期望

如何求随机变量x的数学期望?

求解方法:代入公式。在[a,b]上的均匀分数。期望:EX=∫{从-a积到a} xf(x) dx。=∫{从-a积到a} x/2a dx。=x^2/4a |{上a,下-a}。=0。E(X^2)=∫{从-a积到a} (x^2)*f(x) dx。=∫{从-a积到a} x^2/2a dx。=x^3/6a |{上a,下-a}。=(a^2)/3。在概率论和统计学中,数学期望(mean)(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。它反映随机变量平均取值的大小。需要注意的是,期望值并不一定等同于常识中的“期望”——“期望值”也许与每一个结果都不相等。期望值是该变量输出值的平均数。期望值并不一定包含于变量的输出值集合里。大数定律规定,随着重复次数接近无穷大,数值的算术平均值几乎肯定地收敛于期望值。总结如下:离散型随机变量与连续型随机变量都是由随机变量取值范围(取值)确定。变量取值只能取离散型的自然数,就是离散型随机变量。例如,一次掷20个硬币,k个硬币正面朝上,k是随机变量。k的取值只能是自然数0,1,2,…,20,而不能取小数3.5、无理数,因而k是离散型随机变量。
此后故乡只2023-06-06 07:54:511

怎样求离散型随机变量的期望?

如图所示:因为,(X,Y)是二维离散型随机变量。所以,xy也是离散型随机变量。先求出xy的概率分布列。再求xy的期望:比如 P(x=0)=1/2,P(x=1)=1/2 P(y=0)=1/2,P(y=1)=1/2 则,P(xy=0)=3/4 P(xy=1)=1/4 所以,E(XY)=0×(3/4)+1×(1/4)=1/4。当随机变量的可取值全体为一离散集时称其为离散型随机变量,否则称其为非离散型随机变量,这是很大的一个类,其中有一类是极其常见的,随机变量的取值为一(n)维连续空间。计算方法:随机变量即在一定区间内变量取值为有限个或可数个。例如某地区某年人口的出生数、死亡数,某药治疗某病病人的有效数、无效数等。离散型随机变量通常依据概率质量函数分类,主要分为:伯努利随机变量、二项随机变量、几何随机变量和泊松随机变量。
Jm-R2023-06-06 07:54:511

随机变量的方差存在,期望就一定存在吗

  随机变量的期望存在,则方差不一定存在。 比如一个随机变量X 取1的概率为 1/2 取2的概率为 1/4 。 取n的概率为1/2^n 。 比如一个随机变量X 取1的概率为 1/2 取2的概率为 1/4 。 取n的概率为1/2^n 。
拌三丝2023-06-06 07:54:511

什么是随机变量的数学期望值

在概率论和统计学中,一个离散性随机变量的期望值(或数学期望、或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和。换句话说,期望值是随机试验在同样的机会下重复多次的结果计算出的等同“期望”的平均值。需要注意的是,期望值并不一定等同于常识中的“期望”——“期望值”也许与每一个结果都不相等。(换句话说,期望值是该变量输出值的平均数。期望值并不一定包含于变量的输出值集合里。)
北有云溪2023-06-06 07:54:501

随机变量数字特征的如何求乘除法的数学期望和方差?

第10题的题目就已经不符合吃鸡规律。1.原点在哪?地图中心?2.就算原点是地图中心,不能用正态分布,正态分布是离中心越远概率越小,可是地图以原点为圆心,画出的圆越大,说明面积越大,所以概率越高,所以不能用正态分布。
LuckySXyd2023-06-06 07:54:491

随机变量x与Y的期望都存在,E(X/Y)=E(X)/E(Y)是对的吗

E(Y)=0 也不行
余辉2023-06-06 07:54:492

离散型随机变量数学期望的理解

数学期望是度量随机变量取值平均水平的数字特征,我们首先引入离散型随机变量数学期望的概念.离散型随机变量数学期望的定义.设离散型随机变量ξ的概率分布为P(ξ=xk)=pk(k=1,2,…)如果级数收敛,则称为随机变量ξ的数学期望,记为E(ξ),当级数不收敛时,则称随机变量ξ的数学期望不存在.显然,数学期望由概率分布唯一确定,以后我们也称之为某概率分布的数学期望.
北营2023-06-06 07:54:491

连续性随机变量的期望

定义:设连续型随机变量 [公式] 的概率密度函数为 [公式] ,如果 [公式] ,则称: [公式] 为 [公式] 的数学期望,简称期望。如果 [公式] 是实变量的实值函数,并且 [公式] ,则可以证明(需要较深的数学知识): [公式] .笔者感到疑惑,到底需要什么较深的数学知识?先自己尝试一下证明,看会遇到哪些困难吧。令: [公式] , [公式] 的概率密度函数为 [公式] .则根据定义: [公式] ,因此只需证明 :[公式]。但是这是困难的,因此寻找 [公式]并非易事。这时候老师提示,可以先考虑一些特殊情况来做一些形式推导。比如说,先考虑 [公式] 单调递增且可导的情况:设 [公式] 的分布函数为 [公式] ,则根据定义 :[公式](利用单调增可逆成功将 [公式] 转化为 [公式] 此时: [公式] )因此: [公式] 根据复合函数求导的链式法则上式即: [公式] .证毕。然而,这仅仅是一小类函数,对于一般的可导函数,在老师的提示下,我发现也可以通过划分区间的方法,将函数分成若干个单调区域来处理,划分区间,自然和积分的定义联系上了。[公式] 其中: [公式][公式][公式] [公式][公式][公式][公式][公式]至此,在 [公式] 可导的情况下我们证明了 [公式] 成立。
陶小凡2023-06-06 07:54:481

数学期望是什么

值乘以对应概率。。。再相加。。。。。
hi投2023-06-06 07:54:482

什么叫数学期望?

数学期望是概率论早期发展中就已产生的一个概念。当时研究的概率问题大多与赌博有关。假如某人在一局赌博中面临如下的情况:在总共m+n种等可能出现的结果中,有m种结果可赢得α,其余n种结果可赢得b), 则就是他在该局赌博中所能期望的收入。数学期望的这种初始形式早在1657年即由荷兰数学家C.惠更斯明确提出。它是简单算术平均的一种推广。 设x为离散型随机变量,它取值x0,x1,…的概率分别为p1,p2,…,则当级数时,定义它的期望为。这里之所以要求级数绝对收敛,是因为作为期望的这种平均,不应当依赖于求和的次序。若x 为连续型随机变量,其密度函数为p(x),则当积分时,定义它的期望为。在一般场合,设x是概率空间(Ω,F,p)上的随机变量,其分布函数为F(x),则当时,定义x的期望为 式中是斯蒂尔杰斯积分;或是随机变量x 在Ω上对概率测度p的积分。然而,并非所有的随机变量都具有期望。 随机变量的期望,有下列性质:E(x+Y)=Ex+EY;若把常数α看作随机变量,则Eα=α;若x≥0,则Ex≥0;若x与Y独立,则E(XY)=Ex·EY;若随机变量x1,x2,…,xn有联合分布函数F(x1,x2,…,xn),则对一类n元函数06(x1,x2,…,xn)(称为可积的n元波莱尔可测函数,它包括所有可积的初等函数和连续函数),有 若Z=x+iY为复随机变量,则定义其数学期望为EZ=Ex+iEY。 上述数学期望的概念也可推广至随机向量的情形。一个随机向量的数学期望(EX定义为以其各分量xj的数学期望为分量的向量,即,也称为X的均值向量。它也具有一般期望所具有的类似性质。
此后故乡只2023-06-06 07:54:481

求连续型随机变量的数学期望的定义,最好把那几种特殊的连续性的随机变量都给列出来,谢了.

连续型随机变量的数学期望就是xf(x)在R上的积分,f(x)为密度函数几种特殊的连续性的随机变量:1.均匀分布f(x)=1/(b-a) a<x<b Or f(x)=0 x=其他Ex=(a+b)/22.指数分布f(x)=r*e^(-rx) x>0 or f(x)=0 x=其他Ex=1/r3.正态分布f(x)=(1/δ(2*pi)^(1/2))*e^(-((x-μ)^2)/2δ^2)密度函数很复杂,很不清的话可以去网上再查,因为这里打不出公式的样子Ex=μ
陶小凡2023-06-06 07:54:481

离散型随机变量的期望和方差是多少?

期望:X服从泊松分布,因而它的数学期望就是λ,那么根据数学定理可知,随机变量的函数的数学期望就是F(EX),所以COS(πX)的数学期望就是COS(πλ)。离散型随机变量的方差:D(X) = E{[X - E(X)]^2};(1)=E(X^2) - (EX)^2;(2),(1)式是方差的离差表示,,如果不懂,可以记忆(2)式,(2)式表示:方差 = X^2的期望 - X的期望的平方。X和X^2都是随机变量,针对于某次随机变量的取值, 方差在统计描述和概率分布中各有不同的定义,并有不同的公式。在统计描述中,方差用来计算每一个变量(观察值)与总体均数之间的差异。为避免出现离均差总和为零,离均差平方和受样本含量的影响,统计学采用平均离均差平方和来描述变量的变异程度。
wpBeta2023-06-06 07:54:471

概率里是不是如果随机变量的期望存在,则方差必存在?

