数学

周期怎么算数学公式是什么?

f(x+a)=-f(x)周期为2a。证明过程:因du为f(x+a)=-f(x),且f(x)=-f(x-a),所以zhif(x+a)=f(x-a),即f(x+2a)=f(x),所以周期是2a。sinx的函数周期公式T=2π,sinx是正弦函数,周期是2πcosx的函数周期公式T=2π,cosx是余弦函数,周期2π。tanx和 cotx 的函数周期公式T=π,tanx和 cotx 分别是正切和余切secx 和cscx 的函数周期公式T=2π,secx 和cscx 是正割和余割。扩展资料:y=Asin(wx+b) 周期bai公式duT=2πzhi/wy=Acos(wx+b) 周期公式T=2π/wy=Atan(wx+b) 周期公式T=π/w重要推论:如果函数f(x)(x∈D)在定义域内有两条对称轴x=a,x=b则函数f(x)是周期函数,且周期T=2|b-a|(不一定为最小正周期)。如果函数f(x)(x∈D)在定义域内有两个对称中心A(a,0),B(b,0)则函数f(x)是周期函数,且周期T=2|b-a|(不一定为最小正周期)。如果函数f(x)(x∈D)在定义域内有一条对称轴x=a和一个对称中心B(b, 0)(a≠b),则函数f(x)是周期函数,且周期T=4|b-a|(不一定为最小正周期)。参考资料来源:百度百科—函数周期性
gitcloud2023-05-19 20:19:541

张益唐成名已经快九年了,为啥现在还没有发现他有大招继续轰动数学界?

数学研究是一个枯燥无味并且需要极大耐心的科研项目,想要出现轰动学术界的研究成果需要日复一日的努力。
真颛2023-05-19 20:19:505

张益唐为何被称为数学界的“扫地僧”?

主要是他对数学有着满腔的热爱,而且十年如一日的在数学领域进行研究,在数学史上具有里程碑式的意义。
康康map2023-05-19 20:19:495

哥徳巴赫猜想数学曰记

  1742年德国人哥德巴赫给当时住在俄国彼得堡的大数学家欧拉写了一封信,在信中提出两个问题:第一,是否每个大于4的偶数都能表示为两个奇质数之和?如6=3+3,14=3+11等。第二,是否每个大于7的奇数都能表示3个奇质数之和?如9=3+3+3,15=3+5+7等。这就是著名的哥德巴赫猜想。它是数论中的一个著名问题,常被称为数学皇冠上的明珠。 很早以前,人们就想证明,每一个大偶数是二个“素因子不太多的”数之和。他们想这样子来设置包围圈,想由此来逐步、逐步证明哥德巴赫这个命题一个素数加一个素数(1+1)是正确的 实际上第一个问题的正确解法可以推出第二个问题的正确解法,因为每个大于 7的奇数显然可以表示为一个大于4的偶数与3的和。1937年,苏联数学家维诺格拉多夫利用他独创的“三角和”方法证明了每个充分大的奇数可以表示为3个奇质数之和,基本上解决了第二个问题。但是第一个问题至今仍未解决。由于问题实在太困难了,数学家们开始研究较弱的命题:每个充分大的偶数可以表示为质因数个数分别为m、n的两个自然数之和,简记为“m+n”。1920年挪威数学家布龙证明了“9+9”;以后的20几年里,数学家们又陆续证明了“7+7”,“6+6”,“5+5”,“4+4”,“1+c”,其中c是常数。1956年中国数学家王元证明了“3+4”,随后又证明了“3+3”,“2+3”。60年代前半期,中外数学家将命题推进到“1+3”。1966年中国数学家陈景润证明了“1+2”,这一结果被称为“陈氏定理”,至今仍是最好的结果。陈景润的杰出成就使他得到广泛赞誉,不仅仅是因为“陈氏定理”使中国在哥德巴赫猜想的证明上处于领先地位,更重要的是以陈景润为代表的一大批中国数学家克服重重困难,不畏艰险,永攀高峰的精神将鼓舞和激励有志青年为使中国成为21世纪世界数学大国而奋斗!
u投在线2023-05-19 20:19:431

牛顿、高斯、欧拉、阿基米德谁的数学更厉害

欧拉、阿基米德、牛顿、高斯等四位被称为有史以来贡献最大的四位数学家。那么,既然大家都是数学界的龙头老大,牛顿、高斯、欧拉、阿基米德这四人中谁的数学更厉害点?欧拉的数学成就 欧拉是18世纪最优秀的数学家,也是历史上最伟大的数学家之一。他从19岁开始发表论文,直到76岁,一生写下了浩如烟海的书籍和论文.可以说欧拉是科学史上最多产的一位杰出的数学家,据统计他共写下了886本书籍和论文,彼得堡科学院为了整理他的著作,足足忙碌了四十七年。 到今几乎每一个数学领域都可以看到欧拉的名字,从初等几何的欧拉线,多面体的欧拉定理,立体解析几何的欧拉变换公式,四次方程的欧拉解法到数论中的欧拉函数,微分方程的欧拉方程,级数论的欧拉常数,变分学的欧拉方程,复变函数的欧拉公式等等,数也数不清.他对数学分析的贡献更独具匠心,《无穷小分析引论》一书便是他划时代的代表作,当时数学家们称他为"分析学的化身"。 19世纪伟大数学家高斯(Gauss,1777-1855年)曾说:"研究欧拉的著作永远是了解数学的最好方法。"著名数学家拉普拉斯(Laplace)曾说过:"读读欧拉、读读欧拉,它是我们大家的老师!“ 高斯的数学成就 高斯的数学研究几乎遍及所有领域,在数论、代数学、非欧几何、复变函数和微分几何等方面都做出了开创性的贡献。与其他数学家一道开创了近代数学。 (1)1801年,他创立三次观测决定小行星轨道的计算方法 (2)1809年发表其计算方法。此后 ,几乎都用这个方法推算小行星轨道。在星历表计算中,他引进一组辅助量(又称为高斯常数),使求日心赤道直角坐标计算大大简化。 (3)高斯定理是物理学静电场的基本方程之一 。 (4)他还利用几何学知识研究光学系统近轴光线行为和成像,建立高斯光学。结合实验数据的推算,发展了概率统计理论和误差理论,发明最小二乘法,引入高斯误差曲线。 牛顿的数学成就 在数学上,牛顿与戈特弗里德·威廉·莱布尼茨分享了发展出微积分学的荣誉。他也证明了广义二项式定理,提出了“牛顿法”以趋近函数的零点,并为幂级数的研究做出了贡献。 阿基米德的数学成就 阿基米德在数学上也有着极为光辉灿烂的成就,特别是在几何学方面。他的数学思想中蕴涵着微积分的思想,他所缺的是没有极限概念,但其思想实质却伸展到17世纪趋于成熟的无穷小分析领域里去,预告了微积分的诞生。 其实这四人在当时被称为数学四杰,可见大家对于他们几个的成就都是相当认可的,因此无论四人中谁在数学界更厉害似乎已经不是大家关心的问题,总而言之,不管谁厉害,这其中的任何一个人都给我们的数学发展带来了巨大的贡献,尤其是欧拉和高斯两人。 想要了解更多关于科学家的故事,详情可见: 牛顿、高斯、欧拉、阿基米德谁的数学更厉害 ,可以持续关注科学高分网哦。
拌三丝2023-05-19 20:19:361

数学家的故事

华罗庚(1910~1985), ●中国数学家、数学教育家,中国科学院院士,●江苏金坛人。华罗庚的父亲是经营杂货店的小业主,由于经营惨淡,家境每况愈下,致使上中学不久的华罗庚辍学,当了杂货店的记账员。在繁琐、单调的劳作中,他并没有放弃最大的嗜好---数学研究。正在他发奋自学时,灾难从天而降---他染上了可怕的伤寒症,被医生判了“死刑”。然而,他竟然奇迹般地活了过来,但左腿却落下了终生残疾。他常挂在嘴边的是这样一句话:“所谓天才,就是靠坚持不断的努力。”这位没有大学文凭的数学家,凭着坚持不懈的努力,刻苦自学,于1930年,以《苏家驹之代数五次方程式不能成立的理由》的论文,而使中国数学界刮目相看。后被熊庆来教授推荐到清华大学数学系任助教 。在这里,他得益于熊庆来、杨武之的指导,学术上得以长足进步,并逐渐树立起他在世界数学界的地位。1948年应美国一所大学骋请任教。新中国成立后,他毅然放弃优越的工作和生活条件,携妻儿回国,担任清华大学数学系教授,后任中国科学院数学研究所所长。他十分重视和倡导把数学理论应用到生产实践中,并亲自组织和推广“优选法”、“统筹法”,使之在社会主义现代化建设中显示出了巨大的威力。他一生勤奋耕耘,共发表200余篇学术论文、10部专著。作为数学教育家,他培养出陈景润、王元、陆启铿等一批优秀的数学家,并形成了中国数学学派,有的人已成为世界级的数学家。 1985年6月12日,华罗庚在日本讲学时,因突发心肌梗塞而去世,终年75岁。一生以“最大希望就是工作到生命的最后一刻”自勉的华罗庚,将永远活在人民的心中。
肖振2023-05-19 20:19:363

数学问题:1/3+1/5+1/7+1/9+…………+1/(2n+1)=Sn 求Sn大小

题目不严谨n应为什么数
无尘剑 2023-05-19 20:19:345

怎么求数学常数c

利用“欧拉公式”1+1/2+1/3+……+1/n=ln(n)+C,(C为欧拉常数)Sn=1+1/2+1/3+…+1/n>ln(1+1)+ln(1+1/2)+ln(1+1/3)+…+ln(1+1/n)=ln[2*3/2*4/3*…*(n+1)/n]=ln(n+1)扩展资料:欧拉常数(Euler-Mascheroni constant)欧拉-马歇罗尼常数(Euler-Mascheroni constant)是一个主要应用于数论的数学常数。它的定义是调和级数与自然对数的差值的极限。欧拉常数最先由瑞士数学家莱昂哈德·欧拉(Leonhard Euler)在1735年发表的文章 De Progressionibus harmonicus observationes 中定义。欧拉曾经使用C作为它的符号,并计算出了它的前6位小数。1761年他又将该值计算到了16位小数。1790年,意大利数学家马歇罗尼(Lorenzo Mascheroni)引入了γ作为这个常数的符号,并将该常数计算到小数点后32位。但后来的计算显示他在第20位的时候出现了错误。欧拉数以世界著名数学家欧拉名字命名;还有一个鲜为人知的名字纳皮尔常数,用来纪念苏格兰数学家约翰·纳皮尔 (John Napier) 引进对数。参考资料:百度百科-欧拉常数
肖振2023-05-19 20:19:331

数学家欧拉生平及贡献简介(中英文对照版)

中英文对照太难了英文的维基百科Leonhard Euler Leonhard Euler (pronounced Oiler; IPA [ˈɔʏlɐ]) (April 15, 1707 – September 18 [O.S. September 7] 1783) was a pioneering Swiss mathematician and physicist, who spent most of his life in Russia and Germany. He published more papers than any other mathematician in history.[1]Euler made important discoveries in fields as diverse as calculus and topology. He also introduced much of the modern mathematical terminology and notation, particularly for mathematical analysis, such as the notion of a mathematical function.[2] He is also renowned for his work in mechanics, optics, and astronomy.Euler is considered to be the preeminent mathematician of the 18th century and one of the greatest of all time. He is also one of the most prolific; his collected works fill 60–80 quarto volumes.[3] A statement attributed to Pierre-Simon Laplace expresses Euler"s influence on mathematics: "Read Euler, read Euler, he is a master for us all".[4]Euler was featured on the sixth series of the Swiss 10-franc banknote[5] and on numerous Swiss, German, and Russian postage stamps. The asteroid 2002 Euler was named in his honor. He is also commemorated by the Lutheran Church on their Calendar of Saints on May 24.Contents [hide]1 Biography 1.1 Childhood 1.2 St. Petersburg 1.3 Berlin 1.4 Eyesight deterioration 1.5 Last stage of life 2 Contributions to mathematics 2.1 Mathematical notation 2.2 Analysis 2.3 Number theory 2.4 Graph theory 2.5 Applied mathematics 2.6 Physics and astronomy 2.7 Logic 3 Philosophy and religious beliefs 4 Selected bibliography 5 See also 6 Notes 7 Further reading 8 External links [edit] Biography[edit] Childhood Swiss 10 Franc banknote honoring Euler, the most successful Swiss mathematician in history.Euler was born in Basel to Paul Euler, a pastor of the Reformed Church, and Marguerite Brucker, a pastor"s daughter. He had two younger sisters named Anna Maria and Maria Magdalena. Soon after the birth of Leonhard, the Eulers moved from Basel to the town of Riehen, where Euler spent most of his childhood. Paul Euler was a family friend of the Bernoullis, and Johann Bernoulli, who was then regarded as Europe"s foremost mathematician, would eventually be an important influence on the young Leonhard. His early formal education started in Basel, where he was sent to live with his maternal grandmother. At the age of thirteen he matriculated at the University of Basel, and in 1723, received a masters of philosophy degree with a dissertation that compared the philosophies of Descartes and Newton. At this time, he was receiving Saturday afternoon lessons from Johann Bernoulli, who quickly discovered his new pupil"s incredible talent for mathematics.[6]Euler was at this point studying theology, Greek, and Hebrew at his father"s urging, in order to become a pastor. Johann Bernoulli intervened, and convinced Paul Euler that Leonhard was destined to become a great mathematician. In 1726, Euler completed his Ph.D. dissertation on the propagation of sound with the title De Sono[7] and in 1727, he entered the Paris Academy Prize Problem competition, where the problem that year was to find the best way to place the masts on a ship. He won second place, losing only to Pierre Bouguer—a man now known as "the father of naval architecture". Euler, however, would eventually win the coveted annual prize twelve times in his career.[8][edit] St. PetersburgAround this time Johann Bernoulli"s two sons, Daniel and Nicolas, were working at the Imperial Russian Academy of Sciences in St Petersburg. In July 1726, Nicolas died of appendicitis after spending a year in Russia, and when Daniel assumed his brother"s position in the mathematics/physics division, he recommended that the post in physiology that he had vacated be filled by his friend Euler. In November 1726 Euler eagerly accepted the offer, but delayed making the trip to St Petersburg. In the interim he unsuccessfully applied for a physics professorship at the University of Basel.[9]1957 stamp of the former Soviet Union commemorating the 250th birthday of Euler. The text says: 250 years from the birth of the great mathematician and academician, Leonhard Euler.Euler arrived in the Russian capital on May 17, 1727. He was promoted from his junior post in the medical department of the academy to a position in the mathematics department. He lodged with Daniel Bernoulli with whom he often worked in close collaboration. Euler mastered Russian and settled into life in St Petersburg. He also took on an additional job as a medic in the Russian Navy.[10]The Academy at St. Petersburg, established by Peter the Great, was intended to improve education in Russia and to close the scientific gap with Western Europe. As a result, it was made especially attractive to foreign scholars like Euler: the academy possessed ample financial resources and a comprehensive library drawn from the private libraries of Peter himself and of the nobility. Very few students were enrolled in the academy so as to lessen the faculty"s teaching burden, and the academy emphasized research and offered to its faculty both the time and the freedom to pursue scientific questions.[8]However, the Academy"s benefactress, Catherine I, who had attempted to continue the progressive policies of her late husband, died the day of Euler"s arrival. The Russian nobility then gained power upon the ascension of the twelve-year-old Peter II. The nobility were suspicious of the academy"s foreign scientists, and thus cut funding and caused numerous other difficulties for Euler and his colleagues.Conditions improved slightly upon the death of Peter II, and Euler swiftly rose through the ranks in the academy and was made professor of physics in 1731. Two years later, Daniel Bernoulli, who was fed up with the censorship and hostility he faced at St. Petersburg, left for Basel. Euler succeeded him as the head of the mathematics department.[11]On January 7, 1734, he married Katharina Gsell, daughter of a painter from the Academy Gymnasium. The young couple bought a house by the Neva River, and had thirteen children, of whom only five survived childhood.[12][edit] Berlin Stamp of the former German Democratic Republic honoring Euler on the 200th anniversary of his death. In the middle, it is showing his polyhedral formula.Concerned about continuing turmoil in Russia, Euler debated whether to stay in St. Petersburg or not. Frederick the Great of Prussia offered him a post at the Berlin Academy, which he accepted. He left St. Petersburg on June 19, 1741 and lived twenty-five years in Berlin, where he wrote over 380 articles. In Berlin, he published the two works which he would be most renowned for: the Introductio in analysin infinitorum, a text on functions published in 1748 and the Institutiones calculi differentialis, a work on differential calculus.[13]In addition, Euler was asked to tutor the Princess of Anhalt-Dessau, Frederick"s niece. He wrote over 200 letters to her, which were later compiled into a best-selling volume, titled the Letters of Euler on different Subjects in Natural Philosophy Addressed to a German Princess. This work contained Euler"s exposition on various subjects pertaining to physics and mathematics, as well as offering valuable insight on Euler"s personality and religious beliefs. This book ended up being more widely read than any of his mathematical works, and was published all across Europe and in the United States. The popularity of the Letters testifies to Euler"s ability to communicate scientific matters effectively to a lay audience, a rare ability for a dedicated research scientist.[13]Despite Euler"s immense contribution to the Academy"s prestige, he was eventually forced to leave Berlin. This was caused in part by a personality conflict with Frederick. Frederick came to regard him as unsophisticated especially in comparison to the circle of philosophers the German king brought to the Academy. Voltaire was among those in Frederick"s employ, and the Frenchman enjoyed a favored position in the king"s social circle. Euler, a simple religious man and a hard worker, was very conventional in his beliefs and tastes. He was in many ways the direct opposite of Voltaire. Euler had very limited training in rhetoric and tended to debate matters that he knew little about, making him a frequent target of Voltaire"s wit.[13] Frederick also expressed disappointment with Euler"s practical engineering abilities:I wanted to have a water jet in my garden: Euler calculated the force of the wheels necessary to raise the water to a reservoir, from where it should fall back through channels, finally spurting out in Sanssouci. My mill was carried out geometrically and could not raise a mouthful of water closer than fifty paces to the reservoir. Vanity of vanities! Vanity of geometry![14][edit] Eyesight deterioration A 1753 portrait by Emanuel Handmann. This portrayal suggests problems of the right eyelid and that Euler is perhaps suffering from strabismus. The left eye appears healthy, as it was a later cataract that destroyed it.[15]Euler"s eyesight worsened throughout his mathematical career. Three years after suffering a near-fatal fever in 1735 he became nearly blind in his right eye, but Euler rather blamed his condition on the painstaking work on cartography he performed for the St. Petersburg Academy. Euler"s sight in that eye worsened throughout his stay in Germany, so much so that Frederick referred to him as "Cyclops". Euler later suffered a cataract in his good left eye, rendering him almost totally blind a few weeks after its discovery. Even so, his condition appeared to have little effect on his productivity, as he compensated for it with his mental calculation skills and photographic memory. For example, Euler could repeat the Aeneid of Virgil from beginning to end without hesitation, and for every page in the edition he could indicate which line was the first and which the last.[3][edit] Last stage of life Euler"s grave at the Alexander Nevsky Laura.The situation in Russia had improved greatly since the ascension of Catherine the Great, and in 1766 Euler accepted an invitation to return to the St. Petersburg Academy and spent the rest of his life in Russia. His second stay in the country was marred by tragedy. A 1771 fire in St. Petersburg cost him his home and almost his life. In 1773, he lost his wife of 40 years. Euler would remarry three years later.On September 18, 1783, Euler passed away in St. Petersburg after suffering a brain hemorrhage and was buried in the Alexander Nevsky Laura. His eulogy was written for the French Academy by the French mathematician and philosopher Marquis de Condorcet, and an account of his life, with a list of his works, by Nikolaus von Fuss, Euler"s son-in-law and the secretary of the Imperial Academy of St. Petersburg. Condorcet commented,"...il cessa de calculer et de vivre," (he ceased to calculate and to live).[16] [edit] Contributions to mathematicsEuler worked in almost all areas of mathematics: geometry, calculus, trigonometry, algebra, and number theory, not to mention continuum physics, lunar theory and other areas of physics. His importance in the history of mathematics cannot be overstated: if printed, his works, many of which are of fundamental interest, would occupy between 60 and 80 quarto volumes[3] and Euler"s name is associated with an impressive number of topics. The 20th century Hungarian mathematician Paul Erdős is perhaps the only other mathematician who could be considered to be as prolific.[edit] Mathematical notationEuler introduced and popularized several notational conventions through his numerous and widely circulated textbooks. Most notably, he introduced the concept of a function[2] and was the first to write f(x) to denote the function f applied to the argument x. He also introduced the modern notation for the trigonometric functions, the letter e for the base of the natural logarithm (now also known as Euler"s number), the Greek letter ∑ for summations and the letter i to denote the imaginary unit.[17] The use of the Greek letter π to denote the ratio of a circle"s circumference to its diameter was also popularized by Euler, although it did not originate with him.[18] Euler also contributed to the development of the the history of complex numbers system (the notation system of defining negative roots with a + bi).[19][edit] AnalysisThe development of calculus was at the forefront of 18th century mathematical research, and the Bernoullis—family friends of Euler—were responsible for much of the early progress in the field. Thanks to their influence, studying calculus naturally became the major focus of Euler"s work. While some of Euler"s proofs may not have been acceptable under modern standards of rigour,[20] his ideas led to many great advances.He is well known in analysis for his frequent use and development of power series: that is, the expression of functions as sums of infinitely many terms, such asNotably, Euler discovered the power series expansions for e and the inverse tangent function. His daring (and, by modern standards, technically incorrect) use of power series enabled him to solve the famous Basel problem in 1735:[20]A geometric interpretation of Euler"s formulaEuler introduced the use of the exponential function and logarithms in analytic proofs. He discovered ways to express various logarithmic functions in terms of power series, and successfully defi
九万里风9 2023-05-19 20:19:333

为什么∑1/k=r+lnn+ε,其中r为欧拉常数,华师大数学分析上面有这个公式吗?

当n无穷大时级数{∑1/k-lnn}是收敛数列(单调有界),收敛值就定义为欧拉常数r r是一个非常神秘的常数,现在还不知它是否是无理数
FinCloud2023-05-19 20:19:301

数学都有哪些常数?

π,e……1,2,3,4,5,……
FinCloud2023-05-19 20:19:293

数学的5个常量是哪些

1、π(圆周率)≈3.14159265358979323846264338327950288419716939937510582092、e(自然对数的底)≈2.71828182845904523536028747135266249775724709369993、γ(欧拉常数)≈0.577215664901532860606512090082402431042159335939923594、δ(菲根鲍姆常数)≈4.669201609102990671853203820466201615、α(菲根鲍姆常数)≈2.502907875095892822283902873218215786、Φ(黄金分割数)≈1.618033988749894848204586834365638117720309179805762867、i(虚数单位)=√-18、∞(无穷大)9、K(卡特兰数)≈0.9159655941772190150546035149323841107741493710、Khinchin(卡钦常数)≈2.68545200106530644530971483548179569382038229399446295311、Glaisher≈1.28242712910062263687534256886979172776768892732500119212、√2(毕达哥拉斯常数)≈1.41421356237309504880168872420969807856967187537694807317667913、β*(Embree-Trefethen常数)≈0.7025814、C2(孪生质数常数)≈ 0.6601618158468695739278121100145557715、M1(Meissel-Mertens常数)≈0.2614972128476427837554268386086958516、B2(布朗常数)≈1.902160582317、B4(布朗常数)≈0.870588380018、∧(德布鲁因-纽曼常数)>–2.7*10^-919、K(朗道-罗曼奴赞常数)≈0.7642236535892206620、K(Viswanath常数)≈1.1319882421、B"L(勒让德常数)≈1.0836622、μ(Ramanujan-Soldner常数、Soldner常数)≈1.45136923488338105028396848589202723、EB(埃尔德什-波温常数)≈1.606695152415291763
再也不做站长了2023-05-19 20:19:271

数学的常数包括什么?

常数的概念:1.规定的数量与数字。 2.一定的重复规律。 3.一定之数或通常之数。 4.一定的次序。 5.数学名词。固定不变的数值。如圆的周长和直径的比值(π)约为3.1416﹑铁的膨胀系数为0.000012等。 常数是具有一定含义的名称,用于代替数字或字符串,其值从不改变。 数学中的常数: π≈ 3.14159 26535 89793 23846 26433 83279 50288 圆周率 e ≈ 2.71828 18284 59045 23536 02874 71352 66249 自然对数的底 sqrt{2} ≈ 1.41421 35623 73095 04880 16887 24209 69807 毕达哥拉斯常数、二的平方根 γ≈ 0.57721 56649 01532 86060 65120 90082 40243 欧拉-洛伦常数 φ≈ 1.61803 39887 49894 84820 45868 34365 63811 黄金比 β* ≈ 0.70258 Embree-Trefethen 常数 δ≈ 4.66920 16091 02990 67185 32038 20466 20161 费根堡常数 α≈ 2.50290 78750 95892 82228 39028 73218 21578 费根堡常数 C2 ≈ 0.66016 18158 46869 57392 78121 10014 55577 孪生质数常数 M1 ≈ 0.26149 72128 47642 78375 54268 38608 69585 Meissel-Mertens常数 B2 ≈ 1.90216 05823 孪生质数之 Brun 常数 B4 ≈ 0.87058 83800 四胞胎质数(Prime Quadruplet)之 Brun 常数 Λ > – 2.7 · 10-9 德布鲁因·纽曼常数 K ≈ 0.91596 55941 77219 01505 46035 14932 38411 卡塔兰常数 K ≈ 0.76422 36535 89220 66 Landau·罗曼奴赞常数 K ≈ 1.13198 824 Viswanath 常数 B′L ≈ 1.08366 勒让德常数 μ≈ 1.45136 92348 83381 05028 39684 85892 027 罗曼奴赞·Soldner常数、Soldner 常数 EB ≈ 1.60669 51524 15291 763 艾狄胥·波温常数(Erd�0�2s-Borwein constant)
u投在线2023-05-19 20:19:273

数学千禧年有什么难题解答?

千禧年七大数学难题见如下:1、P与NP问题:一个问题称为是P的,如果它可以通过运行多项式次(即运行时间至多是输入量大小的多项式函数)的一种算法获得解决。一个问题成为是NP的,如果所提出的解答可以用多项式次算法来检验。2、黎曼假设/黎曼猜想:黎曼ζ函数的每一个非平凡零点都有等于1/2的实部。3、庞加莱猜想:任何单连通闭3维流形同胚于3维球。4、Hodge猜想:任何Hodge类关于一个非奇异复射影代数簇都是某些代数闭链类的有理线形组合。代数数论1847年,库默尔创立“代数数论”这一现代重要学科。他还证明了当n﹤100时,除却n=37、59、67这些不规则质数的情况,费尔马大定理都成立,是一次大飞跃。历史上费尔马大定理高潮迭起,传奇不断。其惊人的魅力,曾在最后时刻挽救自杀青年于不死。他就是德国的沃尔夫斯克勒,他于1908年为费尔马大定理设悬赏10万马克(相当于现时的160万美元多),期限1908-2007年。
苏萦2023-05-19 20:19:231

千禧年数学界定的7大数学难题是什么

P与NP问题:一个问题称为是P的,如果它可以通过运行多项式次(即运行时间至多是输入量大小的多项式函数)的一种算法获得解决.一个问题成为是NP的,如果所提出的解答可以用多项式次算法来检验.P等于NP吗? 黎曼假设/黎曼猜想:黎曼ζ函数的每一个非平凡零点都有等于1/2的实部。 庞加莱猜想:任何单连通闭3维流形同胚于3维球。 Hodge猜想:任何Hodge类关于一个非奇异复射影代数簇都是某些代数闭链类的有理线形组合。 Birch及Swinnerton-Dyer猜想:对于建立在有理数域上的每一条椭圆曲线,它在一处的L函数变为零的阶都等于该曲线上有理点的阿贝尔群的秩。 Navier-Stokers方程组:(在适当的边界及初始条件下)对3维Navier-Stokers方程组证明或反证其光滑解的存在性。 Yang-Mills理论:证明量子Yang-Mills场存在,并存在一个质量间隙。
凡尘2023-05-19 20:19:231

目前世界上还未解决的数学难题又哪些?

千禧年大奖难题的悬赏题目 克雷数学研究所所设立的千禧年大奖难题悬赏的七个待解问题中仍未得到解决六个题目是:复杂度类P对NP问题(理论信息学:计算复杂度) 霍奇猜想(数学) 黎曼猜想(数学) 杨-米尔斯存在性与质量间隙(量子力学) 纳维-斯托克斯存在性与光滑性(计算流体力学) 贝赫和斯维讷通-戴尔猜想(数学) 其它未解问题 堆垒数论 哥德巴赫猜想及哥德巴赫弱猜想 华林问题中的g(k)和G(k)的值 考拉兹猜想(3n + 1 猜想、角谷猜想) 吉尔布雷斯猜想 数论:素数 孪生素数猜想 是否存在无穷多个四胞胎质数 是否存在无穷多个梅森素数(OEIS中的数列OEIS:A000688,Lenstra-Pomerance-Wagstaff猜想);此问题的等价问题是,是否存在无穷多个偶完全数 是否存在无穷多个规则素数,且其分布密度是 是否存在无穷多个卡伦素数(OEIS中的数列OEIS:A005849) 以10为基数时是否存在无穷多个回文素数(OEIS中的数列OEIS:A002385) 当n > 4时,是否每个费马数(OEIS中的数列OEIS:A000215)都是合数? 78,557是否是最小的谢尔宾斯基数(OEIS中的数列OEIS:A076336)? 509,203是否是最小的黎瑟尔数(OEIS中的数列OEIS:A101036)? 普通数论 abc猜想 是否存在奇完全数(OEIS中的数列OEIS:A000396) 是否存在拟完全数(quasi-perfect number) 是否存在奇的奇异数(weird number) 证明在用于数196时,196方法没有终止 证明10是个孤独数(solitary number)(OEIS中的数列OEIS:A095739) 对任意给定的n,幸福结局问题的解法 拉姆齐理论 拉姆齐数的值,特别是R(5,5) 范·德·华登数的值 普通代数 希尔伯特第16问题 阿达马猜想 是否存在完美长方体 组合数学 幻方(OEIS中的数列A006052)的数目 通过随机选择的两个元素产生对称群Sn的概率的公式 图论 Erd�0�2s-Gyárfás猜想 图的同构问题 关于单位距离的图的色数的Hadwiger-Nelson问题 为逾渗阈值得到一种闭式表达式,特别是pc(二维方格模型) 分析 Schanuel猜想 Lehmer猜想 Pompeiu问题 γ(欧拉-马歇罗尼常数)是无理数吗? 群论 每个被有限表达的周期群是否都是有限的? 逆伽罗瓦问题 其它 普遍化的星号嵌套深度问题 不变子空间问题 黑洞归并的建模 天使问题
bikbok2023-05-19 20:19:221

千禧年数学七大难题是?

千禧年七大数学难题如下:1、P与NP问题:一个问题称为是P的,如果它可以通过运行多项式次(即运行时间至多是输入量大小的多项式函数)的一种算法获得解决。一个问题成为是NP的,如果所提出的解答可以用多项式次算法来检验。2、黎曼假设/黎曼猜想:黎曼ζ函数的每一个非平凡零点都有等于1/2的实部。3、庞加莱猜想:任何单连通闭3维流形同胚于3维球。4、Hodge猜想:任何Hodge类关于一个非奇异复射影代数簇都是某些代数闭链类的有理线形组合。5、Birch及Swinnerton-Dyer猜想:对于建立在有理数域上的每一条椭圆曲线,它在一处的L函数变为零的阶都等于该曲线上有理点的阿贝尔群的秩。6、Navier-Stokers方程组:(在适当的边界及初始条件下)对3维Navier-Stokers方程组证明或反证其光滑解的存在性。7、Yang-Mills理论:证明量子Yang-Mills场存在,并存在一个质量间隙。1847年,库默尔创立“代数数论”这一现代重要学科。他还证明了当n﹤100时,除却n=37、59、67这些不规则质数的情况,费尔马大定理都成立,是一次大飞跃。历史上费尔马大定理高潮迭起,传奇不断。其惊人的魅力,曾在最后时刻挽救自杀青年于不死。他就是德国的沃尔夫斯克勒,他于1908年为费尔马大定理设悬赏10万马克(相当于现时的160万美元多),期限1908-2007年。无数人耗尽心力,空留浩叹。最现代的电脑加数学技巧,验证了400万以内的n,但这对最终证明无济于事。1983年德国的法尔廷斯证明了:对任一固定的n,最多只有有限多个x,y,z,振动了世界,获得菲尔兹奖(数学界最高奖)。
黑桃花2023-05-19 20:19:221

千禧年数学七大难题是什么?

千禧年七大数学难题见如下:1、P与NP问题:一个问题称为是P的,如果它可以通过运行多项式次(即运行时间至多是输入量大小的多项式函数)的一种算法获得解决。一个问题成为是NP的,如果所提出的解答可以用多项式次算法来检验。2、黎曼假设/黎曼猜想:黎曼ζ函数的每一个非平凡零点都有等于1/2的实部。3、庞加莱猜想:任何单连通闭3维流形同胚于3维球。4、Hodge猜想:任何Hodge类关于一个非奇异复射影代数簇都是某些代数闭链类的有理线形组合。代数数论1847年,库默尔创立“代数数论”这一现代重要学科。他还证明了当n﹤100时,除却n=37、59、67这些不规则质数的情况,费尔马大定理都成立,是一次大飞跃。历史上费尔马大定理高潮迭起,传奇不断。其惊人的魅力,曾在最后时刻挽救自杀青年于不死。他就是德国的沃尔夫斯克勒,他于1908年为费尔马大定理设悬赏10万马克(相当于现时的160万美元多),期限1908-2007年。
韦斯特兰2023-05-19 20:19:221

千禧年七大数学难题是什么?

P与NP问题:一个问题称为是P的,如果它可以通过运行多项式次(即运行时间至多是输入量大小的多项式函数)的一种算法获得解决。一个问题成为是NP的,如果所提出的解答可以用多项式次算法来检验。黎曼假设/黎曼猜想:黎曼ζ函数的每一个非平凡零点都有等于1/2的实部。庞加莱猜想:任何单连通闭3维流形同胚于3维球。Hodge猜想:任何Hodge类关于一个非奇异复射影代数簇都是某些代数闭链类的有理线形组合。Birch及Swinnerton-Dyer猜想:对于建立在有理数域上的每一条椭圆曲线,它在一处的L函数变为零的阶都等于该曲线上有理点的阿贝尔群的秩。Navier-Stokers方程组:(在适当的边界及初始条件下)对3维Navier-Stokers方程组证明或反证其光滑解的存在性。Yang-Mills理论:证明量子Yang-Mills场存在,并存在一个质量间隙。相关内容解释:千年数学会议在著名的法兰西学院举行。会上,97年菲尔兹奖获得者伽沃斯以“数学的重要性”为题作了演讲,其后,塔特和阿啼亚公布和介绍了这七个“千年大奖问题”。克雷数学研究所还邀请有关研究领域的专家对每一个问题进行了较详细的详述。克雷数学研究所对“千年大奖问题”的解决与获奖作了严格规定。每一个“千年大奖问题”获得解决并不能立即得奖。任何解决答案必须在具有世界声誉的数学杂志上发表两年后且得到数学界的认可,才有可能由克雷数学研究所的科学顾问委员会审查决定是否值得获得一百万美元的大奖。
陶小凡2023-05-19 20:19:212

数学史上有哪些未解决的难题?

