离散型随机变量的取值有什么要求
有阿啵呲嘚2023-05-26 08:18:264
离散型随机变量分布函数性质证明
It is depends on how you define your cumulative distribution function (cdf)...In some textbook, they define the cdf as:F(x)=P(X<x), then this function should be left continuousIn some other books, you may see the def of cdf is:F(x)=P(X<or=x), then the function should be right continuousThis problem is not just for discrete random variables, but this difference in definition has a larger influence to discrete r.v., because for discrete r.v., the probability is not zero for a single point, i.e. P(X=x) is not 0, while it is 0 for continuous r.v.wpBeta2023-05-26 08:18:263
离散型随机变量
P(ξ=7)=P(X1=7)P(X2 =7)=0.04P(ξ=8)=P(X1=8)P(X2 =8)+P(X1=7)P(X2 =8)+P(X1=8)P(X2 =7)=0.21P(ξ=9)=P(X1=9)P(X2 =9)+P(X1=7)P(X2 =9)+P(X1=9)P(X2 =7)+P(X1=8)P(X2 =9)+P(X1=9)P(X2 =8)=0.39P(ξ=10)=P(X1=10)P(X2 =10)+P(X1=10)P(X2 =9)+P(X1=9)P(X2 =10)+P(X1=8)P(X2 =10)+P(X1=10)P(X2 =8)+P(X1=10)P(X2 =7)+P(X1=7)P(X2 =10)=0.36数学期望按定义做。左迁2023-05-26 08:18:261
什么是离散型随机变量
问题一:什么是离散型随机变量 所有取值可以一一列出的随机变量称为离散型随机变量 例如某网页24小时内被浏览的次数Y为随机变量 离散随机变量是指随机变量的取值有限多个或者可数多个,可以像自然数那么多个。 问题二:离散型随机变量和连续型随机变量分别是什么意思哦?有区别吗? 离散型随机变量只可能出现可数型的实现值,比如自然数集,{0,1}等等,常见的有二项随机变量,泊松随机变量等。 连续型随机变量的实现值是属于不可数 *** 的,比如(0,1],实数集,常见的有正态分布,指数分布,均匀分布等。 这里涉及 *** 论里可数和不可数的概念,如果你没学过,讲简单点,前者可能出现的数值你是可以掰着手指头一个一个数的,但是后者却是不可能的。 问题三:什么是离散型随机变量 定义1 如果随机变量X只可能取有限个或至多可列个值,则称X为离散型随机变量。 定义2 设X为离散型随机变量,它的一切可能取值为X1,X2,……,Xn,……,记 P=P{X=xn},n=1,2……(2.1) 称(2.1)式为X的概率函数,又称为X的概率分布,简称分布。 离散型随机变量的概率分布有两条基本性质: (1)Pn≥0 n=1,2,… (2)∑pn=1 问题四:离散型随机变量与连续型随机变量有什么区别? 离散型随机变量取值只能是点 连续型随机变量取值可以是任意值。 问题五:什么是离散型随机变量? 对于随机变量可能取得值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量。 问题六:离散型随机变量与连续型随机变量的区别与特点~ 先说一个熟悉的内容,数列与函数。 当然数列也是函数,但它的取值是自然数,取值是离散的, 而一般的函数取值是某一个区间,在这区间内取值往往是可以连续的。 离散型随伐变量与连续型随机变量也是由随机变量取值范围(或说成取值的形式)确定, 变量取值只能取离散型的自然数,就是离散型随机变量, 比如,一次掷20个硬币,k个硬币正面朝上, k是随机变量, k的取值只能是自然数0,1,2,…,20,而不能取小数3.5、无理数√20, 因而k是离散型随机变量。 如果变量可以在某个区间内取任一实数,即变量的取值可以是连续的,这随机变量就称为连续型随机变量, 比如,公共汽车每15分钟一班,某人在站台等车时间x是个随机变量, x的取值范围是[0,15),它是一个区间,从理论上说在这个区间内可取任一实数3.5、√20等,因而称这随机变量是连续型随机变量。 问题七:离散型随机变量的取值有什么要求 定义:若随机变量X只取有限多个或可列无限多个值,则称X为离散型随机变量.比如投一个色子出现的点数X,取值范围是{1,2,3,4,5,6};110报警台一天接到的报警次数Y,取值范围为{0,1,2……} 问题八:连续型和离散型随机变量该怎么区分 先说一个熟悉的内容,数列与函数。 当然数列也是函数,但它的取值是自然数,取值是离散的, 而一般的函数取值是某一个区间,在这区间内取值往往是可以连续的。 离散型随机变量与连续型随机变量也是由随机变量取值范围(或说成取值的形式)确定, 变量取值只能取离散型的自然数,就是离散型随机变量, 比如,一次掷20个硬币,k个硬币正面朝上, k是随机变量, k的取值只能是自然数0,1,2,…,20,而不能取小数3.5、无理数√20, 因而k是离散型随机变量。 如果变量可以在某个区间内取任一实数,即变量的取值可以是连续的,这随机变量就称为连续型随机变量, 比如,公共汽车每15分钟一班,某人在站台等车时间x是个随机变量, x的取值范围是[0,15),它是一个区间,从理论上说在这个区间内可取任一实数3.5、√20等,因而称这随机变量是连续型随机变量。再也不做站长了2023-05-26 08:18:251
什么是离散型随机变量 离散型随机变量指的是什么
1、随机变量分为离散型随机变量与 非离散型随机变量两种,随机变量的函数仍为随机变量。有些随机变量,它全部可能取到的不相同的值是有限个或可列无限多个,也可以说概率1以一定的规律分布在各个可能值上。这种随机变量称为离散型随机变量。 2、如果随机变量X只可能取有限个或至多可列个值,则称X为离散型随机变量。西柚不是西游2023-05-26 08:18:251
如何区分离散型和连续性随机变量
取值有限或可列的,是离散型随机变量、取值范围是数轴上某个连续区间的,就是连续型随机变量。大鱼炖火锅2023-05-26 08:18:255
离散型随机变量的特点
散变量的特点是:变量按其数值表现是否连续,分为连续变量和离散变量。连续变量的数值是连接不断的,相邻两值之间可作无限分割。1、基本知识:变量按其数值表现是否连续,分为连续变量和离散变量。离散变量指变量值可以按一定顺序一一列举,通常以整数位取值的变量。如职工人数、工厂数、机器台数等。有些性质上属于连续变量的现象也按整数取值,即可以把它们当做离散变量来看待。2、离散变量的概率分布:常用的有二项分布、泊松(Poisson)分布。其余的还有两点分布、几何分布、超几何分布等概率分布。3、二项分布:二项分布是基于贝努里(Bernoulli)试验的分布。贝努里试验是一种重要的概率模型。是历史上最早研究的概率论模型之一。有下面两个特点的试验称为贝努里试验。4、泊松分布:若在大量的贝努里试验中,P(A)=p很小,则称这种概率模型为稀有事件概率模型。生三胞胎次数、患癌症人数、自然死亡人数、显微镜下微粒个数、放射粒子个数、大量产品中的次品数、摇奖中的一等奖等,都是稀有事件概率模型。大鱼炖火锅2023-05-26 08:18:251
离散型随机变量和连续型随机变量的区别是什么?
一、概念不同1、离散型随机变量:如果随机变量X只可能取有限个或至多可列个值,则称X为离散型随机变量。2、连续型随机变量:连续型随机变量是指如果随机变量X的所有可能取值不可以逐个列举出来,而是取数轴上某一区间内的任一点的随机变量。二、特点不同1、离散型随机变量:变量取值只能取离散型的自然数,就是离散型随机变量。2、连续型随机变量:当提到一个随机变量X的概率分布,指的是它的分布函数,当X是连续型时指的是它的概率密度,当X是离散型时指的是它的分布规律。举例:比如,公共汽车每15分钟一班,某人在站台等车时间x是个随机变量。x的取值范围是[0,15),它是一个区间,从理论上说在这个区间内可取任一实数3分钟、5分钟7毫秒、7√2分钟,在这十五分钟的时间轴上任取一点,都可能是等车的时间,因而称这随机变量是连续型随机变量。小白2023-05-26 08:18:251
随机变量x的所有可能取值
根据概率公理化定义,所有随机变量取值的概率加起来应该是1,上面那个X可以去n个值,则a+2a+3a+.+na=1,即a*n(n+1)/2=1;所以可得a=2/n(n+1)康康map2023-05-26 08:18:211
设随机变量X的所有可能取值为1,2,...,n,且P{X=K}=ak(k=1,2,...,n),则a=?
