指数分布的分布函数是如何积分出来的?
指数函数的一个重要特征是无记忆性(Memoryless Property,又称遗失记忆性)。这表示如果一个随机变量呈指数分布,当s,t≥0时有P(T>s+t|T>t)=P(T>s)。即,如果T是某一元件的寿命,已知元件使用了t小时,它总共使用至少s+t小时的条件概率,与从开始使用时算起它使用至少s小时的概率相等。九万里风9 2023-05-23 12:57:344
为什么对于服从指数分布的随机变量函数
1.因为LAMAT的指数分布的数学期望为1/LAMAT,也就是平均值为1/LAMAT. 记住一些特殊分布的期望,方差是有好处的,比如正态分布,平均分布,指数分布,泊松分布等等 2.因为根据题目YOUROU的分布率为P{YOUROU=k}=1/(2^k) k=1,2.,所以 YOUROU=k,为整数,即后面的n,那么sin(YOUROU*PI/2)=sin(nPI/2) 所以只能取-1,0,1 就是说YOUROU是服从离散分布.且YOUROU取1,2,3,4,5,6..时对应的概率是1/1^2,1/2^2...那么YOUROU只能取整数1,2,3,4,5..k. 而可得后面的sin(YOUROU*PI/2)中.因为YOUROU只能取整数1,2,3,4,5..k,所以YOUROU*PI/2只能是kPI,(K+1)PI/2, 而sin(2kPI)=0,sin,(K+1)PI/2=1或者-1 还有不明白的吗?再也不做站长了2023-05-23 12:57:341
指数分布的分布函数是什么?
指数分布的函数是指数函数。指数函数是重要的基本初等函数之一。一般地,y=ax函数(a为常数且以a>0,a≠1)叫做指数函数,函数的定义域是 R。注意,在指数函数的定义表达式中,在ax前的系数必须是数1,自变量x必须在指数的位置上,且不能是x的其他表达式,否则,就不是指数函数。分布:在概率论和统计学中,指数分布(Exponential distribution)是一种连续概率分布。指数分布可以用来表示独立随机事件发生的时间间隔,比如旅客进机场的时间间隔、中文维基百科新条目出现的时间间隔等等。许多电子产品的寿命分布一般服从指数分布。有的系统的寿命分布也可用指数分布来近似。它在可靠性研究中是最常用的一种分布形式。指数分布是伽玛分布和威布尔分布的特殊情况,产品的失效是偶然失效时,其寿命服从指数分布。指数分布可以看作当威布尔分布中的形状系数等于1的特殊分布,指数分布的失效率是与时间t无关的常数,所以分布函数简单。西柚不是西游2023-05-23 12:57:331
二项分布的分布函数公式
二项分布的分布函数公式:s^2=((m-x1)^2+(m-x2)^2+......+(m-xn)^2)/n。在n次独立重复的伯努利试验中,设每次试验中事件A发生的概率为p。用X表示n重伯努利试验中事件A发生的次数,则X的可能取值为0,1,…,n,且对每一个k(0≤k≤n),事件{X=k}即为“n次试验中事件A恰好发生k次”,随机变量X的离散概率分布即为二项分布(BinomialDistribution)。其分布函数公式:s^2=((m-x1)^2+(m-x2)^2+......+(m-xn)^2)/n。在概率论和统计学中,二项分布是n个独立的成功/失败试验中成功的次数的离散概率分布,其中每次试验的成功概率为p。这样的单次成功/失败试验又称为伯努利试验。实际上,当n=1时,二项分布就是伯努利分布。北境漫步2023-05-23 12:57:321
二项分布的概率密度函数怎么求?
EX拔=EX,DX拔=DX/n∵随机变量X服从二项分布X~B(n,p),且E(X)=3,D(X)=2,∴E(X)=3=np,①D(X)=2=np(1-p)②①与②相除可得1-p= 23 ∴p= 13 ,n=9图形特点对于固定的n以及p,当k增加时,概率P{X=k}先是随之增加直至达到最大值,随后单调减少。可以证明,一般的二项分布也具有这一性质,且:当(n+1)p不为整数时,二项概率P{X=k}在k=[(n+1)p]时达到最大值;当(n+1)p为整数时,二项概率P{X=k}在k=(n+1)p和k=(n+1)p-1时达到最大值。NerveM 2023-05-23 12:57:321
二项分布的分布函数的极大似然函数如何计算?
二项分布就是n个两点分布,两点分布的概率是P=p^x*(1-p)^(1-x),所以似然函数 L=p^∑Xi*(1-p)^(n-∑Xi),构造 lnL=∑Xi*lnp+(n-∑Xi) ln(1-p),对p进行求导,令其结果等于0,就是∑Xi/p+(n-∑Xi)/(1-p)=0,通分后令分母等于0,可以得到p=(∑Xi)/n求极大似然函数估计值的一般步骤:(1) 写出似然函数;(2) 对似然函数取对数,并整理;(3) 求导数 ;(4) 解似然方程 。扩展资料:极大似然估计只是一种粗略的数学期望,要知道它的误差大小还要做区间估计。极大似然估计是建立在这样的思想上:已知某个参数能使这个样本出现的概率最大,我们当然不会再去选择其他小概率的样本,所以干脆就把这个参数作为估计的真实值。极大似然估计,只是一种概率论在统计学的应用,它是参数估计的方法之一。说的是已知某个随机样本满足某种概率分布,但是其中具体的参数不清楚,参数估计就是通过若干次试验,观察其结果,利用结果推出参数的大概值。参考资料来源:百度百科——极大似然估计阿啵呲嘚2023-05-23 12:57:311
二项分布的分布函数是什么?
二项分布的分布函数公式:s^2=((m-x1)^2+(m-x2)^2+......+(m-xn)^2)/n。在n次独立重复的伯努利试验中,设每次试验中事件A发生的概率为p。用X表示n重伯努利试验中事件A发生的次数,则X的可能取值为0,1,…,n,且对每一个k(0≤k≤n),事件{X=k}即为“n次试验中事件A恰好发生k次”,随机变量X的离散概率分布即为二项分布。图形特点对于固定的n以及p,当k增加时,概率P{X=k}先是随之增加直至达到最大值,随后单调减少。可以证明,一般的二项分布也具有这一性质,且: 1、当(n+1)p不为整数时,二项概率P{X=k}在k=[(n+1)p]时达到最大值。2、当(n+1)p为整数时,二项概率P{X=k}在k=(n+1)p和k=(n+1)p-1时达到最大值。苏州马小云2023-05-23 12:57:291
二项分布的密度函数
具体回答如图:分布函数F(x)完全决定了事件[a≤X≤b]的概率,或者说分布函数F(x)完整地描述了随机变量X的统计特性。常见的离散型随机变量分布模型有“0-1分布”、二项式分布、泊松分布等;连续型随机变量分布模型有均匀分布、正态分布、瑞利分布等。扩展资料:分布函数F(x)是一个普通函数。正是通过它才能用数学分析的方法来研究随机变量。如果将X看成是数轴上随机点的坐标,那么分布函数F(x)在x处的函数值就表示X落在区间。二项分布概率公式来描述:P=C(X,n)*π^X*(1-π)^(n-X)式中的n为独立的伯努利试验次数,π为成功的概率,(1-π)为失败的概率,X为在n次伯努里试验中出现成功的次数,表示在n次试验中出现X的各种组合情况。由二项式分布的定义知,随机变量X是n重伯努利实验中事件A发生的次数,且在每次试验中A发生的概率为p。因此,可以将二项式分布分解成n个相互独立且以p为参数的(0-1)分布随机变量之和。参考资料来源:百度百科——概率分布函数mlhxueli 2023-05-23 12:57:291
概率密度函数和概率分布函数的区别?
概率密度和分布函数的区别是概念不同、描述对象不同、求解方式不同。1、概念不同:概率指事件随机发生的机率,对于均匀分布函数,概率密度等于一段区间(事件的取值范围)的概率除以该段区间的长度,它的值是非负的,可以很大也可以很小;分布函数是概率统计中重要的函数,正是通过它,可用数学分析的方法来研究随机变量。分布函数是随机变量最重要的概率特征,分布函数可以完整地描述随机变量的统计规律,并且决定随机变量的一切其他概率特征。2、描述对象不同:概率密度只是针对连续性变量而言,而分布函数是对所有随机变量取值的概率的讨论,包括连续性和离散型。3、求解方式不同:已知连续型随机变量的密度函数,可以通过讨论及定积分的计算求出其分布函数;当已知连续型随机变量的分布函数时,对其求导就可得到密度函数。对离散型随机变量而言,如果知道其概率分布(分布列),也可求出其分布函数;当然,当知道其分布函数时也可求出概率分布。扩展资料:对于随机变量X的分布函数F(x),如果存在非负可积函数f(x),使得对任意实数x,有则X为连续型随机变量,称f(x)为X的概率密度函数,简称为概率密度。单纯的讲概率密度没有实际的意义,它必须有确定的有界区间为前提。可以把概率密度看成是纵坐标,区间看成是横坐标,概率密度对区间的积分就是面积,而这个面积就是事件在这个区间发生的概率,所有面积的和为1。所以单独分析一个点的概率密度是没有任何意义的,它必须要有区间作为参考和对比。在实际问题中,常常要研究一个随机变量ξ取值小于某一数值x的概率,这概率是x的函数,称这种函数为随机变量ξ的分布函数,简称分布函数,记作F(x),即F(x)=P(ξ<x) (-∞<x<+∞),由它并可以决定随机变量落入任何范围内的概率。例如在桥梁和水坝的设计中,每年河流的最高水位ξ小于x米的概率是x的函数,这个函数就是最高水位ξ的分布函数。实际应用中常用的分布函数有正态分布函数、普阿松分布函数、二项分布函数等等。由于随机变量X的取值 只取决于概率密度函数的积分,所以概率密度函数在个别点上的取值并不会影响随机变量的表现。更准确来说,如果一个函数和X的概率密度函数取值不同的点只有有限个、可数无限个或者相对于整个实数轴来说测度为0(是一个零测集),那么这个函数也可以是X的概率密度函数。连续型的随机变量取值在任意一点的概率都是0。作为推论,连续型随机变量在区间上取值的概率与这个区间是开区间还是闭区间无关。要注意的是,概率P{x=a}=0,但{X=a}并不是不可能事件。参考资料来源:百度百科-概率密度参考资料来源:百度百科-分布函数mlhxueli 2023-05-22 22:49:551
概率论里,求概率分布和求分布函数有什么区别?还是一样的?
