向量a·向量b的公式是什么?
向量a·向量b=| a |*| b |*cosΘΘ为两向量夹角| b |*cosΘ叫做向量b在向量a上的投影| a |*cosΘ叫做向量a在向量b上的投影扩展资料平面向量是在二维平面内既有方向(direction)又有大小(magnitude)的量,物理学中也称作矢量,与之相对的是只有大小、没有方向的数量(标量)。平面向量用a,b,c上面加一个小箭头表示,也可以用表示向量的有向线段的起点和终点字母表示。现代向量理论是在复数的几何表示这条线索上发展起来的。18世纪,由于在一些数学的推导中用到复数,复数的几何表示成为人们探讨的热点。哈密顿在做3维复数的模拟物的过程中发现了四元数。随后,吉布斯和亥维赛在四元数基础上创造了向量分析系统,最终被广为接受。参考资料平面向量_百度百科bikbok2023-05-15 13:52:471
向量a·b公式坐是什么?
向量a乘以向量b=(向量a得模长)乘以(向量b的模长)乘以cosα[α为2个向量的夹角];向量a(x1,y1)向量b(x2,y2),向量a乘以向量b=(x1*x2,y1*y2)。印刷体记作黑体(粗体)的字母(如a、b、u、v),书写时在字母顶上加一小箭头“→”。如果给定向量的起点(A)和终点(B),可将向量记作AB(并于顶上加→)。在空间直角坐标系中,也能把向量以数对形式表示,例如xOy平面中(2,3)是一向量。坐标表示:1) 在平面直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量 向量机器模型i,j作为一组基底。a为平面直角坐标系内的任意向量,以坐标原点O为起点作向量OP=a。由平面向量基本定理知,有且只有一对实数(x,y),使得a=向量OP=xi+yj,因此把实数对(x,y)叫做向量a的坐标,记作a=(x,y)。这就是向量a的坐标表示。其中(x,y)就是点P的坐标。向量OP称为点P的位置向量。2) 在立体三维坐标系中,分别取与x轴、y轴,z轴方向相同的3个单位向量i,j,k作为一组基底。若a为该坐标系内的任意向量,以坐标原点O为起点作向量OP=a。由空间基本定理知,有且只有一组实数(x,y, z) 向量的坐标表示,使得a=向量OP=xi+yj+zk,因此把实数对(x,y, z)叫做向量a的坐标,记作a=(x,y, z)。这就是向量a的坐标表示。其中(x,y, z),也就是点P的坐标。向量OP称为点P的位置向量。wpBeta2023-05-15 13:52:471
向量a和向量b有什么公式?
向量a·向量b=| a |*| b |*cosΘ(Θ为两向量夹角)。| a |*cosΘ叫做向量a在向量b上的投影。| b |*cosΘ叫做向量b在向量a上的投影。投影 (tóuyǐng),数学术语,指图形的影子投到一个面或一条线上。设两个非零向量a与b的夹角为θ,则将|b|·cosθ 叫做向量b在向量a方向上的投影或称标投影。在式中引入a的单位矢量a(A),可以定义b在a上的矢投影。由定义可知,一个向量在另一个向量方向上的投影是一个数量。当θ为锐角时,它是正值;当θ为直角时,它是0;当θ为钝角时,它是负值;当θ=0°时,它等于|b|;当θ=180°时,它等于-|b|。可桃可挑2023-05-15 13:52:471
向量公式
1、向量的的数量积 定义:已知两个非零向量a,b。作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π 定义:两个向量的数量积(内积、点积)是一个数量,记作a•b。若a、b不共线,则a•b=|a|•|b|•cos〈a,b〉;若a、b共线,则a•b=+-∣a∣∣b∣。 向量的数量积的坐标表示:a•b=x•x"+y•y"。 向量的数量积的运算律 a•b=b•a(交换律); (λa)•b=λ(a•b)(关于数乘法的结合律); (a+b)•c=a•c+b•c(分配律); 向量的数量积的性质 a•a=|a|的平方。 a⊥b 〈=〉a•b=0。 |a•b|≤|a|•|b|。 向量的数量积与实数运算的主要不同点 1、向量的数量积不满足结合律,即:(a•b)•c≠a•(b•c);例如:(a•b)^2≠a^2•b^2。 2、向量的数量积不满足消去律,即:由 a•b=a•c (a≠0),推不出 b=c。 3、|a•b|≠|a|•|b| 4、由 |a|=|b| ,推不出 a=b或a=-b。 2、向量的向量积 定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b。若a、b不共线,则a×b的模是:∣a×b∣=|a|•|b|•sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系。若a、b共线,则a×b=0。 向量的向量积性质: ∣a×b∣是以a和b为边的平行四边形面积。 a×a=0。 a‖b〈=〉a×b=0。 向量的向量积运算律 a×b=-b×a; (λa)×b=λ(a×b)=a×(λb); (a+b)×c=a×c+b×c. 注:向量没有除法,“向量AB/向量CD”是没有意义的。 3、向量的三角形不等式 1、∣∣a∣-∣b∣∣≤∣a+b∣≤∣a∣+∣b∣; ① 当且仅当a、b反向时,左边取等号; ② 当且仅当a、b同向时,右边取等号。 2、∣∣a∣-∣b∣∣≤∣a-b∣≤∣a∣+∣b∣。 ① 当且仅当a、b同向时,左边取等号; ② 当且仅当a、b反向时,右边取等号。 4、定比分点 定比分点公式(向量P1P=λ•向量PP2) 设P1、P2是直线上的两点,P是l上不同于P1、P2的任意一点。则存在一个实数 λ,使 向量P1P=λ•向量PP2,λ叫做点P分有向线段P1P2所成的比。 若P1(x1,y1),P2(x2,y2),P(x,y),则有 OP=(OP1+λOP2)(1+λ);(定比分点向量公式) x=(x1+λx2)/(1+λ), y=(y1+λy2)/(1+λ)。(定比分点坐标公式) 我们把上面的式子叫做有向线段P1P2的定比分点公式 5、三点共线定理 若OC=λOA +μOB ,且λ+μ=1 ,则A、B、C三点共线 三角形重心判断式 在△ABC中,若GA +GB +GC=O,则G为△ABC的重心 向量共线的重要条件 若b≠0,则a//b的重要条件是存在唯一实数λ,使a=λb。 a//b的重要条件是 xy"-x"y=0。 零向量0平行于任何向量。 向量垂直的充要条件 a⊥b的充要条件是 a•b=0。 a⊥b的充要条件是 xx"+yy"=0。 零向量0垂直于任何向量CarieVinne 2023-05-15 13:52:471
一个向量(a,b)在x轴,y轴上的投影怎么求
向量(a,b)=(a,0)+(0,b);上述(a,0)就是它在x轴上的投影;(0,b)是在y轴上的投影。【要注意一点是,投影也是一个向量】求法是:把向量(a,b)的起点移到原点处,则它的终点坐标就是(a,b),于是它在X轴上投影横坐标是a,投影就是(a,0),在Y轴上投影纵坐标是b,投影就是(0,b)。黑桃花2023-05-15 13:52:461
向量a和向量b的投影是什么?
a在b的投影向量公式如下:| a |*cosΘ叫做向量a在向量b上的投影。向量a·向量b=| a |*| b |*cosΘ(Θ为两向量夹角)。| b |*cosΘ叫做向量b在向量a上的投影。当一个向量在另一个向量方向上投影时:设两个非零向量a与b的夹角为θ,则将|b|·cosθ 叫做向量b在向量a方向上的投影或称标投影。在式中引入a的单位矢量a(A),可以定义b在a上的矢投影。由定义可知,一个向量在另一个向量方向上的投影是一个数量。当θ为锐角时,它是正值;当θ为直角时,它是0;当θ为钝角时,它是负值;当θ=0°时,它等于|b|;当θ=180°时,它等于-|b|。北有云溪2023-05-15 13:52:461
向量在坐标轴的投影有没有方向?