额大鱼炖火锅2023-05-26 08:18:192
随机变量之和的概率分布:卷积定理的简单应用
我们在 《一个最大化条件概率问题》 一文中提到,为了满足商品采购业务的需要,我们首先预测每一天的需求所服从的概率分布,然后计算若干天总需求所服从的概率分布。那么,如何将日需求的分布转化为总需求的分布呢? 考虑一组独立的随机变量 ,令 则 也就是说,多个随机变量的和总可以还原回两个随机变量的和的情况。因此,我们只需要知道如何计算两个随机变量的和的分布就可以了。 假设 和 是两个独立的随机变量,令 。 卷积怎么算呢?根据定义直接算,可以,但没必要。复习一下卷积定理: 对于离散型随机变量,我们只需要用 FFT 算法计算 和 的概率质量函数的离散傅里叶变换,然后作乘积,再作一次逆变换,即可求得 的概率质量函数。对于连续型随机变量,则可以先离散化,然后用上述方法近似求解 的概率密度函数。 作为调包工程师,我们直接调用 scipy.signal.fftconvolve 实现来上述操作。 我们来验证一下。 假设 , ,则 。 再看一个例子。 考虑一组独立的随机变量 ,满足 ,即每个 均服从成功概率 的伯努利分布。令 ,即 是 100 次独立重复试验中成功的次数。根据定义, 服从二项分布。 最后看看实际计算总需求时的效果: 附上卷积定理的简单推导: 考虑函数 和 ,以及它们的卷积 。 和 的傅里叶变换分别为而 的傅里叶变换为 令 ,则 ,苏州马小云2023-05-23 19:24:461
如何求一个随机变量的概率密度函数
概率密度函数是针对连续性随机变量而言的,假设对于连续性随机变量x,其分布函数为f(x),概率密度为f(x)。首先,对于连续性随机变量x,其分布函数f(x)应该是连续的,然而你给出的这个函数在x=-1,x=1点都不连续,所以是没有概率密度函数的,可能你在求解分布函数的时候求错了。如果f(x)求正确了,你可以按照下面的思路计算概率密度:由定义f(x)=∫[-∞,x]。f(y)dy可知f"(x)=f(x),也就是分布函数的导数等于概率密度函数,所以你只需要在原来求出的分布函数基础上求导即可得到概率密度函数。简介概率分布函数是概率论的基本概念之一。在实际问题中,常常要研究一个随机变量ξ取值小于某一数值x的概率,这概率是x的函数,称这种函数为随机变量ξ的分布函数,简称分布函数,记作F(x),即F(x)=P(ξ<x) (-∞<x<+∞),由它并可以决定随机变量落入任何范围内的概率。 例如在桥梁和水坝的设计中,每年河流的最高水位ξ小于x米的概率是x的函数,这个函数就是最高水位ξ的分布函数。实际应用中常用的分布函数有正态分布函数、普阿松分布函数、二项分布函数等等。西柚不是西游2023-05-23 12:57:581
概率论 随机变量的密度函数是什么?
连续型随机变量概率分布的讨论是在某个区间上来讨论的,在任何一个定点的概率都是零。而密度函数是来描述连续型随机变量在某点附近取值的密集程度。比如英语考试成绩服从均值为85的正态分布,正态分布的密度函数是在85处取到最大值,也就是表明成绩在85分附近的考生最多。而均匀分布指的是在某个区间上随机变量取值是均等的,比如公交车每个整点10分钟一趟从总站开出,你早上6点30到6点45随机地到车站乘车,到达时间就是一个随机变量,并且是服从均匀分布的,密度函数就是1/15,问你等候时间不超过4分钟的概率是多少?也就是求密度函数在6点36到6点40上的积分,即P=4/15.所以,连续型随机变量在某个区间上的概率,就是密度函数在这个区间上的积分.西柚不是西游2023-05-23 12:57:551
n个服从几何分布的独立同分布随机变量,加起来之后服从什么分布
加起来之后服从离散型概率分布;在n次伯努利试验中,试验k次才得到第一次成功的机率。详细地说,是:前k-1次皆失败,第k次成功的概率。几何分布是帕斯卡分布当r=1时的特例。在伯努利试验中,成功的概率为p,若ξ表示出现首次成功时的试验次数,则ξ是离散型随机变量,它只取正整数,且有P(ξ=k)=(1-p)的(k-1)次方乘以p (k=1,2,…,0<p<1),此时称随机变量ξ服从几何分布。它的期望为1/p,方差为(1-p)/(p的平方)。扩展资料:正态分布是一种很重要的连续型随机变量的概率分布,许多统计分析方法都是以正态分布为基础的。还有不少随机变量的概率分布在一定条件下以正态分布为其极限分布,因此在统计学中,正态分布无论在理论研究上还是实际应用中,均占有重要的地位。关于正态分布的概率计算,先从标准正态分布着手,这是因为一方面标准正态分布在正态分布中形式最简单,而且任意正态分布都可化为标准正态分布来计算;另一方面,人们已经根据标准正态分布的分布函数编制成正态分布表以供直接查用。陶小凡2023-05-23 12:57:531
如何求随机变量X服从几何分布的期望和方差
你好!根据性质,它们和的方差等于各变量方差之和,每个几何分布的方差是(1-p)/p^2,所以总的方差是n(1-p)/p^2。经济数学团队帮你解答,请及时采纳。谢谢!可桃可挑2023-05-23 12:57:511
设随机变量X服从参数为2的指数分布,则E等于多少
设随机变量X服从参数为2的指数分布,则E等于多少?f(x) = 2e^(-2x)EX = 1/2九万里风9 2023-05-23 12:57:373
设随机变量X服从参数为0.5的指数分布,则P{X>E(x)}=___?
密度函数是:f(x)=te^(-tx),E(x)=∫xf(x)dx=∫ txe^(-tx)dx=1/t∫ ye^(-y)dy=1/t,所以E(x)=2。D(x)= E(X − E(X))^2=E(x^2)-E(x)^2=∫tx^2e^(-tx)dx-1/t^2=1/t^2∫y^2e^(-y)dy -1/t^2= 2/t^2-1/t^2=1/t^2,所以D(x)=4。指数函数的一个重要特征是无记忆性。这表示如果一个随机变量呈指数分布,当s,t>0时有P(T>t+s|T>t)=P(T>s)。即,如果T是某一元件的寿命,已知元件使用了t小时,它总共使用至少s+t小时的条件概率,与从开始使用时算起它使用至少s小时的概率相等。扩展资料在概率论和统计学中,指数分布是一种连续概率分布。指数分布可以用来表示独立随机事件发生的时间间隔,比如旅客进机场的时间间隔、中文维基百科新条目出现的时间间隔等等。许多电子产品的寿命分布一般服从指数分布。有的系统的寿命分布也可用指数分布来近似。它在可靠性研究中是最常用的一种分布形式。指数分布是伽玛分布和威布尔分布的特殊情况,产品的失效是偶然失效时,其寿命服从指数分布。指数分布可以看作当威布尔分布中的形状系数等于1的特殊分布,指数分布的失效率是与时间t无关的常数,所以分布函数简单。kikcik2023-05-23 12:57:361
设随机变量X服从参数λ=1的指数分布,求随机变量的函数Y=e^X的密度函数
fx(x)=e^-x,(x>=0)所以Fy(y)=P(Y=e^x<y)=P(0<=x<=lny)所以Fy(y)是上式的积分,为1-1/y,(y>=1)所以fy(y)是上式的导数,为1/y^2,(y>=1),其余为0希望可以帮到你。大鱼炖火锅2023-05-23 12:57:352
为什么指数分布的随机变量X是>0的啊
指数分布常用来模拟产品的寿命,寿命不可能为负值,所以在指数分布中,当x<0时概率密度为0,分布函数也为0。小菜G的建站之路2023-05-23 12:57:341
为什么对于服从指数分布的随机变量函数
1.因为LAMAT的指数分布的数学期望为1/LAMAT,也就是平均值为1/LAMAT. 记住一些特殊分布的期望,方差是有好处的,比如正态分布,平均分布,指数分布,泊松分布等等 2.因为根据题目YOUROU的分布率为P{YOUROU=k}=1/(2^k) k=1,2.,所以 YOUROU=k,为整数,即后面的n,那么sin(YOUROU*PI/2)=sin(nPI/2) 所以只能取-1,0,1 就是说YOUROU是服从离散分布.且YOUROU取1,2,3,4,5,6..时对应的概率是1/1^2,1/2^2...那么YOUROU只能取整数1,2,3,4,5..k. 而可得后面的sin(YOUROU*PI/2)中.因为YOUROU只能取整数1,2,3,4,5..k,所以YOUROU*PI/2只能是kPI,(K+1)PI/2, 而sin(2kPI)=0,sin,(K+1)PI/2=1或者-1 还有不明白的吗?再也不做站长了2023-05-23 12:57:341
设随机变量X服从参数为2的指数分布,则E等于多少
随机变量X服从参数2的指数分布,则期望EX等于1/2。期望等于xf(x)dx在X支集上的积分(其中的f(x)为随机变量X的概率密度),对于服从参数为a的指数分布,概率密度为:当x大于等于0,f(x)=ae^(-ax),当x小于0,f(x)=0。则对于服从任意参数a的指数分布的随机变量X,EX=(x*ae^(-ax)在0到正无穷之间的积分),即EX=1/a,即题目中参数为2的时候,X的期望EX=1/2。扩展资料随机变量的性质:随机变量在不同的条件下由于偶然因素影响,可能取各种不同的值,故其具有不确定性和随机性,但这些取值落在某个范围的概率是一定的,此种变量称为随机变量。随机变量可以是离散型的,也可以是连续型的。如分析测试中的测定值就是一个以概率取值的随机变量,被测定量的取值可能在某一范围内随机变化,具体取什么值在测定之前是无法确定的。但测定的结果是确定的,多次重复测定所得到的测定值具有统计规律性。随机变量与模糊变量的不确定性的本质差别在于,后者的测定结果仍具有不确定性,即模糊性。参考资料:百度百科—随机变量LuckySXyd2023-05-23 12:57:341
