激活函数计算后输出结果,模型预测值和实际值计算损失Loss,反向传播梯度下降求编导,获得最优参数。 BP神经网络是比 Logistic Regression 复杂得多的模型,它的拟合能力很强,可以处理很多 Logistic Regression处理不了的数据,但是也更容易过拟合。 具体用什么算法还是要看训练数据的情况,没有一种算法是使用所有情况的。 常见的前馈神经网络有BP网络,RBF网络等。 BP神经网络的一个主要问题是:结构不好设计。 网络隐含层的层数和单元数的选择尚无理论上的指导,一般是根据经验或者通过反复实验确定。 但是BP神经网络简单、易行、计算量小、并行性强,目前仍是多层前向网络的首选算法。 [1] 深度学习开端---BP神经网络: https://blog.csdn.net/Chile_Wang/article/details/100557010 [2] BP神经网络发展历史: https://zhuanlan.zhihu.com/p/47998728 [3] 最简单的神经网络--Bp神经网络: https://blog.csdn.net/weixin_40432828/article/details/82192709 [4] 神经网络的基本概念: https://blog.csdn.net/jinyuan7708/article/details/82466653 [5] 神经网络中的 “隐藏层” 理解: https://blog.csdn.net/nanhuaibeian/article/details/100183000 [6] AI学习笔记:神经元与神经网络: https://www.jianshu.com/p/65eb2fce0e9e [7] 线性模型和非线性模型的区别: https://www.cnblogs.com/toone/p/8574294.html [8] BP神经网络是否优于logistic回归: https://www.zhihu.com/question/27823925/answer/38460833
苏萦2023-05-26 08:18:141

神经网络模型有几种分类方法,试给出一种分类

神经网络模型的分类人工神经网络的模型很多,可以按照不同的方法进行分类。其中,常见的两种分类方法是,按照网络连接的拓朴结构分类和按照网络内部的信息流向分类。1 按照网络拓朴结构分类网络的拓朴结构,即神经元之间的连接方式。按此划分,可将神经网络结构分为两大类:层次型结构和互联型结构。层次型结构的神经网络将神经元按功能和顺序的不同分为输出层、中间层(隐层)、输出层。输出层各神经元负责接收来自外界的输入信息,并传给中间各隐层神经元;隐层是神经网络的内部信息处理层,负责信息变换。根据需要可设计为一层或多层;最后一个隐层将信息传递给输出层神经元经进一步处理后向外界输出信息处理结果。 而互连型网络结构中,任意两个节点之间都可能存在连接路径,因此可以根据网络中节点的连接程度将互连型网络细分为三种情况:全互连型、局部互连型和稀疏连接型2 按照网络信息流向分类从神经网络内部信息传递方向来看,可以分为两种类型:前馈型网络和反馈型网络。单纯前馈网络的结构与分层网络结构相同,前馈是因网络信息处理的方向是从输入层到各隐层再到输出层逐层进行而得名的。前馈型网络中前一层的输出是下一层的输入,信息的处理具有逐层传递进行的方向性,一般不存在反馈环路。因此这类网络很容易串联起来建立多层前馈网络。反馈型网络的结构与单层全互连结构网络相同。在反馈型网络中的所有节点都具有信息处理功能,而且每个节点既可以从外界接受输入,同时又可以向外界输出。
Ntou1232023-05-26 08:18:141

神经网络技术的意义是怎样的?

神经网络技术对完成对微弱信号的检验和对各传感器信息实时处理,具有自适应自学习功能,能自动掌握环境特征,实现自动目标识别及容错性好,抗干扰能力强等优点。神经网络技术特别适用于密集信号环境的信息处理、数据收集目标识别、图像处理、无源探测与定位以及人机接口等方面,因而在作战指挥方面有广泛的应用前景。
陶小凡2023-05-26 08:18:141

神经网络的研究方向

神经网络的研究可以分为理论研究和应用研究两大方面。理论研究可分为以下两类:1、利用神经生理与认知科学研究人类思维以及智能机理。2、利用神经基础理论的研究成果,用数理方法探索功能更加完善、性能更加优越的神经网络模型,深入研究网络算法和性能,如:稳定性、收敛性、容错性、鲁棒性等;开发新的网络数理理论,如:神经网络动力学、非线性神经场等。应用研究可分为以下两类:1、神经网络的软件模拟和硬件实现的研究。2、神经网络在各个领域中应用的研究。这些领域主要包括:模式识别、信号处理、知识工程、专家系统、优化组合、机器人控制等。随着神经网络理论本身以及相关理论、相关技术的不断发展,神经网络的应用定将更加深入。
北境漫步2023-05-26 08:18:141