一个向量在另一个向量上的投影是一个标量;方向到是没有,但有正负;向量a在ox轴的方向上的投影就是a向量的模乘以夹角的余弦;gitcloud2023-05-15 13:52:461
一个向量在另一个向量上的投影向量怎么求
一个向量a在另一个向量b方向上的投影是:这个投影表示的向量跟向量b是共线向量,可以把它的数量乘上b方向的单位向量:注意,那个分式分子分母上的向量b不能约去。对于求向量在另一个的投影 首先你需要求出夹角(或者夹角正玹值) 然后把需要求的向量乘以夹角的余玹值即可。拓展资料在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小(magnitude)和方向的量。它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。与向量对应的只有大小,没有方向的量叫做数量。参考资料:百度百科-向量bikbok2023-05-15 13:52:461
投影向量的公式有哪些?
投影向量的公式:向量a·向量b=| a |*| b |*cosΘ (Θ为两向量夹角)。在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小(magnitude)和方向的量。它可以形象化地表示为带箭头的线段。公式就是用数学符号表示各个量之间的一定关系(如定律或定理)的式子。具有普遍性,适合于同类关系的所有问题。 在数理逻辑中,公式是表达命题的形式语法对象,除了这个命题可能依赖于这个公式的自由变量的值之外。 投影向量向量在三维空间中的各个方向的投影,最有代表性的有二个方向的投影,即垂直方向、水平方向。其它方向投影可以利用解直角三角形,转化为这两个方向上的投影。北营2023-05-15 13:52:461
向量的投影怎么求
1、设两个向量a和b,向量a在向量b上的投影也是一个向量,不妨记做向量c 则有c与b共线,方向取决于a与b的夹角,由此推导出求解向量的投影的公式:|c|=|a|*|cos|。 2、向量的记法:印刷体记作黑体(粗体)的字母(如a、b、u、v),书写时在字母顶上加一小箭头“→”。如果给定向量的起点(A)和终点(B),可将向量记作AB(并于顶上加→)。在空间直角坐标系中,也能把向量以数对形式表示。Chen2023-05-15 13:52:461
向量投影的定义是什么?
设两个非零向量a与b的夹角为θ,则将|b|·cosθ 叫做向量b在向量a方向上的投影或称标投影(scalar projection)。由定义可知,一个向量在另一个向量方向上的投影是一个数量。当θ为锐角时,它是正值;当θ为直角时,它是0;当θ为钝角时,它是负值;当θ=0°时,它等于|b|;当θ=180°时,它等于-|b|。设单位向量e是直线m的方向向量,向量AB=a,作点A在直线m上的射影A",作点B在直线m上的射影B",则向量A"B" 叫做AB在直线m上或在向量e方向上的正射影,简称射影。扩展资料向量a与向量b的夹角:已知两个非零向量,过O点做向量OA=a,向量OB=b,则∠AOB=θ 叫做向量a与b的夹角,记作<a,b>。已知两个非零向量a、b,那么a×b叫做a与b的向量积或外积。向量积几何意义是以a和b为边的平行四边形面积,即S=|a×b|。若a、b不共线,a×b是一个向量,其模是|a×b|=|a||b|sin<a,b>,a×b的方向为垂直于a和b,且a、b和a×b按次序构成右手系。若a、b共线,则a×b=0。人类地板流精华2023-05-15 13:52:461
b在a上的投影向量公式是什么?
| a |*cosΘ叫做向量a在向量b上的投影。向量a·向量b=| a |*| b |*cosΘ(Θ为两向量夹角)| b |*cosΘ叫做向量b在向量a上的投影定义:由定义可知,一个向量在另一个向量方向上的投影是一个数量。当θ为锐角时,它是正值;当θ为直角时,它是0;当θ为钝角时,它是负值;当θ=0°时,它等于|b|;当θ=180°时,它等于-|b|。设单位向量e是直线m的方向向量,向量AB=a,作点A在直线m上的射影A",作点B在直线m上的射影B",则向量A"B"叫做AB在直线m上或在向量e方向上的正射影,简称射影。令投射线通过点或其他物体,向选定的投影面投射,并在该面上得到图形的方法称为投影法。北有云溪2023-05-15 13:52:461
向量a在向量b上的投影向量
向量a的模长乘以两向量之间夹角的余弦康康map2023-05-15 13:52:464
A在B向量上的投影公式
Pijba=lalcos(ab)再也不做站长了2023-05-15 13:52:465
向量a在向量b上的投影公式怎样?为什么?
a在b的投影向量公式如下:| a |*cosΘ叫做向量a在向量b上的投影。向量a·向量b=| a |*| b |*cosΘ(Θ为两向量夹角)。| b |*cosΘ叫做向量b在向量a上的投影。当一个向量在另一个向量方向上投影时:设两个非零向量a与b的夹角为θ,则将|b|·cosθ 叫做向量b在向量a方向上的投影或称标投影。在式中引入a的单位矢量a(A),可以定义b在a上的矢投影。由定义可知,一个向量在另一个向量方向上的投影是一个数量。当θ为锐角时,它是正值;当θ为直角时,它是0;当θ为钝角时,它是负值;当θ=0°时,它等于|b|;当θ=180°时,它等于-|b|。可桃可挑2023-05-15 13:52:461
如何证明向量在坐标轴上的投影?(projection)
这个很好证明啊u,v向量的夹角余弦cos(u,v)=(u*v) / (|u|*|v|)然后投影proj u=v*cos(u,v)=[(u*v) / (|u|*|v|)]vkikcik2023-05-15 13:52:461
数学上向量的投影是怎么回事
1.向量不考虑端点的问题,向量平移不改变向量.所以任何两个向量都可以移到一个点.A向量到B向量的投影,指的是A向量的模乘以A、B向量的夹角余弦值.B向量到A向量的投影,指的是B向量的模乘以A、B向量夹角的余弦值.设两个非零向量a与b的夹角为θ,则将(∣b∣·cosθ) 叫做向量b在向量a方向上的投影. 由定义可知,一个向量在另一个向量方向上的投影是一个数量.当θ为锐角时,它是正值;当θ为直角时,它是0;当θ为钝角时,它是负值;当θ=0°时,它等于∣b∣;当θ=180°时,它等于-∣b∣.hi投2023-05-15 13:52:461
向量a‖b的公式是什么?
