向量

高一数学向量题

它是假设a、tb、1/3(a+b) 在同一条直线上,即三者共线(共线向量有a=λb)
可桃可挑2023-05-14 17:28:294

平面向量基本定理

平面向量基本定理是在向量知识体系中占有核心地位的定理。一方面,平面向量基本定理是平面向量正交分解及坐标表示的基础,坐标表示使平面中的向量与其坐标建立起了一一对应的关系,这为通过数的运算处理形的问题搭起了桥梁。另一方面,平面向量基本定理是平行向量基本定理由一维到二维的推广,揭示了平面向量的结构特征,将来还可以推广为空间向量基本定理.因此,平面向量基本定理在向量知识体系中起着承上启下的重要作用。特点(1)给定平面内两个不共线的向量,通过线性运算,可以构造出该平面内的所有向量。(2)通过线性运算构造平面内所有向量,至少需要两个不共线的向量。(3)平面内任意向量的问题都可以转化为基底中两个向量之间的问题,从而化任意为确定,化未知为已知。(4)选定基底后,平面内的任意向量与有序实数对一一对应,为通过数的运算处理形的问题搭起了桥梁,实现了形与数的统一。
铁血嘟嘟2023-05-14 17:28:291

向量点乘和叉乘先进行哪个?

点乘后得到数值,不能再进行叉乘,如果你要做复合计算,肯定先叉乘
韦斯特兰2023-05-14 17:28:282

向量运算证明(点乘和叉乘)a,b,c为向量求证:(a×b)·c=a·(b×c)我...

大学解析几何里有这样一个定理:轮换混合积的三个因子,比不改变它的值,对调任何两个因子要改变乘积符号,即(abc)=(bca)=(cab)=-(bac)=-(cab)=-(acb),(abc)包括有点乘和叉乘由这个定理出发就可以得到推论:(a×b)·c=a·(b×c)即(axb)·c=(abc)=(bca)=(bxc)·a=a·(bxc)定理的证明主要用到混合积的几何意义,平行六面体的体积,(利用长方体来证明就可以了)
Ntou1232023-05-14 17:28:281

向量的点乘和叉乘的区别 大学高数物理

分清点乘和叉乘点乘,也叫向量的内积、数量积,求下来的结果是一个数.向量a·向量b=|a||b|cosθ在物理学中,已知力与位移求功,实际上就是求向量F与向量s的内积,即要用点乘.叉乘,也叫向量的外积、向量积,求下来的结果是一个向量,记这个向量为c.|向量c|=|向量a×向量b|=|a||b|sinθ向量c的方向与a,b所在的平面垂直,且方向要用“右手法则”判断(用右手的四指先表示向量a的方向,然后手指朝着手心的方向摆动到向量b的方向,大拇指所指的方向就是向量c的方向).以空间直角坐标系为例:向量i×向量j=向量k(i、j、k分别为空间中相互垂直的三条坐标轴的单位向量).因此向量的外积不遵守乘法交换率,因为向量a×向量b=-向量b×向量a在物理学中,已知力与力臂求力矩,就是向量的外积,即叉乘.将向量用坐标表示(三维向量),若向量a=(a1,b1,c1),向量b=(a2,b2,c2),则向量a·向量b=a1a2+b1b2+c1c2向量a×向量b=|ijk||a1b1c1||a2b2c2|=(b1c2-b2c1,c1a2-a1c2,a1b2-a2b1)
Ntou1232023-05-14 17:28:282

向量的点乘和叉乘

两者的运算结果不同:点乘的运算结果得到的结果为一个标量。叉乘的运算结果为一个向量而不是一个标量。点乘的应用范围是线性代数,叉乘应用十分广泛,应用于物理学光学及计算机图形学中。点乘的概述:点积在数学中又称数量,积是指接受在实数R上的两个向量并返回一个实数值标量的"二元运算。它是欧几里得空间的标准内积。叉乘的概述:一种在向量空间中向量的二元运算,并且两个向量的叉积与这两个向量和垂直。
康康map2023-05-14 17:28:282

向量点乘和叉乘有什么区别啊

意义如下:点乘意义:可以用来表征或计算两个向量之间的夹角,以及在b向量在a向量方向上的投影。叉乘意义:在三维几何中,向量a和向量b的叉乘结果是一个向量,更为熟知的叫法是法向量,该向量垂直于a和b向量构成的平面。在3D图像学中,叉乘的概念非常有用,可以通过两个向量的叉乘,生成第三个垂直于a,b的法向量,从而构建X、Y、Z坐标系。两者的区别说明向量点乘和叉乘的区别:向量点乘结果是标量,是两个向量在一个方向的累计结果,结果只保留大小属性,抹去方向属性,就相等于降维;向量叉乘,是这这两个向量平面上,垂直生成新的向量,大小是两个向量构成四边形的面积。相等于生维。这是运算所需要,向量加和减都是在同一纬空间操作的,如果要想实现维度的变化就要在向量的乘法做出定义。
瑞瑞爱吃桃2023-05-14 17:28:281

(向量a叉乘向量b)点乘向量a为什么等于0?

因为a叉乘b的结果是个向量且与a,b垂直。
真颛2023-05-14 17:28:281

向量的点乘和叉乘有什么区别?什么是右手定则

*&quot:弯曲右手手掌(称赞别人时所做的动作),拇指所指的方向即是a×b的方向,拇指向外,它的模是|a×b|=|a|×|b|×sin(a用"表示点乘符号,另外四指弯曲的方向与从a到b的转角方向相同,b)它的方向按右手定则判定,(a,b)表示向量a与向量b的夹角向量的点乘积是一个数a*b=|a|×|b|×coc(a,b)向量的叉乘积是一个向量
北有云溪2023-05-14 17:28:283

向量叉乘与点乘,运算法则是什么?