克雷数学研究所所设立的千禧年大奖难题悬赏的七个待解问题中仍未得到解决六个题目是:复杂度类P对NP问题(理论信息学:计算复杂度)霍奇猜想(数学)黎曼猜想(数学)杨-米尔斯存在性与质量间隙(量子力学)纳维-斯托克斯存在性与光滑性(计算流体力学)贝赫和斯维讷通-戴尔猜想(数学)[编辑] 其它未解问题 [编辑] 堆垒数论 哥德巴赫猜想及哥德巴赫弱猜想华林问题中的g(k)和G(k)的值考拉兹猜想(3n + 1 猜想、角谷猜想)吉尔布雷斯猜想[编辑] 数论:素数 孪生素数猜想是否存在无穷多个四胞胎质数是否存在无穷多个三胞胎质数是否存在无穷多个x�0�5+1素数是否存在无穷多个表兄弟素数是否存在无穷多个六质数是否存在无穷多个梅森素数(OEIS中的数列OEIS:A000688,Lenstra-Pomerance-Wagstaff猜想);此问题的等价问题是,是否存在无穷多个偶完全数是否存在无穷多个规则素数,且其分布密度是是否存在无穷多个卡伦素数(OEIS中的数列OEIS:A005849)以10为基数时是否存在无穷多个回文素数(OEIS中的数列OEIS:A002385)当n > 4时,是否每个费马数(OEIS中的数列OEIS:A000215)都是合数?78,557是否是最小的谢尔宾斯基数(OEIS中的数列OEIS:A076336)?509,203是否是最小的黎瑟尔数(OEIS中的数列OEIS:A101036)?[编辑] 普通数论 abc猜想是否存在奇完全数(OEIS中的数列OEIS:A000396)?是否存在拟完全数(quasi-perfect number)?是否存在奇的奇异数(weird number)?证明196是利克瑞尔数证明10是个孤独数(solitary number)(OEIS中的数列OEIS:A095739)对任意给定的n,幸福结局问题的解法[编辑] 拉姆齐理论 拉姆齐数的值,特别是R(5,5)范·德·华登数的值[编辑] 普通代数 希尔伯特第16问题阿达马猜想是否存在完美长方体[编辑] 组合数学 幻方(OEIS中的数列A006052)的数目通过随机选择的两个元素产生对称群Sn的概率的公式克雷数学研究所所设立的千禧年大奖难题悬赏的七个待解问题中仍未得到解决六个题目是:复杂度类P对NP问题(理论信息学:计算复杂度)霍奇猜想(数学)黎曼猜想(数学)杨-米尔斯存在性与质量间隙(量子力学)纳维-斯托克斯存在性与光滑性(计算流体力学)贝赫和斯维讷通-戴尔猜想(数学)[编辑] 其它未解问题 [编辑] 堆垒数论 哥德巴赫猜想及哥德巴赫弱猜想华林问题中的g(k)和G(k)的值考拉兹猜想(3n + 1 猜想、角谷猜想)吉尔布雷斯猜想[编辑] 数论:素数 孪生素数猜想是否存在无穷多个四胞胎质数是否存在无穷多个三胞胎质数是否存在无穷多个x�0�5+1素数是否存在无穷多个表兄弟素数是否存在无穷多个六质数是否存在无穷多个梅森素数(OEIS中的数列OEIS:A000688,Lenstra-Pomerance-Wagstaff猜想);此问题的等价问题是,是否存在无穷多个偶完全数是否存在无穷多个规则素数,且其分布密度是是否存在无穷多个卡伦素数(OEIS中的数列OEIS:A005849)以10为基数时是否存在无穷多个回文素数(OEIS中的数列OEIS:A002385)当n > 4时,是否每个费马数(OEIS中的数列OEIS:A000215)都是合数?78,557是否是最小的谢尔宾斯基数(OEIS中的数列OEIS:A076336)?509,203是否是最小的黎瑟尔数(OEIS中的数列OEIS:A101036)?[编辑] 普通数论 abc猜想是否存在奇完全数(OEIS中的数列OEIS:A000396)?是否存在拟完全数(quasi-perfect number)?是否存在奇的奇异数(weird number)?证明196是利克瑞尔数证明10是个孤独数(solitary number)(OEIS中的数列OEIS:A095739)对任意给定的n,幸福结局问题的解法[编辑] 拉姆齐理论 拉姆齐数的值,特别是R(5,5)范·德·华登数的值[编辑] 普通代数 希尔伯特第16问题阿达马猜想是否存在完美长方体[编辑] 组合数学 幻方(OEIS中的数列A006052)的数目通过随机选择的两个元素产生对称群Sn的概率的公式[编辑] 图论 Erd�0�2s-Gyárfás猜想图的同构问题关于单位距离的图的色数的Hadwiger-Nelson问题为逾渗阈值得到一种闭式表达式,特别是pc(二维方格模型)克雷数学研究所所设立的千禧年大奖难题悬赏的七个待解问题中仍未得到解决六个题目是:复杂度类P对NP问题(理论信息学:计算复杂度)霍奇猜想(数学)黎曼猜想(数学)杨-米尔斯存在性与质量间隙(量子力学)纳维-斯托克斯存在性与光滑性(计算流体力学)贝赫和斯维讷通-戴尔猜想(数学)[编辑] 其它未解问题 [编辑] 堆垒数论 哥德巴赫猜想及哥德巴赫弱猜想华林问题中的g(k)和G(k)的值考拉兹猜想(3n + 1 猜想、角谷猜想)吉尔布雷斯猜想[编辑] 数论:素数 孪生素数猜想是否存在无穷多个四胞胎质数是否存在无穷多个三胞胎质数是否存在无穷多个x�0�5+1素数是否存在无穷多个表兄弟素数是否存在无穷多个六质数是否存在无穷多个梅森素数(OEIS中的数列OEIS:A000688,Lenstra-Pomerance-Wagstaff猜想);此问题的等价问题是,是否存在无穷多个偶完全数是否存在无穷多个规则素数,且其分布密度是是否存在无穷多个卡伦素数(OEIS中的数列OEIS:A005849)以10为基数时是否存在无穷多个回文素数(OEIS中的数列OEIS:A002385)当n > 4时,是否每个费马数(OEIS中的数列OEIS:A000215)都是合数?78,557是否是最小的谢尔宾斯基数(OEIS中的数列OEIS:A076336)?509,203是否是最小的黎瑟尔数(OEIS中的数列OEIS:A101036)?[编辑] 普通数论 abc猜想是否存在奇完全数(OEIS中的数列OEIS:A000396)?是否存在拟完全数(quasi-perfect number)?是否存在奇的奇异数(weird number)?证明196是利克瑞尔数证明10是个孤独数(solitary number)(OEIS中的数列OEIS:A095739)对任意给定的n,幸福结局问题的解法[编辑] 拉姆齐理论 拉姆齐数的值,特别是R(5,5)范·德·华登数的值[编辑] 普通代数 希尔伯特第16问题阿达马猜想是否存在完美长方体[编辑] 组合数学 幻方(OEIS中的数列A006052)的数目通过随机选择的两个元素产生对称群Sn的概率的公式[编辑] 图论 Erd�0�2s-Gyárfás猜想图的同构问题关于单位距离的图的色数的Hadwiger-Nelson问题为逾渗阈值得到一种闭式表达式,特别是pc(二维方格模型)[编辑] 分析 Schanuel猜想Lehmer猜想Pompeiu问题欧拉-马歇罗尼常数是否无理数克雷数学研究所所设立的千禧年大奖难题悬赏的七个待解问题中仍未得到解决六个题目是:复杂度类P对NP问题(理论信息学:计算复杂度)霍奇猜想(数学)黎曼猜想(数学)杨-米尔斯存在性与质量间隙(量子力学)纳维-斯托克斯存在性与光滑性(计算流体力学)贝赫和斯维讷通-戴尔猜想(数学)[编辑] 其它未解问题 [编辑] 堆垒数论 哥德巴赫猜想及哥德巴赫弱猜想华林问题中的g(k)和G(k)的值考拉兹猜想(3n + 1 猜想、角谷猜想)吉尔布雷斯猜想[编辑] 数论:素数 孪生素数猜想是否存在无穷多个四胞胎质数是否存在无穷多个三胞胎质数是否存在无穷多个x�0�5+1素数是否存在无穷多个表兄弟素数是否存在无穷多个六质数是否存在无穷多个梅森素数(OEIS中的数列OEIS:A000688,Lenstra-Pomerance-Wagstaff猜想);此问题的等价问题是,是否存在无穷多个偶完全数是否存在无穷多个规则素数,且其分布密度是是否存在无穷多个卡伦素数(OEIS中的数列OEIS:A005849)以10为基数时是否存在无穷多个回文素数(OEIS中的数列OEIS:A002385)当n > 4时,是否每个费马数(OEIS中的数列OEIS:A000215)都是合数?78,557是否是最小的谢尔宾斯基数(OEIS中的数列OEIS:A076336)?509,203是否是最小的黎瑟尔数(OEIS中的数列OEIS:A101036)?[编辑] 普通数论 abc猜想是否存在奇完全数(OEIS中的数列OEIS:A000396)?是否存在拟完全数(quasi-perfect number)?是否存在奇的奇异数(weird number)?证明196是利克瑞尔数证明10是个孤独数(solitary number)(OEIS中的数列OEIS:A095739)对任意给定的n,幸福结局问题的解法[编辑] 拉姆齐理论 拉姆齐数的值,特别是R(5,5)范·德·华登数的值[编辑] 普通代数 希尔伯特第16问题阿达马猜想是否存在完美长方体[编辑] 组合数学 幻方(OEIS中的数列A006052)的数目通过随机选择的两个元素产生对称群Sn的概率的公式[编辑] 图论 Erd�0�2s-Gyárfás猜想图的同构问题关于单位距离的图的色数的Hadwiger-Nelson问题为逾渗阈值得到一种闭式表达式,特别是pc(二维方格模型)[编辑] 分析 Schanuel猜想Lehmer猜想Pompeiu问题欧拉-马歇罗尼常数是否无理数[编辑] 群论 每个被有限表达的周期群是否都是有限的?逆伽罗瓦问题[编辑] 其它 普遍化的星号嵌套深度问题不变子空间问题黑洞归并的建模天使问题[群论 每个被有限表达的周期群是否都是有限的?逆伽罗瓦问题其它 普遍化的星号嵌套深度问题不变子空间问题黑洞归并的建模天使问题分析 Schanuel猜想Lehmer猜想Pompeiu问题欧拉-马歇罗尼常数是否无理数群论 每个被有限表达的周期群是否都是有限的?逆伽罗瓦问题其它 普遍化的星号嵌套深度问题不变子空间问题黑洞归并的建模天使问题图论 Erd�0�2s-Gyárfás猜想图的同构问题关于单位距离的图的色数的Hadwiger-Nelson问题为逾渗阈值得到一种闭式表达式,特别是pc(二维方格模型)分析 Schanuel猜想Lehmer猜想Pompeiu问题欧拉-马歇罗尼常数是否无理数群论 每个被有限表达的周期群是否都是有限的?逆伽罗瓦问题其它 普遍化的星号嵌套深度问题不变子空间问题黑洞归并的建模天使问题
小菜G的建站之路2023-05-19 20:19:211

世界上有什么未解决的数学难题吗?

哥德巴赫猜想及哥德巴赫弱猜想
铁血嘟嘟2023-05-19 20:19:214

数学家的小故事

德国著名大科学家高斯(1777~1855)出生在一个贫穷的家庭。高斯在还不会讲话就自己学计算,在三岁时有一天晚上他看着父亲在算工钱时,还纠正父亲计算的错误。长大后他成为当代最杰出的天文学家、数学家。他在物理的电磁学方面有一些贡献,现在电磁学的一个单位就是用他的名字命名。数学家们则称呼他为“数学王子”。他八岁时进入乡村小学读书。教数学的老师是一个从城里来的人,觉得在一个穷乡僻壤教几个小猢狲读书,真是大材小用。而他又有些偏见:穷人的孩子天生都是笨蛋,教这些蠢笨的孩子念书不必认真,如果有机会还应该处罚他们,使自己在这枯燥的生活里添一些乐趣。这一天正是数学教师情绪低落的一天。同学们看到老师那抑郁的脸孔,心里畏缩起来,知道老师又会在今天捉这些学生处罚了。“你们今天替我算从1加2加3一直到100的和。谁算不出来就罚他不能回家吃午饭。”老师讲了这句话后就一言不发的拿起一本小说坐在椅子上看去了。教室里的小朋友们拿起石板开始计算:“1加2等于3,3加3等于6,6加4等于10……”一些小朋友加到一个数后就擦掉石板上的结果,再加下去,数越来越大,很不好算。有些孩子的小脸孔涨红了,有些手心、额上渗出了汗来。还不到半个小时,小高斯拿起了他的石板走上前去。“老师,答案是不是这样?”斯以后便在数学上作了一些重要的研究了。 赞同0| 评论
NerveM 2023-05-19 20:19:195

四年级数学手抄报资料内容,急!!!

直接在百度上搜数学手抄报内容不就行了吗?
北境漫步2023-05-19 20:19:193

世界上的顶级数学家会聪明到什么程度?

数学是一门非常重要的学科,很多朋友在上学的时候,都会为了数学感到头疼,毕竟这个学科确实是有些难度,有的人天生就能学好数学,有的人则是怎么都学不会数学。那么随着年龄的增长,数学的难度就会越来越大,一开始学生接触的只是非常基本的数学,可后来,再接触的就是一些高等的数学,两者的难度不是一个档次的,越往后数学只会越难学,尤其是在大学专门去学数学的这些人,不是脑子有病,就是本人是天才。专门去学数学的这些人,智商肯定都非常高,否则也学不了这些东西,不过学习数学,也是需要有着足够的天赋,每年研究数学的学者那么多,可真正成为顶级数学家的,也没有几个,在数学这个领域研究到了顶级,那这个人可是非常恐怖的。牛顿举一个最简单的例子,在世界历史上有一位伟大的科学家,他就是牛顿,牛顿在物理等诸多领域都有着很高的成就,他也同样是一位顶级的数学家,牛顿最大的贡献就是创造微积分,学数学的人们也都接触过。牛顿的伟大不用多说,他厉害到可以靠着自己的这些理论改变整个世界。当然,这么长时间,世界也只有一个牛顿,他不仅是学数学的天才,而是一个全能的天才,用顶级数学家来形容,反而是有些低估他,他已经超越顶级的范畴。佩雷尔曼后来数学这个领域,也出现过不少的顶级数学家,美国也多次发布一些很难的数学题,专门是要让全世界优秀的数学家们来解题,只要能够解出这些难题,就可以得到丰厚的奖金,俄罗斯著名的数学大师佩雷尔曼就曾解出过这些难题,他也因此出了大名。每年有无数的学校邀请他来讲学,不少的学校为了能够得到他,开出天价报酬,这些邀请都被他给拒绝,包括他当初解题时候理应获得的奖金,也全部被他给拒绝。到他这样境界的人,名利什么的都已经不重要,这些研究数学的大师,或多或少都有着一些怪异性格,可他们在数学领域有这么高的成就,因此在学术界就有着很高的地位,当做到像佩雷尔曼这种顶级的数学家,想要获得名利是再容易不过,他们甚至都不用去费心工作,到各个名校去转一圈就能赚取无数的金钱。高斯每年他们能够得到的大奖数不胜数,在世界各地,都曾出现过很多的数学天才,想要成为数学家,没有天赋是肯定不行的,可在数学的研究中,我们能够看出天才也是分为不同等级的,想要成为顶级数学家,一般的天才是肯定做不到的。比如在数学界就有一个顶级的天才,他名叫高斯,他和一般人是不一样,在他很小的时候就已经证明了很多数学界的难题,他有着超乎常人的直觉,以及非常出色的逻辑思维。在推算素数的时候,他大胆精准预测了素数的分布规律,要知道单单是推算这些规律,就要花费大量的纸张和精力,然而这些东西在高斯的脑子里就已经成型,可见他的思维是有多么发达,高斯创造无数辉煌的成就,让后来很多人认为他就是一个神仙。这些顶级的数学家,真的好像是超人一样,能够推算出这么多定理,很多人一直都不明白,数学到底有什么用处,看起来在日常生活中数学和我们的关系不太大。可实际上,数学对于人类发展是有很大作用的,任何研究自然科学的人,都需要有着良好的数学基础,否则就没有办法展开研究,数学是这类科学的基础,发展科技,数学是至关重要的,否则各个国家也不会对数学家那么重视,把数学学到顶级的那类人,基本上就代表着人类智商的巅峰,这样的人放在哪个国家都是国宝类。
NerveM 2023-05-19 20:19:182

他解决了一道世纪难题,却拒绝领取100万美元奖金,并退出数学家

菲尔茨奖被誉为是国际性数学奖项,若非有极高的天赋与才华,许多人一生也触及不到这个奖项。 可即使这个许多数学家一生都无法触及的奖项, 却有人不屑一顾,甚至获奖之后还拒绝去领奖 。 而也就是这位不屑于菲尔茨奖的人,他不仅在数学领域取得卓越的成就,还解决了一道世纪难题,在破解世纪难题之后,面对破解世纪难题的百万美元奖金,竟选择了拒绝。与此同时,在2005年,可以被称之为是数学界奇人的他却退出了数学界,从此不再是数学家了。 那么这个解决了世纪难题的人是谁?世纪难题究竟有多难解?这位数学家又为何要拒绝领取百万美元奖金?难道他是百万富翁吗?成名后隐退的真相又是什么? 数学界的这位奇人就是格里戈里·佩雷尔曼,1966年出生,父亲是位工程师,母亲是名教师。他母亲在他退出学术界的时候,也已经退休了。幼年时候的佩雷尔曼,父母虽然都是工薪阶层,薪资也只够温饱。 因为父母都是知识分子,和其他家庭相比,佩雷尔曼的家庭教育环境会比较好一些 。 幼年的佩雷尔曼就已经对数学产生了浓厚的兴趣, 同龄孩子都在踢足球、玩 游戏 的时候,佩雷尔曼已经沉浸在数学王国中 。虽然热爱数学,沉醉于此,可佩雷尔曼业余爱好也很丰富,读书、下象棋,拉小提琴等充实着佩雷尔曼的童年。跟教育相关的是,成年后的佩雷尔曼不仅是一位有名的数学家,还是一位出色的小提琴家。 在俄罗斯时,佩雷尔曼就是在专门教授数学的学校学习,后来佩雷尔曼去美国留学,也是为了更系统地学习数学。不过在美国留学三年后, 佩雷尔曼不顾美国名校的多方挽留,毅然决然地回到了俄罗斯继续自己的数学研究 。 佩雷尔曼结束在美国的学习是在1995年,但在 1991年,苏联解体,俄罗斯从苏联中分离出来 ,在1994年,刚分离出苏联的俄罗斯又与车臣发生战争。而在 1995年,“车臣战争”正是最激烈的时候,佩雷尔曼却选择了回国。 当时许多人对佩雷尔曼的选择非常不解,明明相对于俄罗斯而言,美国无论是政治环境还是教育环境,都会比当时的俄罗斯好一些,为何佩雷尔曼还要拒绝在美的高薪工作,选择回国。面对众人的疑惑, 佩雷尔曼抿唇一笑,回答说:“在这里(指俄罗斯)我能更好地工作”。 回国后的佩雷尔曼全身心投入到数学研究中,虽然 那时候的俄罗斯正处在风雨飘摇的年代,人民生活贫苦, 社会 动荡不安, 可这些并没有影响佩雷尔曼对祖国数学事业研究的热情,佩雷尔曼与许多俄罗斯科研人员一样,以高涨的热情,投身于自己热爱的事业,即使是生活清贫、艰难,佩雷尔曼也时刻坚守在自己的研究岗位上。 也许正是因为从小所受的教育与1995年回国之后的经历, 佩雷尔曼一生不事权贵、淡泊名利。 在1996年,刚回国的佩雷尔曼, 才三十几岁,就获得了欧洲数学会颁发的杰出青年数学家奖 ,可佩雷尔曼对这杰出青年数学奖不为所动,直接拒绝了领奖。 在 2006年的时候,因为破解了千禧年的世纪难题“庞加莱猜想”,佩雷尔曼获得了数学界的“诺贝尔奖”——菲尔茨奖 ,可谁也没料到,这项世界数学家都梦寐以求的奖项,也被佩雷尔曼拒绝了。 佩雷尔曼拒绝去领“菲尔茨奖”的理由十分清奇, “没有路费去领奖” ,这就是佩雷尔曼拒绝领“菲尔兹”数学奖的理由,许多人得知这一消息之后啼笑皆非。 说“没路费去领奖”,面对这位有才华的数学家,有人也愿意卖个好,当时还是国际数学联盟主席的 约翰鲍姆表示,愿意免费资助佩雷尔曼去领奖 ,谁知,约翰鲍姆的好意,也被佩雷尔曼拒绝了。佩雷尔曼从头到尾,都不为金钱名利所动。 虽然佩雷尔曼一生在数学领域的成就颇丰,拒绝过无数数学奖项,但许多人不知道的是, 佩雷尔曼也曾登上过领奖台 。那是 1982年,才16岁的佩雷尔曼在布达佩斯,以42分的满分,拿到了国际代数和几何奥林匹克竞赛中的金牌 。在此后,除了数学研究,再多的奖项也无法入佩雷尔曼的眼了。 佩雷尔曼在许多人眼中,是一个妥妥的奇才、科学怪咖。破解了世纪难题“庞加莱猜想”,明明靠着这道难题就能一夜暴富,却拒绝了百万美金奖项,最后还退出了数学界,不再是数学家。那么被誉为是世纪难题“庞加莱猜想”究竟有多难解?佩雷尔曼又是如何破解这道难题的?佩雷尔曼又为何要隐退? “庞加莱猜想”是法国数学庞加莱,在1904年提出的一个猜测。 “如果一个三维流形是闭的且单联通,则它必定同胚于三维球面。” 庞加莱提出的这个猜想,看似只有一句话,但真正想要证明却异常艰难。 拓扑学又叫做位置分析,是一门几何学,目的是研究图形或者集合在连续变形下的不变的整体性质。而庞加莱的这个拓扑学猜想提出后,许多拓扑学的研究者前仆后继,在近一个世纪的时间里,却无人能够真正破解这道数学难题。 不过,虽然“庞加莱猜想”在近一个世纪中无人真正破解, 但却有人在“庞加莱猜想”的数学难题上有所突破,并且有些人还因为将“庞加莱猜想”破解向前推动一步,获得了“菲尔茨奖”。 1966年“菲尔茨奖”得主斯梅尔,就是推动“庞加莱猜想”前进一步的数学家之一。在研究“庞加莱猜想”之初,斯梅尔反问自己:“利用三维破解不了庞加莱猜想,那么高维是否容易一些呢?” 于是在1961年, 斯梅尔 公布了自己的证明推论,并 展示了自己利用五维及五维以上对“庞加莱猜想”的证明 ,数学界为奖励斯梅尔对“庞加莱猜想”证明的进一步推进,1966年的“菲尔茨奖”就颁给了斯梅尔。 而继斯梅尔之后,1983年 ,美国数学家福里德曼 证出了 四维空间中的“庞加莱猜想”, 将数学界的难题“庞加莱猜想”的破解之路又推进了一步,为此,福里德曼也获得了1986年的“菲尔茨奖”。 佩雷尔曼在前人研究的基础上,继续深入对“庞加莱猜想”进行研究,终于在2002年,佩雷尔曼破解了这道数学领域像珠穆朗玛峰般存在的“庞加莱猜想”。在2002年11月到次年7月,佩雷尔曼连续在网络上发表了三篇论文。 这三篇论文,完整地证明了“庞加莱猜想”。因为佩雷尔曼的论文并没有注解,许多学术界的大咖也看不懂,于是在2003年, 麻省理工学院直接邀请佩雷尔曼来进行讲解。 讲堂内熙熙攘攘挤满了人,佩雷尔曼在讲台上板书着“庞加莱猜想”的破解方法。他详细地讲述了自己 在瑞奇流方程和奇异点方面的研究 ,用这些来破解“庞加莱猜想”。可拥挤的讲堂内,真正听讲的人寥寥无几。也因此,佩雷尔曼的“庞加莱猜想”破解法,数学界研究者,花了三年时间,才证实了其正确性。 而在2000年的时候, “庞加莱猜想”被拟定为七个千禧年数学大奖难题之一, 这七个千禧年数学难题,一个难题设定的奖金就有一百万。 佩雷尔曼是唯一成功破解千禧年难题之一的人,却也是唯一一个是拒绝领奖的人 。 而佩雷尔曼之所以退出学术界,是因为他认为, 数学界的人与体制令人失望,许多人研究数学,都是为了争名夺利,没有纯粹地研究之心,争夺科研成果这种事情,也屡见不鲜 ,所以,最终他在证明“庞加莱猜想”之后,因为不齿于学术界的明争暗斗,将论文发表于网络,虽然那个网络的权威性并不高,但可以让世人都看见,可以让世人共同享受科研的研究成果。 最后破解“庞加莱猜想”之后,佩雷尔曼彻底隐退,销声匿迹,最终也回归了平凡的生活。因为是位胡子邋遢的大叔形象,所以在许多时候,走在大街上也没人认识了。
kikcik2023-05-19 20:19:181

数学史上有哪些未解决的难题

克雷数学研究所所设立的千禧年大奖难题悬赏的七个待解问题中仍未得到解决六个题目是:复杂度类P对NP问题(理论信息学:计算复杂度)霍奇猜想(数学)黎曼猜想(数学)杨-米尔斯存在性与质量间隙(量子力学)纳维-斯托克斯存在性与光滑性(计算流体力学)贝赫和斯维讷通-戴尔猜想(数学)[编辑] 其它未解问题 [编辑] 堆垒数论 哥德巴赫猜想及哥德巴赫弱猜想华林问题中的g(k)和G(k)的值考拉兹猜想(3n + 1 猜想、角谷猜想)吉尔布雷斯猜想[编辑] 数论:素数 孪生素数猜想是否存在无穷多个四胞胎质数是否存在无穷多个三胞胎质数是否存在无穷多个x��+1素数是否存在无穷多个表兄弟素数是否存在无穷多个六质数是否存在无穷多个梅森素数(OEIS中的数列OEIS:A000688,Lenstra-Pomerance-Wagstaff猜想);此问题的等价问题是,是否存在无穷多个偶完全数是否存在无穷多个规则素数,且其分布密度是是否存在无穷多个卡伦素数(OEIS中的数列OEIS:A005849)以10为基数时是否存在无穷多个回文素数(OEIS中的数列OEIS:A002385)当n > 4时,是否每个费马数(OEIS中的数列OEIS:A000215)都是合数?78,557是否是最小的谢尔宾斯基数(OEIS中的数列OEIS:A076336)?509,203是否是最小的黎瑟尔数(OEIS中的数列OEIS:A101036)?[编辑] 普通数论 abc猜想是否存在奇完全数(OEIS中的数列OEIS:A000396)?是否存在拟完全数(quasi-perfect number)?是否存在奇的奇异数(weird number)?证明196是利克瑞尔数证明10是个孤独数(solitary number)(OEIS中的数列OEIS:A095739)对任意给定的n,幸福结局问题的解法[编辑] 拉姆齐理论 拉姆齐数的值,特别是R(5,5)范·德·华登数的值[编辑] 普通代数 希尔伯特第16问题阿达马猜想是否存在完美长方体[编辑] 组合数学 幻方(OEIS中的数列A006052)的数目通过随机选择的两个元素产生对称群Sn的概率的公式克雷数学研究所所设立的千禧年大奖难题悬赏的七个待解问题中仍未得到解决六个题目是:复杂度类P对NP问题(理论信息学:计算复杂度)霍奇猜想(数学)黎曼猜想(数学)杨-米尔斯存在性与质量间隙(量子力学)纳维-斯托克斯存在性与光滑性(计算流体力学)贝赫和斯维讷通-戴尔猜想(数学)[编辑] 其它未解问题 [编辑] 堆垒数论 哥德巴赫猜想及哥德巴赫弱猜想华林问题中的g(k)和G(k)的值考拉兹猜想(3n + 1 猜想、角谷猜想)吉尔布雷斯猜想[编辑] 数论:素数 孪生素数猜想是否存在无穷多个四胞胎质数是否存在无穷多个三胞胎质数是否存在无穷多个x��+1素数是否存在无穷多个表兄弟素数是否存在无穷多个六质数是否存在无穷多个梅森素数(OEIS中的数列OEIS:A000688,Lenstra-Pomerance-Wagstaff猜想);此问题的等价问题是,是否存在无穷多个偶完全数是否存在无穷多个规则素数,且其分布密度是是否存在无穷多个卡伦素数(OEIS中的数列OEIS:A005849)以10为基数时是否存在无穷多个回文素数(OEIS中的数列OEIS:A002385)当n > 4时,是否每个费马数(OEIS中的数列OEIS:A000215)都是合数?78,557是否是最小的谢尔宾斯基数(OEIS中的数列OEIS:A076336)?509,203是否是最小的黎瑟尔数(OEIS中的数列OEIS:A101036)?[编辑] 普通数论 abc猜想是否存在奇完全数(OEIS中的数列OEIS:A000396)?是否存在拟完全数(quasi-perfect number)?是否存在奇的奇异数(weird number)?证明196是利克瑞尔数证明10是个孤独数(solitary number)(OEIS中的数列OEIS:A095739)对任意给定的n,幸福结局问题的解法[编辑] 拉姆齐理论 拉姆齐数的值,特别是R(5,5)范·德·华登数的值[编辑] 普通代数 希尔伯特第16问题阿达马猜想是否存在完美长方体[编辑] 组合数学 幻方(OEIS中的数列A006052)的数目通过随机选择的两个元素产生对称群Sn的概率的公式[编辑] 图论 Erd��s-Gyárfás猜想图的同构问题关于单位距离的图的色数的Hadwiger-Nelson问题为逾渗阈值得到一种闭式表达式,特别是pc(二维方格模型)克雷数学研究所所设立的千禧年大奖难题悬赏的七个待解问题中仍未得到解决六个题目是:复杂度类P对NP问题(理论信息学:计算复杂度)霍奇猜想(数学)黎曼猜想(数学)杨-米尔斯存在性与质量间隙(量子力学)纳维-斯托克斯存在性与光滑性(计算流体力学)贝赫和斯维讷通-戴尔猜想(数学)[编辑] 其它未解问题 [编辑] 堆垒数论 哥德巴赫猜想及哥德巴赫弱猜想华林问题中的g(k)和G(k)的值考拉兹猜想(3n + 1 猜想、角谷猜想)吉尔布雷斯猜想[编辑] 数论:素数 孪生素数猜想是否存在无穷多个四胞胎质数是否存在无穷多个三胞胎质数是否存在无穷多个x��+1素数是否存在无穷多个表兄弟素数是否存在无穷多个六质数是否存在无穷多个梅森素数(OEIS中的数列OEIS:A000688,Lenstra-Pomerance-Wagstaff猜想);此问题的等价问题是,是否存在无穷多个偶完全数是否存在无穷多个规则素数,且其分布密度是是否存在无穷多个卡伦素数(OEIS中的数列OEIS:A005849)以10为基数时是否存在无穷多个回文素数(OEIS中的数列OEIS:A002385)当n > 4时,是否每个费马数(OEIS中的数列OEIS:A000215)都是合数?78,557是否是最小的谢尔宾斯基数(OEIS中的数列OEIS:A076336)?509,203是否是最小的黎瑟尔数(OEIS中的数列OEIS:A101036)?[编辑] 普通数论 abc猜想是否存在奇完全数(OEIS中的数列OEIS:A000396)?是否存在拟完全数(quasi-perfect number)?是否存在奇的奇异数(weird number)?证明196是利克瑞尔数证明10是个孤独数(solitary number)(OEIS中的数列OEIS:A095739)对任意给定的n,幸福结局问题的解法[编辑] 拉姆齐理论 拉姆齐数的值,特别是R(5,5)范·德·华登数的值[编辑] 普通代数 希尔伯特第16问题阿达马猜想是否存在完美长方体[编辑] 组合数学 幻方(OEIS中的数列A006052)的数目通过随机选择的两个元素产生对称群Sn的概率的公式[编辑] 图论 Erd��s-Gyárfás猜想图的同构问题关于单位距离的图的色数的Hadwiger-Nelson问题为逾渗阈值得到一种闭式表达式,特别是pc(二维方格模型)[编辑] 分析 Schanuel猜想Lehmer猜想Pompeiu问题欧拉-马歇罗尼常数是否无理数克雷数学研究所所设立的千禧年大奖难题悬赏的七个待解问题中仍未得到解决六个题目是:复杂度类P对NP问题(理论信息学:计算复杂度)霍奇猜想(数学)黎曼猜想(数学)杨-米尔斯存在性与质量间隙(量子力学)纳维-斯托克斯存在性与光滑性(计算流体力学)贝赫和斯维讷通-戴尔猜想(数学)[编辑] 其它未解问题 [编辑] 堆垒数论 哥德巴赫猜想及哥德巴赫弱猜想华林问题中的g(k)和G(k)的值考拉兹猜想(3n + 1 猜想、角谷猜想)吉尔布雷斯猜想[编辑] 数论:素数 孪生素数猜想是否存在无穷多个四胞胎质数是否存在无穷多个三胞胎质数是否存在无穷多个x��+1素数是否存在无穷多个表兄弟素数是否存在无穷多个六质数是否存在无穷多个梅森素数(OEIS中的数列OEIS:A000688,Lenstra-Pomerance-Wagstaff猜想);此问题的等价问题是,是否存在无穷多个偶完全数是否存在无穷多个规则素数,且其分布密度是是否存在无穷多个卡伦素数(OEIS中的数列OEIS:A005849)以10为基数时是否存在无穷多个回文素数(OEIS中的数列OEIS:A002385)当n > 4时,是否每个费马数(OEIS中的数列OEIS:A000215)都是合数?78,557是否是最小的谢尔宾斯基数(OEIS中的数列OEIS:A076336)?509,203是否是最小的黎瑟尔数(OEIS中的数列OEIS:A101036)?[编辑] 普通数论 abc猜想是否存在奇完全数(OEIS中的数列OEIS:A000396)?是否存在拟完全数(quasi-perfect number)?是否存在奇的奇异数(weird number)?证明196是利克瑞尔数证明10是个孤独数(solitary number)(OEIS中的数列OEIS:A095739)对任意给定的n,幸福结局问题的解法[编辑] 拉姆齐理论 拉姆齐数的值,特别是R(5,5)范·德·华登数的值[编辑] 普通代数 希尔伯特第16问题阿达马猜想是否存在完美长方体[编辑] 组合数学 幻方(OEIS中的数列A006052)的数目通过随机选择的两个元素产生对称群Sn的概率的公式[编辑] 图论 Erd��s-Gyárfás猜想图的同构问题关于单位距离的图的色数的Hadwiger-Nelson问题为逾渗阈值得到一种闭式表达式,特别是pc(二维方格模型)[编辑] 分析 Schanuel猜想Lehmer猜想Pompeiu问题欧拉-马歇罗尼常数是否无理数[编辑] 群论 每个被有限表达的周期群是否都是有限的?逆伽罗瓦问题[编辑] 其它 普遍化的星号嵌套深度问题不变子空间问题黑洞归并的建模天使问题[群论 每个被有限表达的周期群是否都是有限的?逆伽罗瓦问题其它 普遍化的星号嵌套深度问题不变子空间问题黑洞归并的建模天使问题分析 Schanuel猜想Lehmer猜想Pompeiu问题欧拉-马歇罗尼常数是否无理数群论 每个被有限表达的周期群是否都是有限的?逆伽罗瓦问题其它 普遍化的星号嵌套深度问题不变子空间问题黑洞归并的建模天使问题图论 Erd��s-Gyárfás猜想图的同构问题关于单位距离的图的色数的Hadwiger-Nelson问题为逾渗阈值得到一种闭式表达式,特别是pc(二维方格模型)分析 Schanuel猜想Lehmer猜想Pompeiu问题欧拉-马歇罗尼常数是否无理数群论 每个被有限表达的周期群是否都是有限的?逆伽罗瓦问题其它 普遍化的星号嵌套深度问题不变子空间问题黑洞归并的建模天使问题
LuckySXyd2023-05-19 20:19:181

俄罗斯数学天才:曾破解世界难题,却因拒绝百万奖金遭到嘲笑,为何?

因为这个数学天才,其实身无分文,穷困潦倒,他拒绝百万奖金在大众眼里实在是荒唐的做法。
北有云溪2023-05-19 20:19:184

世界上最难的数学题是哪一道?