随机变量的期望存在,则方差不一定存在. 比如一个随机变量X 取1的概率为 1/2 取2的概率为 1/4 ... 取n的概率为1/2^n . 比如一个随机变量X 取1的概率为 1/2 取2的概率为 1/4 ... 取n的概率为1/2^n .
小菜G的建站之路2023-06-06 07:54:461

求随机变量期望与方差的公式是什么?

数学期望和方差公式有:DX=E(X)^2-(EX)^2;EX=1/P,DX=p^2/q;EX=np,DX=np(1-p)等等。对于2项分布(例子:在n次试验中有K次成功,每次成功概率为P,其分布列求数学期望和方差)有EX=np,DX=np(1-p)。n为试验次数 p为成功的概率。对于几何分布(每次试验成功概率为P,一直试验到成功为止)有EX=1/P,DX=p^2/q。还有任何分布列都通用的。DX=E(X)^2-(EX)^2。在概率论和统计学中,数学期望(mean)(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。它反映随机变量平均取值的大小。高中数学期望与方差公式应用:1)随机炒股。随机炒股也就是闭着眼睛在股市中挑一只股票,并且假设止损和止盈线都为10%,因为是随机选股,那么胜率=败率,由于印花税、佣金和手续费的存在,胜率=败率<50%,最后的数学期望一定为负,可见随机炒股,长期的后果,必输无疑。2)趋势炒股。趋势炒股是建立在惯性理论上的,胜率跟经验有很大关系,基本上平均胜率可以假定为60%,则败率为40%,一般趋势投资者本着赚点就跑,亏了套死不卖的原则,如涨10%止盈,跌50%止损,数学期望为EP=60%*10%-40%*50%=-0.14,必输无疑。
大鱼炖火锅2023-06-06 07:54:451

怎样求离散型随机变量的数学期望?

一维离散型E(x)=∞∑i=1(xi pi),二维离散型E(x)=+∞∑i=1+∞∑j=1(xi pij)
小白2023-06-06 07:54:451

二维随机变量的期望与方差公式是什么?

P(X/Y<0)=0.5本题使用正态分布与独立性分析:(x,y)~N(0,0,1,1,0)说明X~N(0,1),Y~N(0,1)且X与Y独立X/Y<0,即X与Y反号所以 P(X/Y<0)=P(X>0,Y<0)+P(X<0,Y>0)=P(X>0)P(Y<0)+P(X<0)P(Y>0)=0.5×0.5+0.5×0.5=0.5二维随机变量( X,Y)的性质不仅与X 、Y 有关,而且还依赖于这两个随机变量的相互关系。因此,逐个地来研究X或Y的性质是不够的,还需将(X,Y)作为一个整体来研究。扩展资料:在一定区间内变量取值为有限个或可数个。例如某地区某年人口的出生数、死亡数,某药治疗某病病人的有效数、无效数等。离散型随机变量通常依据概率质量函数分类,主要分为:伯努利随机变量、二项随机变量、几何随机变量和泊松随机变量。随机事件数量化的好处是可以用数学分析的方法来研究随机现象。例如某一时间内公共汽车站等车乘客人数,电话交换台在一定时间内收到的呼叫次数,灯泡的寿命等等,都是随机变量的实例。在实际问题中通常用它来表征多个独立操作的随机试验结果或多种有独立来源的随机因素的概率特性,因此它对于概率统计的应用是十分重要的。参考资料来源:百度百科——二维随机变量
Ntou1232023-06-06 07:54:451

离散型随机变量的期望和方差是什么?

离散型随机变量的方差:D(X) = E{[X - E(X)]^2}=E(X^2) - (EX)^2.(2)。X和X^2都是随机变量,针对于某次随机变量的取值, 例如: 随机变量X服从“0 - 1”:取0概率为q,取1概率为p,p+q=1 则: 对于随即变量X的期望 E(X) = 0*q + 1*p = p 同样对于随即变量X^2的期望 E(X^2) = 0^2 * q + 1^2 * p = p。离散型随机变量的概率分布基本性质:对于集合{xn,n=1,2,……}中的任何一个子集A,事件“X在A中取值”即“X∈A”的概率为:P{X∈A}=∑Pn特别的,如果一个试验所包含的事件只有两个,其概率分布为:P{X=x1}=p(0<p<1),P{X=x2}=1-p=q。这种分布称为两点分布。 如果x1=1,x2=0,有P{X=1}=p,P{X=0}=q。这时称X服从参数为p的0-1分布,它是离散型随机变量分布中最简单的一种。由于是数学家伯努利最先研究发现的,为了纪念他,我们也把服从这种分布的试验叫伯努利试验。习惯上,把伯努利的一种结果称为“成功”,另一种称为“失败”。
韦斯特兰2023-06-06 07:54:451

离散型随机变量的期望和方差是什么?

离散型随机变量的方差:D(X) = E{[X - E(X)]^2}.(1)=E(X^2) - (EX)^2.(2)(1)式是方差的离差表示法。(2)式表示:方差 = X^2的期望 - X的期望的平方。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的平均数。在许多实际问题中,研究方差即偏离程度有着重要意义。方差统计方差在统计描述和概率分布中各有不同的定义,并有不同的公式,在统计描述中,方差用来计算每一个变量(观察值)与总体均数之间的差异。为避免出现离均差总和为零,离均差平方和受样本含量的影响,统计学采用平均离均差平方和来描述变量的变异程度。
FinCloud2023-06-06 07:54:451

数学 概率论与数理统计 任意一个随机变量减去它的数学期望,再除以它的标准差,得到的新的随机变量的期

期望是0, y= (x-u) /标准差 得出的变量是标准化的变量, 均值为0,方差为1
豆豆staR2023-06-06 07:54:452

如何理解随机变量这个概念以及随机变量的数学期望的概念?

设总体x~u[a,b],样本均值的期望和方差如下:如果随机变量只取得有限个值或无穷能按一定次序一一列出,其值域为一个或若干个有限或无限区间,这样的随机变量称为离散型随机变量。离散型随机变量的一切可能的取值乘积之和称为该离散型随机变量的数学期望(若该求和绝对收敛),它是简单算术平均的一种推广,类似加权平均。随机变量概念在做实验时,常常是相对于试验结果本身而言,我们主要还是对结果的某些函数感兴趣。例如,在掷骰子时,我们常常关心的是两颗骰子的点和数,而并不真正关心其实际结果。就是说,我们关心的也许是其点和数为7,而并不关心其实际结果是否是(1,6)或(2,5)或(3,4)或(4,3)或(5,2)或(6,1)。我们关注的这些量,或者更形式的说,这些定义在样本空间上的实值函数,称为随机变量。因为随机变量的值是由试验结果决定的,所以我们可以给随机变量的可能值指定概率。
豆豆staR2023-06-06 07:54:441

离散型随机变量的期望和方差是什么?

离散型随机变量的的期望也就是离散型随机变量的均值的是为了表达一个随机变量取值的中间水平,随机变量的方差刻画了随机变量取值的离散程度。由于它们反映了随机变量取值的平均水平及稳定性,所以随机变量的均值和方差在市场预测等其他方面有着重要的应用。离散型随机变量的期望公式:离散型随机变量X的取值为X1、X2、X3……Xn,p(X1)、p(X2)、p(X3)……p(Xn)、为X对应取值的概率,可理解为数据X1、X2、X3……Xn出现的频率高f(Xi)。则E(X)=X1*p(X1)+X2**p(X2)+……+Xn**p(Xn)= X1*f1(X1)+X2*f2(X2)+……+Xn*fn(Xn)。离散型随机变量的方差公式:D(X)=E{[X-E(X)]^2}=E(X^2)-(EX)^2。常见的分布的方差和期望:1、均匀分布:期望是(a+b)/2,方差是(b-a)的平方/12。2、二项分布:期望是np,方差是npq。3、泊松分布:期望是p,方差是p。4、指数分布:期望是1/p,方差是1/(p的平方)。5、正态分布:期望是u,方差是&的平方。6、X服从参数为p的0-1分布,则E(X)=p,d(X)=p(1-p)。
韦斯特兰2023-06-06 07:54:441

怎么求随机变量xy的期望?