不对,向量是一对一的乘(a,b)(c,d)=(a+c,b+d)
hi投2023-05-14 17:28:283

向量与向量相乘是否有分配律

向量的点乘和叉乘都满足分配率 即 内积(即数积、点积)的分配律: a·(b + c) = a·b + a·c, (a + b)·c = a·c + b·c 叉乘ax(b+c)=axb+axc
CarieVinne 2023-05-14 17:28:281

向量的点乘和叉乘有什么区别?什么是右手定则

点乘 dot product[编辑本段]点乘,也叫向量的内积、数量积。顾名思义,求下来的结果是一个数。 向量a·向量b=|a||b|cos<a,b> 在物理学中,已知力与位移求功,实际上就是求向量F与向量s的内积,即要用点乘。 将向量用坐标表示(三维向量), 若向量a=(a1,b1,c1),向量b=(a2,b2,c2), 则 向量a·向量b=a1a2+b1b2+c1c2叉乘 cross product[编辑本段]叉乘,也叫向量的外积、向量积。顾名思义,求下来的结果是一个向量,记这个向量为c。 |向量c|=|向量a×向量b|=|a||b|sin<a,b> 向量c的方向与a,b所在的平面垂直,且方向要用“右手法则”判断(用右手的四指先表示向量a的方向,然后手指朝着手心的方向摆动到向量b的方向,大拇指所指的方向就是向量c的方向)。 因此 向量的外积不遵守乘法交换率,因为向量a×向量b= - 向量b×向量a 在物理学中,已知力与力臂求力矩,就是向量的外积,即叉乘。 将向量用坐标表示(三维向量), 若向量a=(a1,b1,c1),向量b=(a2,b2,c2), 则 向量a×向量b= | i j k ||a1 b1 c1||a2 b2 c2| =(b1c2-b2c1,c1a2-a1c2,a1b2-a2b1) (i、j、k分别为空间中相互垂直的三条坐标轴的单位向量)。
铁血嘟嘟2023-05-14 17:28:283

向量的点乘和叉乘的区别,举个例子,谢谢!

一、运算结果不同:叉乘运算结果是一个向量而不是一个标量。并且两个向量的叉积与这两个向量和垂直。点乘,也叫数量积。结果是一个向量在另一个向量方向上投影的长度,是一个标量。二、应用不同:1、点乘:平面向量的数量积a·b是一个非常重要的概念,利用它可以很容易地证明平面几何的许多命题,例如勾股定理、菱形的对角线相互垂直、矩形的对角线相等等。2、在物理学光学和计算机图形学中,叉积被用于求物体光照相关问题。求解光照的核心在于求出物体表面法线,而叉积运算保证了只要已知物体表面的两个非平行矢量(或者不在同一直线的三个点),就可依靠叉积求得法线。三、几何意义不同:1、点积(也叫内积)结果 为 x1 * x2 + y1 * y2 = |a||b| cos<a,b>,可以理解为向量a在向量b上投影的长度乘以向量b的长度。2、叉积(也叫外积)的模为 x1 * y2 - x2 * y1 = |a||b| sin<a,b>,可以理解为平行四边形的有向面积(三维以上为体积)。外积的方向垂直于这两个方向。参考资料来源:百度百科-点乘参考资料来源:百度百科-叉乘
ardim2023-05-14 17:28:271

两个向量点乘和叉乘

点乘就是x乘x,y乘y,有啥乘啥,然后相加,叉乘,如a叉乘b,a=(1,2,3)b=(4,5,6),a叉乘b=(2*6-3*5,—(1*6-3*4),1*5-2*4)反正乘啥,就跟啥没关系,要记得求y要带一个符号
大鱼炖火锅2023-05-14 17:28:271

向量点乘与叉乘

说明:本文以三维向量举例,以斜体加粗字母表示向量 对于向量 A = (x1, y1, z1) ,向量 B = (x2, y2, z2), 则向量 A 点乘向量 B : 同时有 由以上两公式可见,向量的点乘结果为一个标量,即一个数值。 因为夹角θ<=180°,所以配合余弦曲线可以直观地判断出: 向量的点乘比较容易理解和记忆,向量的叉乘才是本文的重点。 向量叉乘的定义(非标准表述,个人理解): 假设 A B 形成的平面即当前屏幕所在平面,那向量 C 是指向屏幕里还是指向屏幕外呢?左手定则右手定则什么的应用的领域太多了,不管是物理上还是数学上,左右手都用过了,都把我搞晕了,记不住呀! 重点来了,传送门,保证你看一遍就会! 麻省理工学院公开课:经典力学习题课 向量的叉乘
铁血嘟嘟2023-05-14 17:28:271

向量中的点乘和叉乘有什么区别?

点乘即数量积,记作a·b;其中a·b=|a|·|b|cosθ,|a|、|b|是两向量的模,θ是两向量之间的夹角(0≤θ≤π).以上a与b均为向量 叉乘是向量积,记作a×b,a×b=|a|·|b|sinθ,其中|a|、|b|是两向量的模,θ是两向量之间的夹角(0≤θ≤π).以上a与b均为向量
康康map2023-05-14 17:28:271

向量叉乘与点乘,运算法则是什么?

有交换律,结合率律的。a·b=lal·lbl·cosa(a,b的夹角)(x1,y1)·(x2,y2)=x1x2+y1y2叉乘和点乘一样的,关键看是向量式还是坐标式。a(bxc)=abxc
tt白2023-05-14 17:28:273

向量中的点乘和叉乘有什么区别?

点乘即数量积,记作a·b;其中a·b=|a|·|b|cosθ,|a|、|b|是两向量的模,θ是两向量之间的夹角(0≤θ≤π)。以上a与b均为向量叉乘是向量积,记作a×b,a×b=|a|·|b|sinθ,其中|a|、|b|是两向量的模,θ是两向量之间的夹角(0≤θ≤π)。以上a与b均为向量
tt白2023-05-14 17:28:272

向量的点乘和叉乘的区别 大学高数物理

分清点乘和叉乘 点乘,也叫向量的内积、数量积,求下来的结果是一个数.向量a·向量b=|a||b|cos θ在物理学中,已知力与位移求功,实际上就是求向量F与向量s的内积,即要用点乘.叉乘,也叫向量的外积、向量积,求下来的结果是一个向量,记这个向量为c.|向量c|=|向量a×向量b|=|a||b|sin θ向量c的方向与a,b所在的平面垂直,且方向要用“右手法则”判断(用右手的四指先表示向量a的方向,然后手指朝着手心的方向摆动到向量b的方向,大拇指所指的方向就是向量c的方向).以空间直角坐标系为例:向量i×向量j=向量k(i、j、k分别为空间中相互垂直的三条坐标轴的单位向量).因此 向量的外积不遵守乘法交换率,因为 向量a×向量b=-向量b×向量a 在物理学中,已知力与力臂求力矩,就是向量的外积,即叉乘.将向量用坐标表示(三维向量),若向量a=(a1,b1,c1),向量b=(a2,b2,c2),则 向量a·向量b=a1a2+b1b2+c1c2 向量a×向量b= | i j k| |a1 b1 c1| |a2 b2 c2| =(b1c2-b2c1,c1a2-a1c2,a1b2-a2b1)
水元素sl2023-05-14 17:28:271

向量中叉乘和点乘怎么转换的?我看到书里上一步全是叉乘,到下一步就变点乘了,这之间的转化公式是什么?