设随机变量序列{Xn}独立同服从于U[0,1],问是否服从大数定律?怎么证明
设{Xn}为相互独立的随机变量序列,证明{Xn}服从大数定律。计算出X(n)的分布函数,从而分布密度.(有现成公式)计算P(|X(N)-a|>e)=P(a-ea如果U(0,a)的分布函数是F(x),则Xn的分布函数就是[F(x)]^n。例如:大数定理, 要求i.i.d. ( independently, identically distributed),也即期望相同E(X1) = E(X2) = ...方差相同Var(X1) = Var (X2) = ...题中情况是: E 相同,但是Var 不同,Var(X1) = 0, Var(X2) = ln2。扩展资料:在随机现象的大量重复中往往出现几乎必然的规律,即大数法则。此法则的意义是:风险单位数量愈多,实际损失的结果会愈接近从无限单位数量得出的预期损失可能的结果。据此,保险人就可以比较精确的预测危险,合理的厘定保险费率,使在保险期限内收取的保险费和损失赔偿及其它费用开支相平衡。大数法则是近代保险业赖以建立的数理基础。保险公司正是利用在个别情形下存在的不确定性将在大数中消失的这种规则性,来分析承保标的发生损失的相对稳定性。参考资料来源:百度百科-大数定律此后故乡只2023-05-22 22:50:051
大数定律中的随机变量序列是什么意思
边写,边明白点东西,其中的x1、x2......xn是同一样本点中,x随机变量的分量,即每一次我随机取x中的每一个值,而x1对应一个数值,而这个数值是随机的,取的越多,这些数值的平均值越接近于e(x)不知道是不是这样理解?墨然殇2023-05-22 22:50:052
什么是随机变量的概率分布
随机变量的概率分布 是 概率分布,而不是概率分布函数,很容易迷惑人的, 求概率分布即求其 分布律 或 概率密度函数 ,即求 f 而不是求 F .NerveM 2023-05-22 22:49:551
随机变量概率分布的主要表示方法有什么
随机变量概率分布的主要表示方法有( )。 A.概率分布表 B.概率分布图 C.次数分布列 D.累计频率 E.概率分布函数 查看答案解析 [答案] ABE [解析] 本题考查次数分布理论模型的概念和意义。随机变量的概率分布的表示方法主要有三种,即概率分布表、概率分布图和概率分布函数。Chen2023-05-22 22:49:551
离散型随机变量的概率分布怎么求?
离散型场合的似然函数就是样本取给定的那组观测值的概率(可以由总体的分布列直接写出)连续型场合的似然函数就是样本的联合密度函数在给定的观测值(x_1,x_2,...,x_n)处的表达式。离散型场合:总体分布(实际上是分布列):f(x, a)(=P{X=x}),只不过与参数a有关样本取给定的那组观测值(x_1,x_2,...,x_n)的概率 P{(X_1,X_2,...,X_n)=(x_1,x_2,...,x_n)}=P{X_1=x_1,X_2=x_2...,X_n=x_n}=P{X_1=x_1}P{X_2=x_2}...P{X_n=x_n}=f(x_1, a)f(x_2, a)...f(x_n, a)(因为样本的分量与总体同分布)=L(x,a)(似然函数)连续的就是联合密度利用独立性写成各分量密度的乘积。扩展资料:如果随机变量X只可能取有限个或至多可列个值,则称X为离散型随机变量。设X为离散型随机变量,它的一切可能取值为X1,X2,……,Xn,……,记P=P{X=xn},n=1,2...称上式为X的概率函数,又称为X的概率分布,简称分布。离散型随机变量的概率分布有两条基本性质:(1)Pn≥0 n=1,2,…(2)∑pn=1参考资料来源:百度百科-离散型随机变量ardim2023-05-22 22:49:551
随机变量的概率分布
列出离散型随机变量X的所有可能取值;列出随机变量取这些值的概率 P(X =x i )=p i 称为离散型随机变量的概率函数 常用的有二项分布、泊松分布、超几何分布等 连续型随机变量可以取某一区间或整个实数轴上的任意一个值 它取任何一个特定的值的概率都等于0,不能列出每一个值及其相应的概率 通常研究它取某一区间值的概率,用概率密度函数的形式和分布函数的形式来描述 用概率密度函数的形式和分布函数的形式来描述 由C.F.高斯(Carl Friedrich Gauss,1777—1855)作为描述误差相对频数分布的模型而提出 描述连续型随机变量的最重要的分布 许多现象都可以由正态分布来描述,可用于近似离散型随机变量的分布(例如: 二项分布),是经典统计推断的基础 随机变量具有均值为0,标准差为1的正态分布 任何一个一般的正态分布,可通过下面的线性变换转化为标准正态分布 数据正态性的评估 t 分布是类似正态分布的一种对称分布,通常要比正态分布平坦和分散。一个特定的分布依赖于称之为自由度的参数。随着自由度的增大,分布也逐渐趋于正态分布 设X~N(μ,σ 2 ),则 z= (X-μ)/σ~N(0,1) 令Y=z 2 ,则 y 服从自由度为1的χ2分布,即Y~χ2(1) 对于n个正态随机变量y 1 ,y 2 ,y n ,则随机变量χ2称为具有n个自由度的χ2分布,记为X~χ2 性质和特点 设若U为服从自由度为n1的χ2分布,即U ~ χ2(n1),V为服从自由度为n2的χ2分布,即V ~ χ2(n2),且U和V相互独立,则 称F为服从自由度n1和n2的F分布,记为 F ~ F(n 1 ,n 2 ) 在重复选取容量为n的样本时,由样本均值的所有可能取值形成的相对频数分布 是一种理论概率分布,推断总体均值μ的理论基础 当总体服从正态分布N(μ,σ2)时,来自该总体的所有容量为n的样本的均值▔x也服从正态分布,▔x 的期望值为μ,方差为σ2/n。即▔x~N(μ,σ 2 /n) 在重复选取容量为n的样本时,由样本方差的所有可能取值形成的相对频数分布 对于来自正态总体的简单随机样本,则比值 的抽样分布服从自由度为 (n -1) 的χ2分布,即九万里风9 2023-05-22 22:49:531
统计学第三课:随机变量的概率分布
!!!!!!!!!!概率论非常重要!!!!!!!!!! 世界万物的不确定性如何衡量和表示呢?在统计学里用概率表示。 比如有这么几句话: 对事件发生的可能性的度量就是概率。概率介于0-1之间,用百分比的方式度量可能性大小。在古典概率的定义中,因为一个事件发生的可能性事先无法知道,所以我们可以通过多次试验获得某个观测结果发生的频率p,p就是代表了发生的概率的大小。 比如我们想知道通过试验后A发生的概率,那么我们可以做n次试验,看n次实验中记录发生A事件的次数,于是会有下面的结论: P(A) =A发生的次数÷重复试验的总次数 =m÷n =p 随着试验次数的增多,m、n会围绕一个稳定的频率上下波动 另一个例子,如何理解“硬币出现正面的概率P(A)=1/2”: 错误——抛掷多次硬币,其中有一半的硬币出现了正面结果 正确——在对硬币连续多次的抛掷中,硬币出现正面结果的概率接近或几乎稳定于一半儿(50%) 以上例子都是基于可以进行重复实验做的例子。但现实生活中很多例子没有办法进行多次重复,也正是因为这样,我们可以使用生活中已经发生的信息索求发生概率。所以概率其实是主观的,他是根据我们生活中的经验,掌握的信息进行统计意义上的求解,至于概率高低的好与坏,全凭分析者对源于生活中的判断。 实际生活中很多概率结果事先不知道,可以通过一种分布模型去确认这个时间发生的概率。 生活中要进行观测时,取值无法事先了解,比如出租房屋的价格,小学生的身高,这就是随机变量。换句话说,随机变量指的是实现不知道取值的那些变量,而性别变量事先知道取值有男、女,所以不是随机变量。随机变量表达了某特定实验可能出现的结果,由于结果未知,取值有随机性。比如抛掷硬币前,你知道你抛掷出来的结果是正面还是反面嘛?(通常意义是不会的) 取有限个值的变量为离散型随机变量。比如喜欢某个品牌的人数是一个有限固定的变量值。 可以取一个或多个区间中的值为连续型随机变量。比如机器产能数量理论上是无限个(也就是X≥0),任何一个结果都有可能。 对随机变量来说也有统计量来表述其水平和离散程度。水平的统计量成为期望值,离散的统计量成为方差,都是随机变量的概括性度量。 X所有可能的xi(i=1,2…)取值与其相应的概率pi(i=1,2…)的乘积之和,记为μ或者E(X)。 (xi-μ)的平方与其相应的概率pi乘积之和,用σ^2(西格玛二次方)或者D(X)表示。他的标准差就是σ。 如果已知某厂家每100个产品中不合格率,并测试了4次,得到4个不合格概率p,如下表:随机变量取哪些值,这些值的概率有多大,描述这个特征的就是概率分布。 