如图所示:因为,(X,Y)是二维离散型随机变量。所以,xy也是离散型随机变量。先求出xy的概率分布列。再求xy的期望:比如 P(x=0)=1/2,P(x=1)=1/2 P(y=0)=1/2,P(y=1)=1/2 则,P(xy=0)=3/4 P(xy=1)=1/4 所以,E(XY)=0×(3/4)+1×(1/4)=1/4。当随机变量的可取值全体为一离散集时称其为离散型随机变量,否则称其为非离散型随机变量,这是很大的一个类,其中有一类是极其常见的,随机变量的取值为一(n)维连续空间。计算方法:随机变量即在一定区间内变量取值为有限个或可数个。例如某地区某年人口的出生数、死亡数,某药治疗某病病人的有效数、无效数等。离散型随机变量通常依据概率质量函数分类,主要分为:伯努利随机变量、二项随机变量、几何随机变量和泊松随机变量。
gitcloud2023-06-06 07:54:441

什么是随机变量的数学期望值

在概率论和统计学中,一个离散性随机变量的期望值(或数学期望、或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和.换句话说,期望值是随机试验在同样的机会下重复多次的结果计算出的等同“期望”的平均值.需要注意的是,期望值并不一定等同于常识中的“期望”——“期望值”也许与每一个结果都不相等.(换句话说,期望值是该变量输出值的平均数.期望值并不一定包含于变量的输出值集合里.)
小菜G的建站之路2023-06-06 07:54:431

随机变量的期望和方差是什么?

随机变量的期望是度量一个随机变量取值的集中位置或平均水平的最基本的数字特征,方差是表示随机变量取值的分散性的一个数字特征。 方差越大,说明随机变量的取值分布越不均匀,变化性越强,方差越小,说明随机变量的取值越趋近于均值,即期望值。期望值是随机试验在同样的机会下重复多次的结果计算出的等同期望的平均值,需要注意的是,期望值并不一定等同于常识中的期望,期望值,也许与每一个结果都不相等。方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量,概率论中方差用来度量随机变量和其数学期望,即均值之间的偏离程度,统计中的方差,样本方差是各个数据分别与其平均数之差的平方的和的平均数,在许多实际问题中,研究方差即偏离程度有着重要意义。随机变量的内容随机变量X 是一个映射,把随机试验的结果与实数建立起了一一对应的关系,而期望与方差是随机变量的两个重要的数字特征。随机变量表示随机现象,在一定条件下,并不总是出现相同结果的现象称为随机现象中各种结果的实值函数,一切可能的样本点,例如某一时间内公共汽车站等车乘客人数,电话交换台在一定时间内收到的呼叫次数等,都是随机变量的实例。随机变量与模糊变量的不确定性的本质差别在于,后者的测定结果仍具有不确定性,即模糊性,随机事件不论与数量是否直接有关,都可以数量化,即都能用数量化的方式表达,随机事件数量化的好处是可以用数学分析的方法来研究随机现象,例如某一时间内公共汽车站等车乘客人数,电话交换台在一定时间内收到的呼叫次数,灯泡的寿命等等,都是随机变量的实例。
拌三丝2023-06-06 07:54:431

随机变量的期望和方差是什么?

一、随机变量的期望分为离散情形和连续情形:1、离散型(discrete)随机变量即在一定区间内变量取值为有限个或可数个。例如某地区某年人口的出生数、死亡数,某药治疗某病病人的有效数、无效数等。离散型随机变量通常依据概率质量函数分类,主要分为:伯努利随机变量、二项随机变量、几何随机变量和泊松随机变量。2、连续型(continuous)随机变量即在一定区间内变量取值有无限个,或数值无法一一列举出来。例如某地区男性健康成人的身长值、体重值,一批传染性肝炎患者的血清转氨酶测定值等。有几个重要的连续随机变量常常出现在概率论中,如:均匀随机变量、指数随机变量、伽马随机变量和正态随机变量。二、离散型随机变量的方差:D(X) = E{[X - E(X)]^2}.(1)=E(X^2) - (EX)^2.(2)。(1)式是方差的离差表示法。(2)式表示:方差 = X^2的期望 - X的期望的平方。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的平均数。在许多实际问题中,研究方差即偏离程度有着重要意义。随机变量(random variable)表示随机试验各种结果的实值单值函数。随机事件不论与数量是否直接有关,都可以数量化,即都能用数量化的方式表达。随机事件数量化的好处是可以用数学分析的方法来研究随机现象。例如某一时间内公共汽车站等车乘客人数,电话交换台在一定时间内收到的呼叫次数,灯泡的寿命等等,都是随机变量的实例。
善士六合2023-06-06 07:54:431

随机变量的期望和方差是什么?

期望可以理解为这个变量的平均值。是对随机变量本身客观价值的一种表现,因为随机无法确定,大家心里需要有个数,这个随机的因素到底围绕的哪条线变化,期望就是那条线方差则是另一种特征,他描述的是随机变量的波动性围绕着期望波动的大小,方差越大,说明这个事变数越大,容易偏离平均值很远。随机变量的期望假设某一超市出售的某种商品,每周的需求量X在10至30范围内等可能取值,该商品的进货量也在10至30范围内等可能取值每周只进一次货若供大于求,则削价处理若供不应求,可从其他超市调拨假设某一超市出售的某种商品,每周的需求量X在10至30范围内等可能取值,该商品的进货量也在10至30范围内等可能取值。
九万里风9 2023-06-06 07:54:431

离散型随机变量及其分布 当X为0或者负数时数学期望和方差怎么算

a=1-0.2-0.1-0.3=0.4EX=0*0.2+1*0.1+2*0.3+3*0.4=1.9x^2对应的概率分布为0、1、4、9P=0.2,0.1,0.3,0.4EX^2=0*0.2+1*0.1+4*0.3+9*0.4=4.9DX=EX^2-(EX)^2=4.9-1.9*1.9=1.29
西柚不是西游2023-06-06 07:54:331

为什么随机变量X的数学期望E(EX)存在?

若随机变量X数学期望存在,则E(E(EX)在概率论和统计学中,数学期望(mean)(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。它反映随机变量平均取值的大小。需要注意的是,期望值并不一定等同于常识中的“期望”——“期望值”也许与每一个结果都不相等。期望值是该变量输出值的平均数。期望值并不一定包含于变量的输出值集合里。扩展资料:离散型随机变量与连续型随机变量都是由随机变量取值范围(取值)确定。变量取值只能取离散型的自然数,就是离散型随机变量。例如,一次掷20个硬币,k个硬币正面朝上,k是随机变量。k的取值只能是自然数0,1,2,…,20,而不能取小数3.5、无理数 ,因而k是离散型随机变量。如果变量可以在某个区间内取任一实数,即变量的取值可以是连续的,这随机变量就称为连续型随机变量。例如,公共汽车每15分钟一班,某人在站台等车时间x是个随机变量,x的取值范围是[0,15),它是一个区间,从理论上说在这个区间内可取任一实数3.5、无理数等,因而称这随机变量是连续型随机变量。
meira2023-06-06 07:54:151

怎样求二维随机变量的期望值和方差?

对于二维连续变量的分布函数F(x,y),一般应用其概率密度函数f(x,y)的定积分求解;对于非连续变量,需要分别累加求得【与一维随机变量的求法相仿】。∴本题中,当x∈(0,∞)、y∈(0,∞)时,分布函数F(x,y)=∫(-∞,x)du∫(-∞,y)f(u,v)dv=∫(0,x)du∫(-0,y)2e^(-2u-v)dv=∫(0,x)2e^(-2u)du∫(-0,y)e^(-v)dv=[1-e^(-2x)][1-e^(-y)]。当xu2209(0,∞)、yu2209(0,∞)时,分布函数F(x,y)=∫(-∞,0)du∫(-∞,0)f(u,v)dv=0。扩展资料:随机变量在不同的条件下由于偶然因素影响,可能取各种不同的值,故其具有不确定性和随机性,但这些取值落在某个范围的概率是一定的,此种变量称为随机变量。随机变量可以是离散型的,也可以是连续型的。事件随机发生的机率,对于均匀分布函数,概率密度等于一段区间(事件的取值范围)的概率除以该段区间的长度,它的值是非负的,可以很大也可以很小。可以把概率密度看成是纵坐标,区间看成是横坐标,概率密度对区间的积分就是面积,而这个面积就是事件在这个区间发生的概率,所有面积的和为1。所以单独分析一个点的概率密度是没有任何意义的,它必须要有区间作为参考和对比。离散型随机变量的分布律和它的分布函数是相互唯一决定的。它们皆可以用来描述离散型随机变量的统计规律性,但分布律比分布函数更直观简明,处理更方便。因此,一般是用分布律(概率函数)而不是分布函数来描述离散型随机变量。参考资料来源:百度百科——二维随机变量
可桃可挑2023-06-06 07:53:361

某随机变量X的分布列如下: X 1 2 3 P a 0.3 0.2则随机变量X的数学期望为____

c=1-0.3-0.-0.2=(c的值就是用1减去其他几个概率)e(x)=-1*0.3+c*0+0.*1+2*0.2(数学期望就是用x的值分别和对应的p相乘最后在求和)
kikcik2023-06-06 07:53:012

我的期望作文怎么写

首先得有一个期望的愿望,围绕着这个期望的愿望,怎样去实施?怎样想去做?怎么样才能完成这个愿望?围绕着这方面去写
人类地板流精华2023-06-05 08:03:552