本质上是一样的,但对: 离散变量多数是求概率分布; 连续变量多是求分布函数.再也不做站长了2023-05-22 22:49:541
各种概率用分布函数表示如何得出下面这些式子,是怎么推导的?
颈椎病吗?hi投2023-05-22 22:49:542
概率密度函数与分布函数有什么区别和联系?
概率密度函数图形是有“界”的(若无界则不可积,即其分布会不存在),而分布函数图形是无界的。 从数学上看,分布函数F(x)=P(X<=x) 概率密度f(x)是F(x)在x处的关于x的一阶导数,即变化率。如果在某一x附近取非常小的一个邻域Δx,那么,随机变量X落在(x, x+Δx)内的概率约为f(x)Δx,即P(x<X< x+Δx) 换句话说,概率密度f(x)是X落在x处“单位宽度”内的概率。“密度”一词可以由此理解。瑞瑞爱吃桃2023-05-22 22:49:545
知道x的概率分布,怎么求分布函数
当x<1时,F(X)=0当1≤x<3时,F(X)=P(1)=1/2当3≤x<5时,F(X)=P(1)+P(3)=5/6当x≥5时,F(X)=1Ntou1232023-05-22 22:49:541
怎么求概率分布函数
若概率密度函数为f(x),且F"(x)=f(x),则概率分布函数为F(x)+C,C为常数,可以根据x趋于无穷时概率分布函数等于1求得。扩展资料:设X是一个随机变量,x是任意实数,函数 F(x)=P{X≤x} 物质的双体分布函数示意图称为X的分布函数。对于任意实数x1,x2(x1<x2),有 P{x1<X≤x2}=P{X≤x2}-P{X≤x1}=F(x2)-F(x1)。因此,若已知X的分布函数,就可以知道X落在任一区间(x1,x2]上的概率,在这个意义上说,分布函数完整地描述了随机变量的统计规律性。分布函数是一个普遍的函数,正是通过它,我们将能用数学分析的方法来研究随机变量·。如果将X看成是数轴上的随机点的坐标,那么分布函数F(x)在x处的函数值就表示X落在区间(-∞,x]上的概率·。参考资料来源:百度百科-分布函数凡尘2023-05-22 22:49:531
概率分布函数的定义是怎样的?
分布函数的定义是这样的:定义函数F(x)=P{X<=x} (注意:是小于等于,保证F(x)的右连续)。然后如对于随机变量X的分布函数F(x),如果存在非负函数f(x)。使对于任意实数x,有F(x)=∫(-∞,x)f(t)dt则X成为连续型随机变量。其中函数f(x)称为X的概率密度函数,简称概率密度.这是概率密度的定义。举例:已知二维随机变量(X,Y)具有概率密度f(x,y)= 2e-(2x+y),x>0,y>00,其他求联合分布函数F(x,y)边缘概率密度fx(x)和fy(y)判断X于Y是否相互独立.解:F(x,y)=2∫(0,x)e^(-2x)dx∫(0,y)e^(-y)dy=(e^(-2x)-1)*(e^(-y)-1)fx(x)=2∫(0,∞)e^(-2x)e^(-y)dy=2e^(-2x)fy(y)=2∫(0,∞)e^(-2x)e^(-y)dx=e^(-y)X于Y是相互独立。扩展资料概率密度和概率密度函数的区别:概率指事件随机发生的机率,概率密度的概念也大致如此,指事件发生的概率分布。在数学中,连续型随机变量的概率密度函数(在不至于混淆时可以简称为密度函数)是一个描述这个随机变量的输出值,在某个确定的取值点附近的可能性的函数。probabilitydensityfunction,简称PDF。概率密度函数加起来就是概率函数(离散变量),或者积分(连续变量)。在数学中,连续型随机变量的概率密度函数(在不至于混淆时可以简称为密度函数)是一个描述这个随机变量的输出值。在某个确定的取值点附近的可能性的函数。而随机变量的取值落在某个区域之内的概率则为概率密度函数在这个区域上的积分。当概率密度函数存在的时候,累积分布函数是概率密度函数的积分。概率密度函数一般以小写标记。定义:对于一维实随机变量X,设它的累积分布函数是,如果存在可测函数满足:,那么X是一个连续型随机变量,并且是它的概率密度函数。豆豆staR2023-05-22 22:49:531
概率分布函数是什么样的?
若概率密度函数为f(x),且F"(x)=f(x),则概率分布函数为F(x)+C,C为常数,可以根据x趋于无穷时概率分布函数等于1求得。扩展资料:设X是一个随机变量,x是任意实数,函数 F(x)=P{X≤x} 物质的双体分布函数示意图称为X的分布函数。对于任意实数x1,x2(x1<x2),有 P{x1<X≤x2}=P{X≤x2}-P{X≤x1}=F(x2)-F(x1)。因此,若已知X的分布函数,就可以知道X落在任一区间(x1,x2]上的概率,在这个意义上说,分布函数完整地描述了随机变量的统计规律性。分布函数是一个普遍的函数,正是通过它,我们将能用数学分析的方法来研究随机变量·。如果将X看成是数轴上的随机点的坐标,那么分布函数F(x)在x处的函数值就表示X落在区间(-∞,x]上的概率·。参考资料来源:百度百科-分布函数九万里风9 2023-05-22 22:49:531
概率分布函数的定义公式?
若概率密度函数为f(x),且F"(x)=f(x),则概率分布函数为F(x)+C,C为常数,可以根据x趋于无穷时概率分布函数等于1求得。扩展资料:设X是一个随机变量,x是任意实数,函数 F(x)=P{X≤x} 物质的双体分布函数示意图称为X的分布函数。对于任意实数x1,x2(x1<x2),有 P{x1<X≤x2}=P{X≤x2}-P{X≤x1}=F(x2)-F(x1)。因此,若已知X的分布函数,就可以知道X落在任一区间(x1,x2]上的概率,在这个意义上说,分布函数完整地描述了随机变量的统计规律性。分布函数是一个普遍的函数,正是通过它,我们将能用数学分析的方法来研究随机变量·。如果将X看成是数轴上的随机点的坐标,那么分布函数F(x)在x处的函数值就表示X落在区间(-∞,x]上的概率·。参考资料来源:百度百科-分布函数黑桃花2023-05-22 22:49:521
概率分布函数公式
若概率密度函数为f(x),且F"(x)=f(x),则概率分布函数为F(x)+C,C为常数,可以根据x趋于无穷时概率分布函数等于1求得。扩展资料:设X是一个随机变量,x是任意实数,函数 F(x)=P{X≤x} 物质的双体分布函数示意图称为X的分布函数。对于任意实数x1,x2(x1<x2),有 P{x1<X≤x2}=P{X≤x2}-P{X≤x1}=F(x2)-F(x1)。因此,若已知X的分布函数,就可以知道X落在任一区间(x1,x2]上的概率,在这个意义上说,分布函数完整地描述了随机变量的统计规律性。分布函数是一个普遍的函数,正是通过它,我们将能用数学分析的方法来研究随机变量·。如果将X看成是数轴上的随机点的坐标,那么分布函数F(x)在x处的函数值就表示X落在区间(-∞,x]上的概率·。参考资料来源:百度百科-分布函数拌三丝2023-05-22 22:49:511
随机变量的函数仍然是随机变量。
随机变量的函数仍然是随机变量。 A.正确B.错误正确答案:A再也不做站长了2023-05-22 22:49:501
什么是随机变量的函数
随机变量函数自变量是随机变量的函数就是随机变量的函数。gitcloud2023-05-22 22:49:481
2. 设X和Y是两个相互独立的随机变量,其概率密度分别为,求随机变量Z=X+Y的概率密度函数
大鱼炖火锅2023-05-22 22:49:484
随机变量的函数是什么?