善士六合2023-05-14 17:28:275

点乘和叉乘的区别,不是向量中的

skytimestay 答的不错
苏州马小云2023-05-14 17:28:274

向量点乘和叉乘怎么算

2个3维向量叉乘出来的结果是一个2维向量,大学数学里面是应用行列式值来计算的,电脑不好打,看看高等数学课本就明白了,谢谢
mlhxueli 2023-05-14 17:28:273

向量点乘和叉乘的区别是什么?

点乘和叉乘的区别有运算结果不同、应用范围不同、概述不同,点乘的运算结果得到的结果为一个标量。叉乘的运算结果为一个向量而不是一个标量。点乘的应用范围是线性代数。叉乘通常应用于物理学光学和计算机图形学中。一、运算结果不同1、点乘的运算结果:得到的结果为一个标量。2、叉乘的运算结果:为一个向量而不是一个标量。二、应用范围不同1、点乘的应用范围:线性代数。2、叉乘的应用范围:其应用也十分广泛,通常应用于物理学光学和计算机图形学中。三、概述不同1、点乘的概述:点积在数学中又称数量,积是指接受在实数R上的两个向量并返回一个实数值标量的二元运算。它是欧几里得空间的标准内积。2、叉乘的概述:一种在向量空间中向量的二元运算,并且两个向量的叉积与这两个向量和垂直。
铁血嘟嘟2023-05-14 17:28:271

向量的点积与向量叉乘的区别有哪些?

1、表示意义不同:点乘是向量的内积。 叉乘是向量的外积。2、结果单位不同:点乘,结果是一个向量在另一个向量方向上投影的长度,是一个标量。叉乘,也叫向量积。结果是一个和已有两个向量都垂直的向量。3、计算方法不同:点乘,公式:a * b = |a| * |b| * cosθ叉乘,公式:a ∧ b = |a| * |b| * sinθ扩展资料点乘又叫向量的内积、数量积,是一个向量和它在另一个向量上的投影的长度的乘积。该定义只对二维和三维空间有效。这个运算可以简单地理解为:在点积运算中,第一个向量投影到第二个向量上(这里,向量的顺序是不重要的,点积运算是可交换的),然后通过除以它们的标量长度来“标准化”。这样,这个分数一定是小于等于1的,可以简单地转化成一个角度值。叉乘的几何意义及其运用叉积的长度|a×b|可以解释成这两个叉乘向量a,b共起点时,所构成平行四边形的面积。据此有:混合积[abc]=(a×b)·c可以得到以a,b,c为棱的平行六面体的体积。参考资料百度百科-点积百度百科-向量积
bikbok2023-05-14 17:28:271

向量叉乘和向量点积有什么区别?

向量叉乘不符合交换律(b×a方向朝下),符合结合律,分配律。向量点乘符合交换律,结合律,分配律。点乘经常用在:计算两向量的夹角;计算一个向量在另一个向量上的投影;通过夹角大小,判断两向量朝向的相似度(方向相近/相反/垂直等)。向量的叉乘会得到一个新的向量,该向量垂直于ab所在平面,符合右手螺旋定则,四根手指从a到b,a×b和大拇指同向。应用在生产生活中,点积应用广泛。利用点积可判断一个多边形是否面向摄像机还是背向摄像机。向量的点积与它们夹角的余弦成正比,因此在聚光灯的效果计算中,可以根据点积来得到光照效果,如果点积越大,说明夹角越小,则物理离光照的轴线越近,光照越强。物理中,点积可以用来计算合力和功。若b为单位矢量,则点积即为a在方向b的投影,即给出了力在这个方向上的分解。功即是力和位移的点积。计算机图形学常用来进行方向性判断,如两矢量点积大于0,则它们的方向朝向相近;如果小于0,则方向相反。矢量内积是人工智能领域中的神经网络技术的数学基础之一,此方法还被用于动画渲染。
西柚不是西游2023-05-14 17:28:271

向量积的几何意义是什么?

叉乘几何意义就是:叉积等于由向量A和向量B构成的平行四边形的面积。叉积的长度|aXb|可以解释成这两个叉乘向量a, b共起点时,所构成平行四边形的面积。据此有:混合积[abc]=(aXb).c,可以得到以a,b,c为棱的平行六面体的体积,向量积。向量积,数学中又称外积、叉积,物理中称矢积、叉乘,是一种在向量空间中向量的二元运算。与点积不同,它的运算结果是一个向量而不是一个标量。并且两个向量的叉积与这两个向量和垂直。其应用也十分广泛,通常应用于物理学光学和计算机图形学中。向量积代数法则:1、反交换律: axb=-bxa2、加法的分配律: a×(b+c)=axb+axc3、与标量乘法兼容:(ra)×b=a×(rb)=r(a×b)4、不满足结合律,但满足雅可比恒等式: ax(b×c)+b×(c×a)+c×(a×b)=O5、两个非零向量a和b平行,当且仅当a×b=0向量积的长度|a×b|可以解释成这两个叉乘向量a, b共起点时,所构成平行四边形的面积。据此有:混合积[abc]=(a×b)-c可以得到以a,b,c为棱的平行六面体的体积。
再也不做站长了2023-05-14 17:28:261

向量积的几何意义是什么?