高中作文800字,我的期望

太长了
康康map2023-06-05 08:03:512

x分之一的数学期望怎么算

“数学期望”主要有两种方法: 只要把分布列表格中的数字 每一列相乘再相加 即可。 如果X是离散型随机变量,它的全部可能取值是a1,a2,…,an,…,取这些值的相应概率是p1,p2…,pn,…,则其数学期望E(X)=(a1)*(p1)+(a2)*(p2)+…+(an)*(pn)。因为甲输掉后两局的可能性只有(1/2)×(1/2)=1/4,也就是说甲赢得后两局或后两局中任意赢一局的概率为1-(1/4)=3/4,甲有75%的期望获得100法郎;而乙期望赢得100法郎就得在后两局均击败甲,乙连续赢得后两局的概率为(1/2)*(1/2)=1/4,即乙有25%的期望获得100法郎奖金。用概率论的知识,不难得知,甲获胜的可能性大,乙获胜的可能性小。可见,虽然不能再进行比赛,但依据上述可能性推断,甲乙双方最终胜利的客观期望分别为75%和25%,因此甲应分得奖金的100*75%=75(法郎),乙应分得奖金的的100×25%=25(法郎)。这个故事里出现了“期望”这个词,数学期望由此而来。
u投在线2023-06-03 14:23:271

四,洗词用希望,期望,造句

1、我取得全优的成绩,是老师的【希望】,更是家长的【期望】2、甘甜的雨露是禾苗【希望】,也是农民的【期望】。3、我【希望】自己快点长大,同时【期望】自己健康地成长。
苏州马小云2023-05-30 22:45:331

绩效考核权重百分之20中门槛目标、期望目标、挑战目标各占多少分?

慎重处理涉及员工切身利益的工资的问题  由于考核体系的推出与实施,势必会对企业原有薪酬福利制度的相关条款进行修改,特别是与考核体制配套的绩效工资,但要注意的是工资中绩效工资所占比例不宜过大,以免造成急功近利、拔苗助长的后果。绩效工资确是提高员工积极性的有效杠杆,但是不能成为员工收入的主流,特别是在与考核指标紧密挂钩的情况下,会导致员工收入分配的两极分化,从而增加员工队伍中不稳定因素。但也不能搞平均主义,有大锅饭或一团和气的思想,这样就失去了绩效考核的意义。
北营2023-05-29 09:47:142

期望造句

期望造句如下:1、我所希望的是你快乐,我所愿望的是你幸福,我所期望的是你健康,我所渴望的是你平安,我最盼望的是你天天开心!2、本课程为企管系创业学程的课程之一,同时期望能协助学生将企业经营的创意写成营运计画书。3、心若寒冬还能期盼春天的到来,还有着一丝期望期望着春天的到来希望的萌发,可是,若是身在深渊,心亦在深渊,已经绝望如斯,那么还有什么可以希冀的呢。多喇A梦4、你若想要得到,就别只是期望。人生短暂,经不起等待。Ifyouwantsomething,don"twishforit.Lifeistooshorttowait.5、伊拉克平民在残骸中曲折前进,期望越过美军继续到巴格达的15公里路程。6、豪尔赫?洛伦佐“对在日本的成功充满期望”。7、中大是一所公营大学,也是全港莘莘学子首选的大学之一,学生及家长对中大都有很大的期望。8、同样的道理,我们从不期望大理石呀,细瓷呀出现在凯迪拉克轿车里。9、一两项期盼已久的处理方案可获通过,一些欧洲投资商也表现出兴趣,期望以跳楼价进行投资。10、最终还是决定不去了,他就要和别人结婚,他不能期望我笑着说“恭喜,百年好合”,太残忍的要求。11、结果显示,大学生的薪酬期望值继续降低,但他们对国企的青睐度大幅提升,有近四分之一的大学生求职首选国企。
北境漫步2023-05-28 14:28:142

卡方分布的期望和方差是什么?

卡方分布的期望和方差是:E(X)=n,D(X)=2nt分布:E(X)=0(n>1),D(X)=n/(n-2)(n>2)F(m,n)分布:E(X)=n/(n-2)(n>2)D(X)=[2n^2*(m+n-2)]/[m(n-2)^2*(n-4)](n>4)卡方分布(χ2分布)是概率论与统计学中常用的一种概率分布,k个独立的标准正态分布变量的平方和服从自由度为k的卡方分布,卡方分布常用于假设检验和置信区间的计算。正态分布的密度函数的特点是:关于μ对称,在μ处达到最大值,在正(负)无穷远处取值为0,在μ±σ处有拐点。它的形状是中间高两边低,图像是一条位于x轴上方的钟形曲线。当μ=0,σ2=1时,称为标准正态分布,记为N(0,1)。二项分布:在每次试验中只有两种可能的结果,而且两种结果发生与否互相对立,并且相互独立,与其它各次试验结果无关,事件发生与否的概率在每一次独立试验中都保持不变,则这一系列试验总称为n重伯努利实验,当试验次数为1时,二项分布服从0-1分布。
gitcloud2023-05-26 13:01:481

标准差、方差、期望工期、三点估算计算

标准差和方差计算   标准差 = (悲观估计时间-乐观估计时间)/6   方差 = (标准差)的平方   最终估计时间计算   最终估计时间=(悲观估计时间+4*正常估计时间+乐观估计时间)/6   三点法估算的含义   三点法估算的计算公式理论上仅适用于三角形分布,即三角形概率分布,但实际上它常常用于其他多种分布。   在做一个工程的项目计划时,只要已知最理想的完成时间,最正常的完成时间和最差的完成时间这三点,就能估算出一个项目计划的期望时间。   Te = (O+4M+P)/6   其中,Te表示最终估计时间,就是期望历时;O表示乐观估计时间;M表示正常估计时间;P表示悲观估计时间。
ardim2023-05-26 08:18:431

设连续型随机变量x的分布函数f(x)=1-4/x² x≥2,0 x<2,求x的数学期望E(x)

你好!先由分布函数求导得出概率密度,再由公式算出期望为4。经济数学团队帮你解答,请及时采纳。谢谢!
北境漫步2023-05-26 08:18:353

连续型随机变量的数学期望 方差 要详细过程 谢谢!

也可以D(x)=E(x²)-[E(x)]²。
阿啵呲嘚2023-05-26 08:18:321

简述三种连续型随机变量的分布律,期望,方法

均匀分布 x在[a,b]内的均匀分布,概率密度f(x)=1/(b-a),期望EX=(a+b)/2,方差DX=(b-a)^2/12正态分布 概率密度f(x)=[1/(2πσ)^0.5]*e^[-(x-μ)^2/2σ^2],x∈(-∞,+∞),期望EX=μ,方差DX=σ指数分布 概率密度f(x)=λe^(-λx),(x>0)。期望EX=1/λ,方差DX=1/λ^2
wpBeta2023-05-26 08:18:302

数学期望E(XY)怎么计算

如果X、Y独立,则:E(XY)=E(X)*E(Y)如果不独立,可以用定义计算:先求出X、Y的联合概率密度,再用定义。或者先求出Cov(x,y)再用公式 Cov(X,Y)=E(XY)--E(X)*E(Y),D(X±Y)=D(X)+D(Y)±2*Cov(X,Y)
gitcloud2023-05-26 08:18:292

随机变量的期望、方差有何区别?

离散型随机变量的的期望也就是离散型随机变量的均值的是为了表达一个随机变量取值的中间水平,随机变量的方差刻画了随机变量取值的离散程度。由于它们反映了随机变量取值的平均水平及稳定性,所以随机变量的均值和方差在市场预测等其他方面有着重要的应用。离散型随机变量的期望公式:离散型随机变量X的取值为X1、X2、X3……Xn,p(X1)、p(X2)、p(X3)……p(Xn)、为X对应取值的概率,可理解为数据X1、X2、X3……Xn出现的频率高f(Xi)。则E(X)=X1*p(X1)+X2**p(X2)+……+Xn**p(Xn)= X1*f1(X1)+X2*f2(X2)+……+Xn*fn(Xn)。离散型随机变量的方差公式:D(X)=E{[X-E(X)]^2}=E(X^2)-(EX)^2。常见的分布的方差和期望:1、均匀分布:期望是(a+b)/2,方差是(b-a)的平方/12。2、二项分布:期望是np,方差是npq。3、泊松分布:期望是p,方差是p。4、指数分布:期望是1/p,方差是1/(p的平方)。5、正态分布:期望是u,方差是&的平方。6、X服从参数为p的0-1分布,则E(X)=p,d(X)=p(1-p)。
可桃可挑2023-05-26 08:18:291

概率论和统计学中,数学期望的概念是什么?