向量a‖b的公式有:x1x2+y1y2=0。平面向量的公式包括向量加法的运算律:a+b=b+a、(a+b)+c=a+(b+c)。对于两个向量a(向量a≠向量0),向量b,当有一个实数λ,使向量b=λ向量a(记住向量是有方向的)则向量a‖向量b。反之,当向量a‖向量b时,有且只有一个实数λ,能使向量b=λ向量a。数量积的性质:已知两个非零向量a、b,那么a·b=|a||b|cosθ(θ是a与b的夹角)叫做a与b的数量积或内积,记作a·b。零向量与任意向量的数量积为0。数量积a·b的几何意义是:a的长度|a|与b在a的方向上的投影|b|cos θ的乘积。两个向量的数量积等于它们对应坐标的乘积的和。即:若a=(x1,y1),b=(x2,y2),则a·b=x1·x2+y1·y2。mlhxueli 2023-05-15 13:52:461
向量a‖b的公式是什么?
向量a‖b的公式是:向量a乘以向量b=(向量a得模长)乘以(向量b的模长)乘以cosα[α为2个向量的夹角];向量a(x1,y1)向量b(x2,y2),向量a乘以向量b=(x1*x2,y1*y2)。印刷体记作黑体(粗体)的字母(如a、b、u、v),书写时在字母顶上加一小箭头“”。如果给定向量的起点(A)和终点(B),可将向量记作AB(并于顶上加)。在空间直角坐标系中,也能把向量以数对形式表示,例如xOy平面中(2,3)是一向量。相等向量:长度相等且方向相同的向量叫做相等向量.向量a与b相等,记作a=b。规定:所有的零向量都相等。当用有向线段表示向量时,起点可以任意选取。任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段的起点无关.同向且等长的有向线段都表示相同向量。自由向量:始点不固定的向量,它可以任意的平行移动,而且移动后的向量仍然代表原来的向量。在自由向量的意义下,相等的向量都看作是同一个向量。数学中只研究自由向量。小菜G的建站之路2023-05-15 13:52:461
向量a‖b的公式是什么呢?
a向量平行b向量的公式:x1x2+y1y2=0。在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小和方向的量。它可以形象化地表示为带箭头的线段。矢量是一种既有大小又有方向的量,又称为向量。一般来说,在物理学中称作矢量,例如速度、加速度、力等等就是这样的量。舍弃实际含义,就抽象为数学中的概念──向量。在计算机中,矢量图可以无限放大永不变形。向量的计算法则:a向量与b向量的向量积的方向与这两个向量所在平面垂直,且遵守右手定则。(一个简单的确定满足“右手定则”的结果向量的方向的方法是这样的:若坐标系是满足右手定则的,当右手的四指从a以不超过180度的转角转向b时,竖起的大拇指指向是c的方向。)也可以这样定义(等效):向量积|c|=|a×b|=|a||b|sin<a,b>。即c的长度在数值上等于以a,b,夹角为θ组成的平行四边形的面积。而c的方向垂直于a与b所决定的平面,c的指向按右手定则从a转向b来确定。真颛2023-05-15 13:52:461
向量a与向量b共线公式是什么?
向量a与向量b共线公式是b=λa。共线向量也就是平行向量,方向相同或相反的非零向量叫平行向量,表示为a∥b,任意一组平行向量都可移到同一直线上,所以称为共线向量。充分性对于向量a(a≠0)、b,如果有一个实数λ,使b=λa,那么由实数与向量的积的定义知,向量a与b共线。向量a和向量b共线有什么特征向量a与向量b共线,则向量a∥向量b,说明向量a与向量b同向或反向,它们的和或差仍在这条直线上。向量a与向量b的夹角为θ=0,cosθ=cos0=1,点积有最大值而sinθ=sin0=0,叉积最小。两个向量平行同相平行和反向平行或者两个向量重叠。向量所在的两条直线平行或者重叠。向量a=y向量b,只有当向量b不是零向量时,才能有a与b共线。因为零向量方向不确定的。wpBeta2023-05-15 13:52:461
向量a·b公式怎么读
向量a·b公式这么读:向量a点乘向量b如果中间是x而不是·那么就是向量a叉乘向量b瑞瑞爱吃桃2023-05-15 13:52:461
向量a·b是怎么算的
a·b=|a|*|b|cos a·b=x1x2+y1y2bikbok2023-05-15 13:52:462
向量的投影概念是什么?
设两个非零向量a与b的夹角为θ,则将|b|·cosθ 叫做向量b在向量a方向上的投影或称标投影。在式中引入a的单位矢量a(A),可以定义b在a上的矢投影由定义可知,一个向量在另一个向量方向上的投影是一个数量。当θ为锐角时,它是正值;当θ为直角时,它是0;当θ为钝角时,它是负值;当θ=0°时,它等于|b|;当θ=180°时,它等于-|b|。设单位向量e是直线m的方向向量,向量AB=a,作点A在直线m上的射影A",作点B在直线m上的射影B",则向量A"B" 叫做AB在直线m上或在向量e方向上的正射影,简称射影左迁2023-05-15 13:52:454
向量a与向量b怎么计算投影向量的计算公式是什么?
投影向量的计算公式:向量a·向量b=|a|*|b|*cosΘ。平面向量是在二维平面内既有方向又有大小的量,物理学中也称作矢量,与之相对的是只有大小、没有方向的数量。平面向量用a,b,c上面加一个小箭头表示,也可以用表示向量的有向线段的起点和终点字母表示。向量投影:投影指图形的影子投到一个面或一条线上。投影就是物体在太阳光的照射下在地面形成的影子。当太阳光与地面垂直时是正投影,这就是线性代数中研究的投影。当物体与地面垂直时,影子长度为0。设两个非零向量a与b的夹角为θ,则将|b|·cosθ叫作向量b在向量a方向上的投影或称标投影。一个向量在另一个向量方向上的投影是一个数量称投影向量。向量积,别称外积、叉积、矢积、叉乘,是在向量空间中向量的二元运算。它的运算结果是一个向量而不是一个标量,并且两个向量的叉积与这两个向量和垂直。其通常应用于物理学光学和计算机图形学中。瑞瑞爱吃桃2023-05-15 13:52:451
向量的投影公式怎么用?能举例说明吗?
解答:设向量a,b,夹角为W则向量a在向量b方向上的投影是a.b/|b|=|a|*cosW投影公式,可以用来求点到直线的距离。特别是在空间向量中求点到面的距离。gitcloud2023-05-15 13:52:451
空间向量a在b上的投影公式是什么?
空间向量a在b上的投影公式:对于直角△ABC,∠BAC=90度,AD是斜边BC上的高,射影定理,(AD)^2=BD·DC (AB)^2=BD·BC (AC)^2=CD·BC这主要是由相似三角形来推出的。从一点到一条直线所作垂线的垂足,叫做这点在这条直线上的正投影。一条线段的两个端点在一条直线上的正投影之间的线段,叫做这条线段在这直线上的正投影,由三角形相似的性质可得射影定理。扩展资料证明思路:正射影二面角的欧几里得射影面积公式。因为射影就是将原图形的长度(三角形中称高)缩放,所以宽度是不变的,又因为平面多边形的面积比=边长的乘积比。所以就是图形的长度(三角形中称高)的比。那么这个比值应该是平面所成角的余弦值。在两平面中作直角三角形,并使斜边和一直角边垂直于棱,则三角形的斜边和另一直角边就是其多边形的长度比,即为平面多边形的面积比。将此比值放到该平面中的三角形中去运算即可得证。meira2023-05-15 13:52:451
向量的投影是什么?