常用的离散型概率分布有:二项分布、泊松分布、超几何分布; 常用的连续型概率分布有:正态分布、均匀愤怒、指数分布等 离散型概率分布的性质有两个:每个随机变量的概率≥0、随机变量概率相加后概率之和等于1. 二项分布有几种条件: 在n次试验中,成功的次数对应了一个离散随机变量X,所以出现称公司数的概率愤怒就是二项分布,记作X~B(n,p)。 当p=0.5时,概率分布对称,当p=0.1时,概率分布右偏,当p=0.9时,概率分布左偏 如果我们把实验做到极限大,几乎世间万物都服从正态分布。所以很多连续总体未知时,我们也可以假设该总体服从正态分布进行分析。从正态分布推到的其他常用的分布有:卡方分布、t分布、F分布等。 在正态分布下,不同的均值和方差对应了不同的正态分布。如果方差相同均值不同,分布图hi在X轴上以同等面积和离散程度进行水平移动;如果均值相同方差不同,则分布图会在同一个水平位置上,有不同面积的大小。 所以我们说: 再次说明一个需要熟记的数字: n个独立标准正态随机变量平方和的分布,成为有n个自由度的卡方分布,卡方就是x的平方(x2)。设标准正态随机变量X=Z,则X服从自由度为1的卡方分布。 卡方分布的形状取决于自由度n的大小。通常情况卡方分布不对称的右偏分布,但是随着自由度变大,会逐渐趋于对称。 t表示样本均值经过标准化后成为新的随机变量,服从自由度为n的t分布。同样也是类似于正态分布的对称分布,通常形状会比正态分布更平坦和分散,自由度越大,t分布越趋近于正态分布。 F分布是两个卡方分布变量的比。比如两个随机变量U、V,平方后为卡方变量n1、n2,F=n1/n2。F分布与卡方分布类似,形状取决于两个自由度。通常用于比较不同总体的方差是否有显著差异,F分布的概率即曲线下的面积的计算,可以给定自由度df1、df2时计算累计概率,或者给定累计概率与自由度df1、df2时的F值。 生活中经常要做一些推断,比如北京市的平均男性身高是多少。你不可能把这个地区所有男性都普查一遍的。所以你需要从这个地区抽出一部分样本进行推断,用于做抽取数据推断的统计量我们常用的有:样本均值(x拔)、样本比例(p)、样本方差(s^2). 如上文所说,北京市的平均男性身高就是总体参数,他是对总体特征的概括性度量。不过参数一般都是不知道的,我们依然可以定义总体的统计量:总体均值(μ)、总体方差(σ^2)、总体比例(π)。 虽然总体参数未知,但是样本信息可以推断总体,我们从总体以抽取的数据量就是一个统计量,这个统计量就是样本的函数,可见,随着抽样取值的不同,统计量也会因此变化,换句话说统计量是一个随机变量,只要收取一个特定的样本后,统计量的值就会被计算出来。 样本统计量既然是随机变量,那么也会有概率分布,这里我们称为抽样分布,它由样本统计量的所有可能取值形成一个频数分布。但我们知道抽样是不可能把总体全部抽到的,所以,统计量的概率分布实际上是理论意义的分布。因为用它来推断总体会有不确定性,但我们依然可以度量这种不确定性的可靠程度,同时还能知道这些不确定的分布特征。 直接上结论。在有放回抽样中,样本均值=总体均值,样本均值的方差=总体方差的1/n。这就是很著名的中心极限定理。 样本均值的分布与抽样所依据的总体的分布和样本量n的大小有关系。如果总体是正态分布,无论样本量大和小,样本均值都近似服从正态分布。如果总体不是正态分布,随着样本量n的增大(通常n需要≥30),样本均值近似服从期望值为μ、方差为总体方差的1/n,这就是很著名的中心极限定理。 注意,如果总体不是正态分布,n为小样本(n小于30),样本均值则不服从正态分布。 总结: 指的总体或样本具有某种属性的个体与全部个体之和的比值。比如中国国籍的人中,男性占全部中国国际人数的比例。 从一个总体中重复选取样本量n的样本,有样本比例的所有可能取值形成的分布就是样本比例的概率分布。 样本方差的分布与卡方类似,随着样本量的增大,逐渐趋近于对称。 对两个总体的参数进行估计: 统计量的标准误指的是统计量的标准差,也叫做标准误差。用于衡量样本统计量的离散程度,在参数估计和假设检验中,它是用于衡量样本统计量与总体参数之间差距的重要尺度。样本均值的标准误差记作SE或者σ x拔,计算公式为SE=σ x拔=σ/开方n。 当总体标准差σ未知的时候,可以用样本标准差s代替计算,这时候计算的标准误也成为估计标准误。实际生活中,总体方差通常未知,所以计算的标准误基本上都是估计标准误,这么一来我们经常就把估计标准误简称为标准误。 注意:标准误和标准差是两个不同的概念。gitcloud2023-05-22 22:49:511
“随机变量序列”是什么?
随机变量序列的例子:(1)最简单的独立、同分布的情形(X1 骰子1的点数,X2 骰子2的点数,X3 骰子3的点数.....)第一轮,每个骰子依次随机掷一下,取值可能是62315....,会有平均值A,当n无穷大时A会趋于μ=3.5。第二轮,每个骰子依次随机掷一下,取值可能是25426.....,会有平均值B,当n无穷大时B会趋于μ=3.5。然后进行无数轮...。通过求AB....这些均值们的期望、方差,利用切比雪夫不等式,可以证明切比雪夫大数定律的独立同分布情形。(2)一般的情形,不同的事物和不同的量级都可以构成一个随机变量序列(X1身高、X2太阳系行星的质量、X3网店的日访客数.....,参见b站小元老师的视频)第一轮,每个随机变量随机产生一个值,会有平均值α,当n无穷大时α回趋于各随机变量的μ们的平均值。第二轮,每个随机变量随机产生一个值,会有平均值β,当n无穷大时α回趋于各随机变量的μ们的平均值。然后进行无数轮...。通过求αβ...这些均值们的期望、方差,可以证明切比雪夫大数定律的一般情形。(证明过程可参见郑州轻工业大学概率论与数理统计MOOC)理解了切比雪夫大数定律,就能理解辛钦大数定律。(更加通俗的解释和例题,可以参见山东大学概率论与数理统计的MOOC)北境漫步2023-05-22 22:49:502
随机变量同分布什么意思
两个随机变量同一分布是什么意思?(概率论中)就是服从同一分布,有相同的数字特征 再问: 就是分布列也是一模一样吗?再答: 对善士六合2023-05-22 22:49:503
随机变量的函数仍然是随机变量。
随机变量的函数仍然是随机变量。 A.正确B.错误正确答案:A再也不做站长了2023-05-22 22:49:501
随机过程和随机变量之间的区别和联系
在概率论概念中,随机过程是随机变量的集合。比如,每个时间点都对应一个随机变量西柚不是西游2023-05-22 22:49:504
随机变量的定义
定义设随机试验的样本空间为,称定义在样本空间S上的实值单值函数X=X(e)为随机变量.随机变量与高等数学中函数的比较:(1)它们都是实值函数,但前者在试验前只知道它可能取值的范围,而不能预先肯定它将取哪个值;(2)因试验结果的出现具有一定的概率,故前者取每个值和每个确定范围内的值也有一定的概率.小白2023-05-22 22:49:501
随机变量方差计算公式是什么?
离散型随机变量的方差:D(X) = E{[X - E(X)]^2};(1)=E(X^2) - (EX)^2;(2)(1)式是方差的离差表示,,如果不懂,可以记忆(2)式(2)式表示:方差 = X^2的期望 - X的期望的平方。X和X^2都是随机变量,针对于某次随机变量的取值, 例如: 随机变量X服从“0 - 1”:取0概率为q,取1概率为p,p+q=1 则: 对于随即变量X的期望 E(X) = 0*q + 1*p = p 同样对于随即变量X^2的期望 E(X^2) = 0^2 * q + 1^2 * p = p 所以由方差公式(2)得:D(X) = E(X^2) - (EX)^2 = p - p^2 = p(1-p) = pq 无论对于X或者X^2,都是一次随机变量,或者一次实验,不是什么未知的函数, 要通过题目的的随机变量到底是服从什么分配,然后才可以判断出该随机变量具有什么性质或者可以得出什么条件。扩展资料:机变量的期望,离散情形:如果X是离散随机变量,具有概率质量函数p(x),那么X的期望值定义为E[X]= 。换句话说,X的期望是X可能取的值的加权平均,每个值被X取此值的概率所加权。连续情形:也可以定义连续随机变量的期望值。如果X是具有概率密度函数f(x)的连续随机变量,那么X的期望就定义为E[X]= = =β+a/2。换句话说,在(a,β) 上均匀分布的随机变量的期望值正是区间的中点。随机变量在不同的条件下由于偶然因素影响,可能取各种不同的值,故其具有不确定性和随机性,但这些取值落在某个范围的概率是一定的,此种变量称为随机变量。随机变量可以是离散型的,也可以是连续型的。如分析测试中的测定值就是一个以概率取值的随机变量,被测定量的取值可能在某一范围内随机变化,具体取什么值在测定之前是无法确定的,但测定的结果是确定的,多次重复测定所得到的测定值具有统计规律性。随机变量与模糊变量的不确定性的本质差别在于,后者的测定结果仍具有不确定性,即模糊性。参考资料:百度百科-随机变量西柚不是西游2023-05-22 22:49:501
什么叫随机变量和随机变量的分布
建议搜索相应的数学视频,或者从课本前几章慢慢看起,做几道例题就会了豆豆staR2023-05-22 22:49:503
离散型随机变量是什么意思?