数学期望在概率论和统计学中,数学期望(mean)(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。它反映随机变量平均取值的大小。需要注意的是,期望值并不一定等同于常识中的“期望”——“期望值”也许与每一个结果都不相等。期望值是该变量输出值的平均数。期望值并不一定包含于变量的输出值集合里。扩展资料:离散型随机变量与连续型随机变量都是由随机变量取值范围(取值)确定。变量取值只能取离散型的自然数,就是离散型随机变量。例如,一次掷20个硬币,k个硬币正面朝上,k是随机变量。k的取值只能是自然数0,1,2,…,20,而不能取小数3.5、无理数,因而k是离散型随机变量。如果变量可以在某个区间内取任一实数,即变量的取值可以是连续的,这随机变量就称为连续型随机变量。例如,公共汽车每15分钟一班,某人在站台等车时间x是个随机变量,x的取值范围是[0,15),它是一个区间,从理论上说在这个区间内可取任一实数3.5、无理数等,因而称这随机变量是连续型随机变量。参考资料来源:百度百科-数学期望参考资料来源:百度百科-均值
善士六合2023-05-26 08:18:281

离散型随机变量数学期望公式怎样推导

如果随机变量只取得有限个值或无穷能按一定次序一一列出,其值域为一个或若干个有限或无限区间,这样的随机变量称为离散型随机变量。离散型随机变量的一切可能的取值xi与对应的概率p(xi)乘积之和称为该离散型随机变量的数学期望 (若该求和绝对收敛),记为E(x),是简单算术平均的一种推广,类似加权平均。离散型随机变量X的取值为为X对应取值的概率,可理解为数据出现的频率f(Xi),则:扩展资料:离散型随机变量与连续型随机变量都是由随机变量取值范围(取值)确定。变量取值只能取离散型的自然数,就是离散型随机变量。例如,一次掷20个硬币,k个硬币正面朝上,k是随机变量。k的取值只能是自然数0,1,2,?,20,而不能取小数3.5、无理数根号20,因而k是离散型随机变量。如果变量可以在某个区间内取任一实数,即变量的取值可以是连续的,这随机变量就称为连续型随机变量。例如,公共汽车每15分钟一班,某人在站台等车时间x是个随机变量,x的取值范围是[0,15),它是一个区间,从理论上说在这个区间内可取任一实数3.5、无理数根号20等,因而称这随机变量是连续型随机变量。
tt白2023-05-26 08:18:271

离散型随机变量数学期望公式怎样推导

2+1/2=5/2
北营2023-05-26 08:18:264

week59 不可解的矩阵方程 矩阵投影 重期望公式 动态规划

日月交替铸一座钟 心随着世界一起跳动 南北进退得一场空 心声世界不愿懂 寒冬本来就冷 还要吵个不停 那多伤感情 坠入雪中泥泞的水坑 我面无表情 装作很冷静 去营造那不存在的暖风 脚下却只能踩着水坑 我知道我总会有不好的情绪 我知道我总会对你发脾气 我知道这一切都不怪你 我知道你们心里也委屈 妈妈还在忙 转身又进了厨房 怨这种日子怎么那么长 我躲在一旁等着饭菜香 太多的感受融进这万家灯火 笨嘴又拙舌不要责怪我 今夜的星光格外闪烁 我替你送晚秋去延安 我替你陪老板吃便饭 等我回天津摆佛龛 我和你一起爱左蓝 我也想从重庆走延安 我也想抱着雨农撞岱山 我也想重回海河天津站 我也想梦中念左蓝 你们编织在华北的浪漫 全刻在小卧室的天花板 你那峨眉峰埋葬在对岸 渤海深处写满了不甘 最近上课讲到了矩阵投影,感觉并不是很理解,没想到后来的许多都是建立在它的基础之上的,因此今天特地看了一下。 如图,在R^2空间中有两个向量,求一个常数θ使两个向量满足θ·a=b Aθ的所有可能结果都在一个固定的区域中,在线性代数中我们称这个区域为列空间(column space),列空间顾名思义就是矩阵各列的所有线性组合a1θ1+a2θ2+a3θ3+...+anθn。在1-D的情况下列空间就是一条线,在2-D的情况下列空间就是一个平面。但是我们的数据哪里会这么恰好的落在矩阵的列空间里呢?天底下哪有这样的好事啊!!! 特别是在数据量特别大的情况下,矩阵特别是在数据量特别大的情况下,矩阵A会成为一个n >> m的超级高大的n x m矩阵(如下图)。在这种等式数量远大于未知数数量的情况中,我们很难满足每一个等式的约束。 但是目标不再在空间里并不代表不能求出解,只能说没有perfect solution(语出Gilbert Strang),但是我们努力一下还是可以做到最好的(best solution)。我们用投影向量p来寻找最合适的θ。而这个θ就是不存在的完美解的估计值。 回顾矩阵求导得到的Normal Equation: 两者除了在符号表示上有所区别,其它的一模一样,现在从符号本身的含义去联系两者。 归根结底,Normal Equation是用来求解一个最优化问题。在投影的方法中,矩阵A作为一个基向量空间,用于寻找最优的θ使之最接近b。 矩阵A有多少行就表示基向量空间有多少维(每个特征有多少样本量,就表明在这个空间中有多少维度),有多少列,就表示有多少个基向量。 在线性回归中矩阵A就等同于X,行数为样本量,列数为特征量,b等同于Y,为目标向量。 当特征远远少于样本量的时候说明基向量的空间维数很高,但基向量很少。也就是说在一个很大的空间中,只有少数几个方向给定,需要去拟合向量Y,那难度当然很大,误差就很大。 当特征数量远远大于样本量的时候就相反,基向量空间不大,但基向量的个数很多。也就是说在一个不大的空间中,有很多的基向量,基本涵盖了所有的方向,此时我想要找到一个基向量的线性组合去逼近目标向量Y,那就容易很多了。此时θ过于依赖当前的样本,泛化能力差。 双重期望値定理 (Double expectation theorem),亦称 重叠期望値定理 (Iterated expectation theorem)、 全期望値定理 (Law of total expectation),即设X,Y,Z为 随机变量 ,g(·)和h(·)为 连续函数 ,下列期望和条件期望均存在,则 Dynamic Programming 动态规划是用来解决多阶段决策过程最优化的一种方法。其特点是可以把一个最优化问题转化为多个子最优化问题,从而一个一个地去解决。它是解决问题的一种思想或者说一种方法,并不是某一种特别的算法。 这是个特别有意思的事情:最优性原理比较好理解,它是说如果总策略是最优的话,那么子策略一定是最优的。而DP把这个事情反过来说了,说如果从某一步到最后一步的策略是最优的话,那么我们迭代这个过程直到第一步,那么这个总的策略一定是最优的。初闻之,不可思议。它的要求在隐含在了系统模型中,也就是下个时刻的系统状态与且仅与当前时刻的系统状态和当前时刻的控制输入有关,我们可以叫做无后效性或马尔可夫性。本质上是一个多阶段决策过程,在系统的不同时刻不同阶段根据所处的状态采取相应的输入,每个阶段都要做决策,为了使整个决策的过程达到最优效果。
肖振2023-05-24 22:50:011

Γ函数(伽马函数)的数学期望怎么求?

E(X)=∫[c,+∞)x*β^α/Γ(α)*(x-c)^(α-1)*e^[-β(x-c)]*dx (α>0,β>0)=∫[0,+∞)(t/β+c)*β^α/Γ(α)*(t/β)^(α-1)*e^(-t)*1/β*dt=1/Γ(α)*∫[0,+∞){t^[(α+1)-1]/β+ct^(α-1)}e^(-t)dt=1/Γ(α)*[1/β*Γ(α+1)+cΓ(α)]=1/Γ(α)*[α/β*Γ(α)+cΓ(α)]=α/β+c
拌三丝2023-05-24 07:48:471

超几何分布的期望和方差公式是怎样的?

1、超几何分布的期望和方差公式推导。 2、二项分布和超几何分布的期望和方差公式。 3、超几何分布的期望和方差公式高中。 4、超几何分布的期望和方差公式可以直接用吗。1.超几何分布的期望和方差公式:E(X)=(n*M)/N[其中x是样本数,n为样本容量,M为样本总数,N为总体中的个体总数],求出均值,这就是超几何分布的数学期望值。 2.方差公式是V(X)=X1^2*P1+X2^2*P2+...Xn^2*Pn-a^2[这里设a为期望值]。 3.超几何分布是统计学上一种离散概率分布。 4.它描述了从有限N个物件(其中包含M个指定种类的物件)中抽出n个物件,成功抽出该指定种类的物件的次数(不放回)。 5.称为超几何分布,是因为其形式和“超几何函数”的级数展式的系数有关。
gitcloud2023-05-24 07:48:461

超几何分布的期望和方差公式是?