向量的投影概念是一个向量在另一个向量方向上的投影是一个数量。当θ为锐角时,它是正值;当θ为直角时,它是0;当θ为钝角时,它是负值;当θ=0°时,它等于|b|;当θ=180°时,它等于-|b|。相关信息:在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小(magnitude)和方向的量。它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。与向量对应的量叫做数量(物理学中称标量),数量(或标量)只有大小,没有方向。无尘剑 2023-05-15 13:52:451
坐标向量的投影怎么求
坐标向量的投影设点A(x1,y1,z1),B(x2,y2,z2),向量AB=(x2-x1,y2-y1,z2-z1),它在XOY面上的投影=(x2-x1,y2-y1,0),它在YOZ面上的投影=(0,y2-y1,z2-z1),它在XOZ面上的投影=(x2-x1,0,z2-z1)。在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小(magnitude)和方向的量。它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。与向量对应的量叫做数量(物理学中称标量),数量(或标量)只有大小,没有方向。向量的记法:印刷体记作黑体(粗体)的字母(如a、b、u、v),书写时在字母顶上加一小箭头“→”。如果给定向量的起点(A)和终点(B),可将向量记作AB(并于顶上加→)。在空间直角坐标系中,也能把向量以数对形式表示,例如xOy平面中(2,3)是一向量。小菜G的建站之路2023-05-15 13:52:452
已知向量ab坐标,怎样求投影
就是相当与ab边是斜边,做一个直角三角形就可以了,然后设令一点的坐标,然后根据两向量垂直,可以得到一个等式,然后在取斜边的中点,可以知道中点坐标,因为中点到三个点的距离相等,就可以得到另一个等式,然后将两个联立起来就得到我们要求的在投影上的点的坐标,这样就可以求到投影了。u投在线2023-05-15 13:52:452
a在b上的投影向量公式是什么?
| a |*cosΘ叫做向量a在向量b上的投影向量a·向量b=| a |*| b |*cosΘ(Θ为两向量夹角)| b |*cosΘ叫做向量b在向量a上的投影扩展资料:设两个非零向量a与b的夹角为θ,则将|b|·cosθ 叫做向量b在向量a方向上的投影或称标投影。在式中引入a的单位矢量a(A),可以定义b在a上的矢投影由定义可知,一个向量在另一个向量方向上的投影是一个数量。当θ为锐角时,它是正值;当θ为直角时,它是0;当θ为钝角时,它是负值;当θ=0°时,它等于|b|;当θ=180°时,它等于-|b|。阿啵呲嘚2023-05-15 13:52:451
空间向量在x轴上的投影是它的横坐标吗
是的"向量(a,b)=(a,0)+(0,b);上述(a,0)就是它在x轴上的投影;(0,b)是在y轴上的投影。【要注意一点是,投影也是一个向量】求法是:把向量(a,b)的起点移到原点处,则它的终点坐标就是(a,b),于是它在x轴上投影横坐标是a,投影就是(a,0),在y轴上投影纵坐标是b,投影就是(0,b)。"再也不做站长了2023-05-15 13:52:451
a在b方向上的投影向量怎么求
设a、b向量的模分别为A、B,两向量夹角为θ,则a在b上的投影大小为Acosθ,而两向量的点积a·b=ABcosθ,所以cosθ=a·b/(AB)。则a在b上的投影为Acosθ=Aa·b/(AB)=a·b/B。向量a在向量b上的投影,是指向量a在向量b上的分量,它仍然是个向量,等于向量a乘以a、b夹角的余弦。由定义可知,一个向量在另一个向量方向上的投影是一个数量。当θ为锐角时,它是正值;当θ为直角时,它是0;当θ为钝角时,它是负值;当θ=0°时,它等于∣b∣;当θ=180°时,它等于 -∣b∣。设单位向量e是直线m的方向向量,向量AB=a,作点A在直线m上的射影A",作点B在直线m上的射影B",则向量A"B" 叫做AB在直线m上或在向量e方向上的正射影,简称射影。向量A"B" 的模 ∣A"B"∣=∣AB∣·∣cos〈a,e〉∣=∣a·e∣。向量的记法:印刷体记作黑体(粗体)的字母(如a、b、u、v),书写时在字母顶上加一小箭头“→”。 如果给定向量的起点(A)和终点(B),可将向量记作AB(并于顶上加→)。在空间直角坐标系中,也能把向量以数对形式表示,例如xOy平面中(2,3)是一向量。康康map2023-05-15 13:52:451
向量a在向量b上的什么叫做向量a的投影?
a在b上的投影向量公式坐标表示:|a|*cosΘ叫做向量a在向量b上的投影。向量a·向量b=|a|*|b|*cosΘ。(Θ为两向量夹角)。|b|*cosΘ叫做向量b在向量a上的投影。投影 (tóuyǐng),数学术语,指图形的影子投到一个面或一条线上。数乘:实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa。当λ>0时,λa的方向和a的方向相同,当λ<0时,λa的方向和a的方向相反,当λ = 0时,λa=0。用坐标表示的情况下有:λAB=λ(x2-x1,y2-y1)=(λx2-λx1,λy2-λy1)。Ntou1232023-05-15 13:52:451
平面向量的投影公式是什么?
向量a·向量b=| a |*| b |*cosΘΘ为两向量夹角| b |*cosΘ叫做向量b在向量a上的投影| a |*cosΘ叫做向量a在向量b上的投影扩展资料平面向量是在二维平面内既有方向(direction)又有大小(magnitude)的量,物理学中也称作矢量,与之相对的是只有大小、没有方向的数量(标量)。平面向量用a,b,c上面加一个小箭头表示,也可以用表示向量的有向线段的起点和终点字母表示。现代向量理论是在复数的几何表示这条线索上发展起来的。18世纪,由于在一些数学的推导中用到复数,复数的几何表示成为人们探讨的热点。哈密顿在做3维复数的模拟物的过程中发现了四元数。随后,吉布斯和亥维赛在四元数基础上创造了向量分析系统,最终被广为接受。参考资料平面向量_百度百科此后故乡只2023-05-15 13:52:451
一个向量(a,b)在x轴,y轴上的投影怎么求
向量(a,b)=(a,0)+(0,b); 上述(a,0)就是它在x轴上的投影;(0,b)是在y轴上的投影. 【要注意一点是,投影也是一个向量】 求法是:把向量(a,b)的起点移到原点处,则它的终点坐标就是(a,b),于是它在X轴上投影横坐标是a,投影就是(a,0),在Y轴上投影纵坐标是b,投影就是(0,b).kikcik2023-05-15 13:52:451
向量的投影与投影向量的区别是什么?
向量的投影与投影向量的区别是:1、性质不同投影向量是向量,既有大小又有方向;投影数量只有大小,没有方向。2、含义不同投影向量和投影的区别在于投影向量是有方向的量。3、指代不同投影可以指任何的投影。可以指树的投影,也可以指人的投影;向量的投影不是向量。向量的投影是数量。向量的性质有:1、一个向量在另一个向量方向上的投影是一个数量。当θ为锐角时,它是正值;当θ为直角时,它是0;当θ为钝角时,它是负值;当θ=0°时,它等于|b|;当θ=180°时,它等于-|b|。2、当用有向线段表示向量时,起点可以任意选取。任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段的起点无关.同向且等长的有向线段都表示同一向量。3、因为方向不能比较大小,所以向量也就不能比较大小。对于向量来说“大于”和“小于”的概念是没有意义的。韦斯特兰2023-05-15 13:52:451
向量的投影怎么求?