1、向量积的长度|a×b|可以解释成这两个叉乘向量a,b共起点时,所构成平行四边形的面积。据此有:混合积[abc]=(a×b)·c可以得到以a,b,c为棱的平行六面体的体积。2、向量数量积的几何意义:一个向量在另一个向量上的投影。
苏州马小云2023-05-14 17:28:262

向量乘积的几何意义

向量积乘积是一种在向量空间中向量的二元运算。与点积不同,它的运算结果是一个向量而不是一个标量。并且两个向量的叉积与这两个向量和垂直。其应用也十分广泛,通常应用于物理学光学和计算机图形学中。 方向:a向量与b向量的向量积的方向与这两个向量所在平面垂直,且遵守右手定则。 表示方法:两个向量a和b的叉积写作a乘b。
真颛2023-05-14 17:28:261

向量数量积的几何意义

向量数量积的几何意义:向量积的长度|a×b|可以解释成这两个叉乘向量a、b共起点时,所构成平行四边形的面积。据此有:混合积[abc]=(a×b)·c可以得到以a、b、c为棱的平行六面体的体积。向量积,数学中又称外积、叉积,物理中称矢积、叉乘,是一种在向量空间中向量的二元运算。与点积不同,它的运算结果是一个向量而不是一个标量。并且两个向量的叉积与这两个向量和垂直。其应用也十分广泛,通常应用于物理学光学和计算机图形学中。
LuckySXyd2023-05-14 17:28:261

向量a乘以b的几何意义

楼主只需弄清几个定义即可 两个向量数量积的定义是a*b=|a||b|cos@ 向量a在向量b方向上的投影是|a|cos@,向量b在向量a方向上的投影是|b|cos@ 由以上定义可知 a*b可以看成是|a|与b在a的方向上的投影的乘积 a*b也可以看成|b|与a在b的方向上的投影的乘积
康康map2023-05-14 17:28:261

向量积的性质

几何意义及其运用叉积的长度 |a×b| 可以解释成这两个叉乘向量a,b共起点时,所构成平行四边形的面积。据此有:混合积 [a b c] = (a×b)·c可以得到以a,b,c为棱的平行六面体的体积。2.代数规则反交换律:a×b= -b×a加法的分配律:a× (b+c) =a×b+a×c与标量乘法兼容:(ra) ×b=a× (rb) = r(a×b)不满足结合律,但满足雅可比恒等式:a× (b×c) +b× (c×a) +c× (a×b) =0分配律,线性性和雅可比恒等式别表明:具有向量加法和叉积的 R3 构成了一个李代数。两个非零向量a和b平行,当且仅当a×b=0。3.拉格朗日公式(a×b)×c=b(a·c) -a(b·c)a× (b×c) =b(a·c) -c(a·b)4.矩阵形式给定直角坐标系的单位向量i,j,k满足下列等式:i×j=k;j×k=i ;k×i=j ;通过这些规则,两个向量的叉积的坐标可以方便地计算出来,不需要考虑任何角度:设a= [a1, a2, a3] =a1i+ a2j+ a3k;b= [b1,b2,b3]=b1i+ b2j+ b3k ;则a × b= [a2b3-a3b2,a3b1-a1b3, a1b2-a2b1]。5.高维情形七维向量的叉积可以通过八元数得到,与上述的四元数方法相同。七维叉积具有与三维叉积相似的性质:双线性性:x× (ay+ bz) = ax×y+ bx×z;(ay+ bz) ×x= ay×x+ bz×x;反交换律:x×y+y×x= 0;同时与 x 和 y 垂直:x· (x×y) =y· (x×y) = 0;拉格朗日恒等式:|x×y|² = |x|² |y|² - (x·y)²;不同于三维情形,它并不满足雅可比恒等式:x× (y×z) +y× (z×x) +z× (x×y) ≠ 0。向量积,数学中又称外积、叉积,物理中称矢积、叉乘,是一种在向量空间中向量的二元运算。与点积不同,它的运算结果是一个向量而不是一个标量。并且两个向量的叉积与这两个向量和垂直。其应用也十分广泛,通常应用于物理学光学和计算机图形学中。在应用方面:在物理学光学和计算机图形学中,叉积被用于求物体光照相关问题。求解光照的核心在于求出物体表面法线,而叉积运算保证了只要已知物体表面的两个非平行矢量(或者不在同一直线的三个点),就可依靠叉积求得法线。参考资料课程教材研究所.人教版高中数学必修4.北京:人民教育出版社,2007
wpBeta2023-05-14 17:28:262

向量的点乘和叉乘有什么区别?

点乘是数量积...计算出来的结果是个标量...大小为两个矢量模的乘积再乘以它们夹角的余弦叉乘是矢量积...计算结果是个矢量...大小是两个矢量模的乘积再乘以夹角的正弦,方向可通过右手螺旋定则判定
小菜G的建站之路2023-05-14 17:28:263

关于两向量相乘的几何意义 关于两向量相乘的几何意义介绍

1、点乘:也叫向量的内积、数量积。 2、顾名思义,求下来的结果是一个数。两个向量相乘,在物理学中,已知力与位移求功,实际上就是求两个向量的内积,即要用点乘。那么显而易见就表示一向量在另一向量上的射影乘以另一向量。
CarieVinne 2023-05-14 17:28:261

关于 两向量相乘的几何意义 两向量相乘的几何意义为什么表示 一向量在另一向量上的射影乘以另一向量

这是一个非常基本简单的问题,LZ所说的是点乘: 点乘,也叫向量的内积、数量积.顾名思义,求下来的结果是一个数.向量a·向量b=|a||b|cos .在物理学中,已知力与位移求功,实际上就是求向量F与向量s的内积,即要用点乘. 点乘的定义即为 向量a·向量b=|a||b|cos 那么显而易见就表示一向量在另一向量上的射影乘以另一向量了. 除此外还有叉乘,有兴趣可以参考相关资料.
左迁2023-05-14 17:28:261

向量的点乘和叉乘有什么区别?什么是右手定则

用"*"表示点乘符号,(a,b)表示向量a与向量b的夹角 向量的点乘积是一个数 a*b=|a|×|b|×coc(a,b) 向量的叉乘积是一个向量,它的模是 |a×b|=|a|×|b|×sin(a,b) 它的方向按右手定则判定:弯曲右手手掌(称赞别人时所做的动作),拇指向外,另外四指弯曲的方向与从a到b的转角方向相同,拇指所指的方向即是a×b的方向.
苏萦2023-05-14 17:28:261

向量点乘和叉乘分别满足哪些规矩(结合律分配律交换律等)

向量的数乘满足交换律、各种结合律、对数和向量的分配率。(ka=ak,k(a+b)=ka+kb,(k+l)a=ka+la,k,l是数a,b是向量)向量的点乘:交换律、分配率(不满足结合律)a·b=b·aa·(b+c)=a·b+a·c(结果是一个数)向量的外积(叉乘):只满足对点、叉的分配率,交换变相反方向(a×b=-b×a)(结果是一个向量)
豆豆staR2023-05-14 17:28:262

向量的点乘和叉乘有什么区别?