1、超几何分布的期望和方差公式推导。 2、二项分布和超几何分布的期望和方差公式。 3、超几何分布的期望和方差公式高中。 4、超几何分布的期望和方差公式可以直接用吗。1.超几何分布的期望和方差公式:E(X)=(n*M)/N[其中x是样本数,n为样本容量,M为样本总数,N为总体中的个体总数],求出均值,这就是超几何分布的数学期望值。 2.方差公式是V(X)=X1^2*P1+X2^2*P2+...Xn^2*Pn-a^2[这里设a为期望值]。 3.超几何分布是统计学上一种离散概率分布。 4.它描述了从有限N个物件(其中包含M个指定种类的物件)中抽出n个物件,成功抽出该指定种类的物件的次数(不放回)。 5.称为超几何分布,是因为其形式和“超几何函数”的级数展式的系数有关。
mlhxueli 2023-05-24 07:48:461

超几何分布的期望和方差公式是怎样的?

1、超几何分布的期望和方差公式推导。 2、二项分布和超几何分布的期望和方差公式。 3、超几何分布的期望和方差公式高中。 4、超几何分布的期望和方差公式可以直接用吗。1.超几何分布的期望和方差公式:E(X)=(n*M)/N[其中x是样本数,n为样本容量,M为样本总数,N为总体中的个体总数],求出均值,这就是超几何分布的数学期望值。 2.方差公式是V(X)=X1^2*P1+X2^2*P2+...Xn^2*Pn-a^2[这里设a为期望值]。 3.超几何分布是统计学上一种离散概率分布。 4.它描述了从有限N个物件(其中包含M个指定种类的物件)中抽出n个物件,成功抽出该指定种类的物件的次数(不放回)。 5.称为超几何分布,是因为其形式和“超几何函数”的级数展式的系数有关。
豆豆staR2023-05-24 07:48:461

超几何分布的期望和方差公式?

超几何分布的期望和方差是EX=nM/N,超几何分布是统计学上一种离散概率分布。它描述了从有限N个物件(其中包含M个指定种类的物件)中抽出n个物件,成功抽出该指定种类的物件的次数(不放回)。称为超几何分布,是因为其形式与“超几何函数”的级数展式的系数有关,超几何分布中的参数是M,N,n,上述超几何分布记作X-H(n,M,N)。扩展资料:称随机变量X服从超几何分布(hypergeometric distribution)。需要注意的是:(1)超几何分布的模型是不放回抽样。(2)超几何分布中的参数是M,N,n,上述超几何分布记作X~H(n,M,N)。
Ntou1232023-05-24 07:48:451

超几何分布的期望是什么?

几何分布的期望和方差是EX=nM/N,超几何分布是统计学上一种离散概率分布。它描述了从有限N个物件(其中包含M个指定种类的物件)中抽出n个物件,成功抽出该指定种类的物件的次数(不放回)。称为超几何分布,是因为其形式与“超几何函数”的级数展式的系数有关,超几何分布中的参数是M,N,n,上述超几何分布记作X-H(n,M,N)。统计学意义当数据分布比较分散(即数据在平均数附近波动较大)时,各个数据与平均数的差的平方和较大,方差就较大;当数据分布比较集中时,各个数据与平均数的差的平方和较小。因此方差越大,数据的波动越大;方差越小,数据的波动就越小。样本中各数据与样本平均数的差的平方和的平均数叫做样本方差;样本方差的算术平方根叫做样本标准差。样本方差和样本标准差都是衡量一个样本波动大小的量,样本方差或样本标准差越大,样本数据的波动就越大。
北营2023-05-24 07:48:451

超几何分布的期望和方差公式推导(超几何分布的期望和方差公式高中)

1、超几何分布的期望和方差公式推导。 2、二项分布和超几何分布的期望和方差公式。 3、超几何分布的期望和方差公式高中。 4、超几何分布的期望和方差公式可以直接用吗。1.超几何分布的期望和方差公式:E(X)=(n*M)/N[其中x是样本数,n为样本容量,M为样本总数,N为总体中的个体总数],求出均值,这就是超几何分布的数学期望值。 2.方差公式是V(X)=X1^2*P1+X2^2*P2+...Xn^2*Pn-a^2[这里设a为期望值]。 3.超几何分布是统计学上一种离散概率分布。 4.它描述了从有限N个物件(其中包含M个指定种类的物件)中抽出n个物件,成功抽出该指定种类的物件的次数(不放回)。 5.称为超几何分布,是因为其形式和“超几何函数”的级数展式的系数有关。
bikbok2023-05-24 07:48:451

超几何分布的期望和方差公式

  超几何分布的期望和方差公式:E(X)=(n*M)/N[其中x是样本数,n为样本容量,M为样本总数,N为总体中的个体总数],求出均值,这就是超几何分布的数学期望值。方差公式是V(X)=X1^2*P1+X2^2*P2+...Xn^2*Pn-a^2[这里设a为期望值]。   超几何分布是统计学上一种离散概率分布。它描述了从有限N个物件(其中包含M个指定种类的物件)中抽出n个物件,成功抽出该指定种类的物件的次数(不放回)。称为超几何分布,是因为其形式与“超几何函数”的级数展式的系数有关。
大鱼炖火锅2023-05-24 07:48:451

超几何分布的期望和方差公式可以直接用吗?

1、超几何分布的期望和方差公式推导。 2、二项分布和超几何分布的期望和方差公式。 3、超几何分布的期望和方差公式高中。 4、超几何分布的期望和方差公式可以直接用吗。1.超几何分布的期望和方差公式:E(X)=(n*M)/N[其中x是样本数,n为样本容量,M为样本总数,N为总体中的个体总数],求出均值,这就是超几何分布的数学期望值。 2.方差公式是V(X)=X1^2*P1+X2^2*P2+...Xn^2*Pn-a^2[这里设a为期望值]。 3.超几何分布是统计学上一种离散概率分布。 4.它描述了从有限N个物件(其中包含M个指定种类的物件)中抽出n个物件,成功抽出该指定种类的物件的次数(不放回)。 5.称为超几何分布,是因为其形式和“超几何函数”的级数展式的系数有关。
康康map2023-05-24 07:48:451

超几何分布有没有期望值、方差公式?

超几何分布的期望和方差公式:E(X)=(n*M)/N[其中x是样本数,n为样本容量,M为样本总数,N为总体中的个体总数],求出均值,这就是超几何分布的数学期望值。方差公式是V(X)=X1^2*P1+X2^2*P2+...Xn^2*Pn-a^2[这里设a为期望值]。超几何分布是统计学上一种离散概率分布。它描述了从有限N个物件(其中包含M个指定种类的物件)中抽出n个物件,成功抽出该指定种类的物件的次数(不放回)。称为超几何分布,是因为其形式与“超几何函数”的级数展式的系数有关。超几何分布的特点超几何分布的特点是:超几何分布的模型是不放回抽样;超几何分布中的参数是M,N,n,记作X~H(N,n,M)。超几何分布是统计学上一种离散概率分布。描述了由有限个物件中抽出n个物件,成功抽出指定种类的物件的次数(不归还)。在产品质量的不放回抽检中,若N件产品中有M件次品,抽检n件时所得次品数X=k,则P(X=k)=C(M,k)·C(N-M,n-k)/C(N,n),C(a b)为古典概型的组合形式,a为下限,b为上限,此时我们称随机变量X服从超几何分布。
再也不做站长了2023-05-24 07:48:451

超几何分布期望值的简单公式法?

超几何分布期望值的简单公式法,E(X)=(n*M)/N,[其中x是指定样品数,n为样品容量,M为指定样品总数,N为总体中的个体总数],可以直接求出均值。方差有两种算法:V(X)=(X1-a)^2*P1+(x2-a)^2*P2+...+(Xn-a)*Pn。另一种是V(X)=X1^2*P1+X2^2*P2+...Xn^2*Pn-a^2。超几何分布简介:超几何分布是统计学上一种离散概率分布。它描述了从有限N个物件(其中包含M个指定种类的物件)中抽出n个物件,成功抽出该指定种类的物件的次数(不放回)。称为超几何分布,是因为其形式与“超几何函数”的级数展式的系数有关。超几何分布中的参数是M,N,n,上述超几何分布记作X~H(n,M,N)。以上内容参考:百度百科-超几何分布
豆豆staR2023-05-24 07:48:451

什么是超几何分布期望值?

超几何分布期望值的简单公式法,E(X)=(n*M)/N,[其中x是指定样品数,n为样品容量,M为指定样品总数,N为总体中的个体总数],可以直接求出均值。方差有两种算法:V(X)=(X1-a)^2*P1+(x2-a)^2*P2+...+(Xn-a)*Pn。另一种是V(X)=X1^2*P1+X2^2*P2+...Xn^2*Pn-a^2。超几何分布简介:超几何分布是统计学上一种离散概率分布。它描述了从有限N个物件(其中包含M个指定种类的物件)中抽出n个物件,成功抽出该指定种类的物件的次数(不放回)。称为超几何分布,是因为其形式与“超几何函数”的级数展式的系数有关。超几何分布中的参数是M,N,n,上述超几何分布记作X~H(n,M,N)。以上内容参考:百度百科-超几何分布
苏州马小云2023-05-24 07:48:451

如何计算超几何分布的数学期望和方差公式

超几何分布的均值和方差公式:E(X)=(n*M)/N[其中x是样本数,n为样本容量,M为样本总数,N为总体中的个体总数],求出均值,这就是超几何分布的数学期望值。方差公式是V(X)=X1^2*P1+X2^2*P2+...Xn^2*Pn-a^2[这里设a为期望值]。超几何分布是统计学上一种离散概率分布。它描述了从有限N个物件(其中包含M个指定种类的物件)中抽出n个物件,成功抽出该指定种类的物件的次数(不放回)。称为超几何分布,是因为其形式与“超几何函数”的级数展式的系数有关。相关定义:方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的平均数。在许多实际问题中,研究方差即偏离程度有着重要意义。
kikcik2023-05-24 07:48:451

超几何分布的期望和方差是什么?