离散型随机变量的分布函数也就是分段函数,分段函数就是对于自变量x的不同的取值范围有不同的解析式的函数,它是一个函数,而不是几个函数;分段函数的定义域是各段函数定义域的并集,值域也是各段函数值域的并集。离散型随机变量的累积分布函数图像呈阶梯状,所以F(x)在非间断点处处连续,在间断点(基本空间中的事件点对应随机变量取值)处仅左连续,这里f(x)即是分布列(对应连续型随机变量的密度函数),基本空间(必然事件)对应一离散点列(离散随机变量所有可取的值),所以f(1-0)不存在。离散型离散型的直接列出取值和取到这个值的概率,比如两点分布P(X=1)=0.6,P(X=0)=0.4这样。 连续型的取到一个特定值的概率是0,只有取值在一个区间里面有意义,所以用分布函数和概率密度函数描述。分布函数F(x)表示随机变量X≤x的概率,也就是F(x)=P(X≤x)。概率密度函数就是 F(x)的导数,记为f(x),满足P(a≤X≤b)=∫(a到b)f(x)dx。FinCloud2023-05-22 22:49:461
eigen奇异值分解是哪个函数
JacobiSVD<MatrixXd> svd(m, ComputeThinU | ComputeThinV);MatrixXd V = svd.matrixV();MatrixXd U = svd.matrixU();陶小凡2023-05-22 22:49:432
求matlab 奇异值分解函数 svd和svds的区别
设A为m*n阶矩阵,A"表示A的转置矩阵,A"*A的n个特征值的非负平方根叫作A的奇异值。记为σi(A)。这几天做实验涉及到奇异值分解svd(singular value decomposition),涉及到这样的一个问题,做PCA时候400幅图像拉成向量按列摆放,结果摆成了比如说10000*400大小的矩阵,用到svd函数进行奇异值分解找主分量,结果MATLAB提示超出内存,后来想起还有个函数叫svds,看到别人用过,以为只是一个变体,没什么区别,就用上了,结果确实在预料之中。但是今天觉得不放心,跑到变量里面看了下,发现这个大的矩阵被分解成了三个10000*6,6*6,400*6大小的矩阵的乘积,而不是普通的svd分解得到的10000*10000,10000*400,400*400大小的矩阵乘积,把我吓了一跳,都得到预期的结果,难不成这里还出个篓子?赶紧试验,发现任给一个M*N大小的矩阵,都是被分解成了M*6,6*6,N*6大小的矩阵的乘积,为什么都会出现6呢?确实很纳闷。help svds看了一下,发现SVDS(A) 返回的就是svds返回的就是最大的6个特征值及其对应的特征行向量和特征列向量,还好,我们实验中是在svds得到列向量中再取前5个最大的列向量,这个与普通的svd得到的结果是一致的,虚惊一场。。。还得到了一些别的,比如改变这个默认的设置,比如用[u,d,v]=svds(A,10)将得到最大的10个特征值及其对应的最大特征行向量和特征列向量,[u,d,v]=svds(A,10,0)将得到最小的10个特征值及其对应的特征行向量和特征列向量,[u,d,v]=svds(A,10,2)将得到与2最接近的10个特征值及其对应的特征行向量和特征列向量。总之,相比svd,svds的可定制性更强。奇异值分解非常有用,对于矩阵A(m*n),存在U(m*m),V(n*n),S(m*n),满足A = U*S*V"。U和V中分别是A的奇异向量,而S是A的奇异值。AA"的正交单位特征向量组成U,特征值组成S"S,A"A的正交单位特征向量组成V,特征值(与AA"相同)组成SS"。Jm-R2023-05-22 22:49:422
matlab中函数svd是什么意思
奇异值分解 (sigular value decomposition,SVD) 是一种正交矩阵分解法;SVD是最可靠的分解法,但是它比QR 分解(QR分解法是将矩阵分解成一个正规正交矩阵与上三角形矩阵。)法要花上近十倍的计算时间。[U,S,V]=svd(A),其中U和V代表二个相互正交矩阵,而S代表一对角矩阵。 和QR分解法相同者, 原矩阵A不必为正方矩阵。使用SVD分解法的用途是解最小平方误差法和数据压缩。函数 svd格式 s = svd (X) %返回矩阵X 的奇异值向量[U,S,V] = svd (X) %返回一个与X 同大小的对角矩阵S,两个酉矩阵U 和V,且满足= USV"。若A 为m×n 阵,则U 为m×m 阵,V为n×n 阵。奇异值在S 的对角线上,非负且按降序排列。[U,S,V] = svd (X,0) %得到一个“有效大小”的分解,只计算出矩阵U 的前n列,矩阵S 的大小为n×n。扩展资料使用误区>> S=svd(A)??? Undefined function or method "svd" for input arguments of type "uint8".出错原因,A的数据类型为uint8解决办法S=svd(double(A))>> S=SVD(double(A))??? Undefined function or method "SVD" for input arguments of type "double".出错原因,SVD在R2011a中不能被调用,区分大小写解决办法S=svd(double(A))可桃可挑2023-05-22 22:49:351
matlab中函数svd是什么意思
matlab里运行: a=[1 2 3 4;5 6 7 8;9 10 11 12;2 4 6 7.99999];[u,s,v]=svds(a)得到结果:u = 0.19309325290913 -0.39372991088164 0.80064042247500 -0.40824829032397 0.47876392522628 0.03942520140203 0.32025628954945 0.81649658098368 0.76443459754343 0.47258031368569 -0.16012784453451 -0.40824829049184 0.38618628362685 -0.78745809913181 -0.48038515432194 -0.00000000008393s = 27.55065585030689 0 0 0 0 3.31077063809069 0 0 0 0 0.00000263117785 0 0 0 0 0.00000000000000v = 0.37164983947455 0.74958461105215 0.36514742344847 -0.40824829050286 0.45181723566769 0.30961435841708 -0.18257455406715 0.81649658094722 0.53198463186084 -0.13035589421799 -0.73029653281457 -0.40824829038587 0.61215188788081 -0.57032376837933 0.54772334743922 -0.00000000005849这个命令的主要作用是得到A的奇异值,A"表示A的转置矩阵,A"*A的n个非负特征值的平方根叫作矩阵A的奇异值!NerveM 2023-05-22 22:49:334
级数的函数
如果级数的每一项依赖于一个连续变量x,un=un(x),x在一个区间α≤x ≤b上变化,这个级数就成为一个函数项级数,简称函数级数,记为这里x的值自然被分成两类C和D,使得当x属于C时级数收敛,当x属于D时级数发散。几何级数∑rn事实上就是一个函数级数,它的收敛范围是一个区间(-1<r<1)。微分学里的泰勒级数代表着一类函数级数,形如称为幂级数。这种级数,作为几何级数的一种推广,其收敛范围C仍然是一个区间(以x=x0为中心,带或不带端点,有限或无限,或退化成一点)。这种级数,当x换成复变量z之后,成为研究复变函数的一个基本工具(见复变函数论)。积分学里的傅里叶级数代表着另一类函数级数,形如称为三角级数。这种级数是研究实变函数的一个重要工具,它们的收敛范围一般很复杂,对它们的研究促使了G.(F.P.)康托尔创建集合的基础理论(见实变函数论、傅里叶分析)。一般说来,一个函数级数的和函数,作为一个无限项的和,不是在它的整个收敛集C上,而是只在C的某种带有限制的部分C1上,才像一个有限项的和。下面试从C的某一点x出发来看级数(15)的收敛性。这级数在这一点x处收敛,就是说,它的部分和sm(x)收敛到一个和数s(x),也就是说:对于任意一个正数级数都有只要m充分大。这个不等式还可能对于C的其他一些点x也成立。如果这个不等式在C的某一部分C1上处处成立,这就意味着sm(x)这个函数在集合C 1上一致地近似于s(x)这个函数,精确度(处处)在级数以内。而如果这在C1上对于每一个正数级数都成立只要m充分大,那就意味着这一序列函数sm(x),或者就说是函数级数∑un(x)本身,在C1上一致地无限逼近于函数s(x),或者简单地说, sn(x)一致地收敛到函数s(x)。这样,原来的收敛概念,在与函数概念结合之后,就发展成为适合于函数级数的一种收敛概念。 一致收敛 一个函数级数级数说是在一个集合C1上一致地收敛到它的和函数s(x),是指对于每一个正数级数都存在一个自然数N(不依赖于x),使得当m>N 时对于一切属于C1的x都成立。这时级数的和函数s(x),作为一个无限项的和,便可在整个集合C1上通过特征性质继承有限项和的一些分析性质。逐项积分定理 设函数级数级数在有限闭区间α≤x≤b上一致地收敛。于是,若级数的各项都连续,则级数的和也连续并且可以逐项积分关于逐项微分,没有直接类似的定理(因为一致小的函数rm(x)的导数可以任意大);但是通过微分与积分的互逆关系(微积分基本定理)能够把上述定理转变成逐项微分的形式。