具体回答如图:随机变量在不同的条件下由于偶然因素影响,可能取各种不同的值,故其具有不确定性和随机性,但这些取值落在某个范围的概率是一定的,此种变量称为随机变量。随机变量可以是离散型的,也可以是连续型的。扩展资料:设X,Y是概率空间(Ω,F,p)上的两个随机变量,如果除去一个零概率事件外,X(ω)与Y(ω)相同,则称X=Y以概率1成立,也记作p(X=Y)=1或X=Y,α.s.(α.s.意即几乎必然)。在研究随机变量的性质时,确定和计算它取某个数值或落入某个数值区间内的概率是特别重要的。因此,随机变量取某个数值或落入某个数值区间这样的基本事件的集合,应当属于所考虑的事件域。善士六合2023-05-22 22:49:501
随机变量 求解答过程,谢谢
等于四分之三 其实就是距离长度比拌三丝2023-05-22 22:49:502
随机变量的定义
定义随机变量首先需要有概率空间(Ω,F,P),F是Ω子集的一个集类,是borel域(有的书上也叫sigma代数).所谓E是一个随机事件,就是指E∈F,P是定义在F上的集函数,是概率测度.X是随机变量,当且仅当,任意x∈(-infinity,infinity),{w∈Ω:X(w)<=x}∈F,(其实这并不是最原始的定义,而是一个等价条件,可做定义用).第二个问题,涉及到borel域的构成方式问题,borel域要求对补和可列并封闭,若{X(ω)≤x}∈F,则有{X<x}=∪{X<=x-1/n;n=1,2,...}∈F,于是{X>=x}=Ω-{X<=x}∈F.要详细了解这些东西,需要测度论的基础.真颛2023-05-22 22:49:501
随机变量X和随机变量X是
随机变量X的分布函数F(x)表示随机变量X的取值小于x时的概率:P(X<x)。大X表示随机变量,小x表示随机变量X所取的具体数值。P表示概率书上还有解释:如果将X看成数轴上随机点的坐标,那么分布函数F(x)在x处的函数值就表示点X落入区间(-∞,x]上的概率。可以这样理解:假设现在有全世界所有人的身高的分布函数,而你的身高是175cm,那么分布函数在175cm处的取值就是所有比你矮或者和你一样高的人占全世界所有人的比例。姚明的身高是226cm,那么分布函数在226cm处的取值就是所有比姚明矮或者和姚明一样高的人占全世界所有人的比例。凡尘2023-05-22 22:49:501
数理统计里,样本和随机变量是什么关系
统计里的样本有二重性,即样本既可以看作是一组观测值又可以看作是随机变量。因为在抽样之前样本观测值是未知的,所以可以看成是随机变量;而当样本抽取完之后又是一组确定的值,顾又可以看成是一组确定的值。一般情况下把样本看作是一组随机变量Chen2023-05-22 22:49:502
请问随机变量的定义是什么
随机变量X是一个可测函数:对任意实数x,(X(w)<x)都是事件。bikbok2023-05-22 22:49:502
随机变量的定义怎样推广到独立的情况的?
解题过程如下图:扩展资料随机变量性质:随机变量在不同的条件下由于偶然因素影响,可能取各种不同的值,故其具有不确定性和随机性,但这些取值落在某个范围的概率是一定的,此种变量称为随机变量。随机变量可以是离散型的,也可以是连续型的。如分析测试中的测定值就是一个以概率取值的随机变量,被测定量的取值可能在某一范围内随机变化,具体取什么值在测定之前是无法确定的,但测定的结果是确定的,多次重复测定所得到的测定值具有统计规律性。随机变量与模糊变量的不确定性的本质差别在于,后者的测定结果仍具有不确定性,即模糊性。求概率空间的方法:设X,Y是概率空间(Ω,F,p)上的两个随机变量,如果除去一个零概率事件外,X(ω)与Y(ω)相同,则称X=Y以概率1成立,也记作p(X=Y)=1或X=Y,α.s.(α.s.意即几乎必然)。设x1,x2,…,xn是n个随机变量,如果对任何n个实数x1,x2,即它们的联合分布函数F(x1,x2,…,xn)等于它们各自的分布函数F1(x1),F2(x2),…,Fn(xn)的乘积,即则称x1,x2,…,xn是独立的。这一定义可以直接推广到每一xk(k=1,2,…,n)是随机向量的情形。独立性的直观意义是:x1,x2,…,xn中的任何一个取值的概率规律,并不随其中的其他随机变量取什么值而改变。可桃可挑2023-05-22 22:49:501
什么叫示性随机变量
随机变量random variable表示随机现象各种结果的变量。例如某一时间内公共汽车站等车乘客的人数,电话交换台在一定时间内收到的呼叫次数,等等,都是随机变量的实例。北营2023-05-22 22:49:502
设随机变量,若,则
随机变量X~B(2,p),P(X>=1)=5/9,P(X<1)=4/9=C(2,0)(1-p)^2,p=1/3 P(Y>=1)=1-P(Y人类地板流精华2023-05-22 22:49:501
用定义和例子解释统计学里面的随机变量是什么?
表示随机现象(在一定条件下,并不总是出现相同结果的现象称为随机现象)各种结果的变量(一切可能的样本点)。例如某一时间内公共汽车站等车乘客人数,电话交换台在一定时间内收到的呼叫次数等等,都是随机变量的实例。一个随机试验的可能结果(称为基本事件)的全体组成一个基本空间Ω 。 随机变量X是定义在基本空间Ω上的取值为实数的函数,即基本空间Ω中每一个点,也就是每个基本事件都有实轴上的点与之对应。例如,随机投掷一枚硬币 ,可能的结果有正面朝上 ,反面朝上两种 ,若定义X为投掷一枚硬币时正面朝上的次数 ,则X为一随机变量,当正面朝上时,X取值1;当反面朝上时,X取值0。又如,掷一颗骰子 ,它的所有可能结果是出现1点、2点、3点、4点、5点和6点 ,若定义X为掷一颗骰子时出现的点数,则X为一随机变量,出现1,2,3,4,5,6点时X分别取值1,2,3,4,5,6。有些随机现象需要同时用多个随机变量来描述。例如 ,子弹着点的位置需要两个坐标才能确定,它是一个二维随机变量。类似地,需要n个随机变量来描述的随机现象中,这n个随机变量组成n维随机向量 。描述随机向量的取值规律 ,用联合分布函数。随机向量中每个随机变量的分布函数,称为边缘分布函数。若联合分布函数等于边缘分布函数的乘积 ,则称这些单个随机变量之间是相互独立的。独立性是概率论所独有的一个重要概念。豆豆staR2023-05-22 22:49:491
有关随机变量的说法正确的是()
有关随机变量的说法正确的是() A.随机变量和普通变量没有区别。B.离散型机变量的取值是有限的。C.离散型随机变量的取值可能是无限的。D.随机变量只有两种:离散型和连续型。正确答案:C无尘剑 2023-05-22 22:49:491
随机变量的介绍
随机变量(random variable)表示随机试验各种结果的实值单值函数。例如某一时间内公共汽车站等车乘客人数,电话交换台在一定时间内收到的呼叫次数等等,都是随机变量的实例。FinCloud2023-05-22 22:49:491
如何证明随机变量样本的均值的期望等于总体的期望
设E(X)=μ则:E(X的平均值)=E(1/n·∑Xi) 【i从1到n】=1/n·E(∑Xi)=1/n·∑E(Xi)=1/n·nμ=μu投在线2023-05-22 22:49:492
随机变量x~b
随机变量X~B(2,P), P(X=0)=(1-P)^2, P(X大于等于1)=1-P(X=0) =1-(1-P)^2=5/9 (1-p)^2=4/9 1-p=2/3; p=1/3 P(Y大于等于1)=1-P(Y=0)=1-(1-P)^3=1-8/27=19/27wpBeta2023-05-22 22:49:491
连续性的随机变量的求数学期望 E(X²)怎么求?