每一道
黑桃花2023-05-19 20:19:187

张益唐的证明属于世界十大数学难题吗

世界近代三大数学难题1四色猜想2费马最后定理3哥德巴赫猜想下面附上其内容:1四色猜想内容:四色猜想的提出来自英国.1852年,毕业于伦敦大学的弗南西斯.格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家着上不同的颜色.”这个结论能不能从数学上加以严格证明呢?他和在大学读书的弟弟格里斯决心试一试.兄弟二人为证明这一问题而使用的稿纸已经堆了一大叠,可是研究工作没有进展.1852年10月23日,他的弟弟就这个问题的证明请教他的老师、著名数学家德.摩尔根,摩尔根也没有能找到解决这个问题的途径,于是写信向自己的好友、著名数学家哈密尔顿爵士请教.哈密尔顿接到摩尔根的信后,对四色问题进行论证.但直到1865年哈密尔顿逝世为止,问题也没有能够解决.1872年,英国当时最著名的数学家凯利正式向伦敦数学学会提出了这个问题,于是四色猜想成了世界数学界关注的问题.世界上许多一流的数学家都纷纷参加了四色猜想的大会战.1878~1880年两年间,著名的律师兼数学家肯普和泰勒两人分别提交了证明四色猜想的论文,宣布证明了四色定理,大家都认为四色猜想从此也就解决了.11年后,即1890年,数学家赫伍德以自己的精确计算指出肯普的证明是错误的.不久,泰勒的证明也被人们否定了.后来,越来越多的数学家虽然对此绞尽脑汁,但一无所获.于是,人们开始认识到,这个貌似容易的题目,实是一个可与费马猜想相媲美的难题:先辈数学大师们的努力,为后世的数学家揭示四色猜想之谜铺平了道路.进入20世纪以来,科学家们对四色猜想的证明基本上是按照肯普的想法在进行.1913年,伯克霍夫在肯普的基础上引进了一些新技巧,美国数学家富兰克林于1939年证明了22国以下的地图都可以用四色着色.1950年,有人从22国推进到35国.1960年,有人又证明了39国以下的地图可以只用四种颜色着色;随后又推进到了50国.看来这种推进仍然十分缓慢.电子计算机问世以后,由于演算速度迅速提高,加之人机对话的出现,大大加快了对四色猜想证明的进程.1976年,美国数学家阿佩尔与哈肯在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿判断,终于完成了四色定理的证明.四色猜想的计算机证明,轰动了世界.它不仅解决了一个历时100多年的难题,而且有可能成为数学史上一系列新思维的起点.不过也有不少数学家并不满足于计算机取得的成就,他们还在寻找一种简捷明快的书面证明方法.--------2费马最后定理内容:被公认执世界报纸牛耳地位地位的纽约时报於1993年6月24日在其一版头题刊登了一则有关数学难题得以解决的消息,那则消息的标题是「在陈年数学困局中,终於有人呼叫『我找到了』」.时报一版的开始文章中还附了一张留着长发、穿着中古世纪欧洲学袍的男人照片.这个古意盎然的男人,就是法国的数学家费马(PierredeFermat)(费马小传请参考附录).费马是十七世纪最卓越的数学家之一,他在数学许多领域中都有极大的贡献,因为他的本行是专业的律师,为了表彰他的数学造诣,世人冠以「业余王子」之美称,在三百六十多年前的某一天,费马正在阅读一本古希腊数学家戴奥芬多斯的数学书时,突然心血来潮在书页的空白处,写下一个看起来很简单的定理这个定理的内容是有关一个方程式x2+y2=z2的正整数解的问题,当n=2时就是我们所熟知的毕氏定理(中国古代又称勾股弦定理):x2+y2=z2,此处z表一直角形之斜边而x、y为其之两股,也就是一个直角三角形之斜边的平方等於它的两股的平方和,这个方程式当然有整数解(其实有很多),例如:x=3、y=4、z=5;x=6、y=8、z=10;x=5、y=12、z=13…等等.费马声称当n>2时,就找不到满足xn+yn=zn的整数解,例如:方程式x3+y3=z3就无法找到整数解.当时费马并没有说明原因,他只是留下这个叙述并且也说他已经发现这个定理的证明妙法,只是书页的空白处不够无法写下.始作俑者的费马也因此留下了千古的难题,三百多年来无数的数学家尝试要去解决这个难题却都徒劳无功.这个号称世纪难题的费马最后定理也就成了数学界的心头大患,极欲解之而后快.十九世纪时法国的法兰西斯数学院曾经在一八一五年和一八六0年两度悬赏金质奖章和三百法郎给任何解决此一难题的人,可惜都没有人能够领到奖赏.德国的数学家佛尔夫斯克尔(P?Wolfskehl)在1908年提供十万马克,给能够证明费马最后定理是正确的人,有效期间为100年.其间由於经济大萧条的原因,此笔奖额已贬值至七千五百马克,虽然如此仍然吸引不少的「数学痴」.二十世纪电脑发展以后,许多数学家用电脑计算可以证明这个定理当n为很大时是成立的,1983年电脑专家斯洛文斯基借助电脑运行5782秒证明当n为286243-1时费马定理是正确的(注286243-1为一天文数字,大约为25960位数).虽然如此,数学家还没有找到一个普遍性的证明.不过这个三百多年的数学悬案终於解决了,这个数学难题是由英国的数学家威利斯(AndrewWiles)所解决.其实威利斯是利用二十世纪过去三十年来抽象数学发展的结果加以证明.五0年代日本数学家谷山丰首先提出一个有关椭圆曲现的猜想,后来由另一位数学家志村五郎加以发扬光大,当时没有人认为这个猜想与费马定理有任何关联.在八0年代德国数学家佛列将谷山丰的猜想与费马定理扯在一起,而威利斯所做的正是根据这个关联论证出一种形式的谷山丰猜想是正确的,进而推出费马最后定理也是正确的.这个结论由威利斯在1993年的6月21日於美国剑桥大学牛顿数学研究所的研讨会正式发表,这个报告马上震惊整个数学界,就是数学门墙外的社会大众也寄以无限的关注.不过威利斯的证明马上被检验出有少许的瑕疵,於是威利斯与他的学生又花了十四个月的时间再加以修正.1994年9月19日他们终於交出完整无瑕的解答,数学界的梦魇终於结束.1997年6月,威利斯在德国哥庭根大学领取了佛尔夫斯克尔奖.当年的十万法克约为两百万美金,不过威利斯领到时,只值五万美金左右,但威利斯已经名列青史,永垂不朽了.要证明费马最后定理是正确的(即xn+yn=zn对n33均无正整数解)只需证x4+y4=z4和xp+yp=zp(P为奇质数),都没有整数解.----------------3哥德巴赫猜想内容:哥德巴赫是德国一位中学教师,也是一位著名的数学家,生于1690年,1725年当选为俄国彼得堡科学院院士.1742年,哥德巴赫在教学中发现,每个不小于6的偶数都是两个素数(只能被和它本身整除的数)之和.如6=3+3,12=5+7等等.1742年6月7日,哥德巴赫写信将这个问题告诉给意大利大数学家欧拉,并请他帮助作出证明.欧拉在6月30日给他的回信中说,他相信这个猜想是正确的,但他不能证明.叙述如此简单的问题,连欧拉这样首屈一指的数学家都不能证明,这个猜想便引起了许多数学家的注意.他们对一个个偶数开始进行验算,一直算到3.3亿,都表明猜想是正确的.但是对于更大的数目,猜想也应是对的,然而不能作出证明.欧拉一直到死也没有对此作出证明.从此,这道著名的数学难题引起了世界上成千上万数学家的注意.200年过去了,没有人证明它.哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的“明珠”.到了20世纪20年代,才有人开始向它靠近.1920年、挪威数学家布爵用一种古老的筛选法证明,得出了一个结论:每一个比大的偶数都可以表示为(99).这种缩小包围圈的法很管用,科学家们于是从(9十9)开始,逐步减少每个数里所含质数因子的个数,直到最后使每个数里都是一个质数为止,这样就证明了“哥德巴赫”.1924年,数学家拉德马哈尔证明了(7+7);1932年,数学家爱斯尔曼证明了(6+6);1938年,数学家布赫斯塔勃证明了(5十5),1940年,他又证明了(4+4);1956年,数学家维诺格拉多夫证明了(3+3);1958年,我国数学家王元证明了(2十3).随后,我国年轻的数学家陈景润也投入到对哥德巴赫猜想的研究之中,经过10年的刻苦钻研,终于在前人研究的基础上取得重大的突破,率先证明了(l十2).至此,哥德巴赫猜想只剩下最后一步(1+1)了.陈景润的论文于1973年发表在中国科学院的《科学通报》第17期上,这一成果受到国际数学界的重视,从而使中国的数论研究跃居世界领先地位,陈景润的有关理论被称为“陈氏定理”.1996年3月下旬,当陈景润即将摘下数学王冠上的这颗明珠,“在距离哥德巴赫猜想(1+1)的光辉顶峰只有飓尺之遥时,他却体力不支倒下去了……”在他身后,将会有的人去攀登这座高峰.2除此之外还有知名的千禧年大奖难题:分别是“NP完全问题”、“霍奇猜想”、“庞加莱猜想”、“黎曼假设”、“杨·米尔斯理论”、“纳卫尔-斯托可方程”、“BSD猜想”。也是数学世界性的难题
瑞瑞爱吃桃2023-05-19 20:19:181

数学王子《算术探究》是谁

数学王子《算术探究》是高斯。1801年,高斯的名著《算术研究》问世。《算术研究》是用拉丁文写成的。这部书是高斯大学毕业前夕开始撰写的,前后花了三年时间。1800年,高斯将手稿寄给法国科学院,请求出版,却遭到拒绝,于是高斯只好自筹资金发表。在这本书的序言一开头,高斯明确地说明了本书的范围:“本书所研究的是数学中的整数部分,分数和无理数不包括在内。”《算术探究》的核心课题:1、同余理论同余是《算术研究》中的一个基本研究课题。这个概念不是高斯首先提出的,但是给同余引入现代的符号并予以系统研究的却是高斯。他详细地讨论了同余数的运算、多项式同余式的基本定理以及幂的同余等各种问题。他还运用幂的同余理论证明了费马小定理。2、二次互反律二次互反律是高斯最得意的成果之一,它在数论中占有极为重要的地位。正如美国现代数学家狄克逊(1874—1954年)所说:“它是数论中最重要的工具,并且在数论发展史上占有中心位置。”其实,高斯早在1796年就已经得出了这个定理及其证明。发表在《算术研究》中的则是另一种证明。3、二次互反律发展从二次互反律出发,高斯相继引出了双二次互反律和三次互反律,以及与此相联系的双二次和三次剩余理论。为了使三次和双二次剩余理论优美而简单,高斯又发展出了复整数和复整数数论;而它的进一步结果必然是代数数理论,这方面由高斯的学生戴德金(1831—1916)作出了决定性的贡献。
余辉2023-05-19 20:19:171

千禧年七大数学难题是什么?

千禧年大奖难题(Millennium Prize Problems), 又称世界七大数学难题, 是七个由美国克雷数学研究所(Clay Mathematics Institute,CMI) 于2000年5月24日公布的数学猜想。具体如下:1、P=NP?主条目:P/NP问题尽管计算机极大地提高了人类的计算能力,仍有各种复杂的组合类或其它问题随规模的增大其复杂度也快速增大,通常我们认为计算机可以解决的问题只限于多项式时间内,即所需时间最多是问题规模的多项式函数.有大量的问题,可以在确定型图灵机上用多项式时间求解;还有一些问题,虽然暂时没有能在确定型图灵机上用多项式时间求解的算法,但对于给定的可疑解可以在多项式时间内验证,那么,后者能否归并到前者内呢?设想在一个周六的晚上,你参加了一个盛大的晚会。由于感到局促不安,你想知道这一大厅中是否有你已经认识的人。你的主人向你提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。不费一秒钟,你就能向那里扫视,并且发现你的主人是正确的。然而,如果没有这样的暗示,你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人。生成问题的一个解通常比验证一个给定的解时间花费要多得多。这是这种一般现象的一个例子。与此类似的是,如果某人告诉你,数13717421可以写成两个较小的数的乘积,你可能不知道是否应该相信他,但是如果他告诉你他可以因子分解为3607乘上3803,那么你就可以用一个袖珍计算器容易验证这是对的。更经典的例子是流动推销员问题,假设你要去3个城市去推销,要使走过的路程最短,需要对这3个城市进行排序。很简单,这一共有6种路线,对比一下就可以找到最短的路线了。但很明显只有3个城市不现实,假设10个城市呢,这一共有10!=3628800种路线!假设你要算出每一条路线的长度,而计算一条路线花费1分钟,如果每天工作8小时,中间不休息,一星期工作5天,一年工作52个星期,这将要花费20多年!显然,这类计算会使用计算机。但由于阶乘数增长太快,连最先进的计算机也不堪重负。 P是否等于NP的问题,即能用多项式时间验证解的问题是否能在多项式时间内找出解,是计算机与算法方面的重大问题,它是斯蒂文·考克(StephenCook)于1971年陈述的。2、霍奇猜想主条目:霍奇猜想二十世纪的数学家们发现了研究复杂对象的形状的强有力的办法。基本想法是问在怎样的程度上,我们可以把给定对象的形状通过把维数不断增加的简单几何营造块粘合在一起来形成。这种技巧是变得如此有用,使得它可以用许多不同的方式来推广。最终导至一些强有力的工具,使数学家在对他们研究中所遇到的形形色色的对象进行分类时取得巨大的进展。不幸的是,在这一推广中,程序的几何出发点变得模糊起来。在某种意义下,必须加上某些没有任何几何解释的部件。霍奇猜想断言,对于所谓射影代数簇这种特别完美的空间类型来说,称作霍奇闭链的部件实际上是称作代数闭链的几何部件的(有理线性)组合。3、庞加莱猜想主条目:庞加莱猜想如果我们伸缩围绕一个苹果表面的橡皮带,那么我们可以既不扯断它,也不让它离开表面,使它慢慢移动收缩为一个点。另一方面,如果我们想象同样的橡皮带以适当的方向被伸缩在一个轮胎面上,那么不扯断橡皮带或者轮胎面,是没有办法把它收缩到一点的。我们说,苹果表面是“单连通的”,而轮胎面不是。大约在一百年以前,庞加莱已经知道,二维球面本质上可由单连通性来刻画,他提出三维球面(四维空间中与原点有单位距离的点的全体)的对应问题。这个问题立即变得无比困难,从那时起,数学家们就在为此奋斗。俄罗斯数学家佩雷尔曼最终解决了三维庞加莱猜想。Clay数学研究所在2010年为此召开特别会议,为此猜想盖棺定论。4、黎曼假设主条目:黎曼假设有些数具有不能表示为两个更小的整数的乘积的特殊性质,例如,2,3,5,7,等等。这样的数称为素数;它们在纯数学及其应用中都起着重要作用。在所有自然数中,这种素数的分布并不遵循任何有规则的模式;然而,德国数学家黎曼(1826~1866)观察到。素数的频率紧密相关于一个精心构造的所谓黎曼zeta函数ζ(s)的性态。著名的黎曼假设断言,方程ζ(s)=0的所有有意义的解都在一条直线z=1/2+ib上,其中b为实数,这条直线通常称为临界线。这点已经对于开始的1,500,000,000个解验证过。证明它对于每一个有意义的解都成立将为围绕素数分布的许多奥秘带来光明,弗里曼·戴森(Freeman Dyson)在《数学世纪-过去100年间30个重大问题》的前言里写道他钟爱的培根式的梦想,寻找一维拟晶理论以及黎曼ζ函数之间的可能联系。如果黎曼假设成立,则在临界线上的ζ函数的零点按照定义是一个拟晶。假如假设成立,ζ函数的零点具有一个傅里叶变换,它由在所有素数幂的对数处的质点构成,而不含别处的质点。这就提供了证明黎曼假设的一个可能方法。 法国数学家孔涅从美国数学家蒙哥马利(Montgomery)描述临界线上ζ函数零点之间间距的公式中得到启发,用量子物理学的思想证明黎曼假设。他写出一组方程,规定一个假设的量子混沌系统,把所有的素数作为它的组成部分。他还证明,这个系统有着对应于临界线上所有ζ函数零点的能级。如果能证明这些与能级对应的零点外没有其他零点,也就证明了黎曼假设。5、杨-米尔斯规范场存在性和质量间隔假设主条目:杨-米尔斯存在性和质量间隔(规范场理论)量子物理的定律是以经典力学的牛顿定律对宏观世界的方式对基本粒子世界成立的。大约半个世纪以前,杨振宁和米尔斯发现,量子物理揭示了在基本粒子物理与几何对象的数学之间的令人注目的关系。基于杨-米尔斯方程的预言已经在如下的全世界范围内的实验室中所履行的高能实验中得到证实:布罗克哈文、斯坦福、欧洲粒子物理研究所和筑波。尽管如此,他们的既描述重粒子、又在数学上严格的方程没有已知的解。特别是,被大多数物理学家所确认、并且在他们的对于“夸克”的不可见性的解释中应用的“质量间隔”(mass gap)假设,从来没有得到一个数学上令人满意的证实。在这一问题上的进展需要在物理上和数学上两方面引进根本上的新观念。6、NS方程解的存在性与光滑性主条目:navier stokes(纳维叶-斯托克斯存在性与光滑性)起伏的波浪跟随着我们的正在湖中蜿蜒穿梭的小船,湍急的气流跟随着我们的现代喷气式飞机的飞行。数学家和物理学家深信,无论是微风还是湍流,都可以通过理解纳维叶-斯托克斯方程的解,来对它们进行解释和预言。虽然这些方程是19世纪写下的,我们对它们的理解仍然极少。挑战在于对数学理论作出实质性的进展,使我们能解开隐藏在纳维叶-斯托克斯方程中的奥秘。7、BSD猜想(贝赫和斯维讷通-戴尔猜想)主条目:BSD猜想(贝赫和斯维讷通-戴尔猜想)数学家总是被诸如那样的代数方程的所有整数解的刻画问题着迷。欧几里德曾经对这一方程给出完全的解答,但是对于更为复杂的方程,这就变得极为困难。事实上,正如马蒂雅谢维奇(Yu.V.Matiyasevich)指出,希尔伯特第十问题是不可解的,即,不存在一般的方法来确定这样的方法是否有一个整数解。当解是一个阿贝尔簇的点时,贝赫和斯维讷通-戴尔猜想认为,有理点的群的大小与一个有关的蔡塔函数z(s)在点s=1附近的性态。特别是,这个有趣的猜想认为,如果z⑴等于0,那么存在无限多个有理点(解),相反,如果z⑴不等于0,那么只存在有限多个这样的点。以上内容参考 百度百科-千禧年大奖难题
北境漫步2023-05-19 20:19:172

千禧年七大数学难题是什么?

1、P与NP问题:一个问题称为是P的,如果它可以通过运行多项式次(即运行时间至多是输入量大小的多项式函数)的一种算法获得解决。一个问题成为是NP的,如果所提出的解答可以用多项式次算法来检验。2、黎曼假设/黎曼猜想:黎曼ζ函数的每一个非平凡零点都有等于1/2的实部。3、庞加莱猜想:任何单连通闭3维流形同胚于3维球。4、Hodge猜想:任何Hodge类关于一个非奇异复射影代数簇都是某些代数闭链类的有理线形组合。5、Birch及Swinnerton-Dyer猜想:对于建立在有理数域上的每一条椭圆曲线,它在一处的L函数变为零的阶都等于该曲线上有理点的阿贝尔群的秩。6、Navier-Stokers方程组:(在适当的边界及初始条件下)对3维Navier-Stokers方程组证明或反证其光滑解的存在性。7、Yang-Mills理论:证明量子Yang-Mills场存在,并存在一个质量间隙。扩展资料:千年数学会议在著名的法兰西学院举行。会上,97年菲尔兹奖获得者伽沃斯以“数学的重要性”为题作了演讲,其后,塔特和阿啼亚公布和介绍了这七个“千年大奖问题”。克雷数学研究所还邀请有关研究领域的专家对每一个问题进行了较详细的详述。克雷数学研究所对“千年大奖问题”的解决与获奖作了严格规定。每一个“千年大奖问题”获得解决并不能立即得奖。任何解决答案必须在具有世界声誉的数学杂志上发表两年后且得到数学界的认可,才有可能由克雷数学研究所的科学顾问委员会审查决定是否值得获得一百万美元的大奖。参考资料来源:百度百科-世界七大数学难题
CarieVinne 2023-05-19 20:19:171

世界上最难的数学题世界七大数学难题难倒了全世界

今天我们来和大家说说世界七大数学难题,这些可都是世界上最难的数学题哦。 说到数学难题你会想到什么,我最先想到的是哥德巴赫猜想,但其实哥德巴赫猜想并不是这七大数学难题之一,下面就让我们来一起看看当今科技如此发达的情况下还有哪些数学难题。世界七大数学难题:1、P/NP问题(P versus NP)2、霍奇猜想(The Hodge Conjecture)3、庞加莱猜想(The Poincaré Conjecture),此猜想已获得证实。4、黎曼猜想(The Riemann Hypothesis)5、杨-米尔斯存在性与质量间隙(Yang-Mills Existence and Mass Gap)6、纳维-斯托克斯存在性与光滑性(Navier-Stokes existence and smoothness)7、贝赫和斯维讷通-戴尔猜想(The Birch and Swinnerton-Dyer Conjecture)所谓的世界七大数学难题其实是于2000年5月24日由由美国克雷数学研究所公布的七个数学难题。也被称为千禧年大奖难题。根据克雷数学研究所订定的规则,所有难题的解答必须发表在数学期刊上,并经过各方验证,只要通过两年验证期,每解破一题的解答者,会颁发奖金100万美元。这些难题是呼应1900年德国数学家大卫·希尔伯特在巴黎提出的23个历史性数学难题,经过一百年,许多难题已获得解答。而千禧年大奖难题的破解,极有可能为密码学以及航天、通讯等领域带来突破性进展。一:P/NP问题P/NP问题是世界上最难的数学题之一。在理论信息学中计算复杂度理论领域里至今没有解决的问题,它也是克雷数学研究所七个千禧年大奖难题之一。P/NP问题中包含了复杂度类P与NP的关系。1971年史提芬·古克和Leonid Levin相对独立的提出了下面的问题,即是否两个复杂度类P和NP是恒等的(P=NP?)。 复杂度类P即为所有可以由一个确定型图灵机在多项式表达的时间内解决的问题;类NP由所有可以在多项式时间内验证解是否正确的决定问题组成,或者等效的说,那些解可以在非确定型图灵机上在多项式时间内找出的问题的集合。很可能,计算理论最大的未解决问题就是关于这两类的关系的: P和NP相等吗? 在2002年对于100研究者的调查,61人相信答案是否定的,9个相信答案是肯定的,22个不确定,而8个相信该问题可能和现在所接受的公理独立,所以不可能证明或证否。对于正确的解答,有一个1百万美元的奖励。 NP-完全问题(或者叫NPC)的集合在这个讨论中有重大作用,它们可以大致的被描述为那些在NP中最不像在P中的(确切定义细节请参看NP-完全理论)。计算机科学家现在相信P, NP,和NPC类之间的关系如图中所示,其中P和NPC类不交。假设P ≠ NP的复杂度类的图解。如P = NP则三个类相同。 简单来说,P = NP问题问道:如果是/不是问题的正面答案可以很快验证,其答案是否也可以很快计算?这里有一个给你找点这个问题的感觉的例子。给定一个大数Y,我们可以问Y是否是复合数。例如,我们可能问53308290611是否有非平凡的因数。答案是肯定的,虽然手工找出一个因数很麻烦。从另一个方面讲,如果有人声称答案是"对,因为224737可以整除53308290611",则我们可以很快用一个除法来验证。验证一个数是除数比找出一个明显除数来简单得多。用于验证一个正面答案所需的信息也称为证明。所以我们的结论是,给定正确的证明,问题的正面答案可以很快地(也就是,在多项式时间内)验证,而这就是这个问题属于NP的原因。虽然这个特定的问题,最近被证明为也在P类中(参看下面的关于"质数在P中"的参考),这一点也不明显,而且有很多类似的问题相信不属于类P。 像上面这样,把问题限制到“是/不是”问题并没有改变原问题(即没有降低难度);即使我们允许更复杂的答案,最后的问题(是否FP = FNP)是等价的。关于证明的难度的结果虽然百万美元的奖金和投入巨大却没有实质性结果的大量研究足以显示该问题是困难的,但是还有一些形式化的结果证明为什么该问题可能很难解决。 最常被引用的结果之一是设计神谕。假想你有一个魔法机器可以解决单个问题,例如判定一个给定的数是否为质数,可以瞬间解决这个问题。我们的新问题是,若我们被允许任意利用这个机器,是否存在我们可以在多项式时间内验证但无法在多项式时间内解决的问题?结果是,依赖于机器能解决的问题,P = NP和P ≠ NP二者都可以证明。这个结论带来的后果是,任何可以通过修改神谕来证明该机器的存在性的结果不能解决问题。不幸的是,几乎所有经典的方法和大部分已知的方法可以这样修改(我们称它们在相对化)。 如果这还不算太糟的话,1993年Razborov和Rudich证明的一个结果表明,给定一个特定的可信的假设,在某种意义下“自然”的证明不能解决P = NP问题。这表明一些现在似乎最有希望的方法不太可能成功。随着更多这类定理得到证明,该定理的可能证明方法有越来越多的陷阱要规避。 这实际上也是为什么NP完全问题有用的原因:若对于NP完全问题存在有一个多项式时间算法,或者没有一个这样的算法,这将能用一种相信不被上述结果排除在外的方法来解决P = NP问题
再也不做站长了2023-05-19 20:19:171

千禧年七大数学难题如今解决多少了

庞加莱猜想
LuckySXyd2023-05-19 20:19:176

谁说出几个世界著名的数学定理(5个以上),谁先说出并符合要求,我就采纳谁。

1.平面几何几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。三角形中的几个特殊点:旁心、费马点,欧拉线。几何不等式。几何极值问题。几何中的变换:对称、平移、旋转。圆的幂和根轴。面积方法,复数方法,向量方法,解析几何方法。2.代数周期函数,带绝对值的函数。三角公式,三角恒等式,三角方程,三角不等式,反三角函数。递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式。第二数学归纳法。平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数。复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根。多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*。n次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理。函数迭代,简单的函数方程*3. 初等数论同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*。4.组合问题圆排列,有重复元素的排列与组合,组合恒等式。组合计数,组合几何。抽屉原理。容斥原理。极端原理。图论问题。集合的划分。覆盖。平面凸集、凸包及应用*。
此后故乡只2023-05-19 20:19:161

著名的高中数学定理有哪些?

买那本华东师范大学出版社的《高中数学竞赛多功能题典》,后面有重要的竞赛的定理,概念 。1.平面几何几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。三角形中的几个特殊点:旁心、费马点,欧拉线。几何不等式。几何极值问题。几何中的变换:对称、平移、旋转。圆的幂和根轴。面积方法,复数方法,向量方法,解析几何方法。2.代数周期函数,带绝对值的函数。三角公式,三角恒等式,三角方程,三角不等式,反三角函数。递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式。第二数学归纳法。平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数。复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根。多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*。n次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理。函数迭代,简单的函数方程*3. 初等数论同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*。4.组合问题圆排列,有重复元素的排列与组合,组合恒等式。组合计数,组合几何。抽屉原理。容斥原理。极端原理。图论问题。集合的划分。覆盖。平面凸集、凸包及应用*。参考资料:http://www.jxllt.com/?artid=MzIxMzQ=&F=dmlldy5odG0= 望采纳谢谢
kikcik2023-05-19 20:19:162

17世纪法国最伟大的数学家之一,以他的名字命名的大小定理 这个数学家是谁

费马 费马Pierre de Fermat是十七世纪最伟大的数学家之一,1601年8月20日生於法国南部土鲁士Toulous附近的一个小镇.
LuckySXyd2023-05-19 20:17:433

数学难题:n为非0自然数,试证n^13_n定能被2730整除。

欧拉定理及推理对于任意正整数a,有a^p ≡ a (mod p)参考baike.baidu.com/view/48903.htm则① N^13 ≡ N (MOD 13),N^13 - N ≡ 0 (MOD 13)② (N^14 - N^2)/N同法,(N^2)^7 - (N^2) ≡ 0 (MOD 7)③ (N^15 - N^3)/N^2同法,(N^3)^5 - (N^3) ≡ 0 (MOD 5)④ (N^18 - N^6)/N^5同法,(N^6)^3 - (N^6) ≡ 0 (MOD 3)或用因式分解⑤因式分解或奇偶分析,得n^13-n ≡ 0 (MOD 2)2*3*5*7*13=2730综上,n^13 - n ≡ 0 (MOD 2730)
西柚不是西游2023-05-19 20:17:433

17世纪法国数学家费马提出了一个什么原理?

费马特别爱好数论,他证明或提出许多命题,最有名的是费马大定理,即:不可能有满足xn+yn=zn,n>2的正整数x、y、z、n存在。
gitcloud2023-05-19 20:17:392

数学史上第一次提出勾股定理的著作

应该是中国的《九章算术》
mlhxueli 2023-05-19 20:17:372

叙述近代三大数学难题的内容?有那几个已经得到证明?大约在什么年代证明的?未证明的定理现在解决到什么程度

费尔马大定理 四色猜想 哥德巴赫猜想1.费尔马大定理,起源于三百多年前,挑战人类3个世纪,多次震惊全世界,耗尽人类众多最杰出大脑的精力,也让千千万万业余者痴迷。终于在1994年被安德鲁·怀尔斯攻克。古希腊的丢番图写过一本著名的“算术”,经历中世纪的愚昧黑暗到文艺复兴的时候,“算术”的残本重新被发现研究。 1637年,法国业余大数学家费尔马(Pierre de Fremat)在“算术”的关于勾股数问题的页边上,写下猜想:a+b=c是不可能的(这里n大于2;a,b,c,n都是非零整数)。此猜想后来就称为费尔马大定理。费尔马还写道“我对此有绝妙的证明,但此页边太窄写不下”。一般公认,他当时不可能有正确的证明。猜想提出后,经欧拉等数代天才努力,200年间只解决了n=3,4,5,7四种情形。1847年,库木尔创立“代数数论”这一现代重要学科,对许多n(例如100以内)证明了费尔马大定理,是一次大飞跃。 历史上费尔马大定理高潮迭起,传奇不断。其惊人的魅力,曾在最后时刻挽救自杀青年于不死。他就是德国的沃尔夫斯克勒,他后来为费尔马大定理设悬赏10万马克(相当于现在160万美元多),期限1908-2007年。无数人耗尽心力,空留浩叹。最现代的电脑加数学技巧,验证了400万以内的N,但这对最终证明无济于事。1983年德国的法尔廷斯证明了:对任一固定的n,最多只有有限多个a,b,c振动了世界,获得费尔兹奖(数学界最高奖)。 历史的新转机发生在1986年夏,贝克莱·瑞波特证明了:费尔马大定理包含在“谷山丰—志村五朗猜想 ” 之中。童年就痴迷于此的怀尔斯,闻此立刻潜心于顶楼书房7年,曲折卓绝,汇集了20世纪数论所有的突破性成果。终于在1993年6月23日剑桥大学牛顿研究所的“世纪演讲”最后,宣布证明了费尔马大定理。立刻震动世界,普天同庆。不幸的是,数月后逐渐发现此证明有漏洞,一时更成世界焦点。这个证明体系是千万个深奥数学推理连接成千个最现代的定理、事实和计算所组成的千百回转的逻辑网络,任何一环节的问题都会导致前功尽弃。怀尔斯绝境搏斗,毫无出路。1994年9月19日,星期一的早晨,怀尔斯在思维的闪电中突然找到了迷失的钥匙:解答原来就在废墟中!他热泪夺眶而出。怀尔斯的历史性长文“模椭圆曲线和费尔马大定理”1995年5月发表在美国《数学年刊》第142卷,实际占满了全卷,共五章,130页。1997年6月27日,怀尔斯获得沃尔夫斯克勒10万马克悬赏大奖。离截止期10年,圆了历史的梦。他还获得沃尔夫奖(1996.3),美国国家科学家院奖(1996.6),费尔兹特别奖(1998.8)。 2.四色问题的内容是:“任何一张地图只用四种颜色就能使具有共同边界的国家着上不同的颜色。”用数学语言表示,即“将平面任意地细分为不相重迭的区域,每一个区域总可以用1,2,3,4这四个数字之一来标记,而不会使相邻的两个区域得到相同的数字。”(右图) 这里所指的相邻区域,是指有一整段边界是公共的。如果两个区域只相遇于一点或有限多点,就不叫相邻的。因为用相同的颜色给它们着色不会引起混淆。 四色猜想的提出来自英国。1852年,毕业于伦敦大学的弗南西斯·格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家都被着上不同的颜色。”这个现象能不能从数学上加以严格证明呢?他和在大学读书的弟弟格里斯决心试一试。兄弟二人为证明这一问题而使用的稿纸已经堆了一大叠,可是研究工作没有进展。 1852年10月23日,他的弟弟就这个问题的证明请教了他的老师、著名数学家德·摩尔根,摩尔根也没有能找到解决这个问题的途径,于是写信向自己的好友、著名数学家汉密尔顿爵士请教。汉密尔顿接到摩尔根的信后,对四色问题进行论证。但直到1865年汉密尔顿逝世为止,问题也没有能够解决。 1872年,英国当时最著名的数学家凯利正式向伦敦数学学会提出了这个问题,于是四色猜想成了世界数学界关注的问题。世界上许多一流的数学家都纷纷参加了四色猜想的大会战。1878~1880年两年间,著名的律师兼数学家肯普和泰勒两人分别提交了证明四色猜想的论文,宣布证明了四色定理,大家都认为四色猜想从此也就解决了。 肯普的证明是这样的:首先指出如果没有一个国家包围其他国家,或没有三个以上的国家相遇于一点,这种地图就说是“正规的”(左图)。如为正规地图,否则为非正规地图(右图)。一张地图往往是由正规地图和非正规地图联系在一起,但非正规地图所需颜色种数一般不超过正规地图所需的颜色,如果有一张需要五种颜色的地图,那就是指它的正规地图是五色的,要证明四色猜想成立,只要证明不存在一张正规五色地图就足够了。 肯普是用归谬法来证明的,大意是如果有一张正规的五色地图,就会存在一张国数最少的“极小正规五色地图”,如果极小正规五色地图中有一个国家的邻国数少于六个,就会存在一张国数较少的正规地图仍为五色的,这样一来就不会有极小五色地图的国数,也就不存在正规五色地图了。这样肯普就认为他已经证明了“四色问题”,但是后来人们发现他错了。 不过肯普的证明阐明了两个重要的概念,对以后问题的解决提供了途径。第一个概念是“构形”。他证明了在每一张正规地图中至少有一国具有两个、三个、四个或五个邻国,不存在每个国家都有六个或更多个邻国的正规地图,也就是说,由两个邻国,三个邻国、四个或五个邻国组成的一组“构形”是不可避免的,每张地图至少含有这四种构形中的一个。 肯普提出的另一个概念是“可约”性。“可约”这个词的使用是来自肯普的论证。他证明了只要五色地图中有一国具有四个邻国,就会有国数减少的五色地图。自从引入“构形”,“可约”概念后,逐步发展了检查构形以决定是否可约的一些标准方法,能够寻求可约构形的不可避免组,是证明“四色问题”的重要依据。但要证明大的构形可约,需要检查大量的细节,这是相当复杂的。 11年后,即1890年,在牛津大学就读的年仅29岁的赫伍德以自己的精确计算指出了肯普在证明上的漏洞。他指出肯普说没有极小五色地图能有一国具有五个邻国的理由有破绽。不久,泰勒的证明也被人们否定了。人们发现他们实际上证明了一个较弱的命题——五色定理。就是说对地图着色,用五种颜色就够了。后来,越来越多的数学家虽然对此绞尽脑汁,但一无所获。于是,人们开始认识到,这个貌似容易的题目,其实是一个可与费马猜想相媲美的难题。 进入20世纪以来,科学家们对四色猜想的证明基本上是按照肯普的想法在进行。1913年,美国著名数学家、哈佛大学的伯克霍夫利用肯普的想法,结合自己新的设想;证明了某些大的构形可约。后来美国数学家富兰克林于1939年证明了22国以下的地图都可以用四色着色。1950年,有人从22国推进到35国。1960年,有人又证明了39国以下的地图可以只用四种颜色着色;随后又推进到了50国。看来这种推进仍然十分缓慢。 高速数字计算机的发明,促使更多数学家对“四色问题”的研究。从1936年就开始研究四色猜想的海克,公开宣称四色猜想可用寻找可约图形的不可避免组来证明。他的学生丢雷写了一个计算程序,海克不仅能用这程序产生的数据来证明构形可约,而且描绘可约构形的方法是从改造地图成为数学上称为“对偶”形着手。 他把每个国家的首都标出来,然后把相邻国家的首都用一条越过边界的铁路连接起来,除首都(称为顶点)及铁路(称为弧或边)外,擦掉其他所有的线,剩下的称为原图的对偶图。到了六十年代后期,海克引进一个类似于在电网络中移动电荷的方法来求构形的不可避免组。在海克的研究中第一次以颇不成熟的形式出现的“放电法”,这对以后关于不可避免组的研究是个关键,也是证明四色定理的中心要素。 电子计算机问世以后,由于演算速度迅速提高,加之人机对话的出现,大大加快了对四色猜想证明的进程。美国伊利诺大学哈肯在1970年着手改进“放电过程”,后与阿佩尔合作编制一个很好的程序。就在1976年6月,他们在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿判断,终于完成了四色定理的证明,轰动了世界。 这是一百多年来吸引许多数学家与数学爱好者的大事,当两位数学家将他们的研究成果发表的时候,当地的邮局在当天发出的所有邮件上都加盖了“四色足够”的特制邮戳,以庆祝这一难题获得解决。 “四色问题”的被证明仅解决了一个历时100多年的难题,而且成为数学史上一系列新思维的起点。在“四色问题”的研究过程中,不少新的数学理论随之产生,也发展了很多数学计算技巧。如将地图的着色问题化为图论问题,丰富了图论的内容。不仅如此,“四色问题”在有效地设计航空班机日程表,设计计算机的编码程序上都起到了推动作用。 不过不少数学家并不满足于计算机取得的成就,他们认为应该有一种简捷明快的书面证明方法。直到现在,仍由不少数学家和数学爱好者在寻找更简洁的证明方法。3.史上和质数有关的数学猜想中,最著名的当然就是“哥德巴赫猜想”了。 1742年6月7日,德国数学家哥德巴赫在写给著名数学家欧拉的一封信中,提出了两个大胆的猜想: 一、任何不小于6的偶数,都是两个奇质数之和; 二、任何不小于9的奇数,都是三个奇质数之和。 这就是数学史上著名的“哥德巴赫猜想”。显然,第二个猜想是第一个猜想的推论。因此,只需在两个猜想中证明一个就足够了。 同年6月30日,欧拉在给哥德巴赫的回信中, 明确表示他深信哥德巴赫的这两个猜想都是正确的定理,但是欧拉当时还无法给出证明。由于欧拉是当时欧洲最伟大的数学家,他对哥德巴赫猜想的信心,影响到了整个欧洲乃至世界数学界。从那以后,许多数学家都跃跃欲试,甚至一生都致力于证明哥德巴赫猜想。可是直到19世纪末,哥德巴赫猜想的证明也没有任何进展。证明哥德巴赫猜想的难度,远远超出了人们的想象。有的数学家把哥德巴赫猜想比喻为“数学王冠上的明珠”。 我们从6=3+3、8=3+5、10=5+5、……、100=3+97=11+89=17+83、……这些具体的例子中,可以看出哥德巴赫猜想都是成立的。有人甚至逐一验证了3300万以内的所有偶数,竟然没有一个不符合哥德巴赫猜想的。20世纪,随着计算机技术的发展,数学家们发现哥德巴赫猜想对于更大的数依然成立。可是自然数是无限的,谁知道会不会在某一个足够大的偶数上,突然出现哥德巴赫猜想的反例呢?于是人们逐步改变了探究问题的方式。 1900年,20世纪最伟大的数学家希尔伯特,在国际数学会议上把“哥德巴赫猜想”列为23个数学难题之一。此后,20世纪的数学家们在世界范围内“联手”进攻“哥德巴赫猜想”堡垒,终于取得了辉煌的成果。 20世纪的数学家们研究哥德巴赫猜想所采用的主要方法,是筛法、圆法、密率法和三角和法等等高深的数学方法。解决这个猜想的思路,就像“缩小包围圈”一样,逐步逼近最后的结果。 1920年,挪威数学家布朗证明了定理“9+9”,由此划定了进攻“哥德巴赫猜想”的“大包围圈”。这个“9+9”是怎么回事呢?所谓“9+9”,翻译成数学语言就是:“任何一个足够大的偶数,都可以表示成其它两个数之和,而这两个数中的每个数,都是9个奇质数之和。” 从这个“9+9”开始,全世界的数学家集中力量“缩小包围圈”,当然最后的目标就是“1+1”了。 1924年,德国数学家雷德马赫证明了定理“7+7”。很快,“6+6”、“5+5”、“4+4”和“3+3”逐一被攻陷。1957年,我国数学家王元证明了“2+3”。1962年,中国数学家潘承洞证明了“1+5”,同年又和王元合作证明了“1+4”。1965年,苏联数学家证明了“1+3”。 1966年,我国著名数学家陈景润攻克了“1+2”,也就是:“任何一个足够大的偶数,都可以表示成两个数之和,而这两个数中的一个就是奇质数,另一个则是两个奇质数的和。”这个定理被世界数学界称为“陈氏定理”。 由于陈景润的贡献,人类距离哥德巴赫猜想的最后结果“1+1”仅有一步之遥了。但为了实现这最后的一步,也许还要历经一个漫长的探索过程。有许多数学家认为,要想证明“1+1”,必须通过创造新的数学方法,以往的路很可能都是走不通的。
余辉2023-05-19 20:17:371