逐项微分定理设函数级数级数在区间α<x<b内收敛,各项都具有连续的导数。于是,若逐项取导数所得的级数在该区间内一致收敛,则原级数的和也具有连续的导数并且可以逐项微分:级数在逐项取绝对值之后就成为正项级数,显然可以依一致收敛性进行比较,特别是用一个常数级数进行比较,便有M判别法。 M判别法 设函数级数 级数在一集合C1上受常数级数级数控制:于是,若级数收敛,则级数在C1上一致收敛。 函数的展开 一个函数级数在其收敛范围内代表一个函数,即它的和:当和函数未给定时,级数是定义这函数的一种方式;当和函数已给定时,级数是揭示这函数依赖于基本变量的规律的一种方式──函数的级数展开。微积分在创建的初期通过形式处理得到了许多初等函数的级数展开,最重要的有但只是到了(约 200年之后)一致收敛概念明确的时候才证实,这种幂级数展开在收敛区间内可以逐项微分和积分并且收敛(区间的)半径r不变(在前三个中 r=1,后三个中r=∞,而第一个当α 为零或正整数时化为多项式因而也有r=∞)。这时人们才严密地证明了,幂级数在其收敛区间内能够完全代表它的和函数参加分析运算。于是可以逐项微分任意多次,所以这幂级数本身就是它的和函数在收敛区间中心处的泰勒级数,因而是唯一的。据此,一个泰勒级数的系数不一定要单纯通过累次微分级数而可以通过某些幂级数的分析运算来求得。这就使人们能够补充基本展开表(22)中所缺少的相当于tanx的展开,它不能像反三角函数那样通过逐项积分得到(因为没有现成的幂级数展开作出发点),也不能象其他基本初等函数那样通过直接求累次微分得到(因为微分次数越多计算越复杂)。利用幂级数展开的唯一性便可严密地证明:式中B2n是伯努利数,确定于展开式至于三角级数展开式的唯一性,则像它的收敛集一样复杂,成了三角级数理论研究的一个基本问题。函数的级数展开具有如下共同的形式:这个形式的级数,作为幂级数的推广,其收敛问题的分析仍旧可以利用N.H.阿贝尔在研究幂级数的收敛问题时所引进的部分求和法。部分求和法设级数,则有恒等式这个方法(类似于分部积分法)立即给出:① 级数(25)在一个集合 C1上一致收敛的一组充分条件是,级数∑αn收敛而序列vn(x)在C1上一致有界并且处处单调。② 级数(25)在一个集合 C 1上一致收敛的一组充分条件是,级数∑αn有界而序列vn(x)在C1上一致收敛到0并且级数在C1上一致收敛。这两个结果都是莱布尼茨交错级数定理的推广。广义收敛收敛概念的近代发展。 在所考虑的问题只需注意基本变量 x充分大的情形,相当于过程x→+∞,这里函数的级数展开就要依级数的幂来进行,而展开的意义在于每增加一项就要有一项的效果(α→0当x→+∞):m=1,2,3,…。这时,在xy坐标平面内,这一序列部分和sm(x)作为函数,其代表曲线y=sm(x)都是原来函数y=ƒ(x)的渐近线(直的或曲的),每一个比前一个更切近于曲线y=ƒ(x)。因此,采用H.庞加莱的用语就是,级数级数是一个渐近级数,渐近地代表着函数ƒ(x)。通常把这简记为这样的渐近级数虽然往往是发散的,但仍可以代替它所渐近表示的函数参加四则运算,只要作为除数的级数的常数项不为0;也可以逐项微分,只要函数的导函数ƒ′(x)确实具有渐近展开;还可以逐项积分,只要把形式关系理解为因此渐近级数可以(通过待定系数法)用于求解微分方程。当然,在原来意义下可用于近似计算,例如斯特林公式中的级数虽是发散的却是渐近的(式中的Bn就是式(24)中的伯努利数),只需取前几项就能够算得(准确到小数点后10位的)近似值:lg(1000!)=2567.…。 最早的函数的级数展开 在x=-1时给出这个悖论式的等式在级数理论的发展过程中不时激起人们的思索。莱布尼茨认为这应从这个级数的部分和所可能取的值(1,0,1,0,…)的算术平均来理解。L.欧拉认为在涉及级数的分析研究中应坚持函数观点:一个有限的分析表达式的(幂)级数展开应在分析运算中当作该表达式的等价物,因而级数的和就是它所由之而来的分析表达式的值。这些看法启发了人们,对一个级数,甚至它是发散的,是否仍可以考虑它在广义意义下的和。一般说来,就函数的级数展开的特定形式(25)而论,只要它对于充分大的x都成立而又当x→+∞时有且极限值ƒ(+∞)作为函数的边界值是一有限数,那么就可以说系数级数 级数在依函数序列{vn(x)}的展开中可和到ƒ(+∞),以ƒ(+∞)为广义和,并把这种边值收敛关系简单地记为不过,如果要取定{vn(x)}作为一种广义和的参考系,就应当事前适当地选取函数 vn(x)使得所产生的这种求和法是正规的,即每一个收敛级数∑αn都可和到它原有的和A。这通过阿贝尔部分求和法(26)可以用级数的部分和An表示成这样,这个求和法为正规的一个必要充分条件是,对x一致地有而前提条件在这里变成可见广义收敛乃是级数的部分和按一种平均意义理解的收敛;所以只要极限(34)存在级数,都说级数级数在以wn(x) 为权的带权平均的收敛过程中(平均)可和到A。算术平均求和法(M),相当于m=【x】为x的整数部分;切萨罗求和法(C,k),相当于m=【x】为x的整数部分。波莱尔还把他的求和法 (B)转换成边值形式并取其简化形式如在转换中的误差项级数这一前提下,(B′)与(B)等价;一般情形,只能由(B)推到(B′)。这种求和法能够使很广泛的一类复项幂级数∑bnzn在其收敛圆外可和,并且可以逐项积分。为了可以逐项微分,波莱尔提出了绝对可和的附加条件,即这样一序列无穷积分都绝对收敛。这种求和法不是正规的;只是限于绝对收敛的级数而言才是正规的。但它使幂级数的分析运算(加、减、乘、逐项微分、逐项积分等)可以在收敛圆外如同在收敛圆内一样进行,因而很有效地扩大了幂级数的应用范围,特别是很适合于(通过待定系数法)求解微分方程,如同渐近级数那样。对于两种求和法W与W1,我们说W1比W强,意思是每一个W可和的级数都一定W1可和到相同的和,但反过来不成立。例如(B′)比(B)强,(A)比(C,k)强。这种断定可和性强弱的定理称为阿贝尔型定理。一个阿贝尔型定理的逆定理不成立,无非是说不能无条件地反过来,因而也就是说在适当的补充条件之下能够反过来。说明这种补充条件的充分性定理称为陶伯型定理。如一个阿贝尔可和的级数级数,只要级数,就必定是收敛的。纯数量上,一个(无穷)级数永远等同于一个(无穷)积分【x】为x的整数部分。所以级数的理论中只有基本变量n的离散性在其中根本上起着简明性的作用的那些部分才能保持其特有的级数形式;否则迟早都会在普遍化的进程中过渡为积分的形式。例如A.普林斯海姆关于正项级数的系统研究取级数形式,而N.维纳关于陶伯型定理的研究取积分形式。发散级数求和的理论是收敛级数研究的扩展,它扩大了分析学严密理论的适用范围,有效地揭示了函数的分析性质与数量关系,在傅里叶分析与函数构造论中有许多应用。可桃可挑2023-05-22 18:14:381
函数的级数展开是指什么?
设S(x)=∑nx^n。∴原式=S(1/2)。而,S(x)=∑nx^n=x∑nx^(n-1)。又,当丨x丨<1时,∑nx^(n-1)=[∑x^n]"=[x/(1-x)]"=1/(1-x)²,∴丨x丨<1时,S(x)=∑nx^n=x/(1-x)²。∴原式=S(1/2)=2。扩展资料一类重要的函数级数是形如∑an(x-x0)^n的级数,称之为幂级数。它的结构简单 ,收敛域是一个以为中心的区间(不一定包括端点),并且在一定范围内具有类似多项式的性质,在收敛区间内能进行逐项微分和逐项积分等运算。例如幂级数∑(2x)^n/x的收敛区间是[-1/2,1/2],幂级数∑[(x-21)^n]/(n^2)的收敛区间是[1,3],而幂级数∑(x^n)/(n!)在实数轴上收敛。级数的收敛问题是级数理论的基本问题。从级数的收敛概念可知,级数的敛散性是借助于其部分和数列Sm的敛散性来定义的。因此可从数列收敛的柯西准则得出级数收敛的柯西准则 :∑un收敛<=>任意给定正数ε,必有自然数N,当n>N,对一切自然数 p,有|u[n+1]+u[n+2]+…+u[n+p]|<ε,即充分靠后的任意一段和的绝对值可任意小。铁血嘟嘟2023-05-22 18:14:361
函数项级数是什么?
函数项级数:在数学中,一个有穷或无穷的序列的元素的形式和称为级数。序列中的项称作级数的通项。级数的通项可以是实数,矩阵或向量等常量,也可以是关于其他变量的函数,不一定是一个数。如果级数的通项是常量,则称之为常数项级数,如果级数的通项是函数,则称之为函数项级数。对函数列的求和就是函数项级数,而把函数项级数的每一项拿出来组成的一列函数,就是函数列。函数发展历史:1,函数的由来(1)中文数学书上使用的“函数”一词是转译词。是我国清代数学家李善兰在翻译《代数学》(1859年)一书时,把“function”译成“函数”的。(2)中国古代“函”字与“含”字通用,都有着“包含”的意思。李善兰给出的定义是:“凡式中含天,为天之函数。”中国古代用天、地、人、物4个字来表示4个不同的未知数或变量。这个定义的含义是:“凡是公式中含有变量x,则该式子叫做x的函数。”所以“函数”是指公式里含有变量的意思。2,早期概念(1)1637年前后笛卡尔在他的解析几何中,已注意到一个变量对另一个变量的依赖关系,但因当时尚未意识到要提炼函数概念,因此直到17世纪后期牛顿,莱布尼兹建立微积分时还没有人明确函数的一般意义,大部分函数是被当作曲线来研究的。(2)1673年,莱布尼兹首次使用“function”(函数)表示“幂”,后来他用该词表示曲线上点的横坐标,纵坐标,切线长等曲线上点的有关几何量。与此同时,牛顿在微积分的讨论中,使用 “流量”来表示变量间的关系。北境漫步2023-05-22 18:14:351
级数是什么样的函数呢?