人工神经网络的发展

人工神经网络( Artificial Neural Networks, 简写为ANNs)也简称为神经网络(NNs)或称作连接模型(Connectionist Model) ,是对人脑或自然神经网络(Natural Neural Network)若干基本特性的抽象和模拟。人工神经网络以对大脑的生理研究成果为基础 的,其目的在于模拟大脑的某些机理与机制,实现某个方面的功能。国际著名的神经网络研究专家,第一家神经计算机公司的创立者 与领导人Hecht—Nielsen给人工神经网络下的定义就是:“人工神经网络是由人工建立的以有向图为拓扑结构的动态系统,它通过对连 续或断续的输入作状态相应而进行信息处理。” 这一定义是恰当的。 人工神经网络的研究,可以追溯到 1957年Rosenblatt提出的感知器(Perceptron)模型 。它几乎与人工智能——AI(Artificial Intelligence)同时起步,但30余年来却并未取得人工智能那样巨大的成功,中间经历了一段长时间的萧条。直到80年代,获得了关于 人工神经网络切实可行的算法,以及以Von Neumann体系为依托的传统算法在知识处理方面日益显露出其力不从心后,人们才重新对 人工神经网络发生了兴趣,导致神经网络的复兴。 目前在神经网络研究方法上已形成多个流派,最富有成果的研究工作包括:多层网络 BP算法,Hopfield网络模型,自适应共振理 论,自组织特征映射理论等。人工神经网络是在现代神经科学的基础上提出来的。它虽然反映了人脑功能的基本特征,但远不是自然 神经网络的逼真描写,而只是它的某种简化抽象和模拟。 1. 人工神经网络的特点 人工神经网络的以下几个突出的优点使它近年来引起人们的极大关注: (1)可以充分逼近任意复杂的非线性关系; (2)所有定量或定性的信息都等势分布贮存于网络内的各神经元,故有很强的鲁棒性和容错性; (3)采用并行分布处理方法,使得快速进行大量运算成为可能; (4)可学习和自适应不知道或不确定的系统; (5)能够同时处理定量、定性知识。 人工神经网络的特点和优越性,主要表现在三个方面:第一,具有自学习功能。例如实现图像识别时,只在先把许多不同的图像样板和对应的应识别的结果输入人工神经网络,网络就 会通过自学习功能,慢慢学会识别类似的图像。自学习功能对于预测有特别重要的意义。预期未来的人工神经网络计算机将为人类提 供经济预测、市场预测、效益预测,其应用前途是很远大的。 第二,具有联想存储功能。用人工神经网络的反馈网络就可以实现这种联想。 第三,具有高速寻找优化解的能力。寻找一个复杂问题的优化解,往往需要很大的计算量,利用一个针对某问题而设计的反馈型 人工神经网络,发挥计算机的高速运算能力,可能很快找到优化解。 2.人工神经网络的主要方向 神经网络的研究可以分为理论研究和应用研究两大方面。 理论研究可分为以下两类: 1).利用神经生理与认知科学研究人类思维以及智能机理。 2).利用神经基础理论的研究成果,用数理方法探索功能更加完善、性能更加优越的神经网络模型,深入研究网络算法和性能, 如:稳定性、收敛性、容错性、鲁棒性等;开发新的网络数理理论,如:神经网络动力学、非线性神经场等。 应用研究可分为以下两类: 1).神经网络的软件模拟和硬件实现的研究。 2).神经网络在各个领域中应用的研究。这些领域主要包括: 模式识别、信号处理、知识工程、专家系统、优化组合、机器人控制等。 随着神经网络理论本身以及相关理论、相关技术的不断 发展,神经网络的应用定将更加深入。
肖振2023-05-26 08:18:143

脉冲神经网络的介绍

脉冲神经网络 (SNN-Spiking Neuron Networks) 经常被誉为第三代人工神经网络。其模拟神经元更加接近实际,除此之外,它把时间信息的影响也考虑其中。思路是这样的,动态神经网络中的神经元不是在每一次迭代传播中都被激活(而在典型的多层感知机网络中却是),而是在它的膜电位达到某一个特定值才被激活。当一个神经元被激活,它会产生一个信号传递给其他神经元,提高或降低其膜电位。
kikcik2023-05-26 08:18:141