向量的乘法有两种,分别成为内积和外积。内积也称数量积,因为其结果为一个数(标量),向量a,b的内积为|a||b|cos(其中表示a与b的夹角)向量外积也叫叉乘,其结果为一个向量,方向是按右手系垂直与a,b所在平面|a||b|sin
瑞瑞爱吃桃2023-05-14 17:28:264

向量的点乘叉乘运算顺序

规范表示向量有的点乘(数乘),没有叉乘。向量a=(x1,y1),向量b=(x2,y2),向量a▪向量b=x1x2+y1y2
meira2023-05-14 17:28:263

向量运算证明(点乘和叉乘)

(a×b)·c=a·(b×c)怎么会成立 就算成立也是特殊情况
西柚不是西游2023-05-14 17:28:264

向量点乘和叉乘先进行哪个?

一般来说,点乘过后,结果是数,数是没有“叉乘”的概念的,所以只能先叉乘再点乘.但是运算本身并没有规定顺序,最好通过加括号避免混淆
人类地板流精华2023-05-14 17:28:261

高数中 向量什么时用点乘什么时候用叉乘

向量与向量相乘,用叉乘。向量与数相乘,用点乘。数与数相乘,用点乘。
真颛2023-05-14 17:28:261

向量内积和外积几何意义及所涉及的概念和应用.

向量内积a.b代表两个向量对应坐标值相乘后相加,得到的是一个数,数值上等于两向量长度积乘以夹角的余弦 几何上的应用:可以求两向量夹角;如果两向量内积为零,说明两向量垂直;一个向量对自己内积开方后是该向量长度 向量外积a×b得到的是一个向量,一个行列式,以三维向量为例,等于 |i j k | |a1 a2 a3| |b1 b2 b3| 长度数值上等于两向量长度积乘以夹角的正弦,方向用右手螺旋定则确定,物理上经常应用于求电磁力 几何上的应用:两向量外积等于以两向量为邻边的平行四边形面积,方向为两向量所在平面的法线方向;外积为0,说明两向量平行
左迁2023-05-14 17:28:251

向量积的几何意义是什么?不是数量积.

好像是力矩吧
Ntou1232023-05-14 17:28:256

向量叉乘的几何意义是什么?

向量叉乘的几何意义是叉积等于由向量A和向量B构成的平行四边形的面积。叉乘的运算结果是一个向量而不是一个标量,上述结果是它的模, 向量C的方向与A,B所在的平面垂直,方向用“右手法则”判断。判断方法如下:右手手掌张开,四指并拢,大拇指垂直于四指指向的方向;伸出右手,四指弯曲,四指与A旋转到B方向一致,那么大拇指指向为C向量的方向。在二维空间中,叉乘还有另外一个几何意义就是:叉积等于由向量A和向量B构成的平行四边形的面积。叉乘用途在三维几何中,向量a和向量b的外积结果是一个向量,有个更通俗易懂的叫法是法向量,该向量垂直于a和b向量构成的平面。常用于以下情况:通过两个向量的外积,生成第三个垂直于a,b的法向量,从而构建X、Y、Z坐标系;当a是单位向量时,计算b终点到a所在直线的距离;在二维空间中,aXb等于由向量a和向量b构成的平行四边形的面积。
tt白2023-05-14 17:28:251

向量数乘运算及其几何意义

向量数乘运算及其几何意义如下:向量是由n个实数组成的一个n行1列(n×1)或一个1行n列(1×n)的有序数组;向量的点乘,也叫向量的 内积、数量积 ,对两个向量执行点乘运算,就是对这两个向量对应位一一相乘之后求和的操作,点乘的结果是一个 标量 。对于向量 和向量 :a和b的点积公式为:注意:要求一维向量a和向量b的行列数相同。点乘的几何意义是可以用来表征或计算两个向量之间的夹角,以及在b向量在a向量方向上的投影,有公式:推导过程如下,首先看一下向量组成:定义向量:根据三角形余弦定理有:根据关系c=a-b(a、b、c均为向量)有:即:向量a,b的长度都是可以计算的已知量,从而有a和b间的夹角θ:根据这个公式就可以计算向量a和向量b之间的夹角。从而就可以进一步判断这两个向量是否是同一方向,是否正交(也就是垂直)等方向关系,具体对应关系为:方向基本相同,夹角在0°到90°之间,正交,相互垂直,方向基本相反,夹角在90°到180°之间两个向量的叉乘,又叫向量积、外积、叉积,叉乘的运算结果是一个向量而不是一个标量。并且两个向量的叉积与这两个向量组成的坐标平面垂直。对于向量a和向量b:其中:根据i、j、k间关系,有:在三维几何中,向量a和向量b的叉乘结果是一个向量,更为熟知的叫法是法向量,该向量垂直于a和b向量构成的平面。在3D图像学中,叉乘的概念非常有用,可以通过两个向量的叉乘,生成第三个垂直于a,b的法向量,从而构建X、Y、Z坐标系。在二维空间中,叉乘还有另外一个几何意义就是:a×b等于由向量a和向量b构成的平行四边形的面积。
苏州马小云2023-05-14 17:28:251

向量叉乘的意义?

这分几何意义,和物理意义两种不知你想知道哪种?几何意义是,由这两向量构成的平行四边形的面积物理意义就看具体情况了
北有云溪2023-05-14 17:28:254

向量相乘的几何意义

向量相乘的几何意义:向量是由n个实数组成的一个n行1列(n×1)或一个1行n列(1×n)的有序数组。在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小(magnitude)和方向的量。它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。 实数,是有理数和无理数的总称。数学上,实数定义为与数轴上的实数,点相对应的数。实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。但仅仅以列举的方式不能描述实数的整体。实数和虚数共同构成复数。
此后故乡只2023-05-14 17:28:251

向量叉乘的意义?

这分几何意义,和物理意义两种 不知你想知道哪种?几何意义是,由这两向量构成的平行四边形的面积物理意义就看具体情况了
meira2023-05-14 17:28:258

向量相乘的几何意义

  向量相乘的几何意义:向量是由n个实数组成的一个n行1列(n×1)或一个1行n列(1×n)的有序数组。在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小(magnitude)和方向的量。它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。   实数,是有理数和无理数的总称。数学上,实数定义为与数轴上的实数,点相对应的数。实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。但仅仅以列举的方式不能描述实数的整体。实数和虚数共同构成复数。
再也不做站长了2023-05-14 17:28:251

向量点乘和叉乘有何意义?