超几何分布的期望和方差是EX=nM/N,超几何分布是统计学上一种离散概率分布。它描述了从有限N个物件(其中包含M个指定种类的物件)中抽出n个物件,成功抽出该指定种类的物件的次数(不放回)。称为超几何分布,是因为其形式与“超几何函数”的级数展式的系数有关,超几何分布中的参数是M,N,n,上述超几何分布记作X-H(n,M,N)。扩展资料:称随机变量X服从超几何分布(hypergeometric distribution)。需要注意的是:(1)超几何分布的模型是不放回抽样。(2)超几何分布中的参数是M,N,n,上述超几何分布记作X~H(n,M,N)。
人类地板流精华2023-05-24 07:48:451

超几何分布的期望和方差公式是什么?

超几何分布期望值的简单公式法,E(X)=(n*M)/N,[其中x是指定样品数,n为样品容量,M为指定样品总数,N为总体中的个体总数],可以直接求出均值。方差有两种算法:V(X)=(X1-a)^2*P1+(x2-a)^2*P2+...+(Xn-a)*Pn。另一种是V(X)=X1^2*P1+X2^2*P2+...Xn^2*Pn-a^2。超几何分布简介:超几何分布是统计学上一种离散概率分布。它描述了从有限N个物件(其中包含M个指定种类的物件)中抽出n个物件,成功抽出该指定种类的物件的次数(不放回)。称为超几何分布,是因为其形式与“超几何函数”的级数展式的系数有关。超几何分布中的参数是M,N,n,上述超几何分布记作X~H(n,M,N)。以上内容参考:百度百科-超几何分布
LuckySXyd2023-05-24 07:48:421

超几何分布的期望推导

超几何分布是统计学上一种离散概率分布。它描述了从有限N个物件(其中包含M个指定种类的物件)中抽出n个物件,成功抽出该指定种类的物件的次数(不放回)。称为超几何分布,是因为其形式与“超几何函数”的级数展式的系数有关,超几何分布中的参数是M,N,n,上述超几何分布记作XH(n,M,N)。当数据分布比较分散(即数据在平均数附近波动较大)时,各个数据与平均数的差的平方和较大,方差就较大,当数据分布比较集中时,各个数据与平均数的差的平方和较小。因此方差越大,数据的波动越大,方差越小,数据的波动就越小。
Ntou1232023-05-24 07:48:421

超几何分布的期望是什么?

超几何分布的期望是EX=nM/N,从有限N个物件(其中包含M个指定种类的物件)中抽出n个物件,成功抽出该指定种类的物件的次数(不放回)。超几何分布是统计学上一种离散概率分布。它描述了从有限N个物件(其中包含M个指定种类的物件)中抽出n个物件,成功抽出该指定种类的物件的次数(不放回)。称为超几何分布,是因为其形式与“超几何函数”的级数展式的系数有关。数学期望在概率论和统计学中,数学期望(mathematic expectation )(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。它反映随机变量平均取值的大小。期望值并不一定等同于常识中的“期望”——“期望值”也许与每一个结果都不相等。期望值是该变量输出值的平均数。期望值并不一定包含于变量的输出值集合里。
凡尘2023-05-24 07:48:421

如何证明当函数为凸函数时,函数的期望大于等于期望的函数?

Jensen不等式
康康map2023-05-23 19:25:112

指数分布的期望、方差是多少?

指数分布的期望:E(X)=1/λ。指数分布的方差:D(X)=Var(X)=1/λ²。指数分布与分布指数族的分类不同,后者是包含指数分布作为其成员之一的大类概率分布,也包括正态分布,二项分布,伽马分布,泊松分布等等。六个常见分布的期望和方差:1、均匀分布,期望是(a+b)/2,方差是(b-a)的平方/12。2、二项分布,期望是np,方差是npq。3、泊松分布,期望是p,方差是p。4、指数分布,期望是1/p,方差是1/(p的平方)。5、正态分布,期望是u,方差是&的平方。6、x服从参数为p的0-1分布,则e(x)=p,d(x)=p(1-p)。
gitcloud2023-05-23 12:57:591

概率密度的数学期望和方差是多少啊?

概率密度:f(x)=(1/2√π) exp{-(x-3)²/2*2} 根据题中正态概率密度函数表达式就可以立马得到随机变量的数学期望和方差:数学期望:μ = 3方差: σ²= 2连续型随机变量的概率密度函数(在不至于混淆时可以简称为密度函数)是一个描述这个随机变量的输出值,在某个确定的取值点附近的可能性的函数。而随机变量的取值落在某个区域之内的概率则为概率密度函数在这个区域上的积分。当概率密度函数存在的时候,累积分布函数是概率密度函数的积分。概率密度函数一般以小写标记。扩展资料:随机数据的概率密度函数表示瞬时幅值落在某指定范围内的概率。因此是幅值的函数。它随所取范围的幅值而变化。概率密度函数f(x) 具有下列性质:(1)f(x)≧0;(2)∫f(x)d(x)=1;(3) P(a<X≦b)=∫f(x)dx.
bikbok2023-05-23 12:57:571

几何分布的期望和方差公式推导是什么?

几何分布的期望是1/p,方差公式推导为s^2=[(x1-x)^2+(x2-x)^2+......(xn-x)^2]/(n),其中x为平均数。相关介绍:几何分布(Geometric distribution)是离散型概率分布。其中一种定义为:在n次伯努利试验中,试验k次才得到第一次成功的几率。详细地说,是:前k-1次皆失败,第k次成功的概率。几何分布是帕斯卡分布当r=1时的特例。在伯努利试验中,成功的概率为p,若ξ表示出现首次成功时的试验次数,则ξ是离散型随机变量,它只取正整数,且有P(ξ=k)=(1-p)的(k-1)次方乘以p (k=1,2,…,0<p<1),此时称随机变量ξ服从几何分布。它的期望为1/p,方差为(1-p)/(p的平方)。求几何分布的期望公式:Eε=1/p。在概率论和统计学中,数学期望(mean)(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。它反映随机变量平均取值的大小。
黑桃花2023-05-23 12:57:531

超几何分布的期望和方差是什么?

几何分布的期望和方差是EX=nM/N,超几何分布是统计学上一种离散概率分布。它描述了从有限N个物件(其中包含M个指定种类的物件)中抽出n个物件,成功抽出该指定种类的物件的次数(不放回)。称为超几何分布,是因为其形式与“超几何函数”的级数展式的系数有关,超几何分布中的参数是M,N,n,上述超几何分布记作X-H(n,M,N)。统计学意义当数据分布比较分散(即数据在平均数附近波动较大)时,各个数据与平均数的差的平方和较大,方差就较大;当数据分布比较集中时,各个数据与平均数的差的平方和较小。因此方差越大,数据的波动越大;方差越小,数据的波动就越小。样本中各数据与样本平均数的差的平方和的平均数叫做样本方差;样本方差的算术平方根叫做样本标准差。样本方差和样本标准差都是衡量一个样本波动大小的量,样本方差或样本标准差越大,样本数据的波动就越大。
小白2023-05-23 12:57:531

几何分布的期望与方差公式怎么推导?