向量a在向量b方向上的投影=(a.b)/|b|| a |*cosΘ叫做向量a在向量b上的投影向量a·向量b=| a |*| b |*cosΘ(Θ为两向量夹角)| b |*cosΘ叫做向量b在向量a上的投影投影 (tóuyǐng),数学术语,指图形的影子投到一个面或一条线上。扩展资料:设两个非零向量a与b的夹角为θ,则将|b|·cosθ 叫做向量b在向量a方向上的投影或称标投影由定义可知,一个向量在另一个向量方向上的投影是一个数量。当θ为锐角时,它是正值;当θ为直角时,它是0;当θ为钝角时,它是负值;当θ=0°时,它等于|b|;当θ=180°时,它等于-|b|。设单位向量e是直线m的方向向量,向量AB=a,作点A在直线m上的射影A",作点B在直线m上的射影B",则向量A"B" 叫做AB在直线m上或在向量e方向上的正射影,简称射影。韦斯特兰2023-05-15 13:52:451
向量ab的长为a, b, c,求ab在b上的投影?
a在b上的投影向量公式坐标表示:|a|*cosΘ叫做向量a在向量b上的投影。向量a·向量b=|a|*|b|*cosΘ。(Θ为两向量夹角)。|b|*cosΘ叫做向量b在向量a上的投影。投影 (tóuyǐng),数学术语,指图形的影子投到一个面或一条线上。数乘:实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa。当λ>0时,λa的方向和a的方向相同,当λ<0时,λa的方向和a的方向相反,当λ = 0时,λa=0。用坐标表示的情况下有:λAB=λ(x2-x1,y2-y1)=(λx2-λx1,λy2-λy1)。LuckySXyd2023-05-15 13:52:451
向量的投影怎么求
1、设两个向量a和b,向量a在向量b上的投影也是一个向量,不妨记做向量c 则有c与b共线,方向取决于a与b的夹角,由此推导出求解向量的投影的公式:|c|=|a|*|cos|。 2、向量的记法:印刷体记作黑体(粗体)的字母(如a、b、u、v),书写时在字母顶上加一小箭头“→”。如果给定向量的起点(A)和终点(B),可将向量记作AB(并于顶上加→)。在空间直角坐标系中,也能把向量以数对形式表示。肖振2023-05-15 13:52:451
向量a在向量b上的投影公式是什么?
| a |*cosΘ叫做向量a在向量b上的投影向量a·向量b=| a |*| b |*cosΘ(Θ为两向量夹角)| b |*cosΘ叫做向量b在向量a上的投影投影 (tóuyǐng),数学术语,指图形的影子投到一个面或一条线上。扩展资料:a向量与b向量的向量积的方向与这两个向量所在平面垂直,且遵守右手定则。(一个简单的确定满足“右手定则”的结果向量的方向的方法是这样的:若坐标系是满足右手定则的,当右手的四指从a以不超过180度的转角转向b时,竖起的大拇指指向是c的方向。)也可以这样定义(等效):向量积|c|=|a×b|=|a||b|sin<a,b>即c的长度在数值上等于以a,b,夹角为θ组成的平行四边形的面积。而c的方向垂直于a与b所决定的平面,c的指向按右手定则从a转向b来确定。参考资料来源:百度百科-向量积苏萦2023-05-15 13:52:451
向量a和向量b的投影是什么?
| a |*cosΘ叫做向量a在向量b上的投影向量a·向量b=| a |*| b |*cosΘ(Θ为两向量夹角)| b |*cosΘ叫做向量b在向量a上的投影投影 (tóuyǐng),数学术语,指图形的影子投到一个面或一条线上。扩展资料:平面向量是在二维平面内既有方向(direction)又有大小(magnitude)的量,物理学中也称作矢量,与之相对的是只有大小、没有方向的数量(标量)。平面向量用a,b,c上面加一个小箭头表示,也可以用表示向量的有向线段的起点和终点字母表示。参考资料来源:百度百科-平面向量小白2023-05-15 13:52:451
怎么求一个向量在另一个向量的投影向量??
例如求向量b在向量a上的投影和投影向量c则 投影为b·a°=b·a/|a| 投影向量c=(b·a°)·a°注:a°为a的单位向量无尘剑 2023-05-15 13:52:457
投影向量和投影数量公式
投影向量是直线与所成角余弦值乘以那个鞋边的向量,投影数量是向量的垂线与它的乘积除以向量的模gitcloud2023-05-15 13:52:442
投影向量在谁上的投影就要垂直于谁吗
投影向量在谁上的投影就要垂直于谁。例如acosA叫做a在b上的投影,数量投影意思是指一个向量在另一个向量方向上的投影是一个数量。投影指的是用一组光线将物体的形状投射到一个平面上去,称为投影。九万里风9 2023-05-15 13:52:441
向量a在向量b上的投影怎么求
向量a在向量b上的投影:设a、b向量的模分别为A、B,两向量夹角为θ,则a在b上的投影大小为Acosθ,而两向量的点积a·b=ABcosθ,所以cosθ=a·b/(AB)。 则a在b上的投影为Acosθ=Aa·b/(AB)=a·b/B北有云溪2023-05-15 13:52:441
知道向量的坐标ab(3,4,5) 求在坐标轴的投影
x轴3,y轴4,z轴5小白2023-05-15 13:52:443
向量在z轴的投影是z轴的坐标吗
是。柱面的概念说明:柱面的准线不是惟一的,每一条与柱面的母线都相交的曲线都可以作为柱面的准线。向量投影公式ab=|a||b|cos(r)cos(r)=ab/|a|/|b|。陶小凡2023-05-15 13:52:441
向量在坐标轴上的投影怎么求(向量投影坐标公式)
1、怎样求投影向量的坐标。 2、怎么求向量在坐标轴上的投影。 3、用坐标求投影向量。 4、投影向量怎么用坐标表示。1.坐标向量的投影设点A(x1,y1,z1),B(x2,y2,z2),向量AB=(x2-x1,y2-y1,z2-z1),它在XOY面上的投影=(x2-x1,y2-y1,0),它在YOZ面上的投影=(0,y2-y1,z2-z1),它在XOZ面上的投影=(x2-x1,0,z2-z1)。 2.在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小(magnitude)和方向的量。 3.它可以形象化地表示为带箭头的线段。 4.箭头所指:代表向量的方向。 5.线段长度:代表向量的大小。 6.和向量对应的量叫做数量(物理学中称标量),数量(或标量)只有大小,没有方向。 7.向量的记法:印刷体记作黑体(粗体)的字母(如a、b、u、v),书写时在字母顶上加一小箭头“→”。 8.如果给定向量的起点(A)和终点(B),可将向量记作AB(并于顶上加→)。 9.在空间直角坐标系中,也能把向量以数对形式表示,例如xOy平面中(2,3)是一向量。小白2023-05-15 13:52:441
怎样求投影向量的坐标?怎么求向量在坐标轴上的投影??