意义如下:点乘意义:可以用来表征或计算两个向量之间的夹角,以及在b向量在a向量方向上的投影。叉乘意义:在三维几何中,向量a和向量b的叉乘结果是一个向量,更为熟知的叫法是法向量,该向量垂直于a和b向量构成的平面。在3D图像学中,叉乘的概念非常有用,可以通过两个向量的叉乘,生成第三个垂直于a,b的法向量,从而构建X、Y、Z坐标系。两者的区别说明向量点乘和叉乘的区别:向量点乘结果是标量,是两个向量在一个方向的累计结果,结果只保留大小属性,抹去方向属性,就相等于降维;向量叉乘,是这这两个向量平面上,垂直生成新的向量,大小是两个向量构成四边形的面积。相等于生维。这是运算所需要,向量加和减都是在同一纬空间操作的,如果要想实现维度的变化就要在向量的乘法做出定义。
大鱼炖火锅2023-05-14 17:28:251

向量积的几何意义

叉乘几何意义就是:叉积等于由向量A和向量B构成的平行四边形的面积。叉积的长度|aXb|可以解释成这两个叉乘向量a, b共起点时,所构成平行四边形的面积。据此有:混合积[abc]=(aXb).c,可以得到以a,b,c为棱的平行六面体的体积,向量积。向量积,数学中又称外积、叉积,物理中称矢积、叉乘,是一种在向量空间中向量的二元运算。与点积不同,它的运算结果是一个向量而不是一个标量。并且两个向量的叉积与这两个向量和垂直。其应用也十分广泛,通常应用于物理学光学和计算机图形学中。向量积代数法则:1、反交换律: axb=-bxa2、加法的分配律: a×(b+c)=axb+axc3、与标量乘法兼容:(ra)×b=a×(rb)=r(a×b)4、不满足结合律,但满足雅可比恒等式: ax(b×c)+b×(c×a)+c×(a×b)=O5、两个非零向量a和b平行,当且仅当a×b=0向量积的长度|a×b|可以解释成这两个叉乘向量a, b共起点时,所构成平行四边形的面积。据此有:混合积[abc]=(a×b)-c可以得到以a,b,c为棱的平行六面体的体积。
此后故乡只2023-05-14 17:28:251

向量的两种乘法的几何意义是什么啊??

点乘在物理学中,已知力与位移求功,实际上就是求向量F与向量s的内积,即要用点乘。叉乘叉乘,也叫向量的外积、向量积。顾名思义,求下来的结果是一个向量,记这个向量为c。|向量c|=|向量a×向量b|=|a||b|sin<a,b>,向量c的方向与a,b所在的平面垂直,且方向要用“右手法则”判断(用右手的四指先表示向量a的方向,然后手指朝着手心的方向摆动到向量b的方向,大拇指所指的方向就是向量c的方向)。
黑桃花2023-05-14 17:28:251

向量乘积的几何意义

  向量积乘积是一种在向量空间中向量的二元运算。与点积不同,它的运算结果是一个向量而不是一个标量。并且两个向量的叉积与这两个向量和垂直。其应用也十分广泛,通常应用于物理学光学和计算机图形学中。   方向:a向量与b向量的向量积的方向与这两个向量所在平面垂直,且遵守右手定则。   表示方法:两个向量a和b的叉积写作a乘b。
左迁2023-05-14 17:28:251

向量点乘和叉乘有什么意义?

意义如下:点乘意义:可以用来表征或计算两个向量之间的夹角,以及在b向量在a向量方向上的投影。叉乘意义:在三维几何中,向量a和向量b的叉乘结果是一个向量,更为熟知的叫法是法向量,该向量垂直于a和b向量构成的平面。在3D图像学中,叉乘的概念非常有用,可以通过两个向量的叉乘,生成第三个垂直于a,b的法向量,从而构建X、Y、Z坐标系。两者的区别说明向量点乘和叉乘的区别:向量点乘结果是标量,是两个向量在一个方向的累计结果,结果只保留大小属性,抹去方向属性,就相等于降维;向量叉乘,是这这两个向量平面上,垂直生成新的向量,大小是两个向量构成四边形的面积。相等于生维。这是运算所需要,向量加和减都是在同一纬空间操作的,如果要想实现维度的变化就要在向量的乘法做出定义。
陶小凡2023-05-14 17:28:251

向量积的几何意义 向量积的几何意义是什么

1、向量积的长度|a×b|可以解释成这两个叉乘向量a,b共起点时,所构成平行四边形的面积。据此有:混合积[abc]=(a×b)·c可以得到以a,b,c为棱的平行六面体的体积。 2、向量数量积的几何意义:一个向量在另一个向量上的投影。
韦斯特兰2023-05-14 17:28:241

两个向量之差与两个向量之和的叉乘的几何意义

a、b 两个向量之差与两个向量之和的叉乘还是一个向量. 几何意义是:右手四指与被减向量方向相同向减向量方向弯曲,大拇指的方向就是其方向,大小是这两个向量所围平行四边形的面积的两倍.因为: (a-b)×(a+b)=a×a+a×b - b×a - b×b =0+a×b+a×b - 0 =2a×b
北境漫步2023-05-14 17:28:241

向量叉乘在实际中有什么意义

说到二个向量的叉乘,向量必须是空间向量设向量ab=向量a-向量b,向量cd=向量a+向量b向量ab=(x1,y1,z1),向量cd=(x2,y2,z2)向量ab×向量cd=(y1z2-z1y2,x2z1-x1z2,x1y2-y1x2)产生一个新向量,其方向垂直于由向量ab,向量cd确定的平面,其方向由右手定则确定。点乘具体如:做功,力与方向的乘积。等叉乘的结果还是一个向量,垂直原来两个所在的平面,方向也有原来两个向量决定。简单说,点乘的结果是个数叉乘的结果还是个向量
豆豆staR2023-05-14 17:28:242

两个向量之差与两个向量之和的叉乘的几何意义

平面向量加法、减法和数乘的简单应用及几何意义1.关于向量的加法、减法和数乘,一种方法就是依据三角形法则通过作图来解决;另一种方法就是通过向量的有向线段的字母符号运算来解决,应当注意字母顺序.2.用几个基本向量表示某个向量问题的基本技巧是:第一步,观察各向量的位置;第二步,寻找相应的平行四边形和三角形;第三步,运用法则找关系;第四步,化简结果.3.求向量时要尽可能转化到平行四边形或三角形中,选用从同一顶点出发的基本向量或首尾相连的向量即充分利用相等向量,相反向量和线段的比例关系.两个向量之差与两个向量之和的叉乘的几何意义:以这两向量构成的平行四边形,该平行四边形的两条对角线的叉乘
阿啵呲嘚2023-05-14 17:28:243

向量数量积的几何意义是什么?