pdf : f(x) E(X^2) = ∫(-∞->∞) x^2.f(x) dx豆豆staR2023-05-22 22:49:493
17、随机变量介绍
一个随机试验可能结果(称为基本事件)的全体组成一个基本空间Ω。随机变量X是定义在基本空间Ω上的取值为实数的函数,即基本空间Ω中每一个点,也就是每个基本事件都有实轴上的点与之对应。 X 是定义随机变量的 例如,随机抛一枚硬币,可能的结果有正面朝上 ,反面朝上两种 ,若定义X为投掷一枚硬币时朝上的面 , 则X为一随机变量,当正面朝上时,X取值1;当反面朝上时,X取值0。 又如,掷一颗骰子,它的所有可能结果是出现1点、2点、3点、4点、5点和6点 ,若定义X为掷一颗骰子时出现的点数,则X为一随机变量,出现1,2,3,4,5,6点时X分别取值1,2,3,4,5,6。 随机变量可以分为两类,离散随机变量和连续随机变量两种类型。 离散随机变量的值是有穷尽的,例如抛硬币的结果不是正面朝上(1)就是反面朝上(0),明天会不会下雨也只有两种结果1(下)和0(不下)。 离散随机变量就像最开始定义的那些,看其概率分布。例如,掷骰子中,X等于筛子向上显示的值,我们知道结果有六种,1、2、3、4、5、6其中之一,下面来画一下概率分布: 再来看下抛硬币的结果正为1反为0的随机变量的概率分布: 连续随机变量的值是有无限个的,例如说明天下雨的英才,可能是1,也可能是1.1/1.111或者2.1....1和2之间有无数个数字,所以这个值是无穷尽的。Jm-R2023-05-22 22:49:491
随机事件与随机变量分布的区别和联系
从字面上理解;随机事件是指一件事,随机变量分布是分布函数,可以说后者可以表示为前者的数学模型比如:投掷一颗筛子是一件随机事件,用变量x表示筛子出现的点数,出现这个点数的概率为P,那么x-P的对应关系就是投掷一颗筛子这件随机事件掷出筛子点数的随机变量分布了Ntou1232023-05-22 22:49:492
帮忙解释下什么是随机变量序列
随机变量(random variable)表示随机现象(在一定条件下,并不总是出现相同结果的现象称为随机现象)各种结果的变量(一切可能的样本点).例如某一时间内公共汽车站等车乘客人数,电话交换台在一定时间内收到的呼叫次数等等,都是随机变量的实例.一个随机试验的可能结果(称为基本事件)的全体组成一个基本空间Ω .随机变量X是定义在基本空间Ω上的取值为实数的函数,即基本空间Ω中每一个点,也就是每个基本事件都有实轴上的点与之对应.例如,随机投掷一枚硬币 ,可能的结果有正面朝上 ,反面朝上两种 ,若定义X为投掷一枚硬币时正面朝上的次数 ,则X为一随机变量,当正面朝上时,X取值1;当反面朝上时,X取值0.又如,掷一颗骰子 ,它的所有可能结果是出现1点、2点、3点、4点、5点和6点 ,若定义X为掷一颗骰子时出现的点数,则X为一随机变量,出现1,2,3,4,5,6点时X分别取值1,2,3,4,5,6.要全面了解一个随机变量,不但要知道它取哪些值,而且要知道它取这些值的规律,即要掌握它的概率分布.概率分布可以由分布函数刻画.若知道一个随机变量的分布函数,则它取任何值和它落入某个数值区间内的概率都可以求出.有些随机现象需要同时用多个随机变量来描述.例如 ,子弹着点的位置需要两个坐标才能确定,它是一个二维随机变量.类似地,需要n个随机变量来描述的随机现象中,这n个随机变量组成n维随机向量 .描述随机向量的取值规律 ,用联合分布函数.随机向量中每个随机变量的分布函数,称为边缘分布函数.若联合分布函数等于边缘分布函数的乘积 ,则称这些单个随机变量之间是相互独立的.独立性是概率论所独有的一个重要概念.hi投2023-05-22 22:49:491
随机变量是怎么定义的
离散型随机变量的分布函数也就是分段函数,分段函数就是对于自变量x的不同的取值范围有不同的解析式的函数,它是一个函数,而不是几个函数;分段函数的定义域是各段函数定义域的并集,值域也是各段函数值域的并集。离散型随机变量的累积分布函数图像呈阶梯状,所以F(x)在非间断点处处连续,在间断点(基本空间中的事件点对应随机变量取值)处仅左连续,这里f(x)即是分布列(对应连续型随机变量的密度函数),基本空间(必然事件)对应一离散点列(离散随机变量所有可取的值),所以f(1-0)不存在。离散型离散型的直接列出取值和取到这个值的概率,比如两点分布P(X=1)=0.6,P(X=0)=0.4这样。 连续型的取到一个特定值的概率是0,只有取值在一个区间里面有意义,所以用分布函数和概率密度函数描述。分布函数F(x)表示随机变量X≤x的概率,也就是F(x)=P(X≤x)。概率密度函数就是 F(x)的导数,记为f(x),满足P(a≤X≤b)=∫(a到b)f(x)dx。陶小凡2023-05-22 22:49:491
随机变量的定义
随机变量的定义,只有通过测度论才能很好的描述.概率论,比较好的书,个人推荐,钟开莱的<概率论教程>,或者斯利亚耶夫的<概率>.苏州马小云2023-05-22 22:49:492
随机变量(X,Y)的联合分布律为P(X=1,Y=0)=0.1,P(X=1,Y=2)=0.2,P(X=2,Y=0)=a,P(X=2,Y=2)=b,则E(X+2)等于?
真颛2023-05-22 22:49:492
设随机变量X1~P(2),X2~E(0,2),X3~B(100,0.1),X4~N(0,1),且相互独立,则E(X1-X2+1)=
记住基本公式即可X1~P(2)泊松分布那么E(X1)=1/2,D(X1)=1/2X2~E(0.2)指数分布那么E(X2)=1/0.2=5,D(X2)=1/(0.2)²=25于是E(X1-X2+1)=E(X1)-E(X2)+1=1/2 -5+1= -7/2X3~B(100,0.1) 二项分布那么E(X1)=np=100*0.1=10,D(X1)=np(1-p)=100*0.1*0.9=9X4~N(0,1),正态分布,那么E(X4)=0,D(X4)=1得到D(X3-X4+1)=D(X3)+D(X4)=0+1=1bikbok2023-05-22 22:49:491
随机变量与普通变量有什么区别
随机变量的取值是随时无规则变化的,普通变量在确定条件下值是确定的。随机变量的值不能预知,具有不确定性。小菜G的建站之路2023-05-22 22:49:491
随机变量
定义随机变量首先需要有概率空间(Ω,F,P),F是Ω子集的一个集类,是borel域(有的书上也叫sigma代数).所谓E是一个随机事件,就是指E∈F,P是定义在F上的集函数,是概率测度.X是随机变量,当且仅当,任意x∈(-infinity,infinity),{w∈Ω:X(w)<=x}∈F,(其实这并不是最原始的定义,而是一个等价条件,可做定义用).第二个问题,涉及到borel域的构成方式问题,borel域要求对补和可列并封闭,若{X(ω)≤x}∈F,则有{X<x}=∪{X<=x-1/n;n=1,2,...}∈F,于是{X>=x}=Ω-{X<=x}∈F.要详细了解这些东西,需要测度论的基础.希望对你能有所帮助。FinCloud2023-05-22 22:49:491
什么叫随机变量?
我们以前的函数有自变量,还记得吗?随机变量就是在表随机事件的函数里面的未知数啦LuckySXyd2023-05-22 22:49:486
如何理解随机变量
表示随机现象(在一定条件下,并不总是出现相同结果的现象称为随机现象)各种结果的变量(一切可能的样本点).例如某一时间内公共汽车站等车乘客人数,电话交换台在一定时间内收到的呼叫次数等等,都是随机变量的实例. 一个随机试验的可能结果(称为基本事件)的全体组成一个基本空间Ω .随机变量X是定义在基本空间Ω上的取值为实数的函数,即基本空间Ω中每一个点,也就是每个基本事件都有实轴上的点与之对应.例如,随机投掷一枚硬币 ,可能的结果有正面朝上 ,反面朝上两种 ,若定义X为投掷一枚硬币时正面朝上的次数 ,则X为一随机变量,当正面朝上时,X取值1;当反面朝上时,X取值0.又如,掷一颗骰子 ,它的所有可能结果是出现1点、2点、3点、4点、5点和6点 ,若定义X为掷一颗骰子时出现的点数,则X为一随机变量,出现1,2,3,4,5,6点时X分别取值1,2,3,4,5,6. 有些随机现象需要同时用多个随机变量来描述.例如 ,子弹着点的位置需要两个坐标才能确定,它是一个二维随机变量.类似地,需要n个随机变量来描述的随机现象中,这n个随机变量组成n维随机向量 .描述随机向量的取值规律,用联合分布函数.随机向量中每个随机变量的分布函数,称为边缘分布函数.若联合分布函数等于边缘分布函数的乘积,则称这些单个随机变量之间是相互独立的.独立性是概率论所独有的一个重要概念. 在不同的条件下由于偶然因素影响,其可能取各种不同的值,具有不确定性和随机性,但这些取值落在某个范围的概率是一定的,此种变量称为随机变量.随机变量可以是离散型的,也可以是连续型的.如分析测试中的测定值就是一个以概率取值的随机变量,被测定量的取值可能在某一范围内随机变化,具体取什么值在测定之前是无法确定的,但测定的结果是确定的,多次重复测定所得到的测定值具有统计规律性.随机变量与模糊变量的不确定性的本质差别在于,后者的测定结果仍具有不确定性,即模糊性.人类地板流精华2023-05-22 22:49:481
随机变量是什么?