1、怎样求投影向量的坐标。 2、怎么求向量在坐标轴上的投影。 3、用坐标求投影向量。 4、投影向量怎么用坐标表示。1.坐标向量的投影设点A(x1,y1,z1),B(x2,y2,z2),向量AB=(x2-x1,y2-y1,z2-z1),它在XOY面上的投影=(x2-x1,y2-y1,0),它在YOZ面上的投影=(0,y2-y1,z2-z1),它在XOZ面上的投影=(x2-x1,0,z2-z1)。 2.在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小(magnitude)和方向的量。 3.它可以形象化地表示为带箭头的线段。 4.箭头所指:代表向量的方向。 5.线段长度:代表向量的大小。 6.和向量对应的量叫做数量(物理学中称标量),数量(或标量)只有大小,没有方向。 7.向量的记法:印刷体记作黑体(粗体)的字母(如a、b、u、v),书写时在字母顶上加一小箭头“→”。 8.如果给定向量的起点(A)和终点(B),可将向量记作AB(并于顶上加→)。 9.在空间直角坐标系中,也能把向量以数对形式表示,例如xOy平面中(2,3)是一向量。真颛2023-05-15 13:52:441
怎样用坐标求向量的投影?
1、怎样求投影向量的坐标。 2、怎么求向量在坐标轴上的投影。 3、用坐标求投影向量。 4、投影向量怎么用坐标表示。1.坐标向量的投影设点A(x1,y1,z1),B(x2,y2,z2),向量AB=(x2-x1,y2-y1,z2-z1),它在XOY面上的投影=(x2-x1,y2-y1,0),它在YOZ面上的投影=(0,y2-y1,z2-z1),它在XOZ面上的投影=(x2-x1,0,z2-z1)。 2.在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小(magnitude)和方向的量。 3.它可以形象化地表示为带箭头的线段。 4.箭头所指:代表向量的方向。 5.线段长度:代表向量的大小。 6.和向量对应的量叫做数量(物理学中称标量),数量(或标量)只有大小,没有方向。 7.向量的记法:印刷体记作黑体(粗体)的字母(如a、b、u、v),书写时在字母顶上加一小箭头“→”。 8.如果给定向量的起点(A)和终点(B),可将向量记作AB(并于顶上加→)。 9.在空间直角坐标系中,也能把向量以数对形式表示,例如xOy平面中(2,3)是一向量。黑桃花2023-05-15 13:52:441
向量怎么投影?
1、怎样求投影向量的坐标。 2、怎么求向量在坐标轴上的投影。 3、用坐标求投影向量。 4、投影向量怎么用坐标表示。1.坐标向量的投影设点A(x1,y1,z1),B(x2,y2,z2),向量AB=(x2-x1,y2-y1,z2-z1),它在XOY面上的投影=(x2-x1,y2-y1,0),它在YOZ面上的投影=(0,y2-y1,z2-z1),它在XOZ面上的投影=(x2-x1,0,z2-z1)。 2.在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小(magnitude)和方向的量。 3.它可以形象化地表示为带箭头的线段。 4.箭头所指:代表向量的方向。 5.线段长度:代表向量的大小。 6.和向量对应的量叫做数量(物理学中称标量),数量(或标量)只有大小,没有方向。 7.向量的记法:印刷体记作黑体(粗体)的字母(如a、b、u、v),书写时在字母顶上加一小箭头“→”。 8.如果给定向量的起点(A)和终点(B),可将向量记作AB(并于顶上加→)。 9.在空间直角坐标系中,也能把向量以数对形式表示,例如xOy平面中(2,3)是一向量。Jm-R2023-05-15 13:52:441
向量投影的公式
向量a与b夹角为@则,在上的射影大小为:|b|=|a|*cos@北有云溪2023-05-15 13:52:443
投影向量的公式是什么?
向量a在向量b方向上的投影=(a.b)/|b|| a |*cosΘ叫做向量a在向量b上的投影向量a·向量b=| a |*| b |*cosΘ(Θ为两向量夹角)| b |*cosΘ叫做向量b在向量a上的投影投影 (tóuyǐng),数学术语,指图形的影子投到一个面或一条线上。扩展资料:设两个非零向量a与b的夹角为θ,则将|b|·cosθ 叫做向量b在向量a方向上的投影或称标投影由定义可知,一个向量在另一个向量方向上的投影是一个数量。当θ为锐角时,它是正值;当θ为直角时,它是0;当θ为钝角时,它是负值;当θ=0°时,它等于|b|;当θ=180°时,它等于-|b|。设单位向量e是直线m的方向向量,向量AB=a,作点A在直线m上的射影A",作点B在直线m上的射影B",则向量A"B" 叫做AB在直线m上或在向量e方向上的正射影,简称射影。苏州马小云2023-05-15 13:52:441
投影向量有什么用处?
1、怎样求投影向量的坐标。 2、怎么求向量在坐标轴上的投影。 3、用坐标求投影向量。 4、投影向量怎么用坐标表示。1.坐标向量的投影设点A(x1,y1,z1),B(x2,y2,z2),向量AB=(x2-x1,y2-y1,z2-z1),它在XOY面上的投影=(x2-x1,y2-y1,0),它在YOZ面上的投影=(0,y2-y1,z2-z1),它在XOZ面上的投影=(x2-x1,0,z2-z1)。 2.在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小(magnitude)和方向的量。 3.它可以形象化地表示为带箭头的线段。 4.箭头所指:代表向量的方向。 5.线段长度:代表向量的大小。 6.和向量对应的量叫做数量(物理学中称标量),数量(或标量)只有大小,没有方向。 7.向量的记法:印刷体记作黑体(粗体)的字母(如a、b、u、v),书写时在字母顶上加一小箭头“→”。 8.如果给定向量的起点(A)和终点(B),可将向量记作AB(并于顶上加→)。 9.在空间直角坐标系中,也能把向量以数对形式表示,例如xOy平面中(2,3)是一向量。kikcik2023-05-15 13:52:441
向量的投影是什么意思?
投影向量的计算公式:向量a·向量b=|a|*|b|*cosΘ。平面向量是在二维平面内既有方向又有大小的量,物理学中也称作矢量,与之相对的是只有大小、没有方向的数量。平面向量用a,b,c上面加一个小箭头表示,也可以用表示向量的有向线段的起点和终点字母表示。向量投影:投影指图形的影子投到一个面或一条线上。投影就是物体在太阳光的照射下在地面形成的影子。当太阳光与地面垂直时是正投影,这就是线性代数中研究的投影。当物体与地面垂直时,影子长度为0。设两个非零向量a与b的夹角为θ,则将|b|·cosθ叫作向量b在向量a方向上的投影或称标投影。一个向量在另一个向量方向上的投影是一个数量称投影向量。向量积,别称外积、叉积、矢积、叉乘,是在向量空间中向量的二元运算。它的运算结果是一个向量而不是一个标量,并且两个向量的叉积与这两个向量和垂直。其通常应用于物理学光学和计算机图形学中。肖振2023-05-15 13:52:441
平面向量a在b上投影为什么是个坐标
a在b上的投影向量公式坐标表示:|a|*cosΘ叫做向量a在向量b上的投影。向量a·向量b=|a|*|b|*cosΘ。(Θ为两向量夹角)。|b|*cosΘ叫做向量b在向量a上的投影。投影 (tóuyǐng),数学术语,指图形的影子投到一个面或一条线上。数乘:实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa。当λ>0时,λa的方向和a的方向相同,当λ<0时,λa的方向和a的方向相反,当λ = 0时,λa=0。用坐标表示的情况下有:λAB=λ(x2-x1,y2-y1)=(λx2-λx1,λy2-λy1)u投在线2023-05-15 13:52:441
已知向量ab坐标,怎样求投影
1)投影的定义:由a*b=丨a丨丨b丨cosα,求向量a在b上的投影,就是求丨a丨cosα,把丨b丨除过去,得a*b/丨b丨。2)已知向量a,b坐标(x1,y1),(x2,y2),求向量a在b上的投影:运用公式,a*b=x1x2+y1y2+z1z2,丨b丨=根号(x^2+y^2+z^2),代入a*b/丨b|即可。hi投2023-05-15 13:52:441
为啥投影等于向量坐标?