物理上可表示力所做的功,即移动方向上的力的大小与位移的距离的乘积。
人类地板流精华2023-05-14 17:28:246

向量的点乘叉乘有什么意义?

点乘表示模的乘积乘以夹角的cos值叉乘表示模的乘积乘以夹角的sin值。。
hi投2023-05-14 17:28:244

向量的两种乘法的几何意义是什么啊??

点乘在物理学中,已知力与位移求功,实际上就是求向量F与向量s的内积,即要用点乘。叉乘叉乘,也叫向量的外积、向量积。顾名思义,求下来的结果是一个向量,记这个向量为c。|向量c|=|向量a×向量b|=|a||b|sin<a,b>,向量c的方向与a,b所在的平面垂直,且方向要用“右手法则”判断(用右手的四指先表示向量a的方向,然后手指朝着手心的方向摆动到向量b的方向,大拇指所指的方向就是向量c的方向)。
Jm-R2023-05-14 17:28:241

向量相乘有没有几何意义

两向量相乘分为:点乘和差乘。点乘表示平行四边形的对角线长度。差乘表示垂直于那个面的向量,遵守右手定则。 在数学中,向量指具有大小和方向的量。它可以形象化地表示为带箭头的线段,箭头代表向量的方向,线段长度代表向量的大小。
小白2023-05-14 17:28:241

两个向量之差与两个向量之和的叉乘的几何意义

向量c的方向与a,b所在的平面垂直,且方向要用“右手法则”判断(用右手的四指先表示向量a的方向,然后手指朝着手心的方向摆动到向量b的方向,大拇指所指的方向就是向量c的方向)。若向量a=(a1,b1,c1),向量b=(a2,b2,c2),则向量a·向量b=a1a2+b1b2+c1c2向量a×向量b=|ijk||a1b1c1||a2b2c2|=(b1c2-b2c1,c1a2-a1c2,a1b2-a2b1)(i、j、k分别为空间中相互垂直的三条坐标轴的单位向量)。
ardim2023-05-14 17:28:244

向量叉乘的几何意义

,(一)(向量a-向量b)(向量a+向量b)=二分之一向量a的平方+向量a乘向量b-向量a乘向量b-向量b的平方=二分之一向量a的平方-向量b的平方=二分之一向量a的模=1向量b的平方=二分之一向量b=2的跟号/2向量a乘向量b=二分之一所以向量a与向量b的夹角为45°(二)是不是向量a的模?(1+根号2)/2
大鱼炖火锅2023-05-14 17:28:241

向量外积的几何意义

向量内积的几何意义:向量积的长度|a×b|可以解释成这两个叉乘向量a,b共起点时,所构成平行四边形的面积。据此有:混合积[abc]=(a×b)·c可以得到以a,b,c为棱的平行六面体的体积。向量积,数学中又称外积、叉积,物理中称矢积、叉乘,是一种在向量空间中向量的二元运算。与点积不同,它的运算结果是一个向量而不是一个标量。并且两个向量的叉积与这两个向量和垂直。其应用也十分广泛,通常应用于物理学光学和计算机图形学中。向量积代数法则1、反交换律:a×b=-b×a2、加法的分配律:a×(b+c)=a×b+a×c3、与标量乘法兼容:(ra)×b=a×(rb)=r(a×b)4、不满足结合律,但满足雅可比恒等式:a×(b×c)+b×(c×a)+c×(a×b)=05、两个非零向量a和b平行,当且仅当a×b=0
豆豆staR2023-05-14 17:28:241

两个向量叉乘的几何意义

叉积的几何意义是与两个向量垂直的向量,方向符合右手定则
凡尘2023-05-14 17:28:242

向量外积的几何意义是什么?

向量积的长度|a×b|可以解释成这两个叉乘向量a,b共起点时,所构成平行四边形的面积。据此有:混合积[abc]=(a×b)·c可以得到以a,b,c为棱的平行六面体的体积。向量积与点积不同,它的运算结果是一个向量而不是一个标量。并且两个向量的叉积与这两个向量和垂直。其应用也十分广泛,通常应用于物理学光学和计算机图形学中。几何向量:几何向量的概念在线性代数中经由抽象化,得到更一般的向量概念。此处向量定义为向量空间的元素,要注意这些抽象意义上的向量不一定以数对表示,大小和方向的概念亦不一定适用。因此,平日阅读时需按照语境来区分文中所说的"向量"是哪一种概念。不过,依然可以找出一个向量空间的基来设置坐标系,也可以透过选取恰当的定义,在向量空间上介定范数和内积,这允许我们把抽象意义上的向量类比为具体的几何向量。
Jm-R2023-05-14 17:28:241

向量积怎么求啊?

向量相乘公式如下:,(0°≤θ≤180°)向量积(向量相乘),数学中又称外积、叉积,物理中称矢积、叉乘,是一种在向量空间中向量的二元运算。与点积不同,它的运算结果是一个向量而不是一个标量。并且两个向量的叉积与这两个向量和垂直。其应用也十分广泛,通常应用于物理学光学和计算机图形学中。扩展资料:向量积性质:一、几何意义及其运用叉积的长度|a×b|可以解释成这两个叉乘向量a,b共起点时,所构成平行四边形的面积。据此有:混合积[abc]=(a×b)·c可以得到以a,b,c为棱的平行六面体的体积。二、代数规则1、反交换律:a×b=-b×a2、加法的分配律:a×(b+c)=a×b+a×c。3、与标量乘法兼容:(ra)×b=a×(rb)=r(a×b)。4、不满足结合律,但满足雅可比恒等式:a×(b×c)+b×(c×a)+c×(a×b)=0。5、分配律,线性性和雅可比恒等式别表明:具有向量加法和叉积的R3构成了一个李代数。6、两个非零向量a和b平行,当且仅当a×b=0。
meira2023-05-14 17:28:241