BP神经网络的起源学说

人工神经元的研究起源于脑神经元学说。19世纪末,在生物、生理学领域,Waldeger等人创建了神经元学说。人们认识到复杂的神经系统是由数目繁多的神经元组合而成。大脑皮层包括有100亿个以上的神经元,每立方毫米约有数万个,它们互相联结形成神经网络,通过感觉器官和神经接受来自身体内外的各种信息,传递至中枢神经系统内,经过对信息的分析和综合,再通过运动神经发出控制信息,以此来实现机体与内外环境的联系,协调全身的各种机能活动。 人工神经网络是由大量的简单基本元件——神经元相互联接而成的自适应非线性动态系统。每个神经元的结构和功能比较简单,但大量神经元组合产生的系统行为却非常复杂。人工神经网络反映了人脑功能的若干基本特性,但并非生物系统的逼真描述,只是某种模仿、简化和抽象。与数字计算机比较,人工神经网络在构成原理和功能特点等方面更加接近人脑,它不是按给定的程序一步一步地执行运算,而是能够自身适应环境、总结规律、完成某种运算、识别或过程控制。神经元也和其他类型的细胞一样,包括有细胞膜、细胞质和细胞核。但是神经细胞的形态比较特殊,具有许多突起,因此又分为细胞体、轴突和树突三部分。细胞体内有细胞核,突起的作用是传递信息。树突是作为引入输入信号的突起,而轴突是作为输出端的突起,它只有一个。 若从速度的角度出发,人脑神经元之间传递信息的速度要远低于计算机,前者为毫秒量级,而后者的频率往往可达几百兆赫。但是,由于人脑是一个大规模并行与串行组合处理系统,因而,在许多问题上可以作出快速判断、决策和处理,其速度则远高于串行结构的普通计算机。人工神经网络的基本结构模仿人脑,具有并行处理特征,可以大大提高工作速度。利用突触效能的变化来调整存贮内容人脑存贮信息的特点为利用突触效能的变化来调整存贮内容,也即信息存贮在神经元之间连接强度的分布上,存贮区与计算机区合为一体。虽然人脑每日有大量神经细胞死亡 (平均每小时约一千个),但不影响大脑的正常思维活动。普通计算机是具有相互独立的存贮器和运算器,知识存贮与数据运算互不相关,只有通过人编出的程序使之沟通,这种沟通不能超越程序编制者的预想。元器件的局部损坏及程序中的微小错误都可能引起严重的失常。人类大脑有很强的自适应与自组织特性,后天的学习与训练可以开发许多各具特色的活动功能。如盲人的听觉和触觉非常灵敏;聋哑人善于运用手势;训练有素的运动员可以表现出非凡的运动技巧等等。普通计算机的功能取决于程序中给出的知识和能力。显然,对于智能活动要通过总结编制程序将十分困难。
肖振2023-05-26 08:18:141

前馈神经网络、BP神经网络、卷积神经网络的区别与联系

区别:一、计算方法不同1、前馈神经网络:一种最简单的神经网络,各神经元分层排列。每个神经元只与前一层的神经元相连。接收前一层的输出,并输出给下一层.各层间没有反馈。2、BP神经网络:是一种按照误差逆向传播算法训练的多层前馈神经网络。3、卷积神经网络:包含卷积计算且具有深度结构的前馈神经网络。二、作用不同1、前馈神经网络:结构简单,应用广泛,能够以任意精度逼近任意连续函数及平方可积函数.而且可以精确实现任意有限训练样本集。2、BP神经网络:具有很强的非线性映射能力和柔性的网络结构。网络的中间层数、各层的神经元个数可根据具体情况任意设定,并且随着结构的差异其性能也有所不同。3、卷积神经网络:具有表征学习能力,能够按其阶层结构对输入信息进行平移不变分类。三、用途不同1、前馈神经网络:主要应用包括感知器网络、BP网络和RBF网络。2、BP神经网络:1)函数逼近:用输入向量和相应的输出向量训练一个网络逼近一个函数;2)模式识别:用一个待定的输出向量将它与输入向量联系起来;3)分类:把输入向量所定义的合适方式进行分类;4)数据压缩:减少输出向量维数以便于传输或存储。3、卷积神经网络:可应用于图像识别、物体识别等计算机视觉、自然语言处理、物理学和遥感科学等领域。联系:BP神经网络和卷积神经网络都属于前馈神经网络,三者都属于人工神经网络。因此,三者原理和结构相同。扩展资料人工神经网络的优点:1、具有自学习功能。自学习功能对于预测有特别重要的意义。预期未来的人工神经网络计算机将为人类提供经济预测、市场预测、效益预测,其应用前途是很远大的。2、具有联想存储功能。用人工神经网络的反馈网络就可以实现这种联想。3、具有高速寻找优化解的能力。寻找一个复杂问题的优化解,往往需要很大的计算量,利用一个针对某问题而设计的反馈型人工神经网络,发挥计算机的高速运算能力,可很快找到优化解。参考资料来源:百度百科-前馈神经网络参考资料来源:百度百科-BP神经网络参考资料来源:百度百科-卷积神经网络参考资料来源:百度百科-人工神经网络
凡尘2023-05-26 08:18:141