级数是研究函数的一个重要工具,在理论上和实际应用中都处于重要地位,这是因为:一方面能借助级数表示许多常用的非初等函数,微分方程的解就常用级数表示;另一方面又可将函数表为级数,从而借助级数去研究函数,例如用幂级数研究非初等函数,以及进行近似计算等。一个条件收敛的级数,在其项经过适当的排列之后,可以收敛到一个事先任意指定的数;也可以发散到+∞或-∞;也可以没有任何的和。一致收敛是收敛性与函数连续性结合的最重要的形式。小白2023-05-22 18:14:353
函数极限存在的条件
应该是函数的(左右极限存在且相等)是函数的极限存在的充要条件铁血嘟嘟2023-05-22 18:14:314
复合函数如何求导公式
用伟大的母语简单的说就是:复合函数的导数等于原函数对中间变量的导数乘以中间变量对自变量的导数。 举个例子来说:F(x)=In(2x+5),这个函数就是个复合函数,设u=2x+5,则u就是中间变量,则F(u)=Inu (1) 原函数对中间变量的导就是函数(1)的导,即1/u 中间变量对自变量的导就是u对x求导,即2 最后原函数的导数等于他们两个的乘积,即2乘以1/u,但千万别忘了把u=2x+5带进去,所以答案就是2/(2x+5)。 其他的不管在复杂的复合函数都是这么求的,要是有多重复合就一层一层的求下去,一般来讲,高三最多要你求3层复合就像:F(x)=log[(2x+5)平方},这个就是简单的三层复合,设u=v平方, v=2x+5, 再用上面一样的方法把各自的求出来,来乘起来就是. 熟悉了以后根本不用列这么多,直接写就行。阿啵呲嘚2023-05-22 18:14:2813
常见函数的导数
常见函数的导数如下图:导数相关介绍:1、导数的定义设函数y=f(x)在点x=x0及其附近有定义,当自变量x在x0处有改变量△x(△x可正可负),则函数y相应地有改变量△y=f(x0+△x)-f(x0),这两个改变量的比叫做函数y=f(x)在x0到x0+△x之间的平均变化率.如果当△x→0时,有极限,我们就说函数y=f(x)在点x0处可导,这个极限叫做f(x)在点x0处的导数(即瞬时变化率,简称变化率),记作f′(x0)或,即函数f(x)在点x0处的导数就是函数平均变化率当自变量的改变量趋向于零时的极限.如果极限不存在,我们就说函数f(x)在点x0处不可导.2、求导数的方法由导数定义,我们可以得到求函数f(x)在点x0处的导数的方法:(1)求函数的增量△y=f(x0+△x)-f(x0);(2)求平均变化率;(3)取极限,得导数3、导数的几何意义函数y=f(x)在点x0处的导数的几何意义,就是曲线y=f(x)在点P(x0,f(x0))处的切线的斜率f′(x0).相应地,切线方程为y-y0= f′(x0)(x-x0).4、几种常见函数的导数函数y=C(C为常数)的导数 C′=0.函数y=xn(n∈Q)的导数 (xn)′=nxn-1函数y=sinx的导数 (sinx)′=cosx函数y=cosx的导数 (cosx)′=-sinx5、函数四则运算求导法则和的导数 (u+v)′=u′+v′差的导数 (u-v)′= u′-v′积的导数 (u·v)′=u′v+uv′商的导数 .6、复合函数的求导法则一般地,复合函数y=f[φ(x)]对自变量x的导数y′x,等于已知函数对中间变量u=φ(x)的导数y′u,乘以中间变量u对自变量x的导数u′x,即y′x=y′u·u′x.7、对数、指数函数的导数(1)对数函数的导数①;②.公式输入不出来其中(1)式是(2)式的特殊情况,当a=e时,(2)式即为(1)式.(2)指数函数的导数①(ex)′=ex②(ax)′=axlna其中(1)式是(2)式的特殊情况,当a=e时,(2)式即为(1)式。导数又叫微商,是因变量的微分和自变量微分之商;给导数取积分就得到原函数(其实是原函数与一个常数之和)。豆豆staR2023-05-22 18:14:281
高数常见函数求导公式
1.(c)`=0 (c为常数)2.(x^a)`=ax^(a-1) (a∈R) 3.(a^x)`=a^(x)lna (a≠1且a>0)4.(e^x)`=e^x 5.(㏒a(x))`=1/(xlna) (a≠1且a>0) 6.(lnx)`=1/x7.(sinx)`=cosx 8.(cosx)`= -sinx 9.(tanx)`=1/cos^2x=sec^2x10.(cotx)`= -1/sin^2x= -csc^2x 11.(secx)`=sectanx 12.(cscx)`= -csccotx13.(arcsinx)`=1/((1-x^2)^1/2) 14.(arccosx)`= -1/((1-x^2)^1/2)15.(arctanx)`=1/(1+x^2) 16.(arccotx)`= -1/(1+x^2)水元素sl2023-05-22 18:14:275
导函数的基本公式是什么?
导函数的基本公式如图所示:求导法则:1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合(即①式)。2、两个函数的乘积的导函数:一导乘二+一乘二导(即②式)。3、两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方(即③式)。4、如果有复合函数,则用链式法则求导。点b处的左导数都存在,则称f(x)在闭区间[a,b]上可导,f"(x)为区间[a,b]上的导函数,简称导数。函数可导的条件:如果一个函数的定义域为全体实数,即函数在其上都有定义。函数在定义域中一点可导需要一定的条件:函数在该点的左右导数存在且相等,不能证明这点导数存在,只有左右导数存在且相等,并且在该点连续,才能证明该点可导。可导的函数一定连续;连续的函数不一定可导,不连续的函数一定不可导。NerveM 2023-05-22 18:14:271
函数的导数是什么?
函数的导数等于反函数导数的倒数x=siny即(arcsinx)"=(1/siny)"=1/cosy=1/sqrt((1-sin^2(y)))=1/sqrt(1-x^2)sqrt为开平方根扩展资料在微分方面,十七世纪人类也有很大的突破。费马(Fermat)在一封给罗贝瓦(Roberval)的信中,提及计算函数的极大值和极小值的步骤,而这实际上已相当于现代微分学中所用,设函数导数为零,然后求出函数极点的方法。另外,巴罗(Barrow)亦已经懂得透过「微分三角形」(相当于以dx、dy、ds为边的三角形)求出切线的方程,这和现今微分学中用导数求切线的方法是一样的。由此可见,人类在十七世纪已经掌握了微分的要领。大鱼炖火锅2023-05-22 18:14:261
如何求函数的导数呢?
分式函数的求导公式如下:1、用汉字表示为:(分子的导数*分母-分子*分母的导数)/分母的平方。2、用字母表示为:(u/v)" = (u"v-uv")/v²。求导:当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。在一个函数存在导数时,称这个函数可导或者可微分。可导的函数一定连续。不连续的函数一定不可导。导数公式:1、C"=0(C为常数)2、(Xn)"=nX(n-1) (n∈R)3、(sinX)"=cosX4、(cosX)"=-sinX5、(aX)"=aXIna (ln为自然对数)苏州马小云2023-05-22 18:14:251
高数函数求导公式有哪些?
高数常见函数求导公式如下图:求导是数学计算中的一个计算方法,它的定义就是,当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。在一个函数存在导数时,称这个函数可导或者可微分。可导的函数一定连续。不连续的函数一定不可导。扩展资料:一阶导数表示的是函数的变化率,最直观的表现就在于函数的单调性,定理:设f(x)在[a,b]上连续,在(a,b)内具有一阶导数,那么:(1)若在(a,b)内f"(x)>0,则f(x)在[a,b]上的图形单调递增;(2)若在(a,b)内f"(x)<0,则f(x)在[a,b]上的图形单调递减;(3)若在(a,b)内f"(x)=0,则f(x)在[a,b]上的图形是平行(或重合)于x轴的直线,即在[a,b]上为常数。函数的导数就是一点上的切线的斜率。当函数单调递增时,斜率为正,函数单调递减时,斜率为负。导数与微分:微分也是一种线性描述函数在一点附近变化的方式。微分和导数是两个不同的概念。但是,对一元函数来说,可微与可导是完全等价的。可微的函数,其微分等于导数乘以自变量的微分dx,换句话说,函数的微分与自变量的微分之商等于该函数的导数。因此,导数也叫做微商。函数y=f(x)的微分又可记作dy=f"(x)dx。参考资料:百度百科——导数可桃可挑2023-05-22 18:14:251
函数的导数怎么求
1、(x^n)"=nx^(n-1)2、a"=0(常数的导数为0)例题(x^3+2)"=(x^3)"+2"=3x^23、(longax)"=(1/x)logae (log以a为底);特别的以e为底例:log3x=(1/x)log3e4、(a^x)"=(lna)a^x (ln3=loge3)例:3^x=(ln3)3^x若有疑问可以追问!望采纳这种他人劳动!谢谢新年快乐再也不做站长了2023-05-22 18:14:252
导函数的导数怎么求?
(tan x )"=(sin x /cos x)"=[(sin x)"cos x-sin x(cos x)"]/cosx*cos x=[cos x*cos x-(-sin x*sin x)]/cos x*cos x=1/cos x*cos x=sec x*sec x扩展资料不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。对于可导的函数f(x),x↦f"(x)也是一个函数,称作f(x)的导函数(简称导数)。寻找已知的函数在某点的导数或其导函数的过程称为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也来源于极限的四则运算法则。反之,已知导函数也可以倒过来求原来的函数,即不定积分。微积分基本定理说明了求原函数与积分是等价的。求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。铁血嘟嘟2023-05-22 18:14:251
复变函数
3、取z=0为圆心,|z|<1为半径做圆C则,f(z)在C内没有奇点利用高阶导数公式变形得到结果=0过程如下:北有云溪2023-05-22 18:14:181
复变函数反函数有那些性质?