在我国古代数学著作《九章算术》中记载了一道有趣的问题

看吧,全部答案,所以书的答案我都有
左迁2023-05-19 20:17:374

数学著作《九章算术》数学家是谁编的?

九章算术》最初是由谁、在什么时候开始编纂的,现在已经难以确考了.据数学史家们研究,这部著作是我国秦汉时期的数学家们历时一,二百年之久的智慧结晶,汇集了当时数学研究的主要成就,至迟在公元一世纪时形成了流传至今的定本.在此后一千多年间,《九章算术》一直是我国的数学教科书.它还影响到国外,朝鲜和日本也都曾把它当作教科书.书中不少题目,后来还出现于印度的数学著作中,并且传到了中世纪的欧洲.根据研究,西汉的张苍、耿寿昌曾经做过增补.最后成书最迟在东汉前期,但是其基本内容在东汉后期已经基本定型.《汉书艺文志》(班固根据刘歆《七略》写成者)中着录的数学书仅有《许商算术》、《杜忠算术》两种,并无《九章算术》,可见《九章算术》的出现要晚于《七略九章算术将书中的所有数学问题分为九大类,就是“九章”.魏景元四年(263年),刘徽给《九章算术》作注,才大大弥补了这个缺陷.刘徽是中国数学家之一.他的生平现在知之甚少.据考证,他是山东邹平人.刘徽定义了若干数学概念,全面论证了《九章算术》的公式解法,提出了许多重要的思想、方法和命题,他在数学理论方面成绩斐然.
可桃可挑2023-05-19 20:17:374

信息安全的数学基础理论主要有哪些?

信息安全的数学基础理论主要是数论、代数和椭圆曲线论等数学理论。其中包括欧几里得除法、模同余、欧拉定理、中国剩余定理、二次同余、原根、有限群、有限域、椭圆曲线等。
北营2023-05-19 20:17:321

数学名人名言

给我一个支点我可以翘起地球, --
meira2023-05-19 20:17:275

关于数学的名言有什么?

12345432123454321
tt白2023-05-19 20:17:278

数学格言

wpBeta2023-05-19 20:17:272

数学名言

这是一个可靠的规律,当数学或哲学著作的作者以模糊深奥的话写作时,他是在胡说八道。——A•N•怀德海 给我五个系数,我讲画出一头大象;给我六个系数,大象将会摇动尾巴。——A•L•柯西 纯数学是魔术家真正的魔杖。——诺瓦列斯 如果谁不知道正方形的对角线同边是不可通约的量,那他就不值得人的称号。——柏拉图 整数的简单构成,若干世纪以来一直是使数学获得新生的源泉。——G•D•伯克霍夫
北营2023-05-19 20:17:263

赞美数学之美的诗句

1. 关于数学之美的诗句 关于数学之美的诗句 1.关于数学的诗句 原发布者:zhuzhubai128 与数学有关的诗歌 音乐能激发或抚慰情怀,绘画使人赏心悦目,诗歌能动人心弦,哲学能使人获得智慧,科技可以改善物质生活,但数学却能提供以上的一切。我们想变枯燥乏味的数学学习为欣赏美发现美的审美过程,完全可以渗透一些与数学有关的诗歌,甚或者引导学生去创作。我曾听过青岛二中老师的课和教研活动,他们的学生们在这方面所展现的能力和才情使我惊讶。可见要相信学生的创造力想象力远超过我们所能想象,我们所能做的应该做的,就是给他们一个启发,搭建一个平台。下面附上我所积累的一些与数学有关的诗歌。 一、与课本章节有关的诗歌第一章《集合、映射与函数》:日落月出花果香,物换星移看沧桑。因果变化多联系,安得良策破迷茫?集合奠基说严谨,映射函数叙苍黄。看图列表论升降,科海扬帆有锦囊。 第二章《指数函数、对数函数和幂函数》:晨雾茫茫碍交通,蘑菇核云蔽长空;化石岁月巧推算,文海索句快如风.指数对数相辉映,立方平方看对称;解释大千无限事,三族函数建奇功。 二、诗歌数学题朱世杰的《四元玉鉴》、《或问歌录》共有十二个数学问题,都采用诗歌形式提出。如第一题:"今有方池一所,每面丈四方停。葭生两岸长其形,出水三十寸整。东岸蒲生一种,水上一尺无零。葭蒲稍接水齐平,借问三般(水深、蒲长、葭长)怎定?"在元代有一部算经《详明算法》内有关于丈量田亩求法:"古者量田较润长,全凭绳尺以牵量。一形虽有一般法,惟有方田法易详。若见涡斜并凹曲, 2.关于数学的诗 关于数学的诗有: 一、《山村咏怀》 作者:邵雍(北宋) 一去二三里,烟村四五家。 亭台六七座,八九十枝花。 译文: 一眼看去有二三里远,薄雾笼罩着四五户人家。 村庄旁有六七座凉亭,还有许多鲜花正在绽放。 赏析:诗人用“小学数数”的方式将乡村美景一一道来,通俗易懂,仿若画面就在眼前一般。 二、《题秋江独钓图》 作者:王士祯(唐) 一蓑一笠一扁舟,一丈丝纶一寸钩。 一曲高歌一樽酒,一人独钓一江秋。 译文: 戴着一顶斗笠披着一件蓑衣坐在一只小船上,一丈长的渔线一寸长的鱼钩。 高声唱一首渔歌喝一樽酒,一个人在这秋天的江上独自垂钓。 三、《咏雪》 作者:郑板桥(清) 一片二片三四片,五片六片七八片。 千片万片无数片,飞入梅花总不见。 译文: 一片一片的雪花纷纷扬扬的从天而落,整个天地都白茫茫的一片。 飘落的雪花落入芦花丛里,和白色的芦花融为一体,叫人难以分辨。 赏析:人使用数字,主要是展现雪景的美妙以及美好,在人们眼前展现一幅大雪纷的景象,仿佛雪景就在读者的眼前,让人有身临其境之感。 四、《绝句》 作者:杜甫(唐》 两个黄鹂鸣翠柳,一行白鹭上青天。 窗含西岭千秋雪,门泊东吴万里船。 译文: 两只黄鹂在翠绿的柳枝间鸣叫,一行白鹭向湛蓝的高空里飞翔。 西岭雪山的景色仿佛嵌在窗里,往来东吴的航船就停泊在门旁。 五、《西江月·夜行黄沙道中》 作者:辛弃疾(宋) 明月别枝惊鹊,清风半夜鸣蝉。稻花香里说丰年,听取蛙声一片。 七八个星天外,两三点雨山前。旧时茅店社林边,路转溪桥忽见。 译文: 皎洁的月光从树枝间掠过,惊飞了枝头喜鹊,清凉的晚风吹来仿佛听见了远处的蝉叫声。在稻花的香气里,人们谈论着丰收的年景,耳边传来阵阵青蛙的叫声。 天空乌云密布,星星闪烁,忽明忽暗,山前下起了淅淅沥沥的小雨。往日的小茅草屋还在土地庙的树林旁,道路转过溪水的源头,它便忽然出现在眼前。 赏析:作者自己夜行黄沙道中的具体感受,描绘出农村夏夜的幽美景色,形象生动逼真,感受亲切细腻,笔触轻快活泼,使人有身历其境的真实感。 3.有关数学王国名言诗句 音乐与代数很类似.——哈登伯格 硬说数学科学无美可言的人是错误的.美的主要形式是秩序、匀称与明确.——亚里斯多德 感觉到数学的美,感觉到数与形的协调,感觉到几何的优雅,这是所有真正的数学家都清楚的真实的美的感觉.——庞加莱 数学之美是很自然明白地摆着的.——哈尔莫斯 我认为,说数学家选择课题的准则以及判断他是否成功的准则,主要的是美学准则,这是正确的. ——冯.诺伊 曼 我的工作总是力图把真与美结合起来,但是,当我不得不选择其中的一种时,我通常选择美.——韦尔 在数学定理的评价中,审美标准既重于逻辑的标准,也重于实用的标准:在对数学思想的评价时,美与优雅比是否严密、正确,比是否有用都重要得多.——斯蒂恩 纯粹数学可以是实际有用的,而应用数学也可以是优美高雅的.——哈尔莫斯 对早已正确认定的定理做进一步的研究,探索它的新证法,只不过是因为现有的证明欠缺美的魅力.——克莱因 数学家如画家或诗人一样,是款式的制造者。。数学家的款式,如同画家或诗人的款式,必须是美的……世上没有丑陋数学的永久立身之地.——哈代 一种奇特的美统治着数学王国,这种美不像艺术之美与自然之美那么相类似,但她深深地感染着人们的心灵,激起人们对她的欣赏,与艺术之美是十分相象的.——库默 难道不可以把音乐描绘成感觉的数学,而把数学描绘成理性的音乐吗?这样,音乐家感觉到数学,数学家想到音乐——音乐是梦想,数学是工作的一生——每一方都经由对方达到尽善尽美的境地,那时,人类的智慧达到完美的典型,将在某个未来的莫扎特——狄利克雷或贝多芬——高斯的歌颂下而光彩夺目.这种联合已经在一个赫姆霍尔兹的天才和工作中清楚地预示出来了.——西尔弗斯特 4.数学之美的表述 美是人类创造性实践活动的产物,是人类本质力量的感性显现。 通常我们所说的美以自然美、社会美以及在此基础上的艺术美、科学美的形式存在。数学美是自然美的客观反映,是科学美的核心。 简言之数学美就是数学中奇妙的有规律的让人愉悦的美的东西。历史上许多学者、数学家对数学美从不同的侧面作过生动的阐述。 普洛克拉斯早就断言:“哪里有数学,哪里就有美。”亚里士多德也曾讲过:“虽然数学没有明显地提到善和美,但善和美也不能和数学完全分离。 因为美的主要形式家是“秩序、匀称和确定性”,这些正是数学研究的原则。”我国著名数学家华罗庚说过:“就数学本身而言,是壮丽多彩、千姿百态、引人入胜的……认为数学枯燥乏味的人,只是看到了数学的严谨性,而没有体会出数学的内在美。” 数学家徐利治说:“作为科学语言的数学,具有一般语言文字与艺术所共有的美的特点,即数学在其内容结构上和方法上也都具有自身的某种美,既所谓数学美。数学美的含义是丰富的,如数学概念的简单性、统一性,结构关系的协调性、对称性,数学命题与数学模型的概括性、典型性和普遍性,还有数学中的奇异性等等都是数学美的具体内容。” 以上的论述可见,数学中充满着美的因素,数学美是数学科学的本质力量的感性和理性的呈现,它不是什么虚无飘渺、不可捉摸的东西,而是有其确定的客观内容。 数学美有别与其它的美,它没有鲜艳的色彩,没有美妙的声音,没有动感的画面,它却是一种独特的美。 德国数学家克莱因曾对数学美作过这样的描述:“音乐能激发或抚慰情怀,绘画使人赏心悦目,诗歌能动人心弦,哲学使人获得智慧,科技可以改善物质生活,但数学却能提供以上一切。”数学美与其它美的区别还在于它是蕴涵在其中的美。 打个比方来说,大家一定都有这种感觉,绝大部分同学对音体美容易产生兴趣,而对数学感兴趣的不多。我认为,这主要有两个方面的原因:一是音体美中所表现出来的美是外显的,这种美同学们比较容易感受、认识和理解;而数学中的美虽然也有一些表现在数学对象的外表,如精美的图形、优美的公式、巧妙的解法等等,但总的来说数学中的美还是深深地蕴藏在它的基本结构之中,这种内在的理性美学生往往难以感受、认识和理解,这也是数学区别于其它学科的主要特征之一。 二是长期以来,我们的数学教材过分强调逻辑体系和逻辑推演,忽视数学美感、数学直觉的作用,长此以往,学生将数学与逻辑等同起来。一味注重数学的逻辑性而忽视了数学本身的美,学习的过程中就会感到枯燥无味缺乏兴趣。 大多数的数学家会由他们的工作及一般数学里得出美学的喜悦。他们形容数学是美丽的来表示这种喜悦。 有时,数学家会形容数学是一种艺术的形式,或至少是一个创造性的活动。通常拿来和音乐和诗歌相比较。 数学之美还在于其对生活的精确表述、对逻辑的完美演绎。可以说正是这种精确性才成就了现代社会的美好生活。 伯特兰·罗素以下列文字来形容他对数学之美的感觉:Mathematics, rightly viewed, possesses not only truth, but supreme beauty — a beauty cold and austere, like that of sculpture, without appeal to any part of our weaker nature, without the gorgeous trappings of painting or music, yet sublimely pure, and capable of a stern perfection such as only the greatest art can show. The true spirit of delight, the exaltation, the sense of being more than Man, which is the touchstone of the highest excellence, is to be found in mathematics as surely as poetry. (The Study of Mathematics, in Mysticism and Logic, and Other Essays, ch. 4, London: Longmans, Green, 1918.)翻译:数学,如果正确地看它,则具有……至高无上的美——正像雕刻的美,是一种冷而严肃的美,这种美不是投合我们天性的微弱的方面,这种美没有绘画或音乐的那些华丽的装饰,它可以纯净到崇高的地步,能够达到严格的只有最伟大的艺术才能显示的那种完美的境地。一种真实的喜悦的精神,一种精神上的亢奋,一种觉得高于人的意识——这些是至善至美的标准,能够在诗里得到,也能够在数学里得到。 (研究数学,在神秘主义和逻辑,与其他论文,概括。4、伦敦:浪漫书屋,绿色,1918年。) 保罗·埃尔德什形容他对数学不可言说的观点,而说:“为何数字美丽呢?这就像是在问贝多芬第九号交响曲为什么会美丽一般。若你不知道为什么,其他人也没办法告诉你为什么。 我知道数字是美丽的。且若它们不是美丽的话,世上也没有事物会是美丽的了。” 它的最美之处莫过于在无形之中就让你思维变得敏捷.考虑事情时,不在那么偏激,那么单一.作为一个公民来说了不了解它是一个后话,至少应该不否定它.尤其是学生.让我们先来看看看下面的算式:1 x 8 + 1= 912 x 8 + 2= 98123 x 8 + 3= 9871234 x 8 + 4= 987612345 x 8 + 5= 98765123456 x 8 + 6= 9876541234567 x 8 + 7= 987654312345678 x 8 + 8= 98765432123456789 x 8 + 9= 9876543211 x 9 + 2= 1112 x 9 + 3= 111123 x 9 + 4= 11111234 x 9 + 5= 1111112345 x 9 + 6= 111111123456 x 9 + 7= 1。 5.求关于数学的诗~~急 利用诗歌表达数学思想、概念的诗歌比较多。 例如张景中院士主编的新课程高中数学教材中(该教材是湖南教育出版社新课程标准实验教材),在每一章都有一首诗歌。例如第一章《集合、映射与函数》时,说到: 日落月出花果香,物换星移看沧桑。 因果变化多联系,安得良策破迷茫? 集合奠基说严谨,映射函数叙苍黄。 看图列表论升降,科海扬帆有锦囊。 当到第二章《指数函数、对数函数和幂函数》时,说到: 晨雾茫茫碍交通,蘑菇核云蔽长空; 化石岁月巧推算,文海索句快如风. 指数对数相辉映,立方平方看对称; 解释大千无限事,三族函数建奇功。 在学习完这两章内容后再仔细研读,别有一番感受。 二、诗歌数学题 数学很抽象,又令人感到枯燥无味,怎样使数学易于理解,为人们所喜爱,在这方面,中国古代数学家做出许多尝试,歌谣和口诀就是其中一种,让人们在解答数学问题的同时,也感受到了诗歌的魅力。从南宋杨辉开始,元代的朱世杰、丁巨、贾亨、明代的刘仕隆、程大位等都采用歌诀形式提出各种算法或用诗歌形式提出各种数学问题。 朱世杰的《四元玉鉴》、《或问歌录》共有十二个数学问题,都采用诗歌形式提出。如第一题:"今有方池一所,每面丈四方停。 葭生两岸长其形,出水三十寸整。东岸蒲生一种,水上一尺无零。 葭蒲稍接水齐平,借问三般(水深、蒲长、葭长)怎定?"在元代有一部算经《详明算法》内有关于丈量田亩求法:"古者量田较润长,全凭绳尺以牵量。一形虽有一般法,惟有方田法易详。 若见涡斜并凹曲,直须裨补取为方。却将黍实为田积,二四除之亩法强。 " 明代程大位《算法统宗》是一本通俗实用的数学书,也是数字入诗代表作。《算法统宗》全书十七卷,广泛流传于明末清朝,对于民间数学知识的普及贡献卓著。 这本书由程大位花了近20年完成,他原本是一位商人,经商之便搜集各地算书和文字方面的书籍,编纂成一首首的歌谣口诀,将枯燥的数学问题化成美妙的诗歌,让人朗朗上口,加强了数学普及的亲合力。程大位还有一首类似的二元一次方程组的饮酒数学诗:"肆中饮客乱纷纷,薄酒名醨厚酒醇。 好酒一瓶醉三客,薄酒三瓶醉一人。共同饮了一十九,三十三客醉颜生。 试问高明能算士,几多醨酒几多醇?"这道诗题大意是说:好酒一瓶,可以醉倒3位客人;薄酒三瓶,可以醉倒一位客人。如果33位客人醉倒了,他们总共饮下19瓶酒。 试问:其中好酒、薄酒分别是多少瓶? 著名《孙子算经》中有一道"物不知其数"问题。这个算题原文为:"今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?答曰二十三。 "这个问题流传到后世,有过不少有趣的名称,如"鬼谷算"、"韩信点兵"等。程大位在《算法统宗》中用诗歌形式,写出了数学解法:"三人同行七十稀,五树梅花廿一枝,七子团圆月正半,除百零五便得知。 "这首诗包含着著名的"剩余定理"。也就说,拿3除的余数乘70,加上5除的余数乘21,再加上7除的余数乘15,结果如比105多,则减105的倍数。 上述问题的结果就是:(2*70)+(3*21)+(2*15)-(2*105)=23。 在印度学者婆什迦罗的著作中,也有这样一首数学诗:"素馨花开香扑鼻,诱得蜜蜂来采蜜。 熙熙攘攘不知数,一群飞入花丛里。试问此群数有几?且把条件来分析:全体之半平方根,另有两只在一起;总数的九分之几,徘徊在外做游戏。 "你如果列出无理方程运算后,则可得出此群蜜蜂为72只。另外有一首写荷花的数学诗,:"平平湖水清可鉴,石上半尺生红莲;出泥不染亭亭立,忽被吹到清水面。 渔人观看忙向前,花离原位二尺远;能算诸君请解题,湖水如何知深浅?"这是一首多么富有诗情画意的代数题!你看,长在湖里的红莲,露出湖面的长度是半尺,它被风吹向一边,红莲顶上的花离原水面的距离为2尺,问湖水有多深?根据勾股定理列式算得,湖深为3.75尺。 三、数字入诗: 最常见的入诗的数字是一。 "一"虽说是个数字概念,其实,把"一"字恰当地运用到诗文中,会产生美的艺术效果。 例如清代诗人陈秋舫写过一首以《题秋江独钓图》为题的"一"字诗:"一帆一桨一扁舟,一个渔翁一钓钩,一俯一仰一场笑,一江明月一江秋。 "五代时南唐后主李煜在位时,曾为宫廷画家卫贤所作《春江钓叟图》题词二首:"浪花有意千重雪,桃李无言一队春;一壶酒,一竿身,世上如侬有几人。""一棹春风一叶舟,一纶茧缕一轻钩;花满渚,酒满瓯,万顷波中得自由。 "把一个个洒脱的渔翁形象刻画得栩栩如生。 又如元曲一首小令《雁儿落带过得胜令》:"一年老一年,一日没一日,一秋又一秋,一辈催一辈,一聚一离别,一苦一伤悲。 一榻一身卧,一生一梦里,寻一个相识,他一会,咱一地,都一般相知,吹一回,唱一回。"诗中22个"一"字不断重复,反映了人生虚幻的凄苦。 其写法奇特,而以俚语取胜。 有些诗歌会把一到十十个数字镶嵌到诗中。 宋代理学家《邵康》云:"一去二三里,烟村四五家,亭台六七座,八九十枝花。"此诗妙在顺序嵌进十个基数,寥寥数语,描绘出一幅恬静淡雅的田园景色,勾起人们不尽的情思和神往。 6.求一篇关于数学之美的作文1000字 数学作为所有科学的基础,其作用众所周知。 进入现代文明的我们早就习惯于生活在数字的海洋中,用 1、2、3、4进行着基本的沟通交流。但与其巨大社会作用相反的是很少有人真正地喜爱数学,真正地醉心于数学研究,挖掘深藏的数学之美。 人们常说“不要以貌取人”。作为一门用数字和图形说话的学科,数学就像是科学童话里的灰姑娘,其枯燥、乏味的表象下面,隐藏着最动人、美丽之处。 首先我认为数学之美,美在神秘。简简单单一个符号就可以勾勒出无穷无尽的自然真理。 牛顿运动三大定律,只用几个简单的数学公式,就能够囊括浩瀚宇宙的运动规律。对于每一个乐于探求真相的人来说,数学可以说是他们最好的旅游胜地。 一群群数字、一个个图形在这里交织出了一幅幅最动人的风景。这片风景连绵不断却又迥然不同,当你徜徉在数学的海洋中,你绝不会有“高处不胜寒”的感慨,也不会有“一马平川任我行”的放纵,有的只是寻幽探胜的意趣和对自然真理的崇敬之情。 就连中国最著名的数学家陈景润在摘下数学王冠上的宝石后,依然要怀着朝圣的心情在数学研究的道路上谨慎前行。 其次,我认为数学之美,美在应用。 “金玉其外,败絮其中”常被我们用来贬斥那些虚有其表的人和事,可见我们评价美的标准,不光是因为其具备美好的内外部特征,更要注重其是否具有实用价值。“数学是众科学之母”一句话就说尽了数学在社会生活各领域的价值体现。 购物时用数学,电脑软件的开发、一座城市的交通路线设计、整个地球的网络建设,都离不开数学。甚至于艺术领域,也有数学的身影;数字按不同的音高排列,是悠扬的乐谱;雕塑和绘画中,哪一个少得了数学黄金分割的定律?故宫没有一根钉子的角楼,重檐斗拱的紫禁城,哪一个离得开严谨的数学知识?可以毫不夸张的说,正是数学用数字和图形搭建了人类社会不断前进的阶梯。 数学之美犹如优美和谐的乐曲,别具一格的绘画,雄伟壮美的建筑,同样会使数学学习者们激情荡漾。有着这样的奉献和功绩,我们能说数学不美吗? 最后我认为数学之美,美在于一次一次挑战后的成功。 而这种美感的获得,常常以长时间的苦苦思考及单调乏味的运算为代价,而且必须一次次地接受失败与错误, 必须接受枯燥学习所带来的孤独。屡战屡败,屡败屡战,最后你可能在冲凉时,或者刷牙时,突然间豁然开朗,仿佛音乐突然响起,问题好像一下子就解决了。 那时候的我,往往有一种人在高山飘飘然的感觉。这种美是无与伦比的。 这就是我眼中的数学质朴而充满魅力。作为科学界里一块奇异的宝石它必将在新时代里散发出灿烂的光芒,用它特有的美引导我们不断前行。 7.谁帮我写一首赞美数学的诗,越能掰越好 数学,心中的至爱 你从远古走来, 严谨的步履不着尘埃; 你的佩戴朴素而美丽, 闪耀着比珠宝还珍贵的智慧之光; 你用丝帘遮盖着那圣洁的容颖, 若隐若现,引来了多少杰出的男子来猎色, 你合着宇宙的音符翩翩起舞, 我们的心哪,跟你一起跳跃; 纯洁的语言是如此精确, 那颗真心致死不逾, 在漫长的岁月里, 虽风尘的洗礼, 美丽依然。 你的风姿惟有向智者展现, 那些愚夫也不可望也不及, 你是女神, 掌管着智慧宝箱的钥匙, 叫那些能见到你的人,和欣赏你的人 得到生命的力量, 对这你的美丽, 我只能用最美的诗来歌唱。 8.数学名言的数学美 数学确属美妙的杰作,宛如画家或诗人的创作一样——是思想的综合;如同颜色或词汇的综合一样,应当具有内在的和谐一致。 对于数学概念来说,美是她的第一个试金石;世界上不存在畸形丑陋的数学。——G.H.Hardy 音乐能激发或抚慰情怀,绘画使人赏心悦目,诗歌能动人心弦,哲学使人获得智慧,科学可改善物质生活,但数学能给予以上的一切。 ——F.Klein 哪里有数,哪里就有美。——Proclus 当数学家导出方程式和公式,如同看到雕像、美丽的风景,听到优美的曲调等等一样而得到充分的快乐。 ——柯普宁(前苏联哲学家) 这就是结构好的语言的好处,它简化的记法常常是深奥理论的源泉。——拉普拉斯(-1827) 社会的进步就是人类对美的追求的结晶。 ——马克思(K.Max) 数学,如果正确地看,不但拥有真理,而且也具有至高的美。 ——罗素(B.Russell) 数学能促进人们对美的特性——数值、比例、秩序等的认识。 ——亚里士多德(Aristotle) 美包含在体积和秩序中。 ——黑格尔(G..W.F.Hegel) 一个没有几分诗人才能的数学家决不会成为一个完全的数学家。 ——魏尔斯特拉斯(KarlWeierstrass1815-1897) 纯粹数学,就其本质而言,是逻辑思想的诗篇。 ——爱因斯坦 数学如同音乐或诗一样显然地确实具有美学价值。 ——雅可比 数学是创造性的艺术,因为数学家创造了美好的新概念;数学是创造性的艺术,因为数学家的生活、言行如同艺术家一样;数学是创造性的艺术,因为数学家就是这样认为的。 ——哈尔莫斯 音乐与代数很类似。 ——哈登伯格 硬说数学科学无美可言的人是错误的。美的主要形式是秩序、匀称与明确。 ——亚里斯多德 数学之美是很自然明白地摆着的。 ——哈尔莫斯 我认为,说数学家选择课题的准则以及判断他是否成功的准则,主要的是美学准则,这是正确的。 ——冯.诺伊 曼 我的工作总是力图把真与美结合起来,但是,当我不得不选择其中的一种时,我通常选择美。 ——韦尔 在数学定理的评价中,审美标准既重于逻辑的标准,也重于实用的标准:在对数学思想的评价时,美与优雅比是否严密、正确,比是否有用都重要得多。 ——斯蒂恩 纯粹数学可以是实际有用的,而应用数学也可以是优美高雅的。——哈尔莫斯 对早已正确认定的定理做进一步的研究,探索它的新证法,只不过是因为现有的证明欠缺美的魅力。 ——克莱因 数学家如画家或诗人一样,是款式的制造者。 数学家的款式,如同画家或诗人的款式,必须是美的……世上没有丑陋数学的永久立身之地。——哈代 一种奇特的美统治着数学王国,这种美不像艺术之美与自然之美那么相类似,但她深深地感染着人们的心灵,激起人们对她的欣赏,与艺术之美是十分相象的。 ——库默 难道不可以把音乐描绘成感觉的数学,而把数学描绘成理性的音乐吗?这样,音乐家感觉到数学,数学家想到音乐——音乐是梦想,数学是工作的一生——每一方都经由对方达到尽善尽美的境地,那时,人类的智慧达到完美的典型,将在某个未来的莫扎特——狄利克雷或贝多芬——高斯的歌颂下而光彩夺目。这种联合已经在一个赫姆霍尔兹的天才和工作中清楚地预示出来了。 ——西尔弗斯特 一般地说,我更想把数学视为是艺术,而不是科学。因为我们可以说,数学家的活动,当他受外部的理性世界所引导,而不是被控制时,不断地进行创造性的活动,与一个艺术家、一个画家的活动相类似,有着实在的,不是虚幻的相似点。 数学家这一方面的严密演绎推理可以比喻为画家那一方面的绘画技巧。恰如没有一定技巧的人不能成为一位好画家一样,没有一定的精密推理能力的人不能成为一位好的数学家。 但是,这些尽管是他们的基本特质,还不足以使一个画家或数学家名副其实,画图技巧与推理能力,说实在的,终究不是最重要的因素。远为敏感的,为二者都是主要的一类特质是想象力,它才能造就一名杰出的艺术家或杰出的数学家。 ——博歇 我们能够期待,随着教育与娱乐的发展,将有更多的人欣赏音乐与绘画。但是,能够真正欣赏数学的人数是很少的。 ——贝尔斯 在现实中,不存在像数学那样有如此多的东西,持续了几千年依然是确实的如此美好。 ——苏利文。
黑桃花2023-05-19 20:17:261

数学家各是什麽国

问题有误
阿啵呲嘚2023-05-19 20:17:255

外国数学家的名字(至少十个)

冯克勤 2 刘维尔 3 麦克斯韦 4 西尔维斯特 5 贝叶斯 6 洛必达 7 毕达哥拉斯 8 约翰·冯·诺依曼 9 哈代 10 勒贝格 11 嘉当 12 阿达玛 13 戴维·希尔伯特 14 亨利·庞加莱 15 柯瓦列夫斯卡娅 16 克莱茵 17 格奥尔格·康托尔 18 黎曼 19 魏尔施特拉斯 20 伽罗华 http://www.china001.com/show_hdr.php?xname=PPDDMV0&dname=D2ET041&xpos=1
善士六合2023-05-19 20:17:252