神经网络的定义

生物神经网络主要是指人脑的神经网络,它是人工神经网络的技术原型。人脑是人类思维的物质基础,思维的功能定位在大脑皮层,后者含有大约1011个神经元,每个神经元又通过神经突触与大约103个其它神经元相连,形成一个高度复杂高度灵活的动态网络。作为一门学科,生物神经网络主要研究人脑神经网络的结构、功能及其工作机制,意在探索人脑思维和智能活动的规律。人工神经网络是生物神经网络在某种简化意义下的技术复现,作为一门学科,它的主要任务是根据生物神经网络的原理和实际应用的需要建造实用的人工神经网络模型,设计相应的学习算法,模拟人脑的某种智能活动,然后在技术上实现出来用以解决实际问题。因此,生物神经网络主要研究智能的机理;人工神经网络主要研究智能机理的实现,两者相辅相成。
陶小凡2023-05-26 08:18:141

BP人工神经网络方法

(一)方法原理人工神经网络是由大量的类似人脑神经元的简单处理单元广泛地相互连接而成的复杂的网络系统。理论和实践表明,在信息处理方面,神经网络方法比传统模式识别方法更具有优势。人工神经元是神经网络的基本处理单元,其接收的信息为x1,x2,…,xn,而ωij表示第i个神经元到第j个神经元的连接强度或称权重。神经元的输入是接收信息X=(x1,x2,…,xn)与权重W={ωij}的点积,将输入与设定的某一阈值作比较,再经过某种神经元激活函数f的作用,便得到该神经元的输出Oi。常见的激活函数为Sigmoid型。人工神经元的输入与输出的关系为地球物理勘探概论式中:xi为第i个输入元素,即n维输入矢量X的第i个分量;ωi为第i个输入与处理单元间的互联权重;θ为处理单元的内部阈值;y为处理单元的输出。常用的人工神经网络是BP网络,它由输入层、隐含层和输出层三部分组成。BP算法是一种有监督的模式识别方法,包括学习和识别两部分,其中学习过程又可分为正向传播和反向传播两部分。正向传播开始时,对所有的连接权值置随机数作为初值,选取模式集的任一模式作为输入,转向隐含层处理,并在输出层得到该模式对应的输出值。每一层神经元状态只影响下一层神经元状态。此时,输出值一般与期望值存在较大的误差,需要通过误差反向传递过程,计算模式的各层神经元权值的变化量 。这个过程不断重复,直至完成对该模式集所有模式的计算,产生这一轮训练值的变化量Δωij。在修正网络中各种神经元的权值后,网络重新按照正向传播方式得到输出。实际输出值与期望值之间的误差可以导致新一轮的权值修正。正向传播与反向传播过程循环往复,直到网络收敛,得到网络收敛后的互联权值和阈值。(二)BP神经网络计算步骤(1)初始化连接权值和阈值为一小的随机值,即W(0)=任意值,θ(0)=任意值。(2)输入一个样本X。(3)正向传播,计算实际输出,即根据输入样本值、互联权值和阈值,计算样本的实际输出。其中输入层的输出等于输入样本值,隐含层和输出层的输入为地球物理勘探概论输出为地球物理勘探概论式中:f为阈值逻辑函数,一般取Sigmoid函数,即地球物理勘探概论式中:θj表示阈值或偏置;θ0的作用是调节Sigmoid函数的形状。较小的θ0将使Sigmoid函数逼近于阈值逻辑单元的特征,较大的θ0将导致Sigmoid函数变平缓,一般取θ0=1。(4)计算实际输出与理想输出的误差地球物理勘探概论式中:tpk为理想输出;Opk为实际输出;p为样本号;k为输出节点号。(5)误差反向传播,修改权值地球物理勘探概论式中:地球物理勘探概论地球物理勘探概论(6)判断收敛。若误差小于给定值,则结束,否则转向步骤(2)。(三)塔北雅克拉地区BP神经网络预测实例以塔北雅克拉地区S4井为已知样本,取氧化还原电位,放射性元素Rn、Th、Tc、U、K和地震反射 构造面等7个特征为识别的依据。 构造面反映了局部构造的起伏变化,其局部隆起部位应是油气运移和富集的有利部位,它可以作为判断含油气性的诸种因素之一。在该地区投入了高精度重磁、土壤微磁、频谱激电等多种方法,一些参数未入选为判别的特征参数,是因为某些参数是相关的。在使用神经网络方法判别之前,还采用K-L变换(Karhaem-Loeve)来分析和提取特征。S4井位于测区西南部5线25点,是区内唯一已知井。该井在5390.6m的侏罗系地层获得40.6m厚的油气层,在5482m深的震旦系地层中获58m厚的油气层。取S4井周围9个点,即4~6线的23~25 点作为已知油气的训练样本;由于区内没有未见油的钻井,只好根据地质资料分析,选取14~16线的55~57点作为非油气的训练样本。BP网络学习迭代17174次,总误差为0.0001,学习效果相当满意。以学习后的网络进行识别,得出结果如图6-2-4所示。图6-2-4 塔北雅克拉地区BP神经网络聚类结果(据刘天佑等,1997)由图6-2-4可见,由预测值大于0.9可得5个大封闭圈远景区,其中测区南部①号远景区对应着已知油井S4井;②、③号油气远景区位于地震勘探所查明的托库1、2号构造,该两个构造位于沙雅隆起的东段,其西段即为1984年钻遇高产油气流的Sch2井,应是含油气性好的远景区;④、⑤号远景区位于大涝坝构造,是yh油田的组成部分。
陶小凡2023-05-26 08:18:141