已知向量ab坐标,怎样求投影:就是相当与ab边是斜边,做一个直角三角形就可以了,然后设令一点的坐标,然后根据两向量垂直,可以得到一个等式,然后在取斜边的中点,可以知道中点坐标,因为中点到三个点的距离相等,就可以得到另一个等式,然后将两个联立起来就得到我们要求的在投影上的点的坐标,这样就可以求到投影了。小白2023-05-15 13:52:441
投影向量的计算公式是什么?
| a |*cosΘ叫做向量a在向量b上的投影。向量a·向量b=| a |*| b |*cosΘ(Θ为两向量夹角)。| b |*cosΘ叫做向量b在向量a上的投影。投影 (tóuyǐng),数学术语,指图形的影子投到一个面或一条线上。向量的投影设两个非零向量a与b的夹角为θ,则将|b|·cosθ 叫做向量b在向量a方向上的投影或称标投影。在式中引入a的单位矢量a(A),可以定义b在a上的矢投影。一个向量在另一个向量方向上的投影是一个数量。当θ为锐角时,它是正值;当θ为直角时,它是0;当θ为钝角时,它是负值;当θ=0°时,它等于|b|;当θ=180°时,它等于-|b|。设单位向量e是直线m的方向向量,向量AB=a,作点A在直线m上的射影A",作点B在直线m上的射影B",则向量A"B"叫做AB在直线m上或在向量e方向上的正射影,简称射影。拌三丝2023-05-15 13:52:441
向量投影公式是什么?
向量投影公式为:向量a·向量b=| a |*| b |*cosΘ (Θ为两向量夹角)。平面向量是在二维平面内既有方向(direction)又有大小(magnitude)的量,物理学中也称作矢量,与之相对的是只有大小、没有方向的数量(标量)。平面向量用a,b,c上面加一个小箭头表示,也可以用表示向量的有向线段的起点和终点字母表示。相关信息:物理学中的速度与力的平行四边形概念是向量理论的一个重要起源之一。18世纪中叶之后,欧拉、拉格朗日、拉普拉斯和柯西等的工作,直接导致了在19世纪中叶向量力学的建立。同时,向量概念是近代数学中重要和基本的概念之一,有着深刻的几何背景。它始于莱布尼兹的位置几何。现代向量理论是在复数的几何表示这条线索上发展起来的。18世纪,由于在一些数学的推导中用到复数,复数的几何表示成为人们探讨的热点。哈密顿在做3维复数的模拟物的过程中发现了四元数。随后,吉布斯和亥维赛在四元数基础上创造了向量分析系统,最终被广为接受。人类地板流精华2023-05-15 13:52:441
a(1,2)在b(-2,4)上的投影向量为?用坐标表示。
向量a在向量b上的投影向量=[(a*b)/|b|^2]*b=[(-2+8)/(4+16)]*(-2,4)=(3/10)*(-2,4)=(-3/5,6/5)Chen2023-05-15 13:52:441
投影向量定义是什么?
ab (a,b是向量)ab=|a||b|cos<a,b>a在b上的投影就是|a|cos<a,b>同理,b在a上的投影就是|b|cos<a,b>令投射线通过点或其他物体,向选定的投影面投射,并在该面上得到图形的方法称为投影法。设两个非零向量a与b的夹角为θ,则将|b|·cosθ 叫做向量b在向量a方向上的投影或称标投影。wpBeta2023-05-15 13:52:442
高二数学投影向量公式
投影向量的计算公式:向量a·向量b=|a|*|b|*cosΘ。平面向量是在二维平面内既有方向又有大小的量,物理学中也称作矢量,与之相对的是只有大小、没有方向的数量。平面向量用a,b,c上面加一个小箭头表示,也可以用表示向量的有向线段的起点和终点字母表示。向量投影:投影指图形的影子投到一个面或一条线上。投影就是物体在太阳光的照射下在地面形成的影子。当太阳光与地面垂直时是正投影,这就是线性代数中研究的投影。当物体与地面垂直时,影子长度为0。设两个非零向量a与b的夹角为θ,则将|b|·cosθ叫作向量b在向量a方向上的投影或称标投影。一个向量在另一个向量方向上的投影是一个数量称投影向量。向量积,别称外积、叉积、矢积、叉乘,是在向量空间中向量的二元运算。它的运算结果是一个向量而不是一个标量,并且两个向量的叉积与这两个向量和垂直。其通常应用于物理学光学和计算机图形学中。LuckySXyd2023-05-15 13:52:441
向量投影公式是什么?
向量投影公式为:向量a·向量b=| a |*| b |*cosΘ (Θ为两向量夹角)。平面向量是在二维平面内既有方向(direction)又有大小(magnitude)的量,物理学中也称作矢量,与之相对的是只有大小、没有方向的数量(标量)。平面向量用a,b,c上面加一个小箭头表示,也可以用表示向量的有向线段的起点和终点字母表示。相关信息:物理学中的速度与力的平行四边形概念是向量理论的一个重要起源之一。18世纪中叶之后,欧拉、拉格朗日、拉普拉斯和柯西等的工作,直接导致了在19世纪中叶向量力学的建立。同时,向量概念是近代数学中重要和基本的概念之一,有着深刻的几何背景。它始于莱布尼兹的位置几何。现代向量理论是在复数的几何表示这条线索上发展起来的。18世纪,由于在一些数学的推导中用到复数,复数的几何表示成为人们探讨的热点。哈密顿在做3维复数的模拟物的过程中发现了四元数。随后,吉布斯和亥维赛在四元数基础上创造了向量分析系统,最终被广为接受。Ntou1232023-05-15 13:52:441
已知向量ab坐标,怎样求投影
1)投影的定义:由a*b=丨a丨丨b丨cosα,求向量a在b上的投影,就是求丨a丨cosα,把丨b丨除过去,得a*b/丨b丨。2)已知向量a,b坐标(x1,y1),(x2,y2), 求向量a在b上的投影: 运用公式,a*b=x1x2+y1y2+z1z2,丨b丨=根号(x^2+y^2+z^2),代入a*b/丨b|即可。苏州马小云2023-05-15 13:52:441
向量的投影是什么?