数学家的名人名言

fdetgfyeryt78rg
陶小凡2023-05-19 20:17:2410

数学家励志名言名句 关于数学家的名言

数学家励志名言名句 1、如果我继承可观的财产,我在数学上可能没有多少价值了。拉格朗日 2、给我五个系数,我讲画出一头大象;给我六个系数,大象将会摇动尾巴。AL柯西 3、天才=1%的灵感+99%的血汗。爱迪生 4、事类相推,各有攸归,故枝条虽分而同本干知,发其一端而已。又所析理以辞,解体用图,庶亦约而能周,通而不黩,览之者思过半矣刘徽 5、我不知道,世上人会怎样看我;不过,我自己觉得,我只像一个在海滨玩耍的孩子,一会捡起块比较光滑的卵石,一会儿找到个美丽的贝壳;而在我前面,真理的大海还完全没有发现。牛顿 6、我决心放弃那个仅仅是抽象的几何。这就是说,不再去考虑那些仅仅是用来练思想的问题。我这样做,是为了研究另一种几何,即目的在于解释自然现象的几何笛卡儿 7、如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。高斯 8、宇宙的伟大建筑是现在开始以纯数学家的面目出现了。JH京斯 9、这是一个可靠的规律,当数学或哲学著作的作者以模糊深奥的话写作时,他是在胡说八道。AN怀德海 10、聪明出于勤奋,天才在于积累。华罗庚 11、数学中的一些美丽定理具有这样的特性:它们极易从事实中归纳出来,但证明却隐藏的极深。数学是科学之王。高斯 12、迟序之数,非出神怪,有形可检,有数可推。祖冲之 13、数学科学不可动摇的基石,促进人类事业进步的丰富源泉巴罗 14、我们必须知道,我们必将知道。希尔伯特 15、一个做学问的人,除了学习知识外,还要有tast,这个词不太好翻译,有的译成品味,喜爱。一个人要有大的成就,就要有相当清楚的tast。杨振宁 16、如果谁不知道正方形的对角线同边是不可通约的量,那他就不值得人的称号。柏拉图 17、考虑了很少的那几样东西之后,整个的事情就归结为纯几何,这是物理和力学的一个目标莱布尼茨 18、在学习中要敢于做减法,就是减去前人已经解决的部分,看看还有那些问题没有解决,需要我们去探索解决华罗庚 19、数学的领域中,提出问题的艺术比解答问题的艺术更为重要。康扥尔 20、时间是个常数,但对勤奋者来说,是个变数。用分来计算时间的人比用小时来计算时间的人时间多59倍雷巴柯夫 数学家名言名句 1、整数的简单构成,若干世纪以来一直是使数学获得新生的源泉。GD伯克霍夫 2、因为宇宙的结构是最完善的而且是最明智的上帝的创造,因此,如果在宇宙里没有某种极大的或极小的法则,那就根本不会发生任何事情。欧拉 3、时间是个常数,但对勤奋者来说,是个变数。用分来计算时间的人比用小时来计算时间的人时间多59倍。雷巴柯夫 4、读读欧拉,读读欧拉,他是我们大家的老师。拉普拉斯 5、我思故我在笛卡儿 6、一门科学,只有当它成功地运用数学时,才能达到真正完善的地步。马克思 7、问题是数学的心脏。p.R.Halmos 8、数学家实际上是一个著迷者,不迷就没有数学诺瓦利斯 9、一个国家的科学水平可以用它消耗的数学来度量。拉奥 10、问题是数学的心脏。p.R.Halmos 11、虽然不允许我们看透自然界本质的秘密,从而认识现象的真实原因,但仍可能发生这样的情形:一定的虚构假设足以解释许多现象。欧拉 12、观察可能导致发现。观察将揭示某种规律模式或定律。波利亚 关于数学家的名言 1、数学是人类知识活动留下来最具威力的知识工具,是一些现象的根源。数学是不变的,是客观存在的,上帝必以数学法则建造宇宙笛卡儿 2、自然这一巨举是用数学符号写成的。伽里略 3、数学的本质在於它的自由。康扥尔 4、数无形时少直觉,形少数时难入微,数与形,本是相倚依,焉能分作两边飞。华罗庚 5、数论是人类知识最古老的一个分支,然而他的一些最深奥的秘密与其最平凡的真理是密切相连的。史密斯 6、纯数学是魔术家真正的魔杖。诺瓦列斯 7、我们欣赏数学,我们需要数学。陈省身 8、数学是无穷的科学。赫尔曼外尔 9、在数学的天地里,重要的不是我们知道什么,而是我们怎么知道什么。毕达哥拉斯 10、这是一个可靠的规律,当数学或哲学著作的作者以模糊深奥的话写作时,他是在胡说八道。AN怀德海 11、一个没有几分诗人才能的数学家决不会成为一个完全的数学家魏尔斯特拉斯 12、在奥林匹斯山上统治著的上帝,乃是永恒的数雅可比 13、没有大胆的猜测,就做不出伟大的发现牛顿 14、在学习中要敢于做减法,就是减去前人已经解决的部分,看看还有那些问题没有解决,需要我们去探索解决。华罗庚 15、也许我可以并非不适当地要求获得数学上亚当这一称号,因为我相信数学理性创造物由我命名(已经流行通用)比起同时代其它数学家加在一起还要多西尔维斯特 16、只要一门科学分支能提出大量的问题,它就充满着生命力,而问题缺乏则预示独立发展的终止或衰亡。希尔伯特 17、没有任何问题可以向无穷那样深深的触动人的情感,很少有别的观念能像无穷那样激励理智产生富有成果的思想,然而也没有任何其他的概念能向无穷那样需要加以阐明。希尔伯特 18、我把数学看成是一件有意思的工作,而不是想为自己建立什么纪念碑。可以肯定地说,我对别人的工作比自己的更喜欢。我对自己的工作总是不满意。拉格朗日 19、我们能够期待,随着教育与娱乐的发展,将有更多的人欣赏音乐与绘画。但是,能够真正欣赏数学的人数是很少的。贝尔斯 20、数学的本质在於它的自由。康扥尔 看了数学家励志名言名句的人还看了: 数学家的名人名言 数学家的名人名言 1、埋头苦干是第一,发白才知智叟。呆勤能补拙是良训,一分辛苦一分才。--华罗庚 2、可以数是属统治着整个量的世界,而算数的四则运算则可以看作是数学家的全部装备。--麦克斯韦 3、观察可能导致发现。观察将揭示某种规律模式或定律。--波利亚 4、给我五个系数,我讲画出一头大象;给我六个系数,大象将会摇动尾巴。--A L 柯西 5、发现每一个新的群体在形式上都是数学的,因为我们不可能有其他的指导。--C G 达尔文 6、多数的数学创造是直觉的结果,对事实多少有点儿直接的知觉或快速是理解,而与任何冗长的或形式的推理过程无关。--卢斯卡 7、聪明出于勤奋,天才在于积累。--华罗庚 8、纯数学这门科学再其现代发展阶段,可以说是人类精神之最具独创性的创造。--怀德海 9、自然这一巨举是用数学符号写成的。--伽里略 10、整数的简单构成,若干世纪以来一直是使数学获得新生的源泉。--G D 伯克霍夫 11、这是一个可靠的规律,当数学或哲学着作的作者以模糊深奥的话写作时,他是在胡说八道。--A N 怀德海 12、宇宙的伟大建筑是现在开始以纯数学家的面目出现了。--J H 京斯 13、一种奇特的美统治着数学王国,这种美不像艺术之美与自然之美那么相类似,但她深深地感染着人们的心灵,激起人们对她的欣赏,与艺术之美是十分相象的。--库默 14、一个没有几分诗人气的数学家永远成不了一个完全的数学家。--维尔斯特拉斯 15、想象比知识更重要。--爱因斯坦 16、无限!再也没有其他问题如此深刻地打动过人类的心灵。--D 希尔伯特 17、我们能够期待,随着教育与娱乐的发展,将有更多的人欣赏音乐与绘画。但是,能够真正欣赏数学的人数是很少的。--贝尔斯 18、天才是不足恃的,聪明是不可靠的,要想顺手拣来的伟大科学发明是不可想象的。--华罗庚 19、数学受到高度尊崇的另一个原因在于:恰恰是数学,给精密的自然科学提供了无可置疑的的可靠保证,没有数学,它们无法达到这样的可靠程度。--爱因斯坦 20、数学是科学的女王,而数论是数学的女王。--高斯 21、数学发明创造的动力不是推理,而是想象力的发挥。--德摩根 22、数学的领域中,提出问题的艺术比解答问题的艺术更为重要。--康扥尔 23、数学不可比拟的永久性和万能性及他对时间和文化背景的独立行是其本质的直接后果。--A 埃博 24、数学,科学的女皇;数论,数学的女皇。 --C F 高斯 25、数无形时少直觉,形少数时难入微,数与形,本是相倚依,焉能分作两边飞。--华罗庚 26、数论是人类知识最古老的一个分支,然而他的一些最深奥的秘密与其最平凡的真理是密切相连的。--史密斯 27、上帝创造了整数,所有其余的数都是人造的。 --L 克隆内克 28、如果谁不知道正方形的对角线同边是不可通约的量,那他就不值得人的称号。--柏拉图 29、攀登科学高峰,就像登山运动员攀登珠穆朗玛峰一样,要克服无数艰难险阻,懦夫和懒汉是不可能享受到胜利的喜悦和幸福的。--陈景润 关于数学的名言 关于数学的名言 1、数学的本质在於它的自由。--康扥尔 2、二分之一个证明等于0。-- 高斯 3、第一是数学,第二是数学,第三是数学。-- 伦琴 4、当我听别人讲解某些数学问题时,常觉得很难理解,甚至不可能理解。这时便想,是否可以将问题化简些呢﹖往往,在终于弄清楚之后,实际上,它只是一个更简单的问题。--希尔伯特 5、当数学家导出方程式和公式,如同看到雕像美丽的风景,听到优美的曲调等等一样而得到充分的快乐。--柯普宁 6、不管数学的任一分支是多么抽象,总有一天会应用在这实际世界上。-- 罗巴切夫斯基 7、数学对观察自然做出重要的贡献,它解释了规律结构中简单的原始元素,而天体就是用这些原始元素建立起来的。-- 开普勒 8、数学方法渗透并支配着一切自然科学的理论分支。它愈来愈成为衡量科学成就的主要标志了。-- 冯纽曼 9、数学家本质上是个着迷者,不迷就没有数学。-- 努瓦列斯 10、数学家毫不顾及声明或猜想,他们仅仅根据定义和公理,并用论证和推理来演绎每一件事。事实上,现在把那些仅由猜想或假说建立起来的理论称之为科学事不正确的,因为猜想往往求助于某种见解或主张,因而他不能由此而产生知识。-- 11、数学是除了语言与音乐之外,人类心灵自由创造力的主要表达方式之一,而且数学是经由理论的建构成为了解宇宙万物的媒介。因此,数学必需保持为知识,技能与文化的主要构成要素,而知识与技能是得传授给下一代,文化则得传承给下一代的。--录自德国数学家HermannWeyl语 12、数学是打开科学大门的钥匙。--培根 13、数学是符号加逻辑。--罗素 14、数学是各式各样的证明技巧。-- 维特根斯坦 15、数学是科学的大门钥匙,忽视数学必将伤害所有的知识,因为忽视数学的人是无法了解任何其他科学乃至世界上任何其他事物的。更为严重的是,忽视数学的人不能理解他自己这一疏忽,最终将导致无法寻求任何补救的措施。--Bacon, 16、数学是科学的皇后,而数论是数学的皇后高斯(Gauss)音乐能激发或抚慰情怀,绘画使人赏心悦目,诗歌能动人心弦,哲学使人获得智慧,科学可改善物质生活,但数学能给予以上的一切。--克莱因 17、数学是人类的思考中最高的成就。--米斯拉 18、数学是人类智慧皇冠上最灿烂的明珠。--考特 19、数学是上帝描述自然的符号。--黑格尔 20、数学是无穷的科学。--赫尔曼外尔 21、数学是研究抽象结构的理论。--布尔巴基学派 22、数学是研究现实生活中数量关系和空间形式的数学。--恩格斯 23、数学是一切知识中的最高形式。--柏拉图 24、数学是一种别具匠心的艺术。--哈尔莫斯 25、数学是一种会不断进化的文化。--魏尔德 26、数学是一种精神,一种理性的精神。正是这种精神,激发促进鼓舞并驱使人类的思维得以运用到最完善的程度,亦正是这种精神,试图决定性地影响人类的物质道德和社会生活;试图回答有关人类自身存在提出的问题;努力去理解和控制自然;尽力去探求和确立已经获得知识的最深刻的和最完美的内涵。 --克莱因《西方文化中的数学》 27、数学是一种理性的精神,使人类的思维得以运用到最完善的程度。--克莱因 28、数学是知识的工具,亦是其它知识工具的泉源。所有研究顺序和度量的科学均和数学有关。--笛卡儿 29、数学沿着他自己的道路而无拘无束的前进着,这并不是因为他有什么不受法律约束之类的种种许可证,而是因为数学本来就具有一种由其本性所决定的并且与其存在相符合的自由。--Hankel, 30、数学之所以比一切其它科学受到尊重,一个理由是因为他的命题是绝对可靠和无可争辩的,而其它的科学经常处于被新发现的事实推翻的危险。-- 爱因斯坦 31、数学之所以有高声誉,另一个理由就是数学使得自然科学实现定理化,给予自然科学某种程度的可靠性。-- 爱因斯坦 32、数学知识有三个不同于其它知识地主要特征:其一是数学知识比其它知识更清晰地使其结果具有真理性;其二是数学知识乃是获得其它正确知识地必经的第一步;其三是数学知识的获得并不依赖于其它知识。-- 33、数学中的一些美丽定理具有这样的特性:它们极易从事实中归纳出来,但证明却隐藏的极深。--高斯 34、数学主要的目标是公众的利益和自然现象的解释。-- 傅立叶 35、数支配着宇宙。--毕达哥拉斯 36、问题是数学的心脏。-- 37、我总是尽我的精力和才能来摆脱那种繁重而单调的计算。-- 纳皮尔 38、现代高能物理到了量子物理以后,有很多根本无法做实验,在家用纸笔来算,这跟数学家想样的差不了多远,所以说数学在物理上有着不可思议的力量。-- 邱成桐 39、新的数学方法和概念,常常比解决数学问题本身更重要。-- 华罗庚 40、一个国家只有数学蓬勃的发展,才能展现它国立的强大。数学的发展和至善和国家繁荣昌盛密切相关。-- 拿破仑 41、以我一生最好的时光追寻那个目标……书已经写成了。现代人读或后代读都无关紧要,也许要等一百年才有一个读者。--开普勒 42、宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,无处不用数学。--华罗庚 43、在数学的领域中,提出问题的艺术比解答问题的艺术更为重要。康扥尔。--Cantor) 44、在数学里,分辨何是重要,何事不重要,知所选择是很重要的。--广中平佑 45、在数学中,我们发现真理的主要工具是归纳和模拟。-- 拉普拉斯 46、在数学中最令我欣喜的,是那些能够被证明的东西。-- 罗素 47、哲学家也要学数学,因为他必须跳出浩如烟海的万变现象而抓住真正的实质。……又因为这是使灵魂过渡到真理和永存的捷径。--柏拉图 48、只要一门科学分支能提出大量的问题,它就充满着生命力,而问题缺乏则预示着独立发展的终止或衰亡。-- 49、宁可少些,但要好些。-- 高斯 50、没有任何问题可以向无穷那样深深的触动人的情感,很少有别的观念能像无穷那样激励理智产生富有成果的思想,然而也没有任何其他的概念能向无穷那样需要加以阐明。--希尔伯特 51、没有那门学科能比数学更为清晰的阐明自然界的和谐性。 52、历史使人贤明,诗造成气质高雅的人,数学使人高尚,自然哲学使人深沉,道德使人稳重,而伦理学和修辞学则使人善于争论。 --培根 53、几何理论算术和代数,这些学科除了定义和公理之外,没有其他原则,除了演绎以外,没有其他证明过程但就在这一过程中,却已综合了简单性复杂性严密性和一般性,这一特性是不为其它学科所具有的。 -- 54、给我最大快乐的,不是已懂得知识,而是不断的学习;不是已有的东西,而是不断的获取;不是已达到的高度,而是继续不断的攀登。--高斯 关于数学的英语名言 1、数学是科学的皇后。 Mathematics is the queen of science. 2、数学是打开科学大门的钥匙。 Mathematics is the key that opens the door to science. 3、数学是各式各样的证明技巧。 Mathematics is a ena. 12、一个国家的科学水平可以用它消耗的数学来度量。 The scientific level of a country can use it to use mathematics to measure. 13、数学是研究现实生活中数量关系和空间形式的数学。 Mathematics is the study of quantitative relationship beteone as deeply and constantly thinking and mathematical truth, they patible, but the existence of the Lord because we cant prove that mathematics is compatible. 28、数学指出函数的极大值往往在最不稳定的点取到,人追求极端就会失去内心的平衡。 Mathematics is pointed out that the maximum of the function is often in the most unstable points to get, people pursuit of extreme balance will lose heart. 29、数学的尽头是哲学,哲学的尽头是神学。于是,我在通向哲学的路上,死在数学的世界里。 Math is at the end of philosophy, philosophy is at the end of theology. So, I am on the es more and more become a symbol of the primary measure of scientific achievements. 31、数学并不会使人脱离现实世界,恰恰相反,数学牵引着现实,让人更加接近现实,让现实更加清晰。 Mathematics does not make people out of the real world, on the contrary, mathematics leads the reality, let people more close to reality, let the reality more clearly. 32、突然感觉数学和我相距很遥远,语文是我的太阳,英语是我的月亮,而数学只是天边一颗闪也不闪的星星。 Suddenly feel math and I are very far apart, the language is my sun, English is my moon, and mathematics is a flash of nor flash star sky.
苏州马小云2023-05-19 20:17:231

关于数学的唯美句子名言

音乐与代数很类似。 ——哈登伯格  硬说数学科学无美可言的人是错误的。美的主要形式是秩序、匀称与明确。 ——亚里斯多德  感觉到数学的美,感觉到数与形的协调,感觉到几何的优雅,这是所有真正的数学家都清楚的真实的美的感觉。 ——庞加莱  数学之美是很自然明白地摆着的。 ——哈尔莫斯  我认为,说数学家选择课题的准则以及判断他是否成功的准则,主要的是美学准则,这是正确的。  ——冯.诺伊 曼  我的工作总是力图把真与美结合起来,但是,当我不得不选择其中的一种时,我通常选择美。 ——韦尔  在数学定理的评价中,审美标准既重于逻辑的标准,也重于实用的标准:在对数学思想的评价时,美与优雅比是否严密、正确,比是否有用都重要得多。 ——斯蒂恩  纯粹数学可以是实际有用的,而应用数学也可以是优美高雅的。 ——哈尔莫斯  对早已正确认定的定理做进一步的研究,探索它的新证法,只不过是因为现有的证明欠缺美的魅力。——克莱因  数学家如画家或诗人一样,是款式的制造者......数学家的款式,如同画家或诗人的款式,必须是美的……世上没有丑陋数学的永久立身之地。 ——哈代  一种奇特的美统治着数学王国,这种美不像艺术之美与自然之美那么相类似,但她深深地感染着人们的心灵,激起人们对她的欣赏,与艺术之美是十分相象的。 ——库默  难道不可以把音乐描绘成感觉的数学,而把数学描绘成理性的音乐吗?这样,音乐家感觉到数学,数学家想到音乐——音乐是梦想,数学是工作的一生——每一方都经由对方达到尽善尽美的境地,那时,人类的智慧达到完美的典型,将在某个未来的莫扎特——狄利克雷或贝多芬——高斯的歌颂下而光彩夺目。这种联合已经在一个赫姆霍尔兹的天才和工作中清楚地预示出来了。 ——西尔弗斯特  一般地说,我更想把数学视为是艺术,而不是科学。因为我们可以说,数学家的活动,当他受外部的理性世界所引导,而不是被控制时,不断地进行创造性的活动,与一个艺术家、一个画家的活动相类似,有着实在的,不是虚幻的相似点。数学家这一方面的严密演绎推理可以比喻为画家那一方面的绘画技巧。恰如没有一定技巧的人不能成为一位好画家一样,没有一定的精密推理能力的人不能成为一位好的数学家。但是,这些尽管是他们的基本特质,还不足以使一个画家或数学家名副其实,画图技巧与推理能力,说实在的,终究不是最重要的因素。远为敏感的,为二者都是主要的一类特质是想象力,它才能造就一名杰出的艺术家或杰出的数学家。 ——博歇  我们能够期待,随着教育与娱乐的发展,将有更多的人欣赏音乐与绘画。但是,能够真正欣赏数学的人数是很少的。 ——贝尔斯  在现实中,不存在像数学那样有如此多的东西,持续了几千年依然是确实的如此美好。 ——苏利文
阿啵呲嘚2023-05-19 20:17:232

关于数学之美的诗句

1.关于数学的诗句 原发布者:zhuzhubai128 与数学有关的诗歌 音乐能激发或抚慰情怀,绘画使人赏心悦目,诗歌能动人心弦,哲学能使人获得智慧,科技可以改善物质生活,但数学却能提供以上的一切。我们想变枯燥乏味的数学学习为欣赏美发现美的审美过程,完全可以渗透一些与数学有关的诗歌,甚或者引导学生去创作。我曾听过青岛二中老师的课和教研活动,他们的学生们在这方面所展现的能力和才情使我惊讶。可见要相信学生的创造力想象力远超过我们所能想象,我们所能做的应该做的,就是给他们一个启发,搭建一个平台。下面附上我所积累的一些与数学有关的诗歌。 一、与课本章节有关的诗歌第一章《集合、映射与函数》:日落月出花果香,物换星移看沧桑。因果变化多联系,安得良策破迷茫?集合奠基说严谨,映射函数叙苍黄。看图列表论升降,科海扬帆有锦囊。 第二章《指数函数、对数函数和幂函数》:晨雾茫茫碍交通,蘑菇核云蔽长空;化石岁月巧推算,文海索句快如风.指数对数相辉映,立方平方看对称;解释大千无限事,三族函数建奇功。 二、诗歌数学题朱世杰的《四元玉鉴》、《或问歌录》共有十二个数学问题,都采用诗歌形式提出。如第一题:"今有方池一所,每面丈四方停。葭生两岸长其形,出水三十寸整。东岸蒲生一种,水上一尺无零。葭蒲稍接水齐平,借问三般(水深、蒲长、葭长)怎定?"在元代有一部算经《详明算法》内有关于丈量田亩求法:"古者量田较润长,全凭绳尺以牵量。一形虽有一般法,惟有方田法易详。若见涡斜并凹曲, 2.关于数学的诗 关于数学的诗有: 一、《山村咏怀》 作者:邵雍(北宋) 一去二三里,烟村四五家。 亭台六七座,八九十枝花。 译文: 一眼看去有二三里远,薄雾笼罩着四五户人家。 村庄旁有六七座凉亭,还有许多鲜花正在绽放。 赏析:诗人用“小学数数”的方式将乡村美景一一道来,通俗易懂,仿若画面就在眼前一般。 二、《题秋江独钓图》 作者:王士祯(唐) 一蓑一笠一扁舟,一丈丝纶一寸钩。 一曲高歌一樽酒,一人独钓一江秋。 译文: 戴着一顶斗笠披着一件蓑衣坐在一只小船上,一丈长的渔线一寸长的鱼钩。 高声唱一首渔歌喝一樽酒,一个人在这秋天的江上独自垂钓。 三、《咏雪》 作者:郑板桥(清) 一片二片三四片,五片六片七八片。 千片万片无数片,飞入梅花总不见。 译文: 一片一片的雪花纷纷扬扬的从天而落,整个天地都白茫茫的一片。 飘落的雪花落入芦花丛里,和白色的芦花融为一体,叫人难以分辨。 赏析:人使用数字,主要是展现雪景的美妙以及美好,在人们眼前展现一幅大雪纷的景象,仿佛雪景就在读者的眼前,让人有身临其境之感。 四、《绝句》 作者:杜甫(唐》 两个黄鹂鸣翠柳,一行白鹭上青天。 窗含西岭千秋雪,门泊东吴万里船。 译文: 两只黄鹂在翠绿的柳枝间鸣叫,一行白鹭向湛蓝的高空里飞翔。 西岭雪山的景色仿佛嵌在窗里,往来东吴的航船就停泊在门旁。 五、《西江月·夜行黄沙道中》 作者:辛弃疾(宋) 明月别枝惊鹊,清风半夜鸣蝉。稻花香里说丰年,听取蛙声一片。 七八个星天外,两三点雨山前。旧时茅店社林边,路转溪桥忽见。 译文: 皎洁的月光从树枝间掠过,惊飞了枝头喜鹊,清凉的晚风吹来仿佛听见了远处的蝉叫声。在稻花的香气里,人们谈论着丰收的年景,耳边传来阵阵青蛙的叫声。 天空乌云密布,星星闪烁,忽明忽暗,山前下起了淅淅沥沥的小雨。往日的小茅草屋还在土地庙的树林旁,道路转过溪水的源头,它便忽然出现在眼前。 赏析:作者自己夜行黄沙道中的具体感受,描绘出农村夏夜的幽美景色,形象生动逼真,感受亲切细腻,笔触轻快活泼,使人有身历其境的真实感。 3.有关数学王国名言诗句 音乐与代数很类似.——哈登伯格 硬说数学科学无美可言的人是错误的.美的主要形式是秩序、匀称与明确.——亚里斯多德 感觉到数学的美,感觉到数与形的协调,感觉到几何的优雅,这是所有真正的数学家都清楚的真实的美的感觉.——庞加莱 数学之美是很自然明白地摆着的.——哈尔莫斯 我认为,说数学家选择课题的准则以及判断他是否成功的准则,主要的是美学准则,这是正确的. ——冯.诺伊 曼 我的工作总是力图把真与美结合起来,但是,当我不得不选择其中的一种时,我通常选择美.——韦尔 在数学定理的评价中,审美标准既重于逻辑的标准,也重于实用的标准:在对数学思想的评价时,美与优雅比是否严密、正确,比是否有用都重要得多.——斯蒂恩 纯粹数学可以是实际有用的,而应用数学也可以是优美高雅的.——哈尔莫斯 对早已正确认定的定理做进一步的研究,探索它的新证法,只不过是因为现有的证明欠缺美的魅力.——克莱因 数学家如画家或诗人一样,是款式的制造者。。数学家的款式,如同画家或诗人的款式,必须是美的……世上没有丑陋数学的永久立身之地.——哈代 一种奇特的美统治着数学王国,这种美不像艺术之美与自然之美那么相类似,但她深深地感染着人们的心灵,激起人们对她的欣赏,与艺术之美是十分相象的.——库默 难道不可以把音乐描绘成感觉的数学,而把数学描绘成理性的音乐吗?这样,音乐家感觉到数学,数学家想到音乐——音乐是梦想,数学是工作的一生——每一方都经由对方达到尽善尽美的境地,那时,人类的智慧达到完美的典型,将在某个未来的莫扎特——狄利克雷或贝多芬——高斯的歌颂下而光彩夺目.这种联合已经在一个赫姆霍尔兹的天才和工作中清楚地预示出来了.——西尔弗斯特 4.数学之美的表述 美是人类创造性实践活动的产物,是人类本质力量的感性显现。 通常我们所说的美以自然美、社会美以及在此基础上的艺术美、科学美的形式存在。数学美是自然美的客观反映,是科学美的核心。 简言之数学美就是数学中奇妙的有规律的让人愉悦的美的东西。历史上许多学者、数学家对数学美从不同的侧面作过生动的阐述。 普洛克拉斯早就断言:“哪里有数学,哪里就有美。”亚里士多德也曾讲过:“虽然数学没有明显地提到善和美,但善和美也不能和数学完全分离。 因为美的主要形式家是“秩序、匀称和确定性”,这些正是数学研究的原则。”我国著名数学家华罗庚说过:“就数学本身而言,是壮丽多彩、千姿百态、引人入胜的……认为数学枯燥乏味的人,只是看到了数学的严谨性,而没有体会出数学的内在美。” 数学家徐利治说:“作为科学语言的数学,具有一般语言文字与艺术所共有的美的特点,即数学在其内容结构上和方法上也都具有自身的某种美,既所谓数学美。数学美的含义是丰富的,如数学概念的简单性、统一性,结构关系的协调性、对称性,数学命题与数学模型的概括性、典型性和普遍性,还有数学中的奇异性等等都是数学美的具体内容。” 以上的论述可见,数学中充满着美的因素,数学美是数学科学的本质力量的感性和理性的呈现,它不是什么虚无飘渺、不可捉摸的东西,而是有其确定的客观内容。 数学美有别与其它的美,它没有鲜艳的色彩,没有美妙的声音,没有动感的画面,它却是一种独特的美。 德国数学家克莱因曾对数学美作过这样的描述:“音乐能激发或抚慰情怀,绘画使人赏心悦目,诗歌能动人心弦,哲学使人获得智慧,科技可以改善物质生活,但数学却能提供以上一切。”数学美与其它美的区别还在于它是蕴涵在其中的美。 打个比方来说,大家一定都有这种感觉,绝大部分同学对音体美容易产生兴趣,而对数学感兴趣的不多。我认为,这主要有两个方面的原因:一是音体美中所表现出来的美是外显的,这种美同学们比较容易感受、认识和理解;而数学中的美虽然也有一些表现在数学对象的外表,如精美的图形、优美的公式、巧妙的解法等等,但总的来说数学中的美还是深深地蕴藏在它的基本结构之中,这种内在的理性美学生往往难以感受、认识和理解,这也是数学区别于其它学科的主要特征之一。 二是长期以来,我们的数学教材过分强调逻辑体系和逻辑推演,忽视数学美感、数学直觉的作用,长此以往,学生将数学与逻辑等同起来。一味注重数学的逻辑性而忽视了数学本身的美,学习的过程中就会感到枯燥无味缺乏兴趣。 大多数的数学家会由他们的工作及一般数学里得出美学的喜悦。他们形容数学是美丽的来表示这种喜悦。 有时,数学家会形容数学是一种艺术的形式,或至少是一个创造性的活动。通常拿来和音乐和诗歌相比较。 数学之美还在于其对生活的精确表述、对逻辑的完美演绎。可以说正是这种精确性才成就了现代社会的美好生活。 伯特兰·罗素以下列文字来形容他对数学之美的感觉:Mathematics, rightly viewed, possesses not only truth, but supreme beauty — a beauty cold and austere, like that of sculpture, without appeal to any part of our weaker nature, without the gorgeous trappings of painting or music, yet sublimely pure, and capable of a stern perfection such as only the greatest art can show. The true spirit of delight, the exaltation, the sense of being more than Man, which is the touchstone of the highest excellence, is to be found in mathematics as surely as poetry. (The Study of Mathematics, in Mysticism and Logic, and Other Essays, ch. 4, London: Longmans, Green, 1918.)翻译:数学,如果正确地看它,则具有……至高无上的美——正像雕刻的美,是一种冷而严肃的美,这种美不是投合我们天性的微弱的方面,这种美没有绘画或音乐的那些华丽的装饰,它可以纯净到崇高的地步,能够达到严格的只有最伟大的艺术才能显示的那种完美的境地。一种真实的喜悦的精神,一种精神上的亢奋,一种觉得高于人的意识——这些是至善至美的标准,能够在诗里得到,也能够在数学里得到。 (研究数学,在神秘主义和逻辑,与其他论文,概括。4、伦敦:浪漫书屋,绿色,1918年。) 保罗·埃尔德什形容他对数学不可言说的观点,而说:“为何数字美丽呢?这就像是在问贝多芬第九号交响曲为什么会美丽一般。若你不知道为什么,其他人也没办法告诉你为什么。 我知道数字是美丽的。且若它们不是美丽的话,世上也没有事物会是美丽的了。” 它的最美之处莫过于在无形之中就让你思维变得敏捷.考虑事情时,不在那么偏激,那么单一.作为一个公民来说了不了解它是一个后话,至少应该不否定它.尤其是学生.让我们先来看看看下面的算式:1 x 8 + 1= 912 x 8 + 2= 98123 x 8 + 3= 9871234 x 8 + 4= 987612345 x 8 + 5= 98765123456 x 8 + 6= 9876541234567 x 8 + 7= 987654312345678 x 8 + 8= 98765432123456789 x 8 + 9= 9876543211 x 9 + 2= 1112 x 9 + 3= 111123 x 9 + 4= 11111234 x 9 + 5= 1111112345 x 9 + 6= 111111123456 x 9 + 7= 1。 5.求关于数学的诗~~急 利用诗歌表达数学思想、概念的诗歌比较多。 例如张景中院士主编的新课程高中数学教材中(该教材是湖南教育出版社新课程标准实验教材),在每一章都有一首诗歌。例如第一章《集合、映射与函数》时,说到: 日落月出花果香,物换星移看沧桑。 因果变化多联系,安得良策破迷茫? 集合奠基说严谨,映射函数叙苍黄。 看图列表论升降,科海扬帆有锦囊。 当到第二章《指数函数、对数函数和幂函数》时,说到: 晨雾茫茫碍交通,蘑菇核云蔽长空; 化石岁月巧推算,文海索句快如风. 指数对数相辉映,立方平方看对称; 解释大千无限事,三族函数建奇功。 在学习完这两章内容后再仔细研读,别有一番感受。 二、诗歌数学题 数学很抽象,又令人感到枯燥无味,怎样使数学易于理解,为人们所喜爱,在这方面,中国古代数学家做出许多尝试,歌谣和口诀就是其中一种,让人们在解答数学问题的同时,也感受到了诗歌的魅力。从南宋杨辉开始,元代的朱世杰、丁巨、贾亨、明代的刘仕隆、程大位等都采用歌诀形式提出各种算法或用诗歌形式提出各种数学问题。 朱世杰的《四元玉鉴》、《或问歌录》共有十二个数学问题,都采用诗歌形式提出。如第一题:"今有方池一所,每面丈四方停。 葭生两岸长其形,出水三十寸整。东岸蒲生一种,水上一尺无零。 葭蒲稍接水齐平,借问三般(水深、蒲长、葭长)怎定?"在元代有一部算经《详明算法》内有关于丈量田亩求法:"古者量田较润长,全凭绳尺以牵量。一形虽有一般法,惟有方田法易详。 若见涡斜并凹曲,直须裨补取为方。却将黍实为田积,二四除之亩法强。 " 明代程大位《算法统宗》是一本通俗实用的数学书,也是数字入诗代表作。《算法统宗》全书十七卷,广泛流传于明末清朝,对于民间数学知识的普及贡献卓著。 这本书由程大位花了近20年完成,他原本是一位商人,经商之便搜集各地算书和文字方面的书籍,编纂成一首首的歌谣口诀,将枯燥的数学问题化成美妙的诗歌,让人朗朗上口,加强了数学普及的亲合力。程大位还有一首类似的二元一次方程组的饮酒数学诗:"肆中饮客乱纷纷,薄酒名醨厚酒醇。 好酒一瓶醉三客,薄酒三瓶醉一人。共同饮了一十九,三十三客醉颜生。 试问高明能算士,几多醨酒几多醇?"这道诗题大意是说:好酒一瓶,可以醉倒3位客人;薄酒三瓶,可以醉倒一位客人。如果33位客人醉倒了,他们总共饮下19瓶酒。 试问:其中好酒、薄酒分别是多少瓶? 著名《孙子算经》中有一道"物不知其数"问题。这个算题原文为:"今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?答曰二十三。 "这个问题流传到后世,有过不少有趣的名称,如"鬼谷算"、"韩信点兵"等。程大位在《算法统宗》中用诗歌形式,写出了数学解法:"三人同行七十稀,五树梅花廿一枝,七子团圆月正半,除百零五便得知。 "这首诗包含着著名的"剩余定理"。也就说,拿3除的余数乘70,加上5除的余数乘21,再加上7除的余数乘15,结果如比105多,则减105的倍数。 上述问题的结果就是:(2*70)+(3*21)+(2*15)-(2*105)=23。 在印度学者婆什迦罗的著作中,也有这样一首数学诗:"素馨花开香扑鼻,诱得蜜蜂来采蜜。 熙熙攘攘不知数,一群飞入花丛里。试问此群数有几?且把条件来分析:全体之半平方根,另有两只在一起;总数的九分之几,徘徊在外做游戏。 "你如果列出无理方程运算后,则可得出此群蜜蜂为72只。另外有一首写荷花的数学诗,:"平平湖水清可鉴,石上半尺生红莲;出泥不染亭亭立,忽被吹到清水面。 渔人观看忙向前,花离原位二尺远;能算诸君请解题,湖水如何知深浅?"这是一首多么富有诗情画意的代数题!你看,长在湖里的红莲,露出湖面的长度是半尺,它被风吹向一边,红莲顶上的花离原水面的距离为2尺,问湖水有多深?根据勾股定理列式算得,湖深为3.75尺。 三、数字入诗: 最常见的入诗的数字是一。 "一"虽说是个数字概念,其实,把"一"字恰当地运用到诗文中,会产生美的艺术效果。 例如清代诗人陈秋舫写过一首以《题秋江独钓图》为题的"一"字诗:"一帆一桨一扁舟,一个渔翁一钓钩,一俯一仰一场笑,一江明月一江秋。 "五代时南唐后主李煜在位时,曾为宫廷画家卫贤所作《春江钓叟图》题词二首:"浪花有意千重雪,桃李无言一队春;一壶酒,一竿身,世上如侬有几人。""一棹春风一叶舟,一纶茧缕一轻钩;花满渚,酒满瓯,万顷波中得自由。 "把一个个洒脱的渔翁形象刻画得栩栩如生。 又如元曲一首小令《雁儿落带过得胜令》:"一年老一年,一日没一日,一秋又一秋,一辈催一辈,一聚一离别,一苦一伤悲。 一榻一身卧,一生一梦里,寻一个相识,他一会,咱一地,都一般相知,吹一回,唱一回。"诗中22个"一"字不断重复,反映了人生虚幻的凄苦。 其写法奇特,而以俚语取胜。 有些诗歌会把一到十十个数字镶嵌到诗中。 宋代理学家《邵康》云:"一去二三里,烟村四五家,亭台六七座,八九十枝花。"此诗妙在顺序嵌进十个基数,寥寥数语,描绘出一幅恬静淡雅的田园景色,勾起人们不尽的情思和神往。 6.求一篇关于数学之美的作文1000字 数学作为所有科学的基础,其作用众所周知。 进入现代文明的我们早就习惯于生活在数字的海洋中,用 1、2、3、4进行着基本的沟通交流。但与其巨大社会作用相反的是很少有人真正地喜爱数学,真正地醉心于数学研究,挖掘深藏的数学之美。 人们常说“不要以貌取人”。作为一门用数字和图形说话的学科,数学就像是科学童话里的灰姑娘,其枯燥、乏味的表象下面,隐藏着最动人、美丽之处。 首先我认为数学之美,美在神秘。简简单单一个符号就可以勾勒出无穷无尽的自然真理。 牛顿运动三大定律,只用几个简单的数学公式,就能够囊括浩瀚宇宙的运动规律。对于每一个乐于探求真相的人来说,数学可以说是他们最好的旅游胜地。 一群群数字、一个个图形在这里交织出了一幅幅最动人的风景。这片风景连绵不断却又迥然不同,当你徜徉在数学的海洋中,你绝不会有“高处不胜寒”的感慨,也不会有“一马平川任我行”的放纵,有的只是寻幽探胜的意趣和对自然真理的崇敬之情。 就连中国最著名的数学家陈景润在摘下数学王冠上的宝石后,依然要怀着朝圣的心情在数学研究的道路上谨慎前行。 其次,我认为数学之美,美在应用。 “金玉其外,败絮其中”常被我们用来贬斥那些虚有其表的人和事,可见我们评价美的标准,不光是因为其具备美好的内外部特征,更要注重其是否具有实用价值。“数学是众科学之母”一句话就说尽了数学在社会生活各领域的价值体现。 购物时用数学,电脑软件的开发、一座城市的交通路线设计、整个地球的网络建设,都离不开数学。甚至于艺术领域,也有数学的身影;数字按不同的音高排列,是悠扬的乐谱;雕塑和绘画中,哪一个少得了数学黄金分割的定律?故宫没有一根钉子的角楼,重檐斗拱的紫禁城,哪一个离得开严谨的数学知识?可以毫不夸张的说,正是数学用数字和图形搭建了人类社会不断前进的阶梯。 数学之美犹如优美和谐的乐曲,别具一格的绘画,雄伟壮美的建筑,同样会使数学学习者们激情荡漾。有着这样的奉献和功绩,我们能说数学不美吗? 最后我认为数学之美,美在于一次一次挑战后的成功。 而这种美感的获得,常常以长时间的苦苦思考及单调乏味的运算为代价,而且必须一次次地接受失败与错误, 必须接受枯燥学习所带来的孤独。屡战屡败,屡败屡战,最后你可能在冲凉时,或者刷牙时,突然间豁然开朗,仿佛音乐突然响起,问题好像一下子就解决了。 那时候的我,往往有一种人在高山飘飘然的感觉。这种美是无与伦比的。 这就是我眼中的数学质朴而充满魅力。作为科学界里一块奇异的宝石它必将在新时代里散发出灿烂的光芒,用它特有的美引导我们不断前行。 7.谁帮我写一首赞美数学的诗,越能掰越好 数学,心中的至爱 你从远古走来, 严谨的步履不着尘埃; 你的佩戴朴素而美丽, 闪耀着比珠宝还珍贵的智慧之光; 你用丝帘遮盖着那圣洁的容颖, 若隐若现,引来了多少杰出的男子来猎色, 你合着宇宙的音符翩翩起舞, 我们的心哪,跟你一起跳跃; 纯洁的语言是如此精确, 那颗真心致死不逾, 在漫长的岁月里, 虽风尘的洗礼, 美丽依然。 你的风姿惟有向智者展现, 那些愚夫也不可望也不及, 你是女神, 掌管着智慧宝箱的钥匙, 叫那些能见到你的人,和欣赏你的人 得到生命的力量, 对这你的美丽, 我只能用最美的诗来歌唱。 8.数学名言的数学美 数学确属美妙的杰作,宛如画家或诗人的创作一样——是思想的综合;如同颜色或词汇的综合一样,应当具有内在的和谐一致。 对于数学概念来说,美是她的第一个试金石;世界上不存在畸形丑陋的数学。——G.H.Hardy 音乐能激发或抚慰情怀,绘画使人赏心悦目,诗歌能动人心弦,哲学使人获得智慧,科学可改善物质生活,但数学能给予以上的一切。 ——F.Klein 哪里有数,哪里就有美。——Proclus 当数学家导出方程式和公式,如同看到雕像、美丽的风景,听到优美的曲调等等一样而得到充分的快乐。 ——柯普宁(前苏联哲学家) 这就是结构好的语言的好处,它简化的记法常常是深奥理论的源泉。——拉普拉斯(-1827) 社会的进步就是人类对美的追求的结晶。 ——马克思(K.Max) 数学,如果正确地看,不但拥有真理,而且也具有至高的美。 ——罗素(B.Russell) 数学能促进人们对美的特性——数值、比例、秩序等的认识。 ——亚里士多德(Aristotle) 美包含在体积和秩序中。 ——黑格尔(G..W.F.Hegel) 一个没有几分诗人才能的数学家决不会成为一个完全的数学家。 ——魏尔斯特拉斯(KarlWeierstrass1815-1897) 纯粹数学,就其本质而言,是逻辑思想的诗篇。 ——爱因斯坦 数学如同音乐或诗一样显然地确实具有美学价值。 ——雅可比 数学是创造性的艺术,因为数学家创造了美好的新概念;数学是创造性的艺术,因为数学家的生活、言行如同艺术家一样;数学是创造性的艺术,因为数学家就是这样认为的。 ——哈尔莫斯 音乐与代数很类似。 ——哈登伯格 硬说数学科学无美可言的人是错误的。美的主要形式是秩序、匀称与明确。 ——亚里斯多德 数学之美是很自然明白地摆着的。 ——哈尔莫斯 我认为,说数学家选择课题的准则以及判断他是否成功的准则,主要的是美学准则,这是正确的。 ——冯.诺伊 曼 我的工作总是力图把真与美结合起来,但是,当我不得不选择其中的一种时,我通常选择美。 ——韦尔 在数学定理的评价中,审美标准既重于逻辑的标准,也重于实用的标准:在对数学思想的评价时,美与优雅比是否严密、正确,比是否有用都重要得多。 ——斯蒂恩 纯粹数学可以是实际有用的,而应用数学也可以是优美高雅的。——哈尔莫斯 对早已正确认定的定理做进一步的研究,探索它的新证法,只不过是因为现有的证明欠缺美的魅力。 ——克莱因 数学家如画家或诗人一样,是款式的制造者。 数学家的款式,如同画家或诗人的款式,必须是美的……世上没有丑陋数学的永久立身之地。——哈代 一种奇特的美统治着数学王国,这种美不像艺术之美与自然之美那么相类似,但她深深地感染着人们的心灵,激起人们对她的欣赏,与艺术之美是十分相象的。 ——库默 难道不可以把音乐描绘成感觉的数学,而把数学描绘成理性的音乐吗?这样,音乐家感觉到数学,数学家想到音乐——音乐是梦想,数学是工作的一生——每一方都经由对方达到尽善尽美的境地,那时,人类的智慧达到完美的典型,将在某个未来的莫扎特——狄利克雷或贝多芬——高斯的歌颂下而光彩夺目。这种联合已经在一个赫姆霍尔兹的天才和工作中清楚地预示出来了。 ——西尔弗斯特 一般地说,我更想把数学视为是艺术,而不是科学。因为我们可以说,数学家的活动,当他受外部的理性世界所引导,而不是被控制时,不断地进行创造性的活动,与一个艺术家、一个画家的活动相类似,有着实在的,不是虚幻的相似点。 数学家这一方面的严密演绎推理可以比喻为画家那一方面的绘画技巧。恰如没有一定技巧的人不能成为一位好画家一样,没有一定的精密推理能力的人不能成为一位好的数学家。 但是,这些尽管是他们的基本特质,还不足以使一个画家或数学家名副其实,画图技巧与推理能力,说实在的,终究不是最重要的因素。远为敏感的,为二者都是主要的一类特质是想象力,它才能造就一名杰出的艺术家或杰出的数学家。 ——博歇 我们能够期待,随着教育与娱乐的发展,将有更多的人欣赏音乐与绘画。但是,能够真正欣赏数学的人数是很少的。 ——贝尔斯 在现实中,不存在像数学那样有如此多的东西,持续了几千年依然是确实的如此美好。 ——苏利文。
真颛2023-05-19 20:17:221