Dξ=∑(ξ-Eξ)^2*Pξ =∑(ξ^2+Eξ^2-2*ξ*Eξ)*Pξ =∑(ξ^2*Pξ+Eξ^2*Pξ-2*Pξ*ξ*Eξ) =∑ξ^2*Pξ+Eξ^2*∑Pξ-2*Eξ*∑Pξ*ξ因为∑Pξ=1而且Eξ=∑ξ*Pξ所以Dξ=∑ξ^2*Pξ-Eξ^2而∑ξ^2*Pξ,表示E(ξ^2)所以Dξ =E(ξ^2)-Eξ^2 下面计算几何分布的学期望,Eξ=∑{ξ=1,∞}ξ*(1-p)^(ξ-1)*pEξ=p+∑{ξ=2,∞}ξ*(1-p)^(ξ-1)*p ①当然(1-p)*Eξ=∑{ξ=1,∞}ξ*(1-p)^ξ*p(1-p)*Eξ=∑{ξ=2,∞}(ξ-1)*(1-p)^(ξ-1)*p ②①-②得p*Eξ=p+∑{ξ=2,∞}(1-p)^(ξ-1)*p所以Eξ=1+∑{ξ=2,∞}(1-p)^(ξ-1) =∑{ξ=1,∞}(1-p)^(ξ-1) =lim{x→∞}[1-(1-p)^x]/p =1/p 若要计算方差,可以根据公式Dξ =E(ξ^2)-Eξ^2计算, 其中E(ξ^2)的计算过程如下:E(ξ^2)=∑{ξ=1,∞}ξ^2*(1-p)^(ξ-1)*pE(ξ^2)-Eξ=∑{ξ=1,∞}ξ^2*(1-p)^(ξ-1)*p -∑{ξ=1,∞}ξ*(1-p)^(ξ-1)*pE(ξ^2)-Eξ=∑{ξ=1,∞}ξ*(ξ-1)*(1-p)^(ξ-1)*pE(ξ^2)=1/p+∑{ξ=1,∞}ξ*(ξ-1)*(1-p)^(ξ-1)*p ①(1-p)*E(ξ^2)=(1-p)/p+∑{ξ=1,∞}ξ*(ξ-1)*(1-p)^ξ*p(1-p)*E(ξ^2)=(1-p)/p+∑{ξ=2,∞}(ξ-1)*(ξ-2)*(1-p)^(ξ-1)*p ②由①得E(ξ^2)=1/p+∑{ξ=2,∞}ξ*(ξ-1)*(1-p)^(ξ-1)*p ③③-②得p*E(ξ^2)=1+∑{ξ=2,∞}2*(ξ-1)*(1-p)^(ξ-1)*p E(ξ^2)=1/p+∑{ξ=2,∞}2*(ξ-1)*(1-p)^(ξ-1) ④(1-p)*E(ξ^2)=(1-p)/p+2*∑{ξ=2,∞}(ξ-1)*(1-p)^ξ(1-p)*E(ξ^2)=(1-p)/p+2*∑{ξ=3,∞}(ξ-2)*(1-p)^(ξ-1) ⑤由④得E(ξ^2)=1/p+2*(1-p)+2*∑{ξ=3,∞}(ξ-1)*(1-p)^(ξ-1) ⑥ ⑥-⑤得.p*E(ξ^2)=1+2*(1-p)+2*∑{ξ=3,∞}(1-p)^(ξ-1).p*E(ξ^2)=1+2*(1-p)+2*lim{x→∞}(1-p)^2*[1-(1-p)^x]/p.p*E(ξ^2)=1+2*(1-p)+2*(1-p)^2/p.E(ξ^2)=1/p+2*(1-p)/p+2*(1-p)^2/p/p =1/p+2*(1-p)/p/p =(2-p)/p/p 若求方差,根据公式Dξ =E(ξ^2)-Eξ^2得,.Dξ =(2-p)/p/p-1/p/p =(1-p)/p^2
拌三丝2023-05-23 12:57:531

超几何分布的期望和方差是多少?

超几何分布的期望和方差是EX=nM/N,超几何分布是统计学上一种离散概率分布。它描述了从有限N个物件(其中包含M个指定种类的物件)中抽出n个物件,成功抽出该指定种类的物件的次数(不放回)。称为超几何分布,是因为其形式与“超几何函数”的级数展式的系数有关,超几何分布中的参数是M,N,n,上述超几何分布记作X-H(n,M,N)。扩展资料:称随机变量X服从超几何分布(hypergeometric distribution)。需要注意的是:(1)超几何分布的模型是不放回抽样。(2)超几何分布中的参数是M,N,n,上述超几何分布记作X~H(n,M,N)。
九万里风9 2023-05-23 12:57:531

几何分布的期望和方差公式?

几何分布的期望和方差公式分别是E(n)等于1/p、E(m)等于(1-p)/p,几何分布是离散型概率分布。其中一种定义为:在n次伯努利试验中,试验k次才得到第一次成功的机率。详细地说,是:前k-1次皆失败,第k次成功的概率。几何分布是帕斯卡分布当r=1时的特例。数学期望,在概率论和统计学中是指试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。它反映随机变量平均取值的大小。方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。
左迁2023-05-23 12:57:521

几何分布的期望是多少?

几何分布的期望是1/p,方差公式推导为s^2=[(x1-x)^2+(x2-x)^2+......(xn-x)^2]/(n),其中x为平均数。相关介绍:几何分布(Geometric distribution)是离散型概率分布。其中一种定义为:在n次伯努利试验中,试验k次才得到第一次成功的几率。详细地说,是:前k-1次皆失败,第k次成功的概率。几何分布是帕斯卡分布当r=1时的特例。在伯努利试验中,成功的概率为p,若ξ表示出现首次成功时的试验次数,则ξ是离散型随机变量,它只取正整数,且有P(ξ=k)=(1-p)的(k-1)次方乘以p (k=1,2,…,0<p<1),此时称随机变量ξ服从几何分布。它的期望为1/p,方差为(1-p)/(p的平方)。求几何分布的期望公式:Eε=1/p。在概率论和统计学中,数学期望(mean)(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。它反映随机变量平均取值的大小。
LuckySXyd2023-05-23 12:57:521

几何分布的期望和方差是如何推导的。为什么是1/p和q/p^2?

你好!如果你是高中生,我可以告诉你,那东西一点用都没有,高考不考啦!放心!如果你不是,我也忘记咋推到了!呵呵!你可以请教老师!如有疑问,请追问。
meira2023-05-23 12:57:522

几何分布的期望和方差公式分别是什么?

几何分布的期望和方差公式分别是E(n)等于1/p、E(m)等于(1-p)/p,几何分布是离散型概率分布。其中一种定义为:在n次伯努利试验中,试验k次才得到第一次成功的机率。详细地说,是:前k-1次皆失败,第k次成功的概率。几何分布是帕斯卡分布当r=1时的特例。数学期望,在概率论和统计学中是指试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。它反映随机变量平均取值的大小。方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。
陶小凡2023-05-23 12:57:521

几何分布的期望是多少?

几何分布的期望是1/p,方差公式推导为s^2=[(x1-x)^2+(x2-x)^2+......(xn-x)^2]/(n),其中x为平均数。相关介绍:几何分布(Geometric distribution)是离散型概率分布。其中一种定义为:在n次伯努利试验中,试验k次才得到第一次成功的几率。详细地说,是:前k-1次皆失败,第k次成功的概率。几何分布是帕斯卡分布当r=1时的特例。在伯努利试验中,成功的概率为p,若ξ表示出现首次成功时的试验次数,则ξ是离散型随机变量,它只取正整数,且有P(ξ=k)=(1-p)的(k-1)次方乘以p (k=1,2,…,0<p<1),此时称随机变量ξ服从几何分布。它的期望为1/p,方差为(1-p)/(p的平方)。求几何分布的期望公式:Eε=1/p。在概率论和统计学中,数学期望(mean)(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。它反映随机变量平均取值的大小。
陶小凡2023-05-23 12:57:521

几何分布的期望是什么?

简单计算一下,答案如图所示
Jm-R2023-05-23 12:57:522

几何分布的期望是多少?方差怎么算?

几何分布的期望是1/p,方差公式推导为s^2=[(x1-x)^2+(x2-x)^2+......(xn-x)^2]/(n),其中x为平均数。相关介绍:几何分布(Geometric distribution)是离散型概率分布。其中一种定义为:在n次伯努利试验中,试验k次才得到第一次成功的几率。详细地说,是:前k-1次皆失败,第k次成功的概率。几何分布是帕斯卡分布当r=1时的特例。在伯努利试验中,成功的概率为p,若ξ表示出现首次成功时的试验次数,则ξ是离散型随机变量,它只取正整数,且有P(ξ=k)=(1-p)的(k-1)次方乘以p (k=1,2,…,0<p<1),此时称随机变量ξ服从几何分布。它的期望为1/p,方差为(1-p)/(p的平方)。求几何分布的期望公式:Eε=1/p。在概率论和统计学中,数学期望(mean)(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。它反映随机变量平均取值的大小。
此后故乡只2023-05-23 12:57:521

几何分布期望和方差怎么计算?

几何分布的期望和方差公式分别是E(n)等于1/p、E(m)等于(1-p)/p,几何分布是离散型概率分布。其中一种定义为:在n次伯努利试验中,试验k次才得到第一次成功的机率。详细地说,是:前k-1次皆失败,第k次成功的概率。几何分布是帕斯卡分布当r=1时的特例。数学期望,在概率论和统计学中是指试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。它反映随机变量平均取值的大小。方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。
豆豆staR2023-05-23 12:57:521

如何求随机变量X服从几何分布的期望和方差

你好!根据性质,它们和的方差等于各变量方差之和,每个几何分布的方差是(1-p)/p^2,所以总的方差是n(1-p)/p^2。经济数学团队帮你解答,请及时采纳。谢谢!
可桃可挑2023-05-23 12:57:511
 首页 上一页  1 2 3 4 5 6 7  下一页  尾页