随机变量是表示随机现象各种结果的变量。例如某一时间内地铁站的人流数量,一台机器在一定时间内出现错误的次数等等,都是随机变量的实例。在做实验时,常常是相对于试验结果本身而言,我们主要还是对结果的某些函数感兴趣。例如,在掷骰子时,我们常常关心的是两颗骰子的点和数,而并不真正关心其实际结果,我们关注的这些量,或者更形式的说,这些定义在样本空间上的实值函数,称为随机变量。因为随机变量的值是由试验结果决定的,所以我们可以给随机变量的可能值指定概率。扩展资料:随机变量的表示方法:例如掷一颗骰子出现的点数,电话交换台在一定时间内收到的呼叫次数,随机抽查的一个人的身高,悬浮在液体中的微粒沿某一方向的位移,等等,都是随机变量的实例。一个随机试验的可能结果(称为基本事件)的全体组成一个基本空间Ω(见概率)。随机变量x是定义于Ω上的函数,即对每一基本事件ω∈Ω,有一数值x(ω)与之对应。以掷一颗骰子的随机试验为例,它的所有可能结果见,共6个,分别记作ω1,ω2,ω3,ω4,ω5,ω6,这时,Ω={ω1,ω2,ω3,ω4,ω5,ω6},而出现的点数这个随机变量x,就是Ω上的函数x(ωk)=k,k=1,2,?,6。又如设Ω={ω1,ω2,?,ωn}是要进行抽查的n个人的全体,那么随意抽查其中一人的身高和体重,就构成两个随机变量X和Y,它们分别是Ω上的函数:X(ωk)=“ωk的身高”,Y(ωk)=“ωk的体重”,k=1,2,?,n。一般说来,一个随机变量所取的值可以是离散的(如掷一颗骰子的点数只取1到6的整数,电话台收到的呼叫次数只取非负整数),也可以充满一个数值区间,或整个实数轴(如液体中悬浮的微粒沿某一方向的位移)。参考资料来源:百度百科-随机变量再也不做站长了2023-05-22 22:49:481
随机变量的定义
随机变量(random variable)表示随机试验各种结果的实值单值函数。随机事件不论与数量是否直接有关,都可以数量化,即都能用数量化的方式表达。它分为两种类型,离散型和连续型。离散型(discrete)随机变量即在一定区间内变量取值为有限个或可数个。例如某地区某年人口的出生数、死亡数,某药治疗某病病人的有效数、无效数等。离散型随机变量通常依据概率质量函数分类,主要分为:伯努利随机变量、二项随机变量、几何随机变量和泊松随机变量。连续型(continuous)随机变量即在一定区间内变量取值有无限个,或数值无法一一列举出来。例如某地区男性健康成人的身长值、体重值,一批传染性肝炎患者的血清转氨酶测定值等。有几个重要的连续随机变量常常出现在概率论中,如:均匀随机变量、指数随机变量、伽马随机变量和正态随机变量。真颛2023-05-22 22:49:481
随机变量的特点?
随机变量的特点如下:1、随相变量是定义在样本空间上的一个实值函数。2、随机变量的取值是随机的事先或试验前不知道哪个值。3、随相变量取特定值的概率大小是确定的。4、随相变量是定义在样本空间上的一个实值函数。5、随机变量的取值是随机的,事先或试验前不知道哪个值。6、随相变量取特定值的概率大小是确定的。随机变量(random variable)表示随机试验各种结果的实值单值函数。随机事件不论与数量是否直接有关,都可以数量化,即都能用数量化的方式表达。基本类型:简单地说,随机变量是指随机事件的数量表现。例如一批注入某种毒物的动物,在一定时间内死亡的只数;某地若干名男性健康成人中,每人血红蛋白量的测定值;等等。另有一些现象并不直接表现为数量,例如人口的男女性别、试验结果的阳性或阴性等,但我们可以规定男性为1,女性为0,则非数量标志也可以用数量来表示。这些例子中所提到的量,尽管它们的具体内容是各式各样的,但从数学观点来看,它们表现了同一种情况,这就是每个变量都可以随机地取得不同的数值,而在进行试验或测量之前,我们要预言这个变量将取得某个确定的数值是不可能的。mlhxueli 2023-05-22 22:49:481
随机变量名词解释
随机变量的解释 概率论的基本 概念 。描述随机现象某一 侧面 的数量。如同一台机器生产一种规格的螺钉,其直径大小就是一个随机变量。随机变量分为离散型和连续型两类。 词语分解 随机的解释 依照情势 必须 具有 一定 的随机应变的 能力 ,才能完成 任务 ∶ 自由 组合随机抽样详细解释依照情势;顺应 时机 。《陈书·徐世谱传》:“ 世谱 性机巧,谙解旧法,所造器械,竝随机损益,妙思出人。” 宋 陈亮 《 变量的解释 可假定为一组特定值中之任一值的量 代表数学公式中一个可变量的符号 函数 的值 取决于 变量的值 数值可变的量详细解释 数值可以变化的量。如一天内的气温就是变量。余辉2023-05-22 22:49:481
随机变量有什么用
随机变量(random variable)表示随机试验各种结果的实值单值函数。 随机事件不论与数量是否直接有关,都可以数量化,即都能用数量化的方式表达。 [1] 随机事件数量化的好处是可以用数学分析的方法来研究随机现象。 例如某一时间内公共汽车站等车乘客人数,电话交换台在一定时间内收到的呼叫次数,灯泡的寿命等等,都是随机变量的实例。随机变量(random variable)表示随机试验各种结果的实值单值函数。随机事件不论与数量是否直接有关,都可以数量化,即都能用数量化的方式表达。随机事件数量化的好处是可以用数学分析的方法来研究随机现象。例如某一时间内公共汽车站等车乘客人数,电话交换台在一定时间内收到的呼叫次数,灯泡的寿命等等,都是随机变量的实例。在做实验时,常常是相对于试验结果本身而言,我们主要还是对结果的某些函数感兴趣。例如,在掷骰子时,我们常常关心的是两颗骰子的点和数,而并不真正关心其实际结果,就是说,我们关心的也许是其点和数为7,而并不关心其实际结果是否是(1,6)或(2,5)或(3,4)或(4,3)或(5,2)或(6,1)。我们关注的这些量,或者更形式的说,这些定义在样本空间上的实值函数,称为随机变量。因为随机变量的值是由试验结果决定的,所以我们可以给随机变量的可能值指定概率。黑桃花2023-05-22 22:49:481
随机变量有几类
按照随机变量可能取得的值,可以把它们分为两种基本类型:①离散型随机变量,即在一定区间内变量取值为有限个,或数值可以一一列举出来。例如某地区某年人口的出生数,死亡数,某药治疗某病病人的有效数、无效数等。②连续型随机变量,即在一定区间内变量取值有无限个,或数值无法一一列举出来。例如某地区男性健康成人的身长值,体重值。在代码块之间传递信息的一种方法就是使用外部变量。当一个变量在函数的外部被声明时,安的存储空间是永久分配的,安人存储类型是extren.外部变量的声明看上去和函数或代码块内部所声明的变量一样。外部变量对于它之后的所有函数都有效。在代码块或函数后,外部变量仍然存在。 static的基本用途是允许一个局部变量在重新进入代码块时能够保持原来的值。这和自动变量形成了鲜明的对比,自动变量在代码块时会被销毁,再次进入这个代码块时,它必须重新进行初始化。 register存储类型告诉编译器相关的变量应该改量存储在高速度的寄存器中。使用register存储类型的目的一般是为了提高执行速度,但是,register声明只是向编译器所提出的“建议”,并非强制要求。CarieVinne 2023-05-22 22:49:486
什么是离散型随机变量?什么是连续型随机变量?