什么是卷积神经网络?为什么它们很重要

卷积神经网络(Convolutional Neural Network,CNN)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现。[1]  它包括卷积层(alternating convolutional layer)和池层(pooling layer)。卷积神经网络是近年发展起来,并引起广泛重视的一种高效识别方法。20世纪60年代,Hubel和Wiesel在研究猫脑皮层中用于局部敏感和方向选择的神经元时发现其独特的网络结构可以有效地降低反馈神经网络的复杂性,继而提出了卷积神经网络(Convolutional Neural Networks-简称CNN)。现在,CNN已经成为众多科学领域的研究热点之一,特别是在模式分类领域,由于该网络避免了对图像的复杂前期预处理,可以直接输入原始图像,因而得到了更为广泛的应用。 K.Fukushima在1980年提出的新识别机是卷积神经网络的第一个实现网络。随后,更多的科研工作者对该网络进行了改进。其中,具有代表性的研究成果是Alexander和Taylor提出的“改进认知机”,该方法综合了各种改进方法的优点并避免了耗时的误差反向传播。
真颛2023-05-26 08:18:141

什么叫神经网络

神经网络是新技术领域中的一个时尚词汇。 很多人听过这个词,但很少人真正明白它是什么。 本文的目的是介绍所有关于神经网络的基本包括它的功能、一般结构、相关术语、类型及其应用。 “神经网络”这个词实际是来自于生物学,而我们所指的神经网络正确的名称应该是“人工神经网络(ANNs)”。 在本文,我会同时使用这两个互换的术语。 一个真正的神经网络是由数个至数十亿个被称为神经元的细胞(组成我们大脑的微小细胞)所组成,它们以不同方式连接而型成网络。 人工神经网络就是尝试模拟这种生物学上的体系结构及其操作。 在这里有一个难题:我们对生物学上的神经网络知道的不多!因此,不同类型之间的神经网络体系结构有很大的不同,我们所知道的只是神经元基本的结构
再也不做站长了2023-05-26 08:18:141
 1 2  下一页  尾页