世界著名数学家

祖冲之
凡尘2023-05-19 20:17:222

数学家的名言名句

  1、数学是科学的女王,而数论是数学的女王。高斯   2、一个国家的科学水平能够用它消耗的数学来度量拉奥   3、数论是人类知识最古老的一个分支,然而他的一些最深奥的秘密与其最平凡的真理是密切相连的。史密斯   4、读读欧拉,读读欧拉,他是咱们大家的老师。拉普拉斯   5、有时候,你一开始未能得到一个最简单,最美妙的证明,但正是这样的证明才能深入到高等算术真理的奇妙联系中去。这是咱们继续研究的动力,并且最能使咱们有所发现。高斯   6、一门科学,只有当它成功地运用数学时,才能到达真正完善的地步。马克思   7、我决心放下那个仅仅是抽象的几何。这就是说,不再去思考那些仅仅是用来练思想的问题。我这样做,是为了研究另一种几何,即目的在于解释自然现象的几何笛卡儿   8、一个没有几分诗人才能的数学家决不会成为一个完全的数学家魏尔斯特拉斯   9、纯数学这门科学再其现代发展阶段,能够说是人类精神之最具独创性的创造。怀德海   10、咱们能够期盼,随着教育与娱乐的发展,将有更多的人欣赏音乐与绘画。但是,能够真正欣赏数学的人数是很少的。贝尔斯   11、问题是数学的心脏。PRHalmos   12、这是一个可靠的规律,当数学或哲学着作的作者以模糊深奥的话写作时,他是在胡说八道。AN怀德海   13、只要一门科学分支能提出超多的问题,它就充满着性命力,而问题缺乏则预示独立发展的终止或衰亡。希尔伯特   14、纯数学这门科学再其现代发展阶段,能够说是人类精神之最具独创性的创造。怀德海   15、数无形时少直觉,形少数时难入微,数与形,本是相倚依,焉能分作两边飞。华罗庚   16、一种奇特的美统治着数学王国,这种美不像艺术之美与自然之美那么相类似,但她深深地感染着人们的心灵,激起人们对她的欣赏,与艺术之美是十分相象的。库默   17、数学科学不可动摇的基石,促进人类事业进步的丰富源泉巴罗   18、虽然不允许咱们看透自然界本质的秘密,从而认识现象的真实原因,但仍可能发生这样的情形:必须的虚构假设足以解释许多现象。欧拉   19、问题是数学的心脏。PRHalmos   20、没有任何问题能够向无穷那样深深的触动人的情感,很少有别的观念能像无穷那样激励理智产生富有成果的思想,然而也没有任何其他的概念能向无穷那样需要加以阐明。希尔伯特   21、到底是大师的着作,不一样凡响!伽罗瓦   22、咱们欣赏数学,咱们需要数学。陈省身   23、数学是一门演绎的学问,从一组公设,经过逻辑的推理,获得结论。陈省身   24、数学家实际上是一个着迷者,不迷就没有数学诺瓦利斯   25、数学不可比拟的永久性和万能性及他对时刻和文化背景的独立行是其本质的直接后果。A?埃博   26、一个做学问的人,除了领悟知识外,还要有tast,这个词不太好翻译,有的译成品味,喜爱。一个人要有大的成就,就要有相当清楚的tast。杨振宁   27、在数学的天地里,重要的不是咱们知道什么,而是咱们怎样知道什么毕达哥拉斯   28、整数的简单构成,若干世纪以来一向是使数学获得新生的源泉。GD伯克霍夫   29、在数学的领域中,提出问题的艺术比解答问题的艺术更为重要康扥尔   30、算术是人类知识最古老,也许是最最古老的一个分支;然而它的一些最深奥的秘密与其最平凡的真理是密切相连的。   31、数学的领域中,提出问题的艺术比解答问题的艺术更为重要。康扥尔   32、在数学的天地里,重要的不是咱们知道什么,而是咱们怎样知道什么。毕达哥拉斯   33、数学不可比拟的永久性和万能性及他对时刻和文化背景的独立行是其本质的直接后果。   34、数学是科学之王。高斯   35、给我五个系数,我讲画出一头大象;给我六个系数,大象将会摇动尾巴。   36、观察可能导致发现。观察将揭示某种规律模式或定律。波利亚   37、如果谁不知道正方形的对角线同边是不可通约的量,那他就不值得人的称号。柏拉图   38、没有大胆的猜测,就做不出伟大的发现牛顿   39、宇宙的伟大建筑是此刻开始以纯数学家的面目出现了。J?H?京斯   40、天才是不足恃的,聪明是不可靠的,要想顺手拣来的伟大科学发明是不可想象的。华罗庚   41、如果咱们想要预见数学的将来,适当的途径是研究这门学科的历史和现状。庞加莱   42、不亲自检查桥梁的每一部分的坚固性就但是桥的旅行者是不可能走远的。甚至在数学中有些事情也要冒险。   43、纯数学是魔术家真正的魔杖。诺瓦列斯   44、我之因此比笛卡儿看得远些,是正因我站在巨人的肩上。牛顿   45、事类相推,各有攸归,故枝条虽分而同本干知,发其一端而已。又所析理以辞,解体用图,庶亦约而能周,通而不黩,览之者思过半矣   46、几何无王者之道!欧几里得   47、发现每一个新的群体在形式上都是数学的,正因咱们不可能有其他的指导。CG达尔文   48、思维的户外形式通常是这样的:有意识的研究潜意识的活动有意识的研究。庞加莱   49、数论是人类知识最古老的一个分支,然而他的一些最深奥的秘密与其最平凡的真理是密切相连的。史密斯   50、时刻是个常数,但对勤奋者来说,是个变数。用分来计算时刻的人比用小时来计算时刻的人时刻多倍。雷巴柯夫   51、给我五个系数,我讲画出一头大象;给我六个系数,大象将会摇动尾巴。A?L?柯西   52、一个人就好像一个分数,他的实际才能好比分子,而他对自我的估价好比分母。分母越大,则分数的值就越小。托尔斯泰   53、数学中没有诺贝尔奖,这也许是件好事。诺贝尔奖太引人注目,会使数学家无法专注于自我的研究。陈省身   54、这是一个可靠的规律,当数学或哲学着作的作者以模糊深奥的话写作时,他是在胡说八道。   55、也许听起来个性,数学的力量在于它规避了一切不必要的思考和它惊人地节省了脑力劳动。   56、如果谁不知道正方形的对角线同边是不可通约的量,那他就不值得人的称号。柏拉图   57、数学家通常是先透过直觉来发现一个定理;这个结果对于他首先是似然的,然后他再着手去制造一个证明。哈代   58、多数的数学创造是直觉的`结果,对事实多少有点儿直接的知觉或快速是明白,而与任何冗长的或形式的推理过程无关。卢斯卡   59、无限!再也没有其他问题如此深刻地打动过人类的心灵。D?希尔伯特   60、数统治着宇宙。毕达哥拉斯   61、数学,科学的女皇;数论,数学的女皇。高斯   62、如果我继承可观的财产,我在数学上可能没有多少价值了。拉格朗日   63、数学是个性适于处理任何种类的抽象概念的工具,在这个领域中它的力量是没有限度的。由于这个原因,一本关于新兴物理的书,只要不是纯粹描述实验的,实质上就必然是数学书。   64、在领悟中要敢于做减法,就是减去前人已经解决的部分,看看还有那些问题没有解决,需要咱们去探索解决。华罗庚   65、上帝是一位算术家雅克比(心静)   66、如果谁不知道正方形的对角线同边是不可通约的量,那他就不值得人的称号。   67、发现每一个新的群体在形式上都是数学的,正因咱们不可能有其他的指导。达尔文   68、数学的本质在於它的自由。康扥尔   69、只要一门科学分支能提出超多的问题,它就充满着性命力,而问题缺乏则预示着独立发展的终止或衰亡。   70、如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。高斯   71、上帝创造了整数,所有其余的数都是人造的克隆内克   72、在奥林匹斯山上统治着的上帝,乃是永恒的数雅可比   73、也许我能够并非不适当地要求获得数学上亚当这一称号,正因我坚信数学理性创造物由我命名(已经流行通用)比起同时代其它数学家加在一齐还要多西尔维斯特   74、上帝是一位算术家。雅克比   75、只要一门科学分支能提出超多的问题,它就充满着性命力,而问题缺乏则预示独立发展的终止或衰亡。   76、上帝创造了整数,所有其余的数都是人造的。L?克隆内克   77、整数的简单构成,若干世纪以来一向是使数学获得新生的源泉。G?D?伯克霍夫   78、我把数学看成是一件有意思的工作,而不是想为自我建立什么纪念碑。能够肯定地说,我对别人的工作比自我的更钟爱。我对自我的工作总是不满意。拉格朗日   79、给我五个系数,我讲画出一头大象;给我六个系数,大象将会摇动尾巴。柯西   80、用心智的全部力量,来选取咱们应遵循的道路。笛卡儿   81、不发生作用的东西是不会存在的莱布尼茨   82、数学不可比拟的永久性和万能性及他对时刻和文化背景的独立行是其本质的直接后果。A埃博   83、整数的简单构成,若干世纪以来一向是使数学获得新生的源泉。   84、无限!再也没有其他问题如此深刻地打动过人类的心灵。D希尔伯特   85、迟序之数,非出神怪,有形可检,有数可推。祖冲之   86、聪明出于勤奋,天才在于积累。华罗庚   87、但是数学享有盛誉还有另一个原因:正是数学给了各种精密自然科学必须程度的可靠性,没有数学,它们不可能获得这样的可靠性。   88、数统治着宇宙。毕达哥拉斯   89、虚数是奇妙的人类棈神寄托,它好像是存在与不存在之间的一种两栖动物莱布尼茨   90、自然这一巨举是用数学符号写成的。伽里略   91、一个国家的科学水平能够用它消耗的数学来度量。   92、在数学的领域中,提出问题的艺术比解答问题的艺术更为重要。康扥尔   93、近代最伟大的科学家爱因斯坦在谈成功的秘诀时,写下一个公式:A=x+y+z。并解释道:A代表成功,x代表艰苦的劳动,y代表正确的方法,Z代表少说空话。爱因斯坦   94、我国科学家王菊珍对待实验失败有句格言,叫做干下去还有%成功的期望,不干便是%的失败。   95、时刻是个常数,但对勤奋者来说,是个变数。用分来计算时刻的人比用小时来计算时刻的人时刻多倍雷巴柯夫   96、无限!再也没有其他问题如此深刻地打动过人类的心灵。希尔伯特   97、我决不把我的作品看做是个人的私事,也不追求名誉和赞美。我只是为真理的进展竭尽所能。是我还是别的什么人,对我来说无关紧要,重要的是它更接近于真理。维尔斯特拉斯   98、宇宙的伟大建筑是此刻开始以纯数学家的面目出现了。   99、一个国家的科学水平能够用它消耗的数学来度量。拉奥   100、只要一门科学分支能提出超多的问题,它就充满着性命力,而问题缺乏则预示着独立发展的终止或衰亡。Hilbert   101、数学中的一些美丽定理具有这样的特性:它们极易从事实中归纳出来,但证明却隐藏的极深数学是科学之王。   102、数学不可比拟的永久性和万能性及他对时刻和文化背景的独立行是其本质的直接后果。A埃博   103、数学发明创造的动力不是推理,而是想象力的发挥。德摩根   104、精巧的论证常常不是一蹴而就的,而是人们长期切磋积累的成果。我也是慢慢学来的,而且还要继续不断的领悟。阿贝尔   105、数学是无穷的科学。   106、宇宙的伟大建筑是此刻开始以纯数学家的面目出现了。JH京斯   107、数学是无穷的科学赫尔曼外尔   108、数学是无穷的科学。赫尔曼外尔   109、数学是最精密的科学,它的全部结论都能绝对地证明。但因此会如此只是正因数学并不试图得出绝对的结论。所有的数学真理都是相对的有条件的。   110、几何看来有时候要领先于分析,但事实上,几何的先行于分析,只但是像一个仆人走在主人的前面一样,是为主人开路的西尔维斯特   111、我的成功只依靠两条。1条是毫不动摇地坚持到底;1条是用手把脑子里想出的图形一丝不差地制造出来。   112、我国科学家王菊珍对待实验失败有句格言,叫做干下去还有%成功的期望,不干便是%的失败。王菊珍   113、扔进冰水,由他们自我学习并领悟游泳,或者淹死。很多学生一向要到掌握了其他人做过的,与他们问题有关的一切,才肯试着靠自我去工作,结果是只有极少数人养成了独立工作的习惯。ET贝尔   114、在数学的天地里,重要的不是咱们知道什么,而是咱们怎样知道什么。   115、整数的简单构成,若干世纪以来一向是使数学获得新生的源泉。伯克霍夫   116、这是一个可靠的规律,当数学或哲学着作的作者以模糊深奥的话写作时,他是在胡说八道。   117、人死了,但事业永存。柯西   118、正因宇宙的结构是最完善的而且是最明智的上帝的创造,因此,如果在宇宙里没有某种极大的或极小的法则,那就根本不会发生任何事情。欧拉   119、数学是人类知识活动留下来最具威力的知识工具,是一些现象的根源。数学是不变的,是客观存在的,上帝必以数学法则建造宇宙笛卡儿   120、如果没有数所制造的关於宇宙的永恒的仿造品,则人类将不能继续生存尼采   121、挑选好一个确定得研究对象,锲而不舍。你可能永远达不到终点,但是一路上准能够发现一些搞笑的东西。克莱因   122、咱们务必知道,咱们必将知道。希尔伯特   123、我不知道,世上人会怎样看我;但是,我自我觉得,我只像一个在海滨玩耍的孩子,一会捡起块比较光滑的卵石,一会儿找到个美丽的贝壳;而在我前面,真理的大海还完全没有发现。牛顿   124、想象比知识更重要。爱因斯坦   125、数学中的一些美丽定理具有这样的特性:它们极易从事实中归纳出来,但证明却隐藏的极深。数学是科学之王。高斯   126、我思故我在笛卡儿   127、直接向大师们而不是他们得的学生领悟。阿贝尔   128、一个数学家越超脱越好。无名氏   129、无限!再也没有其他问题如此深刻地打动过人类的心灵。   130、前进吧,前进将使你产生信念。达朗贝尔   131、发现每一个新的群体在形式上都是数学的,正因咱们不可能有其他的指导。   132、一个有科学创新潜质的人不但要有科学知识,还要有文化艺术修养。钱学森   133、数学中的一些美丽定理具有这样的特性:它们极易从事实中归纳出来,但证明却隐藏的极深数学是科学之王高斯   134、给我五个系数,我讲画出一头大象;给我六个系数,大象将会摇动尾巴。AL柯西   135、异常抽象的问题,务必讨论得异常清楚。笛卡儿   136、埋头苦干是第一,发白才知智叟。呆勤能补拙是良训,一分辛苦一分才。华罗庚   137、纯数学是魔术家真正的魔杖。诺瓦列斯   138、天才=%的灵感+%的血汗。爱迪生   139、只要一门科学分支能提出超多的问题,它就充满着性命力,而问题缺乏则预示独立发展的终止或衰亡。   140、一个数学家的目的,是要了解数学。历史上数学的进展不外两途:增加对于已知材料的了解,和推广范围。陈省身   141、性命只为两件事,发展数学与教授数学。普尔森   142、科学需要实验。但实验不能绝对精确。如有数学理论,则全靠推论,就完全正确了。这是科学不能离开数学的原因。许多科学的基本观念,往往需要数学观念来表示。因此数学家有饭吃了,但不能得诺贝尔奖,是自然的。陈省身   143、思考了很少的那几样东西之后,整个的事情就归结为纯几何,这是物理和力学的一个目标莱布尼茨   144、数学,科学的女皇;数论,数学的女皇。CF高斯   145、能够数是属统治着整个量的世界,而算数的四则运算则能够看作是数学家的全部装备。麦克斯韦   146、数学家就像恋人,给予一个数学家最少的原理,他将从中得出一个你务必认可的结论,从这个结论他又会得出另一个结论。   147、攀登科学高峰,就像登山户外员攀登珠穆朗玛峰一样,要克服无数艰难险阻,懦夫和懒汉是不可能享受到胜利的喜悦和愉悦的。陈景润   148、一门科学,只有当它成功地运用数学时,才能到达真正完善的地步。   149、这是一个可靠的规律,当数学或哲学着作的作者以模糊深奥的话写作时,他是在胡说八道。AN怀德海   150、一个人如果做了出色的数学工作,并想引起数学界的注意,这实在是容易但是的事情,不论这个人是如何位卑而且默默无闻,他只需做一件事:把他对结果的论述寄给处于领导地位的权威就行了。莫德尔   151、一个没有几分诗人气的数学家永远成不了一个完全的数学家。维尔斯特拉斯   152、在领悟中要敢于做减法,就是减去前人已经解决的部分,看看还有那些问题没有解决,需要咱们去探索解决华罗庚   153、一个人的贡献和他的自负严格地成反比,这似乎是品行上的一个公理。拉格朗日   154、看在上帝的份上,千万别放下工作!这是你最好的药物。达朗贝尔   155、数学,科学的女皇;数论,数学的女皇。C?F?高斯   156、只要一门科学分支能提出超多的问题,它就充满着性命力,而问题缺乏则预示独立发展的终止或衰亡希尔伯特   157、数学是知识的工具,亦是其它知识工具的泉源。所有研究顺序和度量的科学均和数学有关。   158、宇宙的伟大建筑是此刻开始以纯数学家的面目出现了。京斯   159、我曾听到有人说我是数学的反对者,是数学的敌人,但没有人比我更尊重数学,正因它完成了我不曾得到其成就的业绩。   160、能够数是属统治着整个量的世界,而算数的四则运算则能够看作是数学家的全部装备。麦克斯韦   161、发现每一个新的群体在形式上都是数学的,正因咱们不可能有其他的指导。C?G?达尔文   162、这是一个可靠的规律,当数学或哲学着作的作者以模糊深奥的话写作时,他是在胡说八道。A?N?怀德海   163、数学中的一些美丽定理具有这样的特性:它们极易从事实中归纳出来,但证明却隐藏的极深。高斯   164、一个没有几分诗人气的数学家永远成不了一个完全的数学家。维尔斯特拉斯   165、不懂几何者免进柏拉图   166、数学方法渗透并支配着一切自然科学的理论分支。它愈来愈成为衡量科学成就的主要标志了。   167、数学中的一些美丽定理具有这样的特性:它们极易从事实中归纳出来,但证明却隐藏的极深。   168、要利用时刻,思考一下一天之中做了些什么,是正号还是负号,倘若是+,则进步;倘若是-,就得吸取教训,采取措施。季米特洛夫   169、一门科学,只有当它成功地运用数学时,才能到达真正完善的地步马克思   170、纯数学是魔术家真正的魔杖。   171、上帝创造了整数,所有其余的数都是人造的。L克隆内克   172、数学的本质在於它的自由。康扥尔   173、在数学的领域中,提出问题的艺术比解答问题的艺术更为重要。
大鱼炖火锅2023-05-19 20:17:221