一、概念不同1、离散型随机变量:如果随机变量X只可能取有限个或至多可列个值,则称X为离散型随机变量。2、连续型随机变量:连续型随机变量是指如果随机变量X的所有可能取值不可以逐个列举出来,而是取数轴上某一区间内的任一点的随机变量。二、特点不同1、离散型随机变量:变量取值只能取离散型的自然数,就是离散型随机变量。2、连续型随机变量:当提到一个随机变量X的概率分布,指的是它的分布函数,当X是连续型时指的是它的概率密度,当X是离散型时指的是它的分布规律。举例:比如,公共汽车每15分钟一班,某人在站台等车时间x是个随机变量。x的取值范围是[0,15),它是一个区间,从理论上说在这个区间内可取任一实数3分钟、5分钟7毫秒、7√2分钟,在这十五分钟的时间轴上任取一点,都可能是等车的时间,因而称这随机变量是连续型随机变量。铁血嘟嘟2023-05-22 22:49:481
随机变量的定义
题库内容:随机变量的解释 概率论的基本 概念 。描述随机现象某一 侧面 的数量。如同一台机器生产一种规格的螺钉,其直径大小就是一个随机变量。随机变量分为离散型和连续型两类。 词语分解 随机的解释 依照情势 必须 具有 一定 的随机应变的 能力 ,才能完成 任务 ∶ 自由 组合随机抽样详细解释依照情势;顺应 时机 。《陈书·徐世谱传》:“ 世谱 性机巧,谙解旧法,所造器械,竝随机损益,妙思出人。” 宋 陈亮 《 变量的解释 可假定为一组特定值中之任一值的量 代表数学公式中一个可变量的符号 函数 的值 取决于 变量的值 数值可变的量详细解释 数值可以变化的量。如一天内的气温就是变量。u投在线2023-05-22 22:49:481
随机变量有几类
随机变量有两类。1、离散型离散型(discrete)随机变量即在一定区间内变量取值为有限个或可数个。例如某地区某年人口的出生数、死亡数,某药治疗某病病人的有效数、无效数等。离散型随机变量通常依据概率质量函数分类,主要分为:伯努利随机变量、二项随机变量、几何随机变量和泊松随机变量。2、连续型连续型(continuous)随机变量即在一定区间内变量取值有无限个,或数值无法一一列举出来。例如某地区男性健康成人的身长值、体重值,一批传染性肝炎患者的血清转氨酶测定值等。有几个重要的连续随机变量常常出现在概率论中,如:均匀随机变量、指数随机变量、伽马随机变量和正态随机变量。扩展资料:相关性质随机变量在不同的条件下由于偶然因素影响,可能取各种不同的值,故其具有不确定性和随机性,但这些取值落在某个范围的概率是一定的,此种变量称为随机变量。随机变量可以是离散型的,也可以是连续型的。如分析测试中的测定值就是一个以概率取值的随机变量,被测定量的取值可能在某一范围内随机变化,具体取什么值在测定之前是无法确定的,但测定的结果是确定的,多次重复测定所得到的测定值具有统计规律性。随机变量与模糊变量的不确定性的本质差别在于,后者的测定结果仍具有不确定性,即模糊性。黑桃花2023-05-22 22:49:481
随机变量的性质
简单地说,随机变量是指随机事件的数量表现。例如一批注入某种毒物的动物,在一定时间内死亡的只数;某地若干名男性健康成人中,每人血红蛋白量的测定值;等等。另有一些现象并不直接表现为数量,例如人口的男女性别、试验结果的阳性或阴性等,但我们可以规定男性为1,女性为0,则非数量标志也可以用数量来表示。这些例子中所提到的量,尽管它们的具体内容是各式各样的,但从数学观点来看,它们表现了同一种情况,这就是每个变量都可以随机地取得不同的数值,而在进行试验或测量之前,我们要预言这个变量将取得某个确定的数值是不可能的。按照随机变量可能取得的值,可以把它们分为两种基本类型:①离散型随机变量,即在一定区间内变量取值为有限个,或数值可以一一列举出来。例如某地区某年人口的出生数、死亡数,某药治疗某病病人的有效数、无效数等。②连续型随机变量,即在一定区间内变量取值有无限个,或数值无法一一列举出来。例如某地区男性健康成人的身长值、体重值,一批传染性肝炎患者的血清转氨酶测定值等。善士六合2023-05-22 22:49:481
哪些是连续随机变量
对于随机变量X,若存在一个非负的可积函数f(x)(x∈R),使对于任意两个实数a、b(假设a<b),都有:P{a<x<b}=则称X为连续性随机变量。其中f(x)为X的概率分布密度函数,记为X~f(x).能按一定次序一一列出,其值域为一个或若干个有限或无限区间,这样的随机变量称为离散型随机变量。离散型随机变量与连续型随机变量也是由随机变量取值范围(或说成取值的形式)确定,变量取值只能取离散型的自然数,就是离散型随机变量。 比如,一次掷20个硬币,k个硬币正面朝上,k是随机变量,k的取值只能是自然数0,1,2,…,20,而不能取小数3.5、无理数√20,因而k是离散型随机变量。如果变量可以在某个区间内取任一实数,即变量的取值可以是连续的,这随机变量就称为连续型随机变量,比如,公共汽车每15分钟一班,某人在站台等车时间x是个随机变量,x的取值范围是[0,15),它是一个区间,从理论上说在这个区间内可取任一实数3.5、√20等,因而称这随机变量是连续型随机变量。CarieVinne 2023-05-22 22:49:481
对随机变量的理解
随机变量的解释概率论的基本 概念 。描述随机现象某一 侧面 的数量。如同一台机器生产一种规格的螺钉,其直径大小就是一个随机变量。随机变量分为离散型和连续型两类。 词语分解 随机的解释 依照情势 必须 具有 一定 的随机应变的 能力 ,才能完成 任务 ∶ 自由 组合随机抽样详细解释依照情势;顺应 时机 。《陈书·徐世谱传》:“ 世谱 性机巧,谙解旧法,所造器械,竝随机损益,妙思出人。” 宋 陈亮 《 变量的解释 可假定为一组特定值中之任一值的量 代表数学公式中一个可变量的符号 函数 的值 取决于 变量的值 数值可变的量详细解释 数值可以变化的量。如一天内的气温就是变量。韦斯特兰2023-05-22 22:49:481
随机变量的几种重要分布
随机变量有两类。1、离散型离散型(discrete)随机变量即在一定区间内变量取值为有限个或可数个。例如某地区某年人口的出生数、死亡数,某药治疗某病病人的有效数、无效数等。离散型随机变量通常依据概率质量函数分类,主要分为:伯努利随机变量、二项随机变量、几何随机变量和泊松随机变量。2、连续型连续型(continuous)随机变量即在一定区间内变量取值有无限个,或数值无法一一列举出来。例如某地区男性健康成人的身长值、体重值,一批传染性肝炎患者的血清转氨酶测定值等。有几个重要的连续随机变量常常出现在概率论中,如:均匀随机变量、指数随机变量、伽马随机变量和正态随机变量。扩展资料:相关性质随机变量在不同的条件下由于偶然因素影响,可能取各种不同的值,故其具有不确定性和随机性,但这些取值落在某个范围的概率是一定的,此种变量称为随机变量。随机变量可以是离散型的,也可以是连续型的。如分析测试中的测定值就是一个以概率取值的随机变量,被测定量的取值可能在某一范围内随机变化,具体取什么值在测定之前是无法确定的,但测定的结果是确定的,多次重复测定所得到的测定值具有统计规律性。随机变量与模糊变量的不确定性的本质差别在于,后者的测定结果仍具有不确定性,即模糊性。铁血嘟嘟2023-05-22 22:49:481
什么是随机变量的函数
随机变量函数自变量是随机变量的函数就是随机变量的函数。gitcloud2023-05-22 22:49:481
随机变量是谁提出来的
马尔可夫1907年前后,马尔可夫研究过一列有特定相依性的随机变量,后人称之为马尔可夫链。随机变量表示随机试验各种结果的实值单值函数。随机事件不论与数量是否直接有关,都可以数量化,即都能用数量化的方式表达。随机事件数量化的好处是可以用数学分析的方法来研究随机现象。例如某一时间内公共汽车站等车乘客人数,电话交换台在一定时间内收到的呼叫次数,灯泡的寿命等等,都是随机变量的实例。阿啵呲嘚2023-05-22 22:49:481
随机变量的特征是什么?
随机变量的特征是不确定性和随机性随机变量在不同的条件下由于偶然因素影响,其可能取各种不同的值,具有不确定性和随机性,但这些取值落在某个范围的概率是一定的,此种变量称为随机变量。随机变量可以是离散型的,也可以是连续型的。如分析测试中的测定值就是一个以概率取值的随机变量,被测定量的取值可能在某一范围内随机变化,具体取什么值在测定之前是无法确定的,但测定的结果是确定的,多次重复测定所得到的测定值具有统计规律性。随机变量与模糊变量的不确定性的本质差别在于,后者的测定结果仍具有不确定性,即模糊性。此后故乡只2023-05-22 22:49:481
2. 设X和Y是两个相互独立的随机变量,其概率密度分别为,求随机变量Z=X+Y的概率密度函数
大鱼炖火锅2023-05-22 22:49:484
变量与随机变量的区别
打个比方吧,这样楼主可以很轻松地理解。当变量x的值为100的概率为1的话,那么x=100就是确定了的,不会再有变化,除非有进一步运算。当变量x的值为100的概率不为1,比如为50的概率是0.5,为100的概率是0.5,那么这个变量就是会随不同条件而变化的,是随机变量,取到50或者100的概率都是0.5,即50%肖振2023-05-22 22:49:483
数学中随机变量及其分布的符号都叫啥
X表示随机变量,在这里可以取0、1、2、3、...、n意思是在n次试验中某一结果出现了X次,B表示二项分布。n表示一共做了n次重复的二项实验(只有两种结果的实验)。P表示在一次二项试验中某一结果出现的概率。0—1分布,数学期望p 方差p(1-p);二项分布(贝努里概型),数学期望np 方差np(1-p);泊松分布,数学期望λ 方差λ;均匀分布,数学期望(a+b)/2 方差[(b-a)^2]/12;指数分布,数学期望1/λ 方差1/λ^2;正态分布,数学期望μ 方差σ^2;标准正态分布,数学期望0 方差1。凡尘2023-05-22 22:49:471