复数的概念起源于求方程的根,在二次、三次代数方程的求根中就出现了负数开平方的情况。在很长时间里,人们对这类数不能理解。但随着数学的发展,这类数的重要性就日益显现出来。复数的一般形式是:a+bi,其中i是虚数单位。 以复数作为自变量的函数就叫做复变函数,而与之相关的理论就是复变函数论。解析函数是复变函数中一类具有解析性质的函数,复变函数论主要就研究复数域上的解析函数,因此通常也称复变函数论为解析函数论。 复变函数论的发展简况 复变函数论产生于十八世纪。1774年,欧拉在他的一篇论文中考虑了由复变函数的积分导出的两个方程。而比他更早时,法国数学家达朗贝尔在他的关于流体力学的论文中,就已经得到了它们。因此,后来人们提到这两个方程,把它们叫做“达朗贝尔-欧拉方程”。到了十九世纪,上述两个方程在柯西和黎曼研究流体力学时,作了更详细的研究,所以这两个方程也被叫做“柯西-黎曼条件”。 复变函数论的全面发展是在十九世纪,就像微积分的直接扩展统治了十八世纪的数学那样,复变函数这个新的分支统治了十九世纪的数学。当时的数学家公认复变函数论是最丰饶的数学分支,并且称为这个世纪的数学享受,也有人称赞它是抽象科学中最和谐的理论之一。 为复变函数论的创建做了最早期工作的是欧拉、达朗贝尔,法国的拉普拉斯也随后研究过复变函数的积分,他们都是创建这门学科的先驱。 后来为这门学科的发展作了大量奠基工作的要算是柯西、黎曼和德国数学家维尔斯特拉斯。二十世纪初,复变函数论又有了很大的进展,维尔斯特拉斯的学生,瑞典数学家列夫勒、法国数学家彭加勒、阿达玛等都作了大量的研究工作,开拓了复变函数论更广阔的研究领域,为这门学科的发展做出了贡献。 复变函数论在应用方面,涉及的面很广,有很多复杂的计算都是用它来解决的。比如物理学上有很多不同的稳定平面场,所谓场就是每点对应有物理量的一个区域,对它们的计算就是通过复变函数来解决的。 比如俄国的茹柯夫斯基在设计飞机的时候,就用复变函数论解决了飞机机翼的结构问题,他在运用复变函数论解决流体力学和航空力学方面的问题上也做出了贡献。 复变函数论不但在其他学科得到了广泛的应用,而且在数学领域的许多分支也都应用了它的理论。它已经深入到微分方程、积分方程、概率论和数论等学科,对它们的发展很有影响。 复变函数论的内容 复变函数论主要包括单值解析函数理论、黎曼曲面理论、几何函数论、留数理论、广义解析函数等方面的内容。 如果当函数的变量取某一定值的时候,函数就有一个唯一确定的值,那么这个函数解就叫做单值解析函数,多项式就是这样的函数。 复变函数也研究多值函数,黎曼曲面理论是研究多值函数的主要工具。由许多层面安放在一起而构成的一种曲面叫做黎曼曲面。利用这种曲面,可以使多值函数的单值枝和枝点概念在几何上有非常直观的表示和说明。对于某一个多值函数,如果能作出它的黎曼曲面,那么,函数在离曼曲面上就变成单值函数。 黎曼曲面理论是复变函数域和几何间的一座桥梁,能够使我们把比较深奥的函数的解析性质和几何联系起来。近来,关于黎曼曲面的研究还对另一门数学分支拓扑学有比较大的影响,逐渐地趋向于讨论它的拓扑性质。 复变函数论中用几何方法来说明、解决问题的内容,一般叫做几何函数论,复变函数可以通过共形映象理论为它的性质提供几何说明。导数处处不是零的解析函数所实现的映像就都是共形映象,共形映像也叫做保角变换。共形映象在流体力学、空气动力学、弹性理论、静电场理论等方面都得到了广泛的应用。 留数理论是复变函数论中一个重要的理论。留数也叫做残数,它的定义比较复杂。应用留数理论对于复变函数积分的计算比起线积分计算方便。计算实变函数定积分,可以化为复变函数沿闭回路曲线的积分后,再用留数基本定理化为被积分函数在闭合回路曲线内部孤立奇点上求留数的计算,当奇点是极点的时候,计算更加简洁。 把单值解析函数的一些条件适当地改变和补充,以满足实际研究工作的需要,这种经过改变的解析函数叫做广义解析函数。广义解析函数所代表的几何图形的变化叫做拟保角变换。解析函数的一些基本性质,只要稍加改变后,同样适用于广义解析函数。 广义解析函数的应用范围很广泛,不但应用在流体力学的研究方面,而且象薄壳理论这样的固体力学部门也在应用。因此,近年来这方面的理论发展十分迅速。 从柯西算起,复变函数论已有170多年的历史了。它以其完美的理论与精湛的技巧成为数学的一个重要组成部分。它曾经推动过一些学科的发展,并且常常作为一个有力的工具被应用在实际问题中,它的基础内容已成为理工科很多专业的必修课程。现在,复变函数论中仍然有不少尚待研究的课题,所以它将继续向前发展,并将取得更多应用。无尘剑 2023-05-22 18:14:182
求大神,复变函数积分参数方程
起点是1,终点是i,就可以设 z=1+(i-1)t,t∈【0,1】,也就是你看到的把起点和终点换成a、b也是同理此后故乡只2023-05-22 18:14:181
多复变函数是什么
自从复变函数的理论被广泛应用于数学的各个分支后,人们自然想把复分析推广到任何多个自变量,以及任何多个因变量的复向量值函数上. 多复变函数就是研究这类推广的复变函数. 一开始,人们认为这种推广只不过是形式上的照搬而已,但是很快人们就发现多复变函数与单复变函数有着许多差异. 首先,多复变函数什么时候是全纯函数?Hartoges 花了很大的力气才证明:多复变函数全纯当且仅当它对每个自变量都是全纯的.这个结论看似简单,实则难矣.迄今为止,人们都没有找到一个简化的证明. 其次,关于函数的延拓也存在着极大的差异.我们知道,复平面上任何单连通的开集上都存在一个单复变函数,它不能延拓到这个开集之外--满足这种性质的开集叫做全纯域.但是在多复变函数里却发生了奇特的现象:有一些开邻域,它们上面的任何全纯函数都可以延拓到外面去.这种现象称为Hartoges现象.如果一个开邻域不能发生Hartoges现象,我们就成这个领域为全纯域.阿啵呲嘚2023-05-22 18:14:181
复变函数的可导性怎么判断
kikcik2023-05-22 18:14:182
复变函数 积分
周线就是复平面内的闭曲线,复变函数的积分类似于高等数学中对坐标的曲线积分,最一般的方法是对于复变函数f(z)=u+iv,其中u=u(x,y),v=v(x,y),z=x+iy,则复变函数积分∫f(z)dz=∫(u+iv)(dx+idy)=∫(udx-vdy)+i∫(vdx+udy),从而转化为两个对坐标。tt白2023-05-22 18:14:181
复变函数
复变函数中,横坐标为实数,纵坐标为复数,你把那个i先去掉,就是z=acost+bsint,它表示的是一个椭圆,只是画图的时候,纵坐标是复数单位i,而不是y轴。西柚不是西游2023-05-22 18:14:182
复变函数
首先利用基本的不等关系得|z²-zˊ²|≤|z²| + |zˊ²|=|z|² + |zˊ|² = 2|z|²然后再利用复数的基本性质得 2zzˊ = 2|z|²显然就知道答案是 |z²-zˊ²|≤2zzˊ 啦。左迁2023-05-22 18:14:181
学习复变函数与积分变换有什么用途
搞电力系统、电学研究方向的人员用途非常大。其他方面就知道的不多了。无尘剑 2023-05-22 18:14:183
如题复变函数
(1)因为任何一个复数都是有模的,所以w的定义域是整个复平面。对于连续性,因为w=|z|=sqrt(x^2+y^2)+0*i,所以实部和虚部都是连续函数,因此w是连续函数。 (2)这是一个分式函数。根据分式函数的特殊性,函数有意义的充要条件是分母不为0,这也是分式函数连续的充要条件。要使得分母不为0,当且仅当九万里风9 2023-05-22 18:14:181
复变函数的积分是什么?
复变函数通常作曲线积分,因此下面讨论的也是曲线积分以下是形式上的变换由上式的第二行末尾可以看出,积分结果的实部和虚部都是关于函数实部和虚部的第二型曲线积分,如果有曲线C的参数方程那么上式就可以化为定积分。当然要求x(t)和y(t)满足一阶可导。另外当然第二型曲线积分可以化为第一型曲线积分,这一点不作深入讨论。如果要问积分的意义是什么,关于第二型曲线积分,就可以理解为变力对做曲线运动的物体所做的功。把第二型曲线积分化为定积分,就是用变力乘上路径导数得到功率,再由功率对时间积分,得到变力所做的功。实变函数的积分是这样,复变函数的积分也可以这样理解。而复变函数,是指以复数作为自变量和因变量的函数,而与之相关的理论就是复变函数论。解析函数是复变函数中一类具有解析性质的函数,复变函数论主要就是研究复数域上的解析函数,因此通常也称复变函数论为解析函数论。以上内容参考 百度百科-复变函数u投在线2023-05-22 18:14:171
复变函数
1、成立2、利用柯西-黎曼方程(3)欧拉公式u投在线2023-05-22 18:14:171
大学 复变函数
黎曼面,如图NerveM 2023-05-22 18:14:174
证明复变函数连续的方法是什么呀?