数学家的格言

1、数学是无穷的科学。赫尔曼外尔 2、数学的本质在于它的自由。康托尔 3、生态学本质上是一门数学。皮娄 4、上帝是一位算术家。雅克比 5、人死了,但事业永存。柯西 6、数学是符号加逻辑。罗素 7、数学是上帝描述自然的符号。黑格尔 8、数统治着宇宙。毕达哥拉斯 9、数学是打开科学大门的钥匙。培根 10、想象比知识更重要。爱因斯坦 11、数学是一种别具匠心的艺术。哈尔莫斯 12、纯数学是魔术家真正的魔杖。诺瓦列斯 13、数学是一切知识中的最高形式。柏拉图 14、数学,科学的皇后;算术,数学的皇后。――高斯 16、数学是人类的思考中最高的成就。米斯拉 17、数学是各式各样的证明技巧。维特根斯坦 18、数学是人类智慧皇冠上最灿烂的明珠。考特 19、数学是研究抽象结构的理论。布尔巴基学派 20、数学是一种会不断进化的文化。魏尔德 21、自然这一巨举是用数学符号写成的。伽里略 22、异常抽象的问题,必须讨论得异常清楚。笛卡儿 23、数学是科学的女王,而数论是数学的女王。高斯 24、数学是研究现实生活中数量关系和空间形式的数学。恩格斯 25、在数学中,我们发现真理的主要工具是归纳和模拟。拉普拉斯 26、一个国家的科学水平可以用它消耗的数学来度量。拉奥 27、数学家本质上是个着迷者,不迷就没有数学。努瓦列斯 28、新的数学方法和概念,常常比解决数学问题本身更重要。华罗庚 29、数学如同音乐或诗一样显然地确实具有美学价值。雅可比 30、数学发明创造的动力不是推理,而是想象力的发挥。德摩根 31、数学主要的目标是公众的利益和自然现象的解释。傅立叶 32、在数学中最令我欣喜的,是那些能够被证明的东西。罗素 33、逻辑是数学的少年时代,数学是逻辑的成年时代。罗素 34、数学能促进人们对美的特性数值比例秩序等的认识。亚里士多德 35、我之所以比笛卡儿看得远些,是因为我站在巨人的肩上。牛顿 36、在数学的领域中,提出问题的艺术比解答问题的艺术更为重要。康托尔 37、给我五个系数,我讲画出一头大象;给我六个系数,大象将会摇动尾巴。柯西 38、数学是一种理性的精神,使人类的思维得以运用到最完善的程度。克莱因 39、数学,如果正确地看,不但拥有真理,而且也具有至高的美。罗素 40、一门科学,只有当它成功地运用数学时,才能达到真正完善的地步。马克思 41、一个有科学创新能力的人不但要有科学知识,还要有文化艺术修养。钱学森 42、数学是一门演绎的学问,从一组公设,经过逻辑的推理,获得结论。陈省身 43、在数学里,分辨何是重要,何事不重要,知所选择是很重要的。广中平佑 44、现代数学最主要的成就是真正揭示了数学的整个面貌及其实质存在。Russell 45、纯粹数学可以是实际有用的,而应用数学也可以是优美高雅的。哈尔莫斯 46、一个没有几分诗人气的数学家永远成不了一个完全的数学家。维尔斯特拉斯 47、埋头苦干是第一,发白才知智叟。呆勤能补拙是良训,一分辛苦一分才。华罗庚 48、不管数学的任一分支是多么抽象,总有一天会应用在这实际世界上。罗巴切夫斯基 49、发现每一个新的群体在形式上都是数学的,因为我们不可能有其他的指导。达尔文 50、如果谁不知道正方形的对角线同边是不可通约的量,那他就不值得人的称号。柏拉图 51、硬说数学科学无美可言的人是错误的。美的主要形式是秩序匀称与明确。亚里斯多德 52、数无形时少直觉,形少数时难入微,数与形,本是相倚依,焉能分作两边飞。华罗庚 53、纯数学这门科学在其现代发展阶段,可以说是人类精神之最具独创性的创造。怀特海 54、天才是不足恃的,聪明是不可靠的,要想顺手拣来的伟大科学发明是不可想象的。华罗庚。 55、立志于物理学的人,不懂下列的事情是不行的:第一是数学,第二是数学,第三是数学。伦琴 56、在现实中,不存在像数学那样有如此多的东西,持续了几千年依然是确实的如此美好。苏利文 57、数学是知识的工具,亦是其它知识工具的泉源。所有研究顺序和度量的科学均和数学有关。――笛卡尔 58、数学方法渗透并支配着一切自然科学的理论分支。它愈来愈成为衡量科学成就的主要标志了。冯纽曼 59、数学中的一些美丽定理具有这样的特性:它们极易从事实中归纳出来,但证明却隐藏的极深。高斯 60、可以数是属统治着整个量的世界,而算数的四则运算则可以看作是数学家的全部装备。麦克斯韦 数学家陈景润的名言 1、孩子有个性才能成才,文艺家、政治家、科学家都靠个性的发展才获得成功。 2、无论成败如何,都要不惜一切地去努力。 3、做研究就像登山,很多人沿着一条山路爬上去,到了最高点就满足了,可我常常要试十条路,然后比较哪条山路爬得最高。 4、人生的目的是奉献,而不是索取。 5、孩子有好奇心是件好事。他能拆开玩具证明他有求知欲望,能研究问题。当父母的要支持他才对。 6、学习要有三心,一信心,二决心,三恒心… 7、攀登科学高峰,就象登山运动员攀登珠穆朗玛峰一样,要克服无数艰难险… 8、革命加拼命,拼命干革命,有命不革命,要命有何用。 9、时间是个常数,花掉一天等于浪费24小时。 10、在科学的道路上我只是翻过了一个小山包,真正的高峰还没有有攀上去,还要继续努力。关于数学家的名言 1、如果我继承可观的财产,我在数学上可能没有多少价值了。拉格朗日 2、给我五个系数,我讲画出一头大象;给我六个系数,大象将会摇动尾巴。AL柯西 3、天才=1%的灵感+99%的血汗。爱迪生 4、事类相推,各有攸归,故枝条虽分而同本干知,发其一端而已。又所析理以辞,解体用图,庶亦约而能周,通而不黩,览之者思过半矣刘徽 5、我不知道,世上人会怎样看我;不过,我自己觉得,我只像一个在海滨玩耍的孩子,一会捡起块比较光滑的卵石,一会儿找到个美丽的贝壳;而在我前面,真理的大海还完全没有发现。牛顿 6、我决心放弃那个仅仅是抽象的几何。这就是说,不再去考虑那些仅仅是用来练思想的问题。我这样做,是为了研究另一种几何,即目的在于解释自然现象的几何笛卡儿 7、如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。高斯 8、宇宙的伟大建筑是现在开始以纯数学家的面目出现了。JH京斯 9、这是一个可靠的规律,当数学或哲学著作的作者以模糊深奥的话写作时,他是在胡说八道。AN怀德海 10、聪明出于勤奋,天才在于积累。华罗庚 11、数学中的一些美丽定理具有这样的特性:它们极易从事实中归纳出来,但证明却隐藏的极深。数学是科学之王。高斯 12、迟序之数,非出神怪,有形可检,有数可推。祖冲之 13、数学科学不可动摇的基石,促进人类事业进步的丰富源泉巴罗 14、我们必须知道,我们必将知道。希尔伯特 15、一个做学问的人,除了学习知识外,还要有tast,这个词不太好翻译,有的译成品味,喜爱。一个人要有大的成就,就要有相当清楚的tast。杨振宁 16、如果谁不知道正方形的对角线同边是不可通约的量,那他就不值得人的称号。柏拉图 17、考虑了很少的那几样东西之后,整个的事情就归结为纯几何,这是物理和力学的一个目标莱布尼茨 18、在学习中要敢于做减法,就是减去前人已经解决的部分,看看还有那些问题没有解决,需要我们去探索解决华罗庚 19、数学的领域中,提出问题的艺术比解答问题的艺术更为重要。康扥尔 20、时间是个常数,但对勤奋者来说,是个变数。用分来计算时间的人比用小时来计算时间的人时间多59倍雷巴柯夫 21、整数的简单构成,若干世纪以来一直是使数学获得新生的源泉。GD伯克霍夫 22、因为宇宙的结构是最完善的而且是最明智的上帝的创造,因此,如果在宇宙里没有某种极大的或极小的法则,那就根本不会发生任何事情。欧拉 23、时间是个常数,但对勤奋者来说,是个变数。用分来计算时间的人比用小时来计算时间的人时间多59倍。雷巴柯夫 24、读读欧拉,读读欧拉,他是我们大家的老师。拉普拉斯 25、我思故我在笛卡儿 26、一门科学,只有当它成功地运用数学时,才能达到真正完善的地步。马克思 27、我们欣赏数学,我们需要数学。陈省身 28、数学是无穷的科学。赫尔曼外尔 29、在数学的天地里,重要的不是我们知道什么,而是我们怎么知道什么。毕达哥拉斯 30、这是一个可靠的规律,当数学或哲学著作的作者以模糊深奥的话写作时,他是在胡说八道。AN怀德海 31、一个没有几分诗人才能的数学家决不会成为一个完全的数学家魏尔斯特拉斯 32、在奥林匹斯山上统治著的上帝,乃是永恒的数雅可比 33、没有大胆的猜测,就做不出伟大的发现牛顿 34、在学习中要敢于做减法,就是减去前人已经解决的部分,看看还有那些问题没有解决,需要我们去探索解决。华罗庚 35、也许我可以并非不适当地要求获得数学上亚当这一称号,因为我相信数学理性创造物由我命名(已经流行通用)比起同时代其它数学家加在一起还要多西尔维斯特 36、只要一门科学分支能提出大量的问题,它就充满着生命力,而问题缺乏则预示独立发展的终止或衰亡。希尔伯特 37、没有任何问题可以向无穷那样深深的触动人的情感,很少有别的观念能像无穷那样激励理智产生富有成果的思想,然而也没有任何其他的概念能向无穷那样需要加以阐明。希尔伯特 38、我把数学看成是一件有意思的工作,而不是想为自己建立什么纪念碑。可以肯定地说,我对别人的工作比自己的更喜欢。我对自己的工作总是不满意。拉格朗日 39、我们能够期待,随着教育与娱乐的发展,将有更多的人欣赏音乐与绘画。但是,能够真正欣赏数学的人数是很少的。贝尔斯 40、数学的本质在於它的自由。康扥尔 41、数学是人类知识活动留下来最具威力的知识工具,是一些现象的根源。数学是不变的,是客观存在的,上帝必以数学法则建造宇宙笛卡儿 42、自然这一巨举是用数学符号写成的。伽里略 43、数学的本质在於它的自由。康扥尔 44、数无形时少直觉,形少数时难入微,数与形,本是相倚依,焉能分作两边飞。华罗庚 45、数论是人类知识最古老的一个分支,然而他的一些最深奥的秘密与其最平凡的真理是密切相连的。史密斯 46、纯数学是魔术家真正的魔杖。诺瓦列斯 47、问题是数学的心脏。p.R.Halmos 48、数学家实际上是一个著迷者,不迷就没有数学诺瓦利斯 49、一个国家的科学水平可以用它消耗的数学来度量。拉奥 50、问题是数学的心脏。p.R.Halmos 51、虽然不允许我们看透自然界本质的秘密,从而认识现象的真实原因,但仍可能发生这样的情形:一定的虚构假设足以解释许多现象。欧拉 52、观察可能导致发现。观察将揭示某种规律模式或定律。波利亚 53、一个人如果做了出色的数学工作,并想引起数学界的注意,这实在是容易不过的事情,不论这个人是如何位卑而且默默无闻,他只需做一件事:把他对结果的论述寄给处于领导地位的权威就行了。莫德尔 54、看在上帝的份上,千万别放下工作!这是你最好的药物。达朗贝尔 55、只要一门科学分支能提出大量的问题,它就充满着生命力,而问题缺乏则预示独立发展的终止或衰亡。 56、发现每一个新的群体在形式上都是数学的,因为我们不可能有其他的指导。CG达尔文 57、生命只为两件事,发展数学与教授数学。普尔森 58、一个人的贡献和他的自负严格地成反比,这似乎是品行上的一个公理。拉格朗日 59、可以数是属统治着整个量的世界,而算数的四则运算则可以看作是数学家的全部装备。麦克斯韦 60、数学,科学的女皇;数论,数学的女皇。CF高斯 61、我国科学家王菊珍对待实验失败有句格言,叫做干下去还有50%成功的希望,不干便是100%的失败。 62、天才是不足恃的,聪明是不可靠的,要想顺手拣来的伟大科学发明是不可想象的。华罗庚 63、在数学的领域中,提出问题的艺术比解答问题的艺术更为重要。康扥尔 64、一个没有几分诗人气的数学家永远成不了一个完全的数学家。维尔斯特拉斯 65、扔进冰水,由他们自己学会游泳,或者淹死。很多学生一直要到掌握了其他人做过的,与他们问题有关的一切,才肯试着靠自己去工作,结果是只有极少数人养成了独立工作的习惯。E.T.贝尔 66、数学是科学的女王,而数论是数学的女王。高斯 67、数统治着宇宙。毕达哥拉斯 68、数学,科学的女皇;数论,数学的女皇。高斯 69、攀登科学高峰,就像登山运动员攀登珠穆朗玛峰一样,要克服无数艰难险阻,懦夫和懒汉是不可能享受到胜利的喜悦和幸福的。陈景润 70、到底是大师的著作,不同凡响!伽罗瓦 71、思维的运动形式通常是这样的:有意识的研究潜意识的活动有意识的研究。庞加莱 72、前进吧,前进将使你产生信念。达朗贝尔 73、无限!再也没有其他问题如此深刻地打动过人类的心灵。D希尔伯特 74、我决不把我的作品看做是个人的私事,也不追求名誉和赞美。我只是为真理的进展竭尽所能。是我还是别的什么人,对我来说无关紧要,重要的是它更接近于真理。维尔斯特拉斯 75、多数的数学创造是直觉的结果,对事实多少有点儿直接的知觉或快速是理解,而与任何冗长的或形式的推理过程无关。卢斯卡 76、要利用时间,思考一下一天之中做了些什么,是正号还是负号,倘若是+,则进步;倘若是-,就得吸取教训,采取措施。季米特洛夫 77、无限!再也没有其他问题如此深刻地打动过人类的心灵。希尔伯特 78、数学家通常是先通过直觉来发现一个定理;这个结果对于他首先是似然的,然后他再着手去制造一个证明。哈代 79、几何无王者之道!欧几里得 80、科学需要实验。但实验不能绝对精确。如有数学理论,则全靠推论,就完全正确了。这是科学不能离开数学的原因。许多科学的基本观念,往往需要数学观念来表示。所以数学家有饭吃了,但不能得诺贝尔奖,是自然的。陈省身 81、整数的简单构成,若干世纪以来一直是使数学获得新生的源泉。伯克霍夫 82、一个数学家的目的,是要了解数学。历史上数学的进展不外两途:增加对于已知材料的了解,和推广范围。陈省身 83、一个人就好像一个分数,他的实际才能好比分子,而他对自己的估价好比分母。分母越大,则分数的值就越小。托尔斯泰 84、数学不可比拟的永久性和万能性及他对时间和文化背景的独立行是其本质的直接后果。A埃博 85、数学中没有诺贝尔奖,这也许是件好事。诺贝尔奖太引人注目,会使数学家无法专注于自己的研究。陈省身 86、精巧的论证常常不是一蹴而就的,而是人们长期切磋积累的成果。我也是慢慢学来的,而且还要继续不断的学习。阿贝尔 87、数学是科学之王。高斯 88、埋头苦干是第一,发白才知智叟。呆勤能补拙是良训,一分辛苦一分才。华罗庚 89、不发生作用的东西是不会存在的莱布尼茨 90、我的成功只依赖两条。一条是毫不动摇地坚持到底;一条是用手把脑子里想出的图形一丝不差地制造出来。 91、我国科学家王菊珍对待实验失败有句格言,叫做干下去还有50%成功的希望,不干便是100%的失败。王菊珍 92、挑选好一个确定得研究对象,锲而不舍。你可能永远达不到终点,但是一路上准可以发现一些有趣的东西。克莱因 93、几何看来有时候要领先于分析,但事实上,几何的先行于分析,只不过像一个仆人走在主人的前面一样,是为主人开路的西尔维斯特 94、上帝创造了整数,所有其余的数都是人造的。L克隆内克 95、如果没有数所制造的关於宇宙的永恒的仿造品,则人类将不能继续生存尼采 96、宇宙的伟大建筑是现在开始以纯数学家的面目出现了。京斯 97、直接向大师们而不是他们得的学生学习。阿贝尔 98、上帝创造了整数,所有其余的数都是人造的克隆内克 99、如果我们想要预见数学的将来,适当的途径是研究这门学科的历史和现状。庞加莱 100、用心智的全部力量,来选择我们应遵循的道路。笛卡儿 101、只要一门科学分支能提出大量的问题,它就充满着生命力,而问题缺乏则预示着独立发展的终止或衰亡。Hilbert 102、近代最伟大的科学家爱因斯坦在谈成功的秘诀时,写下一个公式:A=x+y+z。并解释道:A代表成功,x代表艰苦的劳动,y代表正确的方法,Z代表少说空话。爱因斯坦 103、一种奇特的美统治着数学王国,这种美不像艺术之美与自然之美那么相类似,但她深深地感染着人们的心灵,激起人们对她的欣赏,与艺术之美是十分相象的。库默 104、想象比知识更重要。爱因斯坦 105、数学发明创造的动力不是推理,而是想象力的发挥。德摩根 106、数学不可比拟的永久性和万能性及他对时间和文化背景的独立行是其本质的直接后果。A埃博 107、数学是一门演绎的学问,从一组公设,经过逻辑的推理,获得结论。陈省身 108、不亲自检查桥梁的每一部分的坚固性就不过桥的旅行者是不可能走远的。甚至在数学中有些事情也要冒险。 109、异常抽象的问题,必须讨论得异常清楚。笛卡儿 110、给我五个系数,我讲画出一头大象;给我六个系数,大象将会摇动尾巴。柯西 111、一个有科学创新能力的人不但要有科学知识,还要有文化艺术修养。钱学森 112、有时候,你一开始未能得到一个最简单,最美妙的证明,但正是这样的证明才能深入到高等算术真理的奇妙联系中去。这是我们继续研究的动力,并且最能使我们有所发现。高斯 113、我之所以比笛卡儿看得远些,是因为我站在巨人的肩上。牛顿 114、数学中的一些美丽定理具有这样的特性:它们极易从事实中归纳出来,但证明却隐藏的极深。高斯 115、纯数学这门科学再其现代发展阶段,可以说是人类精神之最具独创性的创造。怀德海 116、不懂几何者免进柏拉图 117、发现每一个新的群体在形式上都是数学的,因为我们不可能有其他的指导。达尔文 118、虚数是奇妙的人类棈神寄托,它好像是存在与不存在之间的一种两栖动物莱布尼茨 119、人死了,但事业永存。柯西 120、上帝是一位算术家。雅克比数学家华罗庚的名言 1、天才是不足恃的,聪明是不可靠的,要想顺手拣来的伟大科学发明是不可想象的。 2、壮士临阵决死哪管些许伤痕,向千年老魔作战,为百代新风斗争。慷慨掷此身。 3、抓住自己最有兴趣的东西,由浅入深,循序渐进地学…… 4、独立思考能力,对于从事科学研究或其他任何工作,都是十分必要的。在历史上,任何科学上的重大发明创造,都是由于发明者充分发挥了这种独创精神 5、一个人的生命是有限的、短促的,如果我们要把短短的生活过程使用得更有效力,我们最好是把自己的生命看成是前人生命的延续,是现在共同生命的一部分,同时也是后人生命的开端。 6、在寻求真理的长河中,唯有学习,不断地学习,勤奋地学习,有创造性地学习,才能越重山跨峻岭。 7、日累月积见功勋,山穷水尽惜寸阴。 8、人家帮我,永志不忘,我帮人家,莫记心上。 9、天才在于积累,聪明在于勤奋。 10、时间是由分秒积成的,善于利用零星时间的人,才会做出更大的成绩来。 11、凡是较有成就的科学工作者,毫无例外地都是利用时间的能手,也都是决心在大量时间中投入大量劳动的人。 12、科学上没有平坦的大道,真理长河中有无数礁石险滩。只有不畏攀登的采药者,只有不怕巨浪的弄潮儿,才能登上高峰采得仙草,深入水底觅得骊珠。 13、自学,不怕起点低,就怕不到底。 14、科学是老老实实的学问,不可能靠运气来创造发明,对一个问题的本质不了解,就是碰上机会也是枉然。入宝山而空手回,原因在此。 15、任何一个人,都要必须养成自学的习惯,即使是今天在学校的学生,也要养成自学的习惯,因为迟早总要离开学校的!自学,就是一种独立学习,独立思考的能力。行路,还是要靠行路人自己。 16、我们最好把自己的生命看做前人生命的延续,是现在共同生命的一部分,同时也后人生命的开端。如此延续下去,科学就会一天比一天灿烂,社会就会一天比一天更美好。 17、面对悬崖峭壁,一百年也看不出一条缝来,但用斧凿,得进一寸进一寸,得进一尺进一尺,不断积累,飞跃必来,突破随之。 18、时间是由分秒积成的,善于利用零星时间的人,才会做出更大的成绩来。 19、我想,人有两个肩膀,应该同时发挥作用,我要用一个肩挑着送货上门的担子,把科学知识和科学工具送到工人师傅手里;另一个肩膀可以作人梯,让青年们踏着攀登科学的更高一层山峰。 20、科学成就是由一点一滴积累起来的,惟有长期的积聚才能由点滴汇成大海。 21、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种“偶然的机遇”只能给那些学有素养的人,给那些善于独立思考的人,给那些具有锲而不舍的精神的人,而不会给懒汉。 22、学习和研究好比爬梯子,要一步一步地往上爬,企图一脚跨上四五步,平地登天,那就必须会摔跤了。 23、聪明出于勤奋,天才在于积累 24、学习和研究好比爬梯子,要一步一步地往上爬,企图一脚跨上四五步,平地登天,那就必须会摔跤了。 25、科学成就是由一点一滴积累起来的,惟有长期的积聚才能由点滴汇成大海。 26、没有雄心壮志的人,他们的生活缺乏伟大的功力,自然不能盼望他们会有杰出的成就。 27、要循序渐进!我走过的道路,就是一条循序渐进的道路。 28、在寻求真理的长河中,唯有学习,不断地学习,勤奋地学习,有创造性地学习,才能越重山跨峻岭。 29、人做了书的奴隶, 便把活人带死了……把书作为人的工具,则书本上的知识便活了,有了生命力了。 30、读书要从薄到厚,在从厚到薄。名句作为警示自己的句子,希望以上《数学家的格言》内容对您有所帮助,如果还想获取更多名句内容可以点击 正能量人生格言座右铭短句 专题。
水元素sl2023-05-19 20:17:221

国外古代哪个数学家发现了许多定理但没有证明却让后人去验证

费马?
铁血嘟嘟2023-05-19 20:17:213

费马大定理提出以后出现的七门数学学科是什么

分别为四色定理、构造无穷多个两两相连区域、图论与数论联系、筛子与哥德巴赫猜想等内容。当我们用霍奇猜想的方法制造几何拓扑超级结构时会发生一种歧管,这个歧管的整体就是费马大定理,计算这个结构局部就要用黎曼猜想。法兰西斯·古德里于1852年提出的猜想,只需要四种颜色为地图着色,构造方法就是霍奇猜想。把歧管两两相连之间给定距离可以等价转换成为货郎担问题。在数论中,最重要的元素就是素数,欧几里得证明了有无穷多个素数,并且它们有一个特点就是两两互素。岐管筛子把偶数往里面扔,哥德巴赫猜想说大于4的偶数一个也不会漏出筛子,除了6=3+3以外,其他偶数都是可以在不同的素数区域被拦截。随意在岐管上画出一条线,都需要黎曼猜想计算。计算虚部需要欧拉公式。 物理学里,真空是能量的“零点”。黎曼猜想与物理学和费马大定理联系起来了。几何拓扑进展是创造代数或者数论的源泉,创造一个新代数结构必须为它找到几何新结构。扩展资料:费马大定理的相关内容:1、十九世纪初法国自学成才的女数学家热尔曼证明了当n和2n+1都是素数时费马大定理的反例x,y,z至少有一个是n整倍数。在此基础上,1825年德国数学家狄利克雷和法国数学家勒让德分别独立证明费马大定理在n=5时成立,用的是欧拉所用方法的延伸,但避开了唯一因子分解定理。2、1847年,巴黎科学院上演戏剧性一幕, 当时著名数学家拉梅和柯西先后宣布自己基本证明费马大定理,拉梅还声称证明引用了刘维尔复数系中的唯一因子分解定理,刘维尔则说这一定理源自欧拉和高斯的思想。参考资料来源:百度百科-费马大定理
瑞瑞爱吃桃2023-05-19 20:17:171

他是千年来印度最伟大的数学家,临终前留下了解读黑洞的神秘公式

推进数学的,主要是那些有卓越直觉的人,而不是以严格的证明方法见长的人。——克莱因(Klein) 新千年到来之际,美国《时代》周刊评选出20世纪100位最具影响力的人物,特别提到了拉马努金这位公认的一千年来印度最伟大的数学家。 斯里尼瓦萨·拉马努金1887年出生于印度,是一位数学天才,与欧拉、高斯和雅各比齐名。专精于函数论与数论的研究,去世之后留下了近4000条数学公式。 从尼赫鲁到英迪拉·甘地,历任印度首相都对拉马努金予以褒扬。他被誉为“印度之子”, 与诗人泰戈尔并驾齐驱成为印度最受尊敬和爱戴的人物。 到1987年,即拉马努金诞生一百周年之际,印度已拍摄了三部有关他生平的电影,美国佛罗里达州开始出版《拉马努金杂志》,并成立了一个国际性的拉马努金数学会。在拉马努金的故乡马德拉斯,当容纳他最后一年心血的遗著《失散的笔记本》出版时,拉吉夫·甘地总理亲自赶来祝贺并参加了首发式,足见其成就。 从中学到大学,拉马努金对《汇编》越来越着迷。 “每证明一个数学公式,他就会发现好些其他公式,于是一本《数学笔记》便开始产生了。” 很多年以后,带拉马努金去英国的剑桥数学教授内维尔这样写道。好些时候,他一个人坐在家门口,看着邻家孩子在街上玩耍,大人们说他眼里“空空的”,其实他的内心像着了火似地熊熊燃烧,这便是数学之火。 以他为计算圆周率设计的无穷级数为例,第一项便可精确到小数点后八位,而早年莱布尼茨的级数五百项才能精确到小数点后三位,这个新级数为用计算机快速求取圆周率提供了方法。这部《数学笔记》最初是用一种很奇怪的绿色墨水书写的,就像费马的算术注记和高斯的数学日记一样,里面充满了奇思妙想。正是其中一小部分内容组成的一封书信,惊动了万里之外的英国大数学家哈代。 1912年,世界各地的一流数学家收到了一封内容相同的信件,信中写满了非常复杂的公式。寄信人正是年仅23岁的斯里尼瓦萨·拉马努金。他声称信中的公式是他利用业余时间研究出来的。 那些公式涉及从微积分到无穷级数等极为复杂的数学问题;就连名牌大学里的数学家们也感到束手无策。 后引起著名数论专家哈代的注意,在其的帮助下,拉马努金来到剑桥。这时哈代才知道, 拉马努詹通过独自研究提出了高等数学领域的数千个定理。 其中一些定理已经为西方数学家们熟知,另一些定理则完全是错误的,但2/3是全新的定理。拉马努詹与哈代展开协作研究,成为世界上最有威望的皇家学会的成员。 或许是天妒英才,来到剑桥的 拉哈努金不久身体出现不适。32岁就英年早逝的他,却给我们留下了一笔重要遗产。他提出的一些猜想像谜一般困扰著当代数学家, 直到今天,数学家才真正理解了他在去世前一年,也就是1919年所写下的一个神秘论断,让全世界数学家都艳羡和抓狂。 哈代在悼文中这样说道© Copyright
此后故乡只2023-05-19 20:17:141

数学家哈代是否证明了素数定理?

无法证明,也不需要证明,因为这个命题不成立。对n=1,2,3 ...100 进行验证,有40多个结果不是素数。见下图:同时附上验证计算的fortran代码:
水元素sl2023-05-19 20:17:121

大器晚成的数学家——哈代

1877年2月7日,英国数学家哈代出生。 一 、 学习和研究生涯 哈代在童年时代就显示出数学的机敏,并很早就养成喜欢自由提问和探索的习惯。13岁时,他获得奖学金进入当时以数学家的摇篮著称的温切斯特学院学习。 19岁时,哈代进入剑桥大学三一学院继续深造。在拉弗教授的建议下,哈代阅读了若尔当的名著《分析教程》,并说:“我永远不会忘记我读那本杰作时的震惊,这是我这代数学家受到的第一个启迪,读这本书时我才第一次认识到数学真正意味着什么。” 21岁时,哈代参加了剑桥的数学荣誉学位考试,并成为了一等及格者。但对传统极具反抗精神的哈代认为这种考试是没有意义的。 1911年,哈代开始了同李特尔伍德的长期合作。他们通过学院的邮政来邮寄信件,并达成一种默契:当互相收到信件时,先不读解法,而是要独立解决其中的问题。直到取得一致意见,最后由哈代定稿。当时,一些不了解内情的国外数学家以为李特尔伍德只是哈代虚构的一个笔名。事实上,李特尔伍德本身就是一个出色的数学家。二人共同建立了20世纪上半叶具有世界水平的英国剑桥分析学派。 二、 哈代与拉马努金 哈代称自己对拉马努金的发现是他一生中的一段浪漫的插曲。 1913年,出生于印度的拉马努金给哈代寄了一封信,信中陈述了他对素数分布的研究并列有120个条公式,涉及数学中多个领域。这些公式大部分已被别人证明,有些看起来很容易,实际上证明起来很困难。 哈代确信拉马努金是一位数学天才,于是邀请他到英国。哈代花了很多心血教授拉马努金现代欧洲数学知识,他发现拉马努金的知识的局限竟然与它的深奥一样令人吃惊。但他要很强的直觉和推理能力,其工作和思维方式多具挑战性。 遗憾的是,哈代与拉马努金的合作并未持续太久。1919年,拉马努金因肺结核病去世。哈代对这位印度数学奇才的英年早逝深感痛惜,他参与整理了拉马努金的论文集,并著有《拉马努金》一书。哈代与拉马努金的这一段交往也被数学界传为佳话。 这里再提一下这个广为流传的小故事:哈代有次在伦敦坐出租车去看望拉马努金。在与拉马努金的闲谈中提及他是乘1729这个车牌号的出租车来医院的:“这是一个无聊的数字,但愿它不是一个凶兆。” “不,”拉马努金说,“这是一个非常有趣的数字。我能用两种方法把它表示成两个立方之和:1729=9³+10³=1³+12³。”(事实上,1729是满足这个性质的最小的自然数。) 后来,哈代曾兴致勃勃地讲这个故事的尾声:“自然,我就问他是否知道对应于4次方的这样一个问题的答案。他想了一会,说第一个这样的数很大,是635318657。”  李特尔伍德听到这宗轶闻时感叹地说:“每个正整数都是拉马努金的朋友。”后来1729就被称为哈代-拉马努金常数,或出租车数、的士数。 三 、 哈代的为人 作为一名知名数学家,哈代的人品同他的学问同样受到赞誉。他健谈:谈话可以吸引周围许多人;他严于律己,参与该出席的各种会议,履行自己的职责;他富于正义感,痛恨战争,一生中不喜欢任何虚伪的东西。 哈代为人谦和,经常强调合作者的重要性而对自己轻描淡写。他曾说过正是得益于与李特尔伍德和拉马努金的平等合作才达到了他不同寻常的大器晚成。哈代引导许多年轻人迈入他们早期研究的大门,并给予他们帮助和鼓励。比如我国数学家华罗庚在剑桥进修时就得到过哈代的指导和帮助。维纳在他的自传《我是一个数学家》中多次表达了对哈代的钦佩与感激。 除了研究数学,哈代的兴趣主要在球类运动上。尤其在板球上,他是一个能够掌握最新技术的球手和经验丰富的评论家。哈代曾说,他之所以选择数学作为自己的事业,主要是因为数学是他能做得最好的一件事,而不是别的什么堂而皇之的理由。他的数学成就基于他对数学的无限热爱和全身心投入。 四 、 哈代谈数学 哈代在《一个数学家的辩白》中表达了他对数学的看法。 对于数学是否客观存在,哈代认为:“我认为数学实体是在我们之外而存在的,我们的作用就是去发现它、观察它。那些被夸张地描绘成我们的‘创造物"的定理,不过是我们观察的记录而已。” 对于数学美,哈代认为:“数学的美可能很难定义,但它的确是一种真实的美。”,“最好的数学既是美的,同时又是严肃的。” 哈代对数学应用于战争很反感,他将纯粹数学视为真正的数学而与应用数学划清界限:“就总体而言,纯粹数学显然比应用数学有用。一个纯粹数学家似乎不仅在美学方面而且在实用方面都占有优势。因为有用的东西主要是技巧,而数学技巧主要是通过纯粹数学来传播的。”,“真正的数学对战争毫无影响。”,“是一门‘无害而清白"的职业。”(哈代的某些观点仍存在争议。) 哈代被公认为他所处时代的英国纯粹数学的领导人。最后以他对自己一生的总结和评价结束本文:“我曾为知识领域添砖加瓦,也曾帮别人添枝加叶;这些东西的价值,比起身后留下某种纪念物的大数学家或任何其他大大小小的艺术家们创造的价值,只是程度上有所不同,性质上并无差异。” 再分享一个哈代的轶事。 哈代很喜欢与数学家玻尔(物理学家玻尔的弟弟)共度暑假, 一起讨论黎曼猜想。 他们对讨论都很投入,哈代常常要待到假期将尽才匆匆赶回英国。结果有一次当他赶到码头时, 很不幸地发现只剩下一条小船可以乘坐了。没办法,他只得硬着头皮登上。 在那样的汪洋大海中乘坐小船可不是闹着玩的事情,弄得好算是浪漫刺激,弄不好就得葬身鱼腹。为了旅途的平安,信奉上帝的乘客们大都忙着祈求上帝的保佑。哈代却是一个坚决不信上帝的人。不过在这生死攸关的的时候哈代也没闲着,他给玻尔发去了一张简短的明信片,上面只有一句话: “我已经证明了黎曼猜想。”  哈代果真已经证明了黎曼猜想吗?当然不是。那他为什么要发那样一张明信片呢?回到英国后他向玻尔解释了原因,他说如果那次他乘坐的小船真的沉没了,那人们就只好相信他真的证明了黎曼猜想(这里有效仿费马的意思)。但他知道上帝是肯定不会把这么巨大的荣誉送给他——一个坚决不信上帝的人的,因此上帝是一定不会让他的小船沉没的。
韦斯特兰2023-05-19 20:17:061

我国近代数学家的成就

回国后华罗庚开创了中国的近代数学,并建立了中科院数学研究所,培养了大批数学家如陈景润,王元等号称华学派,后来致力于应用数学,将数学应用于工业生产,推广"优选法"和"统筹法"!由于华罗庚的重大贡献,有许多用他的名字命名的定理,如华引理、华不等式、华算子与华方法。另外华罗庚还被列为芝加哥科学技术博物馆中当今世界88位数学伟人之一。美国著名数学家贝特曼著文称:“华罗庚是中国的爱因斯坦,足够成为全世界所有著名科学院院士”。中国最著名的五大数学家
陶小凡2023-05-19 20:17:042

数学家王元的小故事

王元是著名数学家,华罗庚数学奖得主,下面是我为大家整理的关于数学家王元的小故事,欢迎大家的阅读。 王元,是著名数学家华罗庚的学生,现任中国科学院学部委员,数学研究所研究员,主要从事数论研究。几十年来,他的研究成果累累,得到了国际数学界的高度赞扬。他是怎样从一个学习成绩中等的学生成为一位著名的数学家的呢? 王元出生在一个知识分子的家庭,很早就受到启蒙教育。他不特别聪明,更不是神童,但是他同大多数有成就的人一样是通过苦学才获得成功的。王元的小学、初中时代,是在战乱与艰难中度过的。4岁上学,那时他还是个天真活泼的小孩,一心只想玩,结果连续留级了两年。上中学时学习成绩只是中等水平。 这样一个成绩中等的学生,却有一个十分突出的特点:兴趣广泛,求知欲强。凡是他兴趣所及,都肯花费时间刻苦钻研。开始,他喜欢看小说,不管多厚的本本,他都要想方设法看完它。他看别人拉二胡,自己也动了心,成为二胡的爱好者。由于他抓紧时间苦练,又肯动脑筋琢磨演奏技巧,不久就成为出色的二胡演奏者。后来,他又喜欢画画和游泳。他经常带着画板出去写生。画累了,就脱下衣服跳到湖里痛痛快快地游泳。广泛的兴趣,养成他不怕困难和一种强烈进取的精神。只要他感兴趣的项目,他总比别人学得好。 1948年,王元高中毕业考入浙江英士大学数学系。浙大是我国老一辈数学家陈建功、苏步青多年执教的地方,数学教育卓有传统。二位教授自30年代起就坚持办高年级学生读书讨论班,对于培养学生独立科学研究的能力极有帮助。浙大的教学环境激发了王元对数学真正的兴趣。大学四年级时他在读书讨论班上报告了A·E·英哈姆的《素数分布论》。1952年,王元从浙江大学毕业,因成绩名列前茅,被推荐到中国科学院数学研究所,一年后又被分配到该所数论组。 王元有幸能在华罗庚教授的直接指引下开始其科研生涯。他到数论组是华罗庚亲自挑选的。王元在华罗庚领导的研究集体里边学习,边工作。为了攀登世界数学高峰,华罗庚举办了一个数论讨论班,王元参加了这个班的学习。华罗庚在讨论班指导,总是先把讲稿发给大家,然后叫大家报告、讨论。还有一个规矩,报告人讲完以后,必须回答别人提出的问题。如果答不出来,就要你把问题写在黑板上,站在台上思考,学生们把这种情况叫做“挂黑板”。 华罗庚在当时已经预测到赛尔伯格筛法和列尼克方法在数论中可能发展,可能是解决哥德巴赫猜想问题的一个有效办法。讨论班也就这一方面的问题开展探讨。有一天,轮到王元报告了,题目是赛尔伯格筛法。这实际上是一个二次型求极小值问题,它要联系到凑平方。王元在黑板上凑平方的时候,忽然紧张起来,左凑右凑也整不出来。他的问题在黑板上被整整挂了一个小时才解决。 王元被“挂黑板”以后,牢牢记住华罗庚的.话,当前世界上从事这方面工作的人很多,掌握并钻研筛法意义很大。王元前进的目标明确了,他大胆地选择跟筛法有关的哥德巴赫猜想问题作为自己的主攻方向。他放弃一切休息日和文娱活动,更加专心致志地攻读。不久,他和一个外国科学家一起,写了两篇有关筛法研究的论文,在数学研究中初露头角。以后,王元又就同一个问题写了几篇论文,华罗庚看后狠狠地批评了王元一顿,他语重心长地说:“你有了速度很好,但还要有加速度,只在原水平的基础上工作,永远也不会有更好的成绩。” 王元很快就明白了华罗庚这番话的道理。他知道,物体要做加速运动,需要外力;科学研究要有加速度,需要勇于开拓。王元关于筛法与哥德巴赫猜想的研究,确立了他作为著名数论家的地位,王元主编的《哥德巴赫猜想》,全面总结了哥德巴赫猜想研究的发展与现状,其中包括他本人的工作。以后与华罗庚开始了长达20年的师生合作,取得了辉煌的成果。他的代表性著作有《数论在近似分析中的应用》、《哥德巴赫猜想》及《在中华人民共和国普及数学法》(以上与华罗庚合作)。王元对哥德巴赫猜想有精深研究,他首先证明了每个充分大的偶数为一个素因子不超过2与一个素因子个数不超过3的整数之和。这一成果在1984年获得国家自然科学一等奖;他又与华罗庚一起提出了计算多重积分的新方法,国际上称为“华—王方法”。 王元是在新中国成立以后,华罗庚教授亲自培养下成长起来的一代数学家,也是国际上公认的以华罗庚为首的“中国数论学派”的重要成员。“勤奋出天才”是王元的座右铭。他认为科学研究特别是基础研究在很大程度上靠积累,王元所做的读书笔记就达3400页,他从事科学研究而付出的辛劳由此可见一斑。王元又是一位谦逊的学者,研究哥德巴赫猜想的经历使他深深体会到,科学研究如同攀登无限的梯级,一个人无论达到多高,也总是在前人的基础上前进。因此他说:“恰如其分地估计自己不要过分陶醉于自己已经做了些什么,始终有个危机感,这样就永远不存在自满的可能性。”他认为,这种态度来源于对整个数学知识海洋的客观认识。 王元成为国际数学界享有声誉的数学家,他的成才之路是与勤奋、刻苦、谦逊的态度及不停顿地向科学高峰进击的精神分不开的。
康康map2023-05-19 20:17:041

数学建模中s型曲线定义(代数表达式)是什么,如何使用?