向量的投影是一个向量在另一个向量方向上的投影是一个数量。当θ为锐角时,它是正值;当θ为直角时,它是0;当θ为钝角时,它是负值;当θ=0°时,它等于|b|;当θ=180°时,它等于-|b|。设单位向量e是直线m的方向向量,向量AB=a,作点A在直线m上的射影A",作点B在直线m上的射影B",则向量A"B"叫做AB在直线m上或在向量e方向上的正射影,简称射影。向量A"B"的模|A"B"|=|AB|·|cos〈a,e〉|=|a·e|。行列式的值是一个数字,表示向量所在空间的元素大小。在平面直角坐标系中,整个平面可以由长宽均为1的方格构成,这个方格的大小为1。这个方格就是平面直角坐标系中的元素,大小为1。因为方向不能比较大小,所以向量也就不能比较大小。对于向量来说“大于”和“小于”的概念是没有意义的。当用有向线段表示向量时,起点可以任意选取。任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段的起点无关.同向且等长的有向线段都表示同一向量。真颛2023-05-15 13:52:441
如何用向量公式表示向量a在向量b上的投影?
a在b上的投影向量公式坐标表示:|a|*cosΘ叫做向量a在向量b上的投影。向量a·向量b=|a|*|b|*cosΘ。(Θ为两向量夹角)。|b|*cosΘ叫做向量b在向量a上的投影。投影 (tóuyǐng),数学术语,指图形的影子投到一个面或一条线上。数乘:实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa。当λ>0时,λa的方向和a的方向相同,当λ<0时,λa的方向和a的方向相反,当λ = 0时,λa=0。用坐标表示的情况下有:λAB=λ(x2-x1,y2-y1)=(λx2-λx1,λy2-λy1)。Ntou1232023-05-15 13:52:441
投影向量怎么求公式?
投影向量的公式:向量a·向量b=| a |*| b |*cosΘ (Θ为两向量夹角)。在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小(magnitude)和方向的量。它可以形象化地表示为带箭头的线段。公式就是用数学符号表示各个量之间的一定关系(如定律或定理)的式子。具有普遍性,适合于同类关系的所有问题。 在数理逻辑中,公式是表达命题的形式语法对象,除了这个命题可能依赖于这个公式的自由变量的值之外。 投影向量向量在三维空间中的各个方向的投影,最有代表性的有二个方向的投影,即垂直方向、水平方向。其它方向投影可以利用解直角三角形,转化为这两个方向上的投影。人类地板流精华2023-05-15 13:52:441
向量在向量上的投影公式是什么?
A在B上的投影为【a】cos@=b的模分之ab的积 @为夹角人类地板流精华2023-05-15 13:52:432
如何理解向量的投影?
a在b的投影向量公式如下:| a |*cosΘ叫做向量a在向量b上的投影。向量a·向量b=| a |*| b |*cosΘ(Θ为两向量夹角)。| b |*cosΘ叫做向量b在向量a上的投影。当一个向量在另一个向量方向上投影时:设两个非零向量a与b的夹角为θ,则将|b|·cosθ 叫做向量b在向量a方向上的投影或称标投影。在式中引入a的单位矢量a(A),可以定义b在a上的矢投影。由定义可知,一个向量在另一个向量方向上的投影是一个数量。当θ为锐角时,它是正值;当θ为直角时,它是0;当θ为钝角时,它是负值;当θ=0°时,它等于|b|;当θ=180°时,它等于-|b|。小菜G的建站之路2023-05-15 13:52:431
向量的投影公式及说明?画图来给我讲解好么
非零平面向量a和b:a在b方向上的投影:|a|cos<a,b>=a·b/|b|b在a方向上的投影:|b|cos<a,b>=a·b/|a|投影是个数量,可正可负,也可等于0a⊥b时,投影等于0a与b同向时,a在b方向上的投影:|a|b在a方向上的投影:|b|a与b反向时,a在b方向上的投影:-|a|b在a方向上的投影:-|b|<a,b>为锐角时,投影为正<a,b>为钝角时,投影为负图很简单,自己随便画画就可以了真颛2023-05-15 13:52:431
向量a在向量b方向上的投影是什么?
a在b方向上的投影公式:向量a·向量b=|a|*|b|*cosΘ(Θ为两向量夹角),|b|*cosΘ叫做向量b在向量a上的投影,|a|*cosΘ叫做向量a在向量b上的投影。一个向量在另一个向量方向上的投影是一个数量。当θ为锐角时,它是正值;当θ为直角时,它是0;当θ为钝角时,它是负值;当θ=0°时,它等于|b|;当θ=180°时,它等于-|b|。应用从初中数学的角度来说,一般地,用光线照射物体,在某个平面(地面、墙壁等)上得到的影子叫做物体的投影,照射光线叫做投影线,投影所在的平面叫做投影面。有时光线是一组互相平行的射线,例如太阳光或探照灯光的一束光中的光线。由平行光线形成的投影是平行投影。由同一点(点光源发出的光线)形成的投影叫做中心投影。投影线垂直于投影面产生的投影叫做正投影。投影线不垂直于投影面产生的投影叫做斜投影。物体投影的形状、大小与它相对于投影面的位置和角度有关。北境漫步2023-05-15 13:52:431
向量在坐标轴的投影有没有方向?
一个向量在另一个向量上的投影是一个标量; 方向到是没有,但有正负; 向量a在ox轴的方向上的投影就是a向量的模乘以夹角的余弦;九万里风9 2023-05-15 13:52:431
一个向量在另一个向量上的投影向量怎么求
向量a在向量b的投影向量为 向量a×cos<a,b>,其中cos<a,b>表示向量a和向量b夹角的余弦值人类地板流精华2023-05-15 13:52:435
向量在另一个向量上的投影是什么?
向量在另一个向量上的投影就是向量在另一向量夹角上投影的长度。已知非零向量a和b,其夹角为θ,那么向量a在向量b上的射影长=|向量a|*cosθ,其中:|向量a|是指向量a的模(大小)。向量的投影计算:如果不垂直,我们的方法是将两个向量在不变其所在平面的情况下变垂直。然后再将向量向新的互相垂直的基底所在平面射影,而这种变垂直的方法叫做施密特正交化。那如果拓展到向四个,五个向量所在空间的射影,那就是类似上面的方法:先施密特正交化,然后再对每个新的垂直的向量射影相加即可。tt白2023-05-15 13:52:431
向量的投影是什么?
向量的投影是一个向量在另一个向量方向上的投影是一个数量1、设两个非零向量a与b的夹角为θ则将b·cosθ叫做向量b在向量a方向上的投影或称标投影(scalar projection)。2、在式中引入a的单位矢量aA、可以定义b在a上的矢投影(vector projection)。3、由定义可知、一个向量在另一个向量方向上的投影是一个数量。4、当θ为锐角时、它是正值、当θ为直角时、它是0、当θ为钝角时、它是负值、当θ=0°时、它等于b、当θ=180°时它等于b。5、设单位向量e是直线m的方向向量、向量AB等于a、作点A在直线m上的射影A,作点B在直线m上的射影B,则向量AB叫做AB在直线m上或在向量e方向上的正射影,简称射影。6、向量是几何的工具是解题的方法、也是一种思想向量本身蕴含着几何意义、因此利用几何分析是理所应当简称射影。此后故乡只2023-05-15 13:52:431
一个向量在x轴,y轴上的投影怎么求
向量可以表示为(a,b)令b=0就是x轴的投影令a=0就是y轴投影余辉2023-05-15 13:52:432
如何证明向量在坐标轴上的投影
1.若已知向量a的坐标为(m,n),那么a在x轴上的投影就是m,在y轴上的投影就是n。2.若已知向量a的模长及其与x轴的夹角t,则向量a在x轴上的投影为|a|cost,在y轴上的投影为|a|sint真颛2023-05-15 13:52:431
空间向量在坐标轴上投影怎么算?
一个向量在另一个向量上的投影既不是向量也不是长度,而是一个实数,其绝对值是长度。公式:a 在 b 上的投影 = a•b /|b|b在a上的投影=a•b/|a|meira2023-05-15 13:52:431