如何证明三点共线时两向量前得系数相加等于1

若向量AD=xAB+(1-x)AC,x是实数,则B,C,D三点共线,
ardim2023-05-14 17:28:234

平面向量三点共线公式

平面向量三点共线公式是:(x2-x1)(y3-y1)=(x3-x1)(y2-y1)。一、基础解释平面向量是在二维平面内既有方向(direction)又有大小(magnitude)的量,具有代数形式与几何形式的双重身份,物理学中也称作矢量,与之相对的是只有大小、没有方向的数量(标量)。平面向量用a,b,c上面加一个小箭头表示,也可以用表示向量的有向线段的起点和终点字母表示。二、发展历程向量(矢量)这个术语作为现代数学-物理学中的一个重要概念,首先是由英国数学家哈密顿使用的。向量的名词虽来自哈密顿,但向量作为一条有向线段的思想却由来已久。向量理论的起源与发展主要有三条线索:物理学中的速度和力的平行四边形法则、位置几何、复数的几何表示。三、相关概念1、有向线段:具有方向的线段叫做有向线段,以A为起点,B为终点的有向线段记作。2、向量的模:有向线段AB的长度叫做向量的模,记作。3、零向量:长度等于0的向量叫做零向量,记作0。4、相等向量:长度相等且方向相同的向量叫做相等向量。5、平行向量(共线向量):两个方向相同或相反的非零向量叫做平行向量或共线向量。
肖振2023-05-14 17:28:231

若三点共线则为什么平面向量基本定理基底前的系数相加等于1呢?

设A、B、C三点共线,O是平面内任一点。因为A、B、C共线,所以存在非零实数k,使AB=kAC即 OB-OA=k(OC-OA)所以 OB=kOC+(1-k)OA[注:两个系数和 k+1-k=1]反之,若存在实数x,y 满足 x+y=1,且OA=xOB+yOC则 OA=xOB+(1-x)OCOA-OC=x(OB-OC)所以 CA=xCB因此,向量CA与CB共线,又由于 CA、CB有公共点C所以,A、B、C三点共线
康康map2023-05-14 17:28:231

向量三点共线定理中 OC=λOA+μOB 证明λ+μ=1

设 A、B、C 三点共线,则向量 AC// 向量AB ,所以存在实数 x 使 AC=x*AB ,即 OC-OA=x*(OB-OA) ,化为 OC=(1-x)*OA+x*OB ,所以 λ=1-x ,μ= x ,因此 λ+μ=(1-x)+x=1
豆豆staR2023-05-14 17:28:231

三点共线向量公式

三点共线是指三点在同一条直线上,三点共线向量公式是:(x2-x1)(y3-y1)=(x3-x1)(y2-y1)。 扩展资料 三点共线是指三点在同一条直线上,三点共线向量公式是:(x2-x1)(y3-y1)=(x3-x1)(y2-y1),而证明三点共线的方法是取两点确立一条直线,计算该直线的解析式,代入第三点坐标看是否满足该解析式(直线与方程)。
mlhxueli 2023-05-14 17:28:231

向量三点共线可以得出什么公式

A(x1,y1),B(x2,y2),C(x3,y3)向量AB=(x2-x1,y2-y1),向量AC=(x3-x1,y3-y1)A、B、C共线得: 向量AB//向量AC(x2-x1)(y3-y1)=(x3-x1)(y2-y1)所以A、B、C共线:(x2-x1)(y3-y1)=(x3-x1)(y2-y1)(今后学习行列式知识后,有更简洁的形式)希望能帮到你!
FinCloud2023-05-14 17:28:231

向量三点共线可以得出什么公式?

A(x1,y1),B(x2,y2),C(x3,y3)向量AB=(x2-x1,y2-y1),向量AC=(x3-x1,y3-y1)A、B、C共线得: 向量AB//向量AC(x2-x1)(y3-y1)=(x3-x1)(y2-y1)所以A、B、C共线:(x2-x1)(y3-y1)=(x3-x1)(y2-y1)
肖振2023-05-14 17:28:232

向量叉乘的几何意义??

叉乘几何意义就是:叉积等于由向量A和向量B构成的平行四边形的面积。叉积的长度|aXb|可以解释成这两个叉乘向量a, b共起点时,所构成平行四边形的面积。据此有:混合积[abc]=(aXb).c,可以得到以a,b,c为棱的平行六面体的体积,向量积。向量积,数学中又称外积、叉积,物理中称矢积、叉乘,是一种在向量空间中向量的二元运算。与点积不同,它的运算结果是一个向量而不是一个标量。并且两个向量的叉积与这两个向量和垂直。其应用也十分广泛,通常应用于物理学光学和计算机图形学中。向量积代数法则:1、反交换律: axb=-bxa2、加法的分配律: a×(b+c)=axb+axc3、与标量乘法兼容:(ra)×b=a×(rb)=r(a×b)4、不满足结合律,但满足雅可比恒等式: ax(b×c)+b×(c×a)+c×(a×b)=O5、两个非零向量a和b平行,当且仅当a×b=0向量积的长度|a×b|可以解释成这两个叉乘向量a, b共起点时,所构成平行四边形的面积。据此有:混合积[abc]=(a×b)-c可以得到以a,b,c为棱的平行六面体的体积。
mlhxueli 2023-05-14 17:28:231

两向量相乘的几何意义

两向量相乘,一种是点乘,即标积。其几何意义是:向量a在向量b方向上的投影与向量b的模的乘积。另一种是叉乘,即矢积。其几何意义是:矢量c是矢量a和矢量b的叉乘,则矢量c的模是垂直a、b所在平面,且以|b|·sinθ为高、|a|为底的平行四边形的面积。
北有云溪2023-05-14 17:28:231

向量的叉乘运算有什么几何意义

  向量积,数学中又称外积、叉积,物理中称矢积、叉乘,是一种在向量空间中向量的二元运算。与点积不同,它的运算结果是一个向量而不是一个标量。并且两个向量的叉积与这两个向量和垂直。其应用也十分广泛,通常应用于物理学光学和计算机图形学中。在物理学光学和计算机图形学中,叉积被用于求物体光照相关问题。求解光照的核心在于求出物体表面法线,而叉积运算保证了只要已知物体表面的两个非平行矢量(或者不在同一直线的三个点),就可依靠叉积求得法线。
北营2023-05-14 17:28:231

向量叉乘几何意义

向量叉乘是一个向量,方向垂直于叉乘的向量所在的平面,并荷合右手螺旋法则。其模为为叉乘的向量组成平行四边形面积。
此后故乡只2023-05-14 17:28:231

向量叉乘的意义?

这分几何意义,和物理意义两种不知你想知道哪种?几何意义是,由这两向量构成的平行四边形的面积物理意义就看具体情况了
gitcloud2023-05-14 17:28:232
 首页 上一页  27 28 29 30 31 32 33 34 35 36 37  下一页  尾页