表达式:y=1/{a+b*e^(-x)} 其中a是常数项,b是待估参数先将s型曲线表达式线性化 过程为:1.根据表达式推得1/y=a+b*e^(-x) 2.令1/y=y" e^(-x)=x" 得y"=a+b*x" 这样就线性化了3.进行线性化处理,求出常数项a和待估参数b4发现在线性化的过程中a b都没有发生变化,因此直接代入原表达式即可。
韦斯特兰2023-05-19 20:17:042

世界十大数学千古难题是哪些

难题”之一:P(多项式算法)问题对NP(非多项式算法)问题难题”之二: 霍奇(Hodge)猜想难题”之三: 庞加莱(Poincare)猜想难题”之四: 黎曼(Riemann)假设难题”之五: 杨-米尔斯(Yang-Mills)存在性和质量缺口难题”之六: 纳维叶-斯托克斯(Navier-Stokes)方程的存在性与光滑性难题”之七: 贝赫(Birch)和斯维讷通-戴尔(Swinnerton-Dyer)猜想难题”之八:几何尺规作图问题难题”之九:哥德巴赫猜想难题”之十:四色猜想美国麻州的克雷(Clay)数学研究所于2000年5月24日在巴黎法兰西学院宣布了一件被媒体炒得火热的大事:对七个“千僖年数学难题”的每一个悬赏一百万美元。以下是这七个难题的简单介绍。“千僖难题”之一:P(多项式算法)问题对NP(非多项式算法)问题在一个周六的晚上,你参加了一个盛大的晚会。由于感到局促不安,你想知道这一大厅中是否有你已经认识的人。你的主人向你提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。不费一秒钟,你就能向那里扫视,并且发现你的主人是正确的。然而,如果没有这样的暗示,你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人。生成问题的一个解通常比验证一个给定的解时间花费要多得多。这是这种一般现象的一个例子。与此类似的是,如果某人告诉你,数13,717,421可以写成两个较小的数的乘积,你可能不知道是否应该相信他,但是如果他告诉你它可以因子分解为3607乘上3803,那么你就可以用一个袖珍计算器容易验证这是对的。不管我们编写程序是否灵巧,判定一个答案是可以很快利用内部知识来验证,还是没有这样的提示而需要花费大量时间来求解,被看作逻辑和计算机科学中最突出的问题之一。它是斯蒂文·考克(StephenCook)于1971年陈述的。“千僖难题”之二: 霍奇(Hodge)猜想二十世纪的数学家们发现了研究复杂对象的形状的强有力的办法。基本想法是问在怎样的程度上,我们可以把给定对象的形状通过把维数不断增加的简单几何营造块粘合在一起来形成。这种技巧是变得如此有用,使得它可以用许多不同的方式来推广;最终导至一些强有力的工具,使数学家在对他们研究中所遇到的形形色色的对象进行分类时取得巨大的进展。不幸的是,在这一推广中,程序的几何出发点变得模糊起来。在某种意义下,必须加上某些没有任何几何解释的部件。霍奇猜想断言,对于所谓射影代数簇这种特别完美的空间类型来说,称作霍奇闭链的部件实际上是称作代数闭链的几何部件的(有理线性)组合。“千僖难题”之三: 庞加莱(Poincare)猜想如果我们伸缩围绕一个苹果表面的橡皮带,那么我们可以既不扯断它,也不让它离开表面,使它慢慢移动收缩为一个点。另一方面,如果我们想象同样的橡皮带以适当的方向被伸缩在一个轮胎面上,那么不扯断橡皮带或者轮胎面,是没有办法把它收缩到一点的。我们说,苹果表面是“单连通的”,而轮胎面不是。大约在一百年以前,庞加莱已经知道,二维球面本质上可由单连通性来刻画,他提出三维球面(四维空间中与原点有单位距离的点的全体)的对应问题。这个问题立即变得无比困难,从那时起,数学家们就在为此奋斗。“千僖难题”之四: 黎曼(Riemann)假设有些数具有不能表示为两个更小的数的乘积的特殊性质,例如,2,3,5,7,等等。这样的数称为素数;它们在纯数学及其应用中都起着重要作用。在所有自然数中,这种素数的分布并不遵循任何有规则的模式;然而,德国数学家黎曼(1826~1866)观察到,素数的频率紧密相关于一个精心构造的所谓黎曼蔡塔函数z(s$的性态。著名的黎曼假设断言,方程z(s)=0的所有有意义的解都在一条直线上。这点已经对于开始的1,500,000,000个解验证过。证明它对于每一个有意义的解都成立将为围绕素数分布的许多奥秘带来光明。“千僖难题”之五: 杨-米尔斯(Yang-Mills)存在性和质量缺口量子物理的定律是以经典力学的牛顿定律对宏观世界的方式对基本粒子世界成立的。大约半个世纪以前,杨振宁和米尔斯发现,量子物理揭示了在基本粒子物理与几何对象的数学之间的令人注目的关系。基于杨-米尔斯方程的预言已经在如下的全世界范围内的实验室中所履行的高能实验中得到证实:布罗克哈文、斯坦福、欧洲粒子物理研究所和筑波。尽管如此,他们的既描述重粒子、又在数学上严格的方程没有已知的解。特别是,被大多数物理学家所确认、并且在他们的对于 “夸克”的不可见性的解释中应用的“质量缺口”假设,从来没有得到一个数学上令人满意的证实。在这一问题上的进展需要在物理上和数学上两方面引进根本上的新观念。“千僖难题”之六: 纳维叶-斯托克斯(Navier-Stokes)方程的存在性与光滑性起伏的波浪跟随着我们的正在湖中蜿蜒穿梭的小船,湍急的气流跟随着我们的现代喷气式飞机的飞行。数学家和物理学家深信,无论是微风还是湍流,都可以通过理解纳维叶-斯托克斯方程的解,来对它们进行解释和预言。虽然这些方程是19世纪写下的,我们对它们的理解仍然极少。挑战在于对数学理论作出实质性的进展,使我们能解开隐藏在纳维叶-斯托克斯方程中的奥秘。“千僖难题”之七: 贝赫(Birch)和斯维讷通-戴尔(Swinnerton-Dyer)猜想数学家总是被诸如x^2+y^2=z^2那样的代数方程的所有整数解的刻画问题着迷。欧几里德曾经对这一方程给出完全的解答,但是对于更为复杂的方程,这就变得极为困难。事实上,正如马蒂雅谢维奇(Yu.V.Matiyasevich)指出,希尔伯特第十问题是不可解的,即,不存在一般的方法来确定这样的方法是否有一个整数解。当解是一个阿贝尔簇的点时,贝赫和斯维讷通-戴尔猜想认为,有理点的群的大小与一个有关的蔡塔函数z(s)在点s=1附近的性态。特别是,这个有趣的猜想认为,如果z(1)等于0,那么存在无限多个有理点(解),相反,如果z(1)不等于0,那么只存在有限多个这样的点。
gitcloud2023-05-19 20:17:031

至今还未解决的数学问题

什么吗?你问的是什么问题?
铁血嘟嘟2023-05-19 20:17:024

世界七大数学难题是什么?

最近美国麻州的克雷(Clay)数学研究所于2000年5月24日在巴黎法兰西学院宣布了一件被媒体炒得火热的大事:对七个“千僖年数学难题”的每一个悬赏一百万美元。以下是这七个难题的简单介绍。 “千僖难题”之一:P(多项式算法)问题对NP(非多项式算法)问题 在一个周六的晚上,你参加了一个盛大的晚会。由于感到局促不安,你想知道这一大厅中是否有你已经认识的人。你的主人向你提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。不费一秒钟,你就能向那里扫视,并且发现你的主人是正确的。然而,如果没有这样的暗示,你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人。生成问题的一个解通常比验证一个给定的解时间花费要多得多。这是这种一般现象的一个例子。与此类似的是,如果某人告诉你,数13,717,421可以写成两个较小的数的乘积,你可能不知道是否应该相信他,但是如果他告诉你它可以因子分解为3607乘上3803,那么你就可以用一个袖珍计算器容易验证这是对的。不管我们编写程序是否灵巧,判定一个答案是可以很快利用内部知识来验证,还是没有这样的提示而需要花费大量时间来求解,被看作逻辑和计算机科学中最突出的问题之一。它是斯蒂文·考克(StephenCook)于1971年陈述的。 “千僖难题”之二: 霍奇(Hodge)猜想 二十世纪的数学家们发现了研究复杂对象的形状的强有力的办法。基本想法是问在怎样的程度上,我们可以把给定对象的形状通过把维数不断增加的简单几何营造块粘合在一起来形成。这种技巧是变得如此有用,使得它可以用许多不同的方式来推广;最终导至一些强有力的工具,使数学家在对他们研究中所遇到的形形色色的对象进行分类时取得巨大的进展。不幸的是,在这一推广中,程序的几何出发点变得模糊起来。在某种意义下,必须加上某些没有任何几何解释的部件。霍奇猜想断言,对于所谓射影代数簇这种特别完美的空间类型来说,称作霍奇闭链的部件实际上是称作代数闭链的几何部件的(有理线性)组合。 “千僖难题”之三: 庞加莱(Poincare)猜想 如果我们伸缩围绕一个苹果表面的橡皮带,那么我们可以既不扯断它,也不让它离开表面,使它慢慢移动收缩为一个点。另一方面,如果我们想象同样的橡皮带以适当的方向被伸缩在一个轮胎面上,那么不扯断橡皮带或者轮胎面,是没有办法把它收缩到一点的。我们说,苹果表面是“单连通的”,而轮胎面不是。大约在一百年以前,庞加莱已经知道,二维球面本质上可由单连通性来刻画,他提出三维球面(四维空间中与原点有单位距离的点的全体)的对应问题。这个问题立即变得无比困难,从那时起,数学家们就在为此奋斗。 “千僖难题”之四: 黎曼(Riemann)假设 有些数具有不能表示为两个更小的数的乘积的特殊性质,例如,2,3,5,7,等等。这样的数称为素数;它们在纯数学及其应用中都起着重要作用。在所有自然数中,这种素数的分布并不遵循任何有规则的模式;然而,德国数学家黎曼(1826~1866)观察到,素数的频率紧密相关于一个精心构造的所谓黎曼蔡塔函数z(s$的性态。著名的黎曼假设断言,方程z(s)=0的所有有意义的解都在一条直线上。这点已经对于开始的1,500,000,000个解验证过。证明它对于每一个有意义的解都成立将为围绕素数分布的许多奥秘带来光明。 “千僖难题”之五: 杨-米尔斯(Yang-Mills)存在性和质量缺口 量子物理的定律是以经典力学的牛顿定律对宏观世界的方式对基本粒子世界成立的。大约半个世纪以前,杨振宁和米尔斯发现,量子物理揭示了在基本粒子物理与几何对象的数学之间的令人注目的关系。基于杨-米尔斯方程的预言已经在如下的全世界范围内的实验室中所履行的高能实验中得到证实:布罗克哈文、斯坦福、欧洲粒子物理研究所和筑波。尽管如此,他们的既描述重粒子、又在数学上严格的方程没有已知的解。特别是,被大多数物理学家所确认、并且在他们的对于“夸克”的不可见性的解释中应用的“质量缺口”假设,从来没有得到一个数学上令人满意的证实。在这一问题上的进展需要在物理上和数学上两方面引进根本上的新观念。 “千僖难题”之六: 纳维叶-斯托克斯(Navier-Stokes)方程的存在性与光滑性 起伏的波浪跟随着我们的正在湖中蜿蜒穿梭的小船,湍急的气流跟随着我们的现代喷气式飞机的飞行。数学家和物理学家深信,无论是微风还是湍流,都可以通过理解纳维叶-斯托克斯方程的解,来对它们进行解释和预言。虽然这些方程是19世纪写下的,我们对它们的理解仍然极少。挑战在于对数学理论作出实质性的进展,使我们能解开隐藏在纳维叶-斯托克斯方程中的奥秘。 “千僖难题”之七: 贝赫(Birch)和斯维讷通-戴尔(Swinnerton-Dyer)猜想 数学家总是被诸如x^2+y^2=z^2那样的代数方程的所有整数解的刻画问题着迷。欧几里德曾经对这一方程给出完全的解答,但是对于更为复杂的方程,这就变得极为困难。事实上,正如马蒂雅谢维奇(Yu.V.Matiyasevich)指出,希尔伯特第十问题是不可解的,即,不存在一般的方法来确定这样的方法是否有一个整数解。当解是一个阿贝尔簇的点时,贝赫和斯维讷通-戴尔猜想认为,有理点的群的大小与一个有关的蔡塔函数z(s)在点s=1附近的性态。特别是,这个有趣的猜想认为,如果z(1)等于0,那么存在无限多个有理点(解),相反,如果z(1)不等于0,那么只存在有限多个这样的点。
豆豆staR2023-05-19 20:17:023

世界十大数学猜想都是什么

世界十大数学猜想:NP完全问题、霍奇猜想、庞加莱猜想、黎曼假设、杨-米尔斯理论、纳卫尔-斯托可方程、BSD猜想 费尔马大定 四色问题 哥德巴赫猜想世界近代三大数学难题1、费尔马大定理2、四色问题3、哥德巴赫猜想世界七大数学难题一、P(多项式时间)问题对NP(nondeterministic polynomial time,非确定多项式时间)问题二、霍奇(Hodge)猜想 三、庞加莱(Poincare)猜想 四、黎曼(Riemann)假设五、杨-米尔斯(Yang-Mills)存在性和质量缺口 六、纳维叶-斯托克斯(Navier-Stokes)方程的存在性与光滑性 七、贝赫(Birch)和斯维讷通-戴尔(Swinnerton-Dyer)猜想 有待破解的数学难题除了上述著名数学难题外,还有以下著名数学难题有待破解。   Abc猜想   考拉兹猜想   周氏猜测(梅森素数分布猜测)   阿廷猜想(新梅森猜想)    哥德巴赫猜想   孪素数猜想   克拉梅尔猜想   哈代-李特尔伍德第二猜想   六空间理论
无尘剑 2023-05-19 20:17:021

世界十大数学题

美国麻州的克雷(Clay)数学研究所于2000年5月24日在巴黎法兰西学院宣布了一件被媒体炒得火热的大事:对七个“千僖年数学难题”的每一个悬赏一百万美元。以下是这七个难题的简单介绍。 “千 僖难题”之一:P(多项式算法)问题对NP(非多项式算法)问题 在一个周六的晚上,你参加了一个盛大的晚会。由于感到局促不安,你想知道这一大厅中是否有你已经认识的人。你的主人向你提议说,你一定认识那位正在甜点盘 附近角落的女士罗丝。不费一秒钟,你就能向那里扫视,并且发现你的主人是正确的。然而,如果没有这样的暗示,你就必须环顾整个大厅,一个个地审视每一个 人,看是否有你认识的人。生成问题的一个解通常比验证一个给定的解时间花费要多得多。这是这种一般现象的一个例子。与此类似的是,如果某人告诉你,数 13,717,421可以写成两个较小的数的乘积,你可能不知道是否应该相信他,但是如果他告诉你它可以因子分解为3607乘上3803,那么你就可以用 一个袖珍计算器容易验证这是对的。不管我们编写程序是否灵巧,判定一个答案是可以很快利用内部知识来验证,还是没有这样的提示而需要花费大量时间来求解, 被看作逻辑和计算机科学中最突出的问题之一。它是斯蒂文·考克(StephenCook)于1971年陈述的。 “千僖难题”之 二: 霍奇(Hodge)猜想 二十世纪的数学家们发现了研究复杂对象的形状的强有力的办法。基本想法是问在怎样的程度上,我们可以把给定对象的形状通过把维数不断增加的简单几何营造块 粘合在一起来形成。这种技巧是变得如此有用,使得它可以用许多不同的方式来推广;最终导至一些强有力的工具,使数学家在对他们研究中所遇到的形形色色的对 象进行分类时取得巨大的进展。不幸的是,在这一推广中,程序的几何出发点变得模糊起来。在某种意义下,必须加上某些没有任何几何解释的部件。霍奇猜想断 言,对于所谓射影代数簇这种特别完美的空间类型来说,称作霍奇闭链的部件实际上是称作代数闭链的几何部件的(有理线性)组合。 “千 僖难题”之三: 庞加莱(Poincare)猜想 如果我们伸缩围绕一个苹果表面的橡皮带,那么我们可以既不扯断它,也不让它离开表面,使它慢慢移动收缩为一个点。另一方面,如果我们想象同样的橡皮带以适 当的方向被伸缩在一个轮胎面上,那么不扯断橡皮带或者轮胎面,是没有办法把它收缩到一点的。我们说,苹果表面是“单连通的”,而轮胎面不是。大约在一百年 以前,庞加莱已经知道,二维球面本质上可由单连通性来刻画,他提出三维球面(四维空间中与原点有单位距离的点的全体)的对应问题。这个问题立即变得无比困 难,从那时起,数学家们就在为此奋斗。 “千僖难题”之四: 黎曼(Riemann)假设 有些数具有不能表示为两个更小的数的乘积的特殊性质,例如,2,3,5,7,等等。这样的数称为素数;它们在纯数学及其应用中都起着重要作用。在所有自然 数中,这种素数的分布并不遵循任何有规则的模式;然而,德国数学家黎曼(1826~1866)观察到,素数的频率紧密相关于一个精心构造的所谓黎曼蔡塔函 数z(s$的性态。著名的黎曼假设断言,方程z(s)=0的所有有意义的解都在一条直线上。这点已经对于开始的1,500,000,000个解验证过。证 明它对于每一个有意义的解都成立将为围绕素数分布的许多奥秘带来光明。 “千僖难题”之五: 杨-米尔斯(Yang-Mills)存在性和质量缺口 量子物理的定律是以经典力学的牛顿定律对宏观世界的方式对基本粒子世界成立的。大约半个世纪以前,杨振宁和米尔斯发现,量子物理揭示了在基本粒子物理与几 何对象的数学之间的令人注目的关系。基于杨-米尔斯方程的预言已经在如下的全世界范围内的实验室中所履行的高能实验中得到证实:布罗克哈文、斯坦福、欧洲 粒子物理研究所和筑波。尽管如此,他们的既描述重粒子、又在数学上严格的方程没有已知的解。特别是,被大多数物理学家所确认、并且在他们的对于 “夸克”的不可见性的解释中应用的“质量缺口”假设,从来没有得到一个数学上令人满意的证实。在这一问题上的进展需要在物理上和数学上两方面引进根本上的 新观念。 “千僖难题”之六: 纳维叶-斯托克斯(Navier-Stokes)方程的存在性与光滑性 起伏的波浪跟随着我们的正在湖中蜿蜒穿梭的小船,湍急的气流跟随着我们的现代喷气式飞机的飞行。数学家和物理学家深信,无论是微风还是湍流,都可以通过理 解纳维叶-斯托克斯方程的解,来对它们进行解释和预言。虽然这些方程是19世纪写下的,我们对它们的理解仍然极少。挑战在于对数学理论作出实质性的进展, 使我们能解开隐藏在纳维叶-斯托克斯方程中的奥秘。 “千僖难题”之七: 贝赫(Birch)和斯维讷通-戴尔(Swinnerton-Dyer)猜想 数学家总是被诸如x^2+y^2=z^2那样的代数方程的所有整数解的刻画问题着迷。欧几里德曾经对这一方程给出完全的解答,但是对于更为复杂的方程,这 就变得极为困难。事实上,正如马蒂雅谢维奇(Yu.V.Matiyasevich)指出,希尔伯特第十问题是不可解的,即,不存在一般的方法来确定这样的 方法是否有一个整数解。当解是一个阿贝尔簇的点时,贝赫和斯维讷通-戴尔猜想认为,有理点的群的大小与一个有关的蔡塔函数z(s)在点s=1附近的性态。 特别是,这个有趣的猜想认为,如果z(1)等于0,那么存在无限多个有理点(解),相反,如果z(1)不等于0,那么只存在有限多个这样的点。 八: 几何尺规作图问题 这里所说的“几何尺规作图问题”是指做图限制只能用直尺、圆规,而这里的直尺是指没有刻度只能画直线的尺。“几何尺规作图问题”包括以下四个问题 1.化圆为方-求作一正方形使其面积等於一已知圆; 2.三等分任意角; 3.倍立方-求作一立方体使其体积是一已知立方体的二倍。 4.做正十七边形。 以上四个问题一直困扰数学家二千多年都不得其解,而实际上这前三大问题都已证明不可能用直尺圆规经有限步骤可解决的。第四个问题是高斯用代数的方法解决 的,他也视此为生平得意之作,还交待要把正十七边形刻在他的墓碑上,但后来他的墓碑上并没有刻上十七边形,而是十七角星,因为负责刻碑的雕刻家认为,正十 七边形和圆太像了,大家一定分辨不出来。 九:哥德巴赫猜想 公元1742年6月7日哥德巴赫(Goldbach)写信给当时的大数学家欧拉(Euler),提出了以下的猜想: (a) 任何一个>=6之偶数,都可以表示成两个奇质数之和。 (b) 任何一个>=9之奇数,都可以表示成三个奇质数之和。 从此,这道著名的数学难题引起了世界上成千上万数学家的注意。200年过去了,没有人证明它。哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的“明珠”。 十: 四色猜想 1852年,毕业于伦敦大学的弗南西斯.格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有 共同边界的国家着上不同的颜色。” 1872年,英国当时最著名的数学家凯利正式向伦敦数学学会提出了这个问题,于是四色猜想成了世界数学界关注的问题。世界上许多一流的数学家都纷纷参加了 四色猜想的大会战。 1976年,美国数学家阿佩尔与哈肯在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿判断,终于完成了四色定理的证明。四 色猜想的计算机证明,轰动了世界。
真颛2023-05-19 20:17:023

十大未解数学题

国麻州的克雷(Clay)数学研究所于2000年5月24日在巴黎法兰西学院宣布了一件被媒体炒得火热的大事:对七个“千僖年数学难题”的每一个悬赏一百万美元。以下是这七个难题的简单介绍。“千僖难题”之一:P(多项式算法)问题对NP(非多项式算法)问题 在一个周六的晚上,你参加了一个盛大的晚会。由于感到局促不安,你想知道这一大厅中是否有你已经认识的人。你的主人向你提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。不费一秒钟,你就能向那里扫视,并且发现你的主人是正确的。然而,如果没有这样的暗示,你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人。生成问题的一个解通常比验证一个给定的解时间花费要多得多。这是这种一般现象的一个例子。与此类似的是,如果某人告诉你,数13,717,421可以写成两个较小的数的乘积,你可能不知道是否应该相信他,但是如果他告诉你它可以因子分解为3607乘上3803,那么你就可以用一个袖珍计算器容易验证这是对的。不管我们编写程序是否灵巧,判定一个答案是可以很快利用内部知识来验证,还是没有这样的提示而需要花费大量时间来求解,被看作逻辑和计算机科学中最突出的问题之一。它是斯蒂文·考克(StephenCook)于1971年陈述的。 “千僖难题”之二: 霍奇(Hodge)猜想 二十世纪的数学家们发现了研究复杂对象的形状的强有力的办法。基本想法是问在怎样的程度上,我们可以把给定对象的形状通过把维数不断增加的简单几何营造块粘合在一起来形成。这种技巧是变得如此有用,使得它可以用许多不同的方式来推广;最终导至一些强有力的工具,使数学家在对他们研究中所遇到的形形色色的对象进行分类时取得巨大的进展。不幸的是,在这一推广中,程序的几何出发点变得模糊起来。在某种意义下,必须加上某些没有任何几何解释的部件。霍奇猜想断言,对于所谓射影代数簇这种特别完美的空间类型来说,称作霍奇闭链的部件实际上是称作代数闭链的几何部件的(有理线性)组合。 “千僖难题”之三: 庞加莱(Poincare)猜想 如果我们伸缩围绕一个苹果表面的橡皮带,那么我们可以既不扯断它,也不让它离开表面,使它慢慢移动收缩为一个点。另一方面,如果我们想象同样的橡皮带以适当的方向被伸缩在一个轮胎面上,那么不扯断橡皮带或者轮胎面,是没有办法把它收缩到一点的。我们说,苹果表面是“单连通的”,而轮胎面不是。大约在一百年以前,庞加莱已经知道,二维球面本质上可由单连通性来刻画,他提出三维球面(四维空间中与原点有单位距离的点的全体)的对应问题。这个问题立即变得无比困难,从那时起,数学家们就在为此奋斗。“千僖难题”之四: 黎曼(Riemann)假设 有些数具有不能表示为两个更小的数的乘积的特殊性质,例如,2,3,5,7,等等。这样的数称为素数;它们在纯数学及其应用中都起着重要作用。在所有自然数中,这种素数的分布并不遵循任何有规则的模式;然而,德国数学家黎曼(1826~1866)观察到,素数的频率紧密相关于一个精心构造的所谓黎曼蔡塔函数z(s$的性态。著名的黎曼假设断言,方程z(s)=0的所有有意义的解都在一条直线上。这点已经对于开始的1,500,000,000个解验证过。证明它对于每一个有意义的解都成立将为围绕素数分布的许多奥秘带来光明。“千僖难题”之五: 杨-米尔斯(Yang-Mills)存在性和质量缺口 量子物理的定律是以经典力学的牛顿定律对宏观世界的方式对基本粒子世界成立的。大约半个世纪以前,杨振宁和米尔斯发现,量子物理揭示了在基本粒子物理与几何对象的数学之间的令人注目的关系。基于杨-米尔斯方程的预言已经在如下的全世界范围内的实验室中所履行的高能实验中得到证实:布罗克哈文、斯坦福、欧洲粒子物理研究所和筑波。尽管如此,他们的既描述重粒子、又在数学上严格的方程没有已知的解。特别是,被大多数物理学家所确认、并且在他们的对于夸克”的不可见性的解释中应用的“质量缺口”假设,从来没有得到一个数学上令人满意的证实。在这一问题上的进展需要在物理上和数学上两方面引进根本上的新观念。“千僖难题”之六: 纳维叶-斯托克斯(Navier-Stokes)方程的存在性与光滑性 起伏的波浪跟随着我们的正在湖中蜿蜒穿梭的小船,湍急的气流跟随着我们的现代喷气式飞机的飞行。数学家和物理学家深信,无论是微风还是湍流,都可以通过理解纳维叶-斯托克斯方程的解,来对它们进行解释和预言。虽然这些方程是19世纪写下的,我们对它们的理解仍然极少。挑战在于对数学理论作出实质性的进展,使我们能解开隐藏在纳维叶-斯托克斯方程中的奥秘。 “千僖难题”之七: 贝赫(Birch)和斯维讷通-戴尔(Swinnerton-Dyer)猜想 数学家总是被诸如x^2+y^2=z^2那样的代数方程的所有整数解的刻画问题着迷。欧几里德曾经对这一方程给出完全的解答,但是对于更为复杂的方程,这就变得极为困难。事实上,正如马蒂雅谢维奇(Yu.V.Matiyasevich)指出,希尔伯特第十问题是不可解的,即,不存在一般的方法来确定这样的方法是否有一个整数解。当解是一个阿贝尔簇的点时,贝赫和斯维讷通-戴尔猜想认为,有理点的群的大小与一个有关的蔡塔函数z(s)在点s=1附近的性态。特别是,这个有趣的猜想认为,如果z(1)等于0,那么存在无限多个有理点(解),相反,如果z(1)不等于0,那么只存在有限多个这样的点。八:几何尺规作图问题 这里所说的“几何尺规作图问题”是指做图限制只能用直尺、圆规,而这里的直尺是指没有刻度只能画直线的尺。“几何尺规作图问题”包括以下四个问题 1.化圆为方-求作一正方形使其面积等於一已知圆; 2.三等分任意角; 3.倍立方-求作一立方体使其体积是一已知立方体的二倍。 4.做正十七边形。 以上四个问题一直困扰数学家二千多年都不得其解,而实际上这前三大问题都已证明不可能用直尺圆规经有限步骤可解决的。第四个问题是高斯用代数的方法解决的,他也视此为生平得意之作,还交待要把正十七边形刻在他的墓碑上,但后来他的墓碑上并没有刻上十七边形,而是十七角星,因为负责刻碑的雕刻家认为,正十七边形和圆太像了,大家一定分辨不出来。 九:哥德巴赫猜想 公元1742年6月7日哥德巴赫(Goldbach)写信给当时的大数学家欧拉(Euler),提出了以下的猜想: (a) 任何一个>=6之偶数,都可以表示成两个奇质数之和。 (b) 任何一个>=9之奇数,都可以表示成三个奇质数之和。 从此,这道著名的数学难题引起了世界上成千上万数学家的注意。200年过去了,没有人证明它。哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的“明珠”。十:四色猜想 1852年,毕业于伦敦大学的弗南西斯.格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家着上不同的颜色。” 1872年,英国当时最著名的数学家凯利正式向伦敦数学学会提出了这个问题,于是四色猜想成了世界数学界关注的问题。世界上许多一流的数学家都纷纷参加了四色猜想的大会战。 1976年,美国数学家阿佩尔与哈肯在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿判断,终于完成了四色定理的证明。四色猜想的计算机证明,轰动了世界。
瑞瑞爱吃桃2023-05-19 20:17:011

数学问题

1) 6又9分之22) 3又7分之1我只会两题,SORRY
CarieVinne 2023-05-19 20:17:014

数学问题

能够逻辑化理出来的都是数学问题
此后故乡只2023-05-19 20:17:016

世界上最难的数学题 这3个堪称世界3大数学难题

1、NP完全问题 例:在一个周六的晚上,你参加了一个盛大的晚会。由于感到局促不安,你想知道这一大厅中是否有你已经认识的人。宴会的主人向你提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。不费一秒钟,你就能向那里扫视,并且发现宴会的主人是正确的。然而,如果没有这样的暗示,你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人。 生成问题的一个解通常比验证一个给定的解时间花费要多得多。这是这种一般现象的一个例子。与此类似的是,如果某人告诉你,数13717421可以写成两个较小的数的乘积,你可能不知道是否应该相信他,但是如果他告诉你它可以分解为3607乘上3803,那么你就可以用一个袖珍计算器容易验证这是对的。 人们发现,所有的完全多项式非确定性问题,都可以转换为一类叫做满足性问题的逻辑运算问题。既然这类问题的所有可能答案,都可以在多项式时间内计算,人们于是就猜想,是否这类问题,存在一个确定性算法,可以在多项式时间内,直接算出或是搜寻出正确的答案呢?这就是著名的NP=P?的猜想。不管我们编写程序是否灵巧,判定一个答案是可以很快利用内部知识来验证,还是没有这样的提示而需要花费大量时间来求解,被看作逻辑和计算机科学中最突出的问题之一。它是斯蒂文·考克于1971年陈述的。 2、黎曼假设 有些数具有不能表示为两个更小的数的乘积的特殊性质,例如,2、3、5、7……等等。这样的数称为素数;它们在纯数学及其应用中都起着重要作用。在所有自然数中,这种素数的分布并不遵循任何有规则的模式;然而,德国数学家黎曼(1826~1866)观察到,素数的频率紧密相关于一个精心构造的所谓黎曼zeta函数ζ(s)的性态。著名的黎曼假设断言,方程ζ(s)=0的所有有意义的解都在一条直线上。这点已经对于开始的1,500,000,000个解验证过。证明它对于每一个有意义的解都成立将为围绕素数分布的许多奥秘带来光明。 3、BSD猜想 数学家总是被诸如 那样的代数方程的所有整数解的刻画问题着迷。欧几里德曾经对这一方程给出完全的解答,但是对于更为复杂的方程,这就变得极为困难。事实上,正如马蒂雅谢维奇指出,希尔伯特第十问题是不可解的,即,不存在一般的方法来确定这样的方程是否有一个整数解。当解是一个阿贝尔簇的点时,贝赫和斯维讷通-戴尔猜想认为,有理点的群的大小与一个有关的蔡塔函数z(s)在点s=1附近的性态。特别是,这个有趣的猜想认为,如果z(1)等于0,那么存在无限多个有理点(解)。相反,如果z(1)不等于0。那么只存在着有限多个这样的点。
九万里风9 2023-05-19 20:17:011

世界顶级未解数学难题都有哪些?

直接顶级位置,数学难题要他的工作难度
西柚不是西游2023-05-19 20:17:0010

介绍一下“世界七大数学难题”?

贝赫(Birch)和斯维讷通-戴尔(Swinnerton-Dyer)猜想P(多项式算法)问题对NP(非多项式算法)问题
铁血嘟嘟2023-05-19 20:17:004

数学问题

7个文具盒+3个书包=221元(1)4个文具盒+6个书包=312元(2)(1)x2得:14个文具盒+6个书包=442元(3)(3)-(2)得;10个文具盒=130元1个文具盒=13元
左迁2023-05-19 20:16:592

数学界七大迷题

分类: 教育/学业/考试 >> 学习帮助 问题描述: 数学界七大难题的具体内容是 解析: 21世纪数学七大难题 最近美国麻州的克雷(Clay)数学研究所于2000年5月24日在巴黎法兰西学院宣 布了一件被媒体炒得火热的大事:对七个“千僖年数学难题”的每一个悬赏一百万美元。以 下是这七个难题的简单介绍。 “千僖难题”之一:P(多项式算法)问题对NP(非多项式算法)问题 在一个周六的晚上,你参加了一个盛大的晚会。由于感到局促不安,你想知道这一大厅 中是否有你已经认识的人。你的主人向你提议说,你一定认识那位正在甜点盘附近角落的女 士罗丝。不费一秒钟,你就能向那里扫视,并且发现你的主人是正确的。然而,如果没有这 样的暗示,你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人。生成问 题的一个解通常比验证一个给定的解时间花费要多得多。这是这种一般现象的一个例子。与 此类似的是,如果某人告诉你,数13,717,421可以写成两个较小的数的乘积,你 可能不知道是否应该相信他,但是如果他告诉你它可以因子分解为3607乘上3803, 那么你就可以用一个袖珍计算器容易验证这是对的。不管我们编写程序是否灵巧,判定一个 答案是可以很快利用内部知识来验证,还是没有这样的提示而需要花费大量时间来求解,被 看作逻辑和计算机科学中最突出的问题之一。它是斯蒂文·考克(StephenCook )于1971年陈述的。 “千僖难题”之二: 霍奇(Hodge)猜想 二十世纪的数学家们发现了研究复杂对象的形状的强有力的办法。基本想法是问在怎样 的程度上,我们可以把给定对象的形状通过把维数不断增加的简单几何营造块粘合在一起来 形成。这种技巧是变得如此有用,使得它可以用许多不同的方式来推广;最终导至一些强有 力的工具,使数学家在对他们研究中所遇到的形形 *** 的对象进行分类时取得巨大的进展。 不幸的是,在这一推广中,程序的几何出发点变得模糊起来。在某种意义下,必须加上某些 没有任何几何解释的部件。霍奇猜想断言,对于所谓射影代数簇这种特别完美的空间类型来 说,称作霍奇闭链的部件实际上是称作代数闭链的几何部件的(有理线性)组合。 “千僖难题”之三: 庞加莱(Poincare)猜想 如果我们伸缩围绕一个苹果表面的橡皮带,那么我们可以既不扯断它,也不让它离开表 面,使它慢慢移动收缩为一个点。另一方面,如果我们想象同样的橡皮带以适当的方向被伸 缩在一个轮胎面上,那么不扯断橡皮带或者轮胎面,是没有办法把它收缩到一点的。我们说 ,苹果表面是“单连通的”,而轮胎面不是。大约在一百年以前,庞加莱已经知道,二维球 面本质上可由单连通性来刻画,他提出三维球面(四维空间中与原点有单位距离的点的全体 )的对应问题。这个问题立即变得无比困难,从那时起,数学家们就在为此奋斗。 “千僖难题”之四: 黎曼(Riemann)假设 有些数具有不能表示为两个更小的数的乘积的特殊性质,例如,2,3,5,7,等等。这样的 数称为素数;它们在纯数学及其应用中都起着重要作用。在所有自然数中,这种素数的分布 并不遵循任何有规则的模式;然而,德国数学家黎曼(1826~1866)观察到,素数的频率紧密 相关于一个精心构造的所谓黎曼蔡塔函数z(s$的性态。著名的黎曼假设断言,方程z(s)=0的 所有有意义的解都在一条直线上。这点已经对于开始的1,500,000,000个解验证过。证明它 对于每一个有意义的解都成立将为围绕素数分布的许多奥秘带来光明。 “千僖难题”之五: 杨-米尔斯(Yang-Mills)存在性和质量缺口 量子物理的定律是以经典力学的牛顿定律对宏观世界的方式对基本粒子世界成立的。大 约半个世纪以前,杨振宁和米尔斯发现,量子物理揭示了在基本粒子物理与几何对象的数学 之间的令人注目的关系。基于杨-米尔斯方程的预言已经在如下的全世界范围内的实验室中 所履行的高能实验中得到证实:布罗克哈文、斯坦福、欧洲粒子物理研究所和筑波。尽管如 此,他们的既描述重粒子、又在数学上严格的方程没有已知的解。特别是,被大多数物理学 家所确认、并且在他们的对于“夸克”的不可见性的解释中应用的“质量缺口”假设,从来 没有得到一个数学上令人满意的证实。在这一问题上的进展需要在物理上和数学上两方面引 进根本上的新观念。 “千僖难题”之六: 纳维叶-斯托克斯(Navier-Stokes)方程的存在性与光滑性 起伏的波浪跟随着我们的正在湖中蜿蜒穿梭的小船,湍急的气流跟随着我们的现代喷气 式飞机的飞行。数学家和物理学家深信,无论是微风还是湍流,都可以通过理解纳维叶-斯 托克斯方程的解,来对它们进行解释和预言。虽然这些方程是19世纪写下的,我们对它们的 理解仍然极少。挑战在于对数学理论作出实质性的进展,使我们能解开隐藏在纳维叶-斯托 克斯方程中的奥秘。 “千僖难题”之七:贝赫(Birch)和斯维讷通-戴尔(Swinnerton-Dyer)猜想 数学家总是被诸如x^2+y^2=z^2那样的代数方程的所有整数解的刻画问题着迷。欧几里德曾 经对这一方程给出完全的解答,但是对于更为复杂的方程,这就变得极为困难。事实上,正 如马蒂雅谢维奇(Yu.V.Matiyasevich)指出,希尔伯特第十问题是不可解的,即,不存在一 般的方法来确定这样的方法是否有一个整数解。当解是一个阿贝尔簇的点时,贝赫和斯维讷 通-戴尔猜想认为,有理点的群的大小与一个有关的蔡塔函数z(s)在点s=1附近的性态。特 别是,这个有趣的猜想认为,如果z(1)等于0,那么存在无限多个有理点(解),相反,如果z( 1)不等于0,那么只存在有限多个这样的点。
meira2023-05-19 20:16:591

数学为什么一定要以十进制为主?为什么没有人从不同进制研究素数 在数轴上的分布规律?

因为数学家清楚,素数的分布和进制是没有关系的。5 在十进制中是 素数,在二进制中也是素数,只不过把名字换成了 101 罢了。所谓二进制、十进制,实际上只是数的不同表示,就像物理中不同 的单位制一样。一个物体有多重就有多重,并不会因为单位从千克变为 盎司就有所改变。点击查看更多《1分钟物理》
Ntou1232023-05-19 20:16:581
 首页 上一页  98 99 100 101 102 103 104 105 106 107 108  下一页  尾页