复变函数,是指以复数作为自变量和因变量的函数[1] ,而与之相关的理论就是复变函数论。解析函数是复变函数中一类具有解析性质的函数,复变函数论主要就是研究复数域上的解析函数,因此通常也称复变函数论为解析函数论。复数的概念起源于求方程的根,在二次、三次代数方程的求根中就出现了负数开平方的情况。在很长时间里,人们对这类数不能理解。但随着数学的发展,这类数的重要性就日益显现出来。复变数复值函数的简称。设A是一个复数集,如果对A中的任一复数z,通过一个确定的规则有一个或若干个复数w与之对应,就说在复数集A上定义了一个复变函数,记为w=ƒ(z)这个记号表示,ƒ(z)是z通过规则ƒ而确定的复数。如果记z=x+iy,w=u+iv,那么复变函数w=ƒ(z)可分解为w=u(x,y)+iv(x,y);所以一个复变函数w=ƒ(z)就对应着一对两个实变数的实值函数。除非有特殊的说明,函数一般指单值函数,即对A中的每一z,有且仅有一个w与之对应。例如,f(z)=是复平面上的复变函数。但f(z)=在复平面上并非单值,而是多值函数。对这种多值函数要有特殊的处理方法(见解析开拓、黎曼曲面)。对于z∈A,(z)的全体所成的数集称为A关于的像,记为(A)。函数规定了A与(A)之间的一个映射。例如在w=z2的映射下,z平面上的射线argz=θ与w平面上的射线argw=2θ对应;如果(A)∈A*,称把A映入A*。如果(A)=A*,则称把A映成A*,此时称A为A*的原像。对于把A映成A*的映射,如果z1与z2相异必导致(z1)与(z2)也相异,则称是一对一的。在一对一的映射下,对A*上的任一w,A上必有一个z与之对应,称此映射为的反函数,记为z=ƒ-1(w)设(z)是A上的复变函数,α是A中一点。如果对任一正数ε,都有正数δ,当z∈A且|z-α|<δ时,|(z)-(α)|<ε恒成立,则称(z)在α处是连续的,如果在A上处处连续,则称为A上的连续函数或连续映射。设是紧集A上的连续函数,则对任一正数ε,必存在不依赖自变数z的正数δ,当z1,z2∈A且|z1-z2<δ时|(z1)-(z2)|<ε恒成立。这个性质称为(z)在A上的一致连续性或均匀连续性。设(z)是平面开集D内的复变函数。对于z∈D,如果极限存在且有限,则称(z)在z处是可导的,此极限值称为(z)在z处的导数,记为"(z)。这是实变函数导数概念的推广,但复变函数导数的存在却蕴含着丰富的内容。这是因为z+h是z的二维邻域内的任意一点,极限的存在条件比起一维的实数情形要强得多。一个复变函数如在z的某一邻域内处处有导数,则该函数必在z处有高阶导数,而且可以展成一个收敛的幂级数(见解析函数)。所以复变函数导数的存在,对函数本身的结构有重大影响,而这些结果的研究,构成了一门学科──复变函数论。希望我能帮助你解疑释惑。Ntou1232023-05-22 18:14:171
怎么理解复变函数中的“复数”?
(1+i)^i=e^[iLn(1+i)]=e^{i[ln|1+i|+iarg(1+i)+i2kπ]}=e^{i[ln√2+iπ/4+i2kπ]}=e^(iln√2-π/4-2kπ),其主值=e^(iln√2-π/4)。定义复变数复值函数的简称。设A是一个复数集,如果对A中的任一复数z,通过一个确定的规则有一个或若干个复数w与之对应,就说在复数集A上定义了一个复变函数,记为w=ƒ(z)这个记号表示,ƒ(z)是z通过规则ƒ而确定的复数。如果记z=x+iy,w=u+iv,那么复变函数w=ƒ(z)可分解为w=u(x,y)+iv(x,y);所以一个复变函数w=ƒ(z)就对应着一对两个实变数的实值函数。除非有特殊的说明,函数一般指单值函数,即对A中的每一z,有且仅有一个w与之对应。例如,f(z)=是复平面上的复变函数。但f(z)= 在复平面上并非单值,而是多值函数。对这种多值函数要有特殊的处理方法(见解析开拓、黎曼曲面)。对于z∈A,(z)的全体所成的数集称为A关于的像,记为(A)。函数规定了A与(A)之间的一个映射。例如在w=z2的映射下,z平面上的射线argz=θ与w平面上的射线argw=2θ对应;如果(A)∈A*,称把A映入A*。如果(A)=A*,则称把A映成A*,此时称A为A*的原像。对于把A映成A*的映射,如果z1与z2相异必导致(z1)与(z2)也相异,则称是一对一的。在一对一的映射下,对A*上的任一w,A上必有一个z与之对应,称此映射为的反函数,记为z=ƒ-1(w)以上内容参考:百度百科-复变函数可桃可挑2023-05-22 18:14:171
复变函数图像是什么样的
复变函数一般是四维空间内的图像,人脑想象不了的。西柚不是西游2023-05-22 18:14:174
复变函数解方程,要求有详细解题步骤。
设z=x+iy。第一个用欧拉公式。第二个,直接把z³=(x+iy)³拆开来即可。瑞瑞爱吃桃2023-05-22 18:14:174
复变函数
1、利用单位圆映射为单位圆的通式代入已知条件求参数2、映射区域为w平面上的单位圆讨论模和辐角肖振2023-05-22 18:14:171
复变函数的主值是什么?
(1+i)^i=e^[iLn(1+i)]=e^{i[ln|1+i|+iarg(1+i)+i2kπ]}=e^{i[ln√2+iπ/4+i2kπ]}=e^(iln√2-π/4-2kπ),其主值=e^(iln√2-π/4)。定义复变数复值函数的简称。设A是一个复数集,如果对A中的任一复数z,通过一个确定的规则有一个或若干个复数w与之对应,就说在复数集A上定义了一个复变函数,记为w=ƒ(z)这个记号表示,ƒ(z)是z通过规则ƒ而确定的复数。如果记z=x+iy,w=u+iv,那么复变函数w=ƒ(z)可分解为w=u(x,y)+iv(x,y);所以一个复变函数w=ƒ(z)就对应着一对两个实变数的实值函数。除非有特殊的说明,函数一般指单值函数,即对A中的每一z,有且仅有一个w与之对应。例如,f(z)=是复平面上的复变函数。但f(z)= 在复平面上并非单值,而是多值函数。对这种多值函数要有特殊的处理方法(见解析开拓、黎曼曲面)。对于z∈A,(z)的全体所成的数集称为A关于的像,记为(A)。函数规定了A与(A)之间的一个映射。例如在w=z2的映射下,z平面上的射线argz=θ与w平面上的射线argw=2θ对应;如果(A)∈A*,称把A映入A*。如果(A)=A*,则称把A映成A*,此时称A为A*的原像。对于把A映成A*的映射,如果z1与z2相异必导致(z1)与(z2)也相异,则称是一对一的。在一对一的映射下,对A*上的任一w,A上必有一个z与之对应,称此映射为的反函数,记为z=ƒ-1(w)以上内容参考:百度百科-复变函数韦斯特兰2023-05-22 18:14:171
复数函数求导公式
复数函数求导公式:f"(z)=Ux(x,y)+iVx(x,y)。复函数导数的定义和实函数导数的定义是一样的。一般来说,复变函数的导数,没有实际的几何意义。当z的虚部等于零时,常称z为实数;当z的虚部不等于零时,实部等于零时,常称z为纯虚数。复数域是实数域的代数闭包,即任何复系数多项式在复数域中总有根。复数的集合用C表示,实数的集合用R表示,显然,R是C的真子集。CarieVinne 2023-05-22 18:14:171
复变函数,求解析函数
根据v的表达式得到其对y的偏导数为vy=-2;根据柯西-黎曼方程得到ux=vy=-2;上式对x积分,得到u=-2x+C(y)。上式对y求导,得到uy=C"(y);另外,根据v的表达式,对x的偏导数为vx=4x+1,根据柯西-黎曼方程有uy=-vx,即C"(y)=4x+1.这显然不可能成立。所以不存在这样的解析函数f,使得f=u+iv(其中u是实函数)。其实单独从v的表达式来看,其对x的二阶偏导数为4,对y的二阶偏导数为0,两者之和不等于0,所以v 不是调和函数,因此v不可能是某个解析函数的虚部或者实部。kikcik2023-05-22 18:14:171
复变函数主要有什么用?
大多数的物理问题在实函数的范围内可以得到准确的描述了。但是如果使用复变函数。问题会变得简单。你如果知道复变函数中的留数定理就明白了。实函数下一个积分需要计算半天。使用留数定理只需要你看一眼就可以了。复变函数在描述波动,描述交流电。描述原子结构中都具有很大的优越性。Chen2023-05-22 18:14:163
到底什么是复变函数?它到底有什么作用?
复变函数就是以复数为研究对象的函数,可以看作是高数从实数域到复数域的扩充。它的部分内容,如函数可导和解析的判定、函数积分、幂级数的展开等,与高数相应部分内容是极为相似的。但也有部分内容与高数不同。至于作用,我想主要有两个方面:一是数学理论方面的研究,二是实际应用,主要在工科方面,如电工技术、力学、自动控制、通信技术等方面。mlhxueli 2023-05-22 18:14:161
复变函数的实质
复变函数,是指以复数作为自变量和因变量的函数,而与之相关的理论就是复变函数论。解析函数是复变函数中一类具有解析性质的函数,复变函数论主要就是研究复数域上的解析函数,因此通常也称复变函数论为解析函数论。简介复数的概念起源于求方程的根,在二次、三次代数方程的求根中就出现了负数开平方的情况。在很长时间里,人们对这类数不能理解。但随着数学的发展,这类数的重要性就日益显现出来。复变函数论产生于十八世纪。1774年,欧拉在他的一篇论文中考虑了由复变函数的积分导出的两个方程。而比他更早时,法国数学家达朗贝尔在他的关于流体力学的论文中,就已经得到了它们。因此,后来人们提到这两个方程,把它们叫做“达朗贝尔-欧拉方程”。到了十九世纪,上述两个方程在柯西和黎曼研究流体力学时,作了更详细的研究,所以这两个方程也被叫做“柯西-黎曼条件”。复变函数论的全面发展是在十九世纪,就像微积分的直接扩展统治了十八世纪的数学那样,复变函数这个新的分支统治了十九世纪的数学。当时的数学家公认复变函数论是最丰饶的数学分支,并且称为这个世纪的数学享受,也有人称赞它是抽象科学中最和谐的理论之一。为复变函数论的创建做了最早期工作的是欧拉、达朗贝尔,法国的拉普拉斯也随后研究过复变函数的积分,他们都是创建这门学科的先驱。后来为这门学科的发展作了大量奠基工作的要算是柯西、黎曼和德国数学家维尔斯特拉斯了。二十世纪初,复变函数论又有了很大的进展,维尔斯特拉斯的学生,瑞典数学家列夫勒、法国数学家庞加莱、阿达玛等都作了大量的研究工作,开拓了复变函数论更广阔的研究领域,为这门学科的发展做出了贡献。复变函数论不但在其他学科得到了广泛的应用,而且在数学领域的许多分支也都应用了它的理论。它已经深入到微分方程、积分方程、概率论和数论等学科,对它们的发展很有影响。内容复变函数论主要包括单值解析函数理论、黎曼曲面理论、几何函数论、留数理论、广义解析函数等方面的内容。如果当函数的变量取某一定值的时候,函数就有一个唯一确定的值,那么这个函数解就叫做单值解析函数,多项式就是这样的函数。复变函数也研究多值函数,黎曼曲面理论是研究多值函数的主要工具。由许多层面安放在一起而构成的一种曲面叫做黎曼曲面。利用这种曲面,可以使多值函数的单值枝和枝点概念在几何上有非常直观的表示和说明。对于某一个多值函数,如果能作出它的黎曼曲面,那么,函数在黎曼曲面上就变成单值函数。黎曼曲面理论是复变函数域和几何间的一座桥梁,能够使我们把比较深奥的函数的解析性质和几何联系起来。现时,关于黎曼曲面的研究还对另一门数学分支拓扑学有比较大的影响,逐渐地趋向于讨论它的拓扑性质。复变函数论中用几何方法来说明、解决问题的内容,一般叫做几何函数论,复变函数可以通过共形映象理论为它的性质提供几何说明。导数处处不是零的解析函数所实现的映像就都是共形映象,共形映像也叫做保角变换。共形映象在流体力学、空气动力学、弹性理论、静电场 、电路理论等方面都得到了广泛的应用。留数理论是复变函数论中一个重要的理论。留数也叫做残数,它的定义比较复杂。应用留数理论对于复变函数积分的计算比起线积分计算方便。计算实变函数定积分,可以化为复变函数沿闭回路曲线的积分后,再用留数基本定理化为被积分函数在闭合回路曲线内部孤立奇点上求留数的计算,当奇点是极点的时候,计算更加简洁。把单值解析函数的一些条件适当地改变和补充,以满足实际研究工作的需要,这种经过改变的解析函数叫做广义解析函数。广义解析函数所代表的几何图形的变化叫做拟保角变换。解析函数的一些基本性质,只要稍加改变后,同样适用于广义解析函数。广义解析函数的应用范围很广泛,不但应用在流体力学的研究方面,而且象薄壳理论这样的固体力学部门也在应用。因此,这些年来这方面的理论发展十分迅速。从柯西算起,复变函数论已有170多年的历史了。它以其完美的理论与精湛的技巧成为数学的一个重要组成部分。它曾经推动过一些学科的发展,并且常常作为一个有力的工具被应用在实际问题中,它的基础内容已成为理工科很多专业的必修课程。复变函数论中仍然有不少尚待研究的课题,所以它将继续向前发展,并将取得更多应用。复变函数的主要研究对象是解析函数,包括单值函数、多值函数以及几何理论三大部分。在悠久的历史进程中,经过许多学者的努力,使得复变函数论获得了巨大发展,并且形成了一些专门的研究领域。单值函数中最基本的两类函数是整函数和亚纯函数,它们分别是多项式和有理函数的发展。外尔斯特拉斯将多项式的因式分解定理推广到整函数,而G.米塔-列夫勒则将有理函数分解为部分分式的定理推广到亚纯函数。(C.-)é.皮卡、(F.-é.-J.-) é.波莱尔等进一步发现了整函数的取值与多项式的取值之间有着很大的相似性。在此基础上,1925年R.奈望林纳建立了亚纯函数值分布的近代理论,对函数论的发展产生了重要影响。它和复变函数论的其他领域也存在着密切联系。例如,1973年A.伯恩斯坦应用实变函数的思想引进T^*函数,它在值分布论的亏量问题、整函数的最小模问题以及单叶函数的研究中都发挥了显著效用。关于多值函数的研究主要是围绕着黎曼曲面及单值化的问题来进行的。1913年(C.H.)H.外尔在其经典著作《黎曼曲面概念》中首先给出了抽象黎曼曲面的定义,它是流形这个现代数学基本概念的雏形。黎曼曲面的研究不仅使自身形成了完美的理论,而且它为代数几何、自守函数、复流形、代数数论等近代数学重要分支的研究提供了简单、明了的模型。在复变函数的应用上,共形映射具有重要的地位。H.E.茹科夫斯基通过共形映射研究绕机翼的流动便是著名的例子。实际应用中,常常要借助近似方法具体地构造出映射函数。这方面有不少研究工作。当然,有时并不需要知道具体的映射函数,只是应用其几何性质。这就推动了复变函数几何理论的发展。单叶函数的研究是复变函数几何理论的一个重要组成部分,特别是1916年L.比伯巴赫提出的单位圆内形如式(4)的单叶解析函数应有 |αn|≤n的猜测引起了许多学者的注意。近70年来,围绕着比伯巴赫猜想曾有不少研究工作,但是直到1984年,布朗基才完全证实了这个猜想。证明中主要应用了莱伯德-米林的工作,C.勒夫纳的参数表示法以及关于雅可比多项式的结果。柯西-黎曼方程表明了解析函数与椭圆型偏微分方程组之间的联系,20世纪50年代以来L.伯斯,И.Η.韦夸等考虑较为一般的椭圆型偏微分方程组,并引入广义解析函数的概念。解析函数决定的映射为共形映射,它把无穷小圆映为无穷小圆;而广义解析函数则决定了拟共形映射,它把无穷小圆映为无穷小椭圆。L.V.阿尔福斯,М.Α.拉夫连季耶夫为拟共形映射的理论奠定了基础。解析函数虽然在区域内部有很好的性质,但是当自变量z趋向于边界时,函数的变化情况常常十分复杂。关于这方面的研究就形成了一个专门的领域,称为解析函数边界性质。经典的结果有法图定理,Η.Η.卢津和И.И.普里瓦洛夫在这方面也有系统的研究。出现了聚集合的概念,进一步将研究引向深入。复变函数论在应用方面,涉及的面很广,有很多复杂的计算都是用它来解决的。比如物理学上有很多不同的稳定平面场,所谓场就是每点对应有物理量的一个区域,对它们的计算就是通过复变函数来解决的。比如俄国的茹柯夫斯基在设计飞机的时候,就用复变函数论解决了飞机机翼的结构问题,他在运用复变函数论解决流体力学和航空力学方面的问题上也做出了贡献。kikcik2023-05-22 18:14:161
复变函数
(1)曲线积分的上下限表示了曲线的方向α是起点,β是终点颠倒的话,曲线方向相反得到的结果与上面互为相反数(2)复函数的积分是曲线积分(3)Ntou1232023-05-22 18:14:161
什么是复变函数
是指以复数作为自变量和因变量的函数,而与之相关的理论就是复变函数论。解析函数是复变函数中一类具有解析性质的函数,复变函数论主要就是研究复数域上的解析函数,因此通常也称复变函数论为解析函数论。 复变函数起源: 复数的概念起源于求方程的根,在二次、三次代数方程的求根中就出现了负数开平方的情况。在很长时间里,人们对这类数不能理解。但随着数学的发展,这类数的重要性就日益显现出来。 内容: 复变函数论主要包括单值解析函数理论、黎曼曲面理论、几何函数论、留数理论、广义解析函数等方面的内容。如果当函数的变量取某一定值的时候,函数就有一个唯一确定的值,那么这个函数解就叫做单值解析函数,多项式就是这样的函数。无尘剑 2023-05-22 18:14:161
复变函数有什么用途?
这个非常重要,对孩子影响特别大,所以必须重|视|起来。复变函数也研究多值函数,L曲面理论是研究多值函数的主要工具。由许多层面安放在一起而构成的一种曲面叫做L曲面。利用这种曲面,可以使多值函数的单值支和支点概念在几何上有非常直观的表示和说明。对于某一个多值函数,如果能作出它的L曲面,那么,函数在L曲面上就变成单值函数。L曲面理论是复变函数域和几何间的一座桥梁,能够使我们把比较深奥的函数的解析性质和几何联系起来。关于L曲面的研究还对另一门数学分支拓扑学有比较大的影响,逐渐地趋向于讨论它的拓扑性质。复变函数论中用几何方法来说明、解决问题的内容,一般叫做几何函数论,复变函数可以通过共形映象理论为它的性质提供几何说明。导数处处不是零的解析函数所实现的映像就都是共形映象,共形映像也叫做保角变换。留数理论是复变函数论中一个重要的理论。留数也叫做残数,它的定义比较复杂。应用留数理论对于复变函数积分的计算比起线积分计算方便。计算实变函数定积分,可以化为复变函数沿闭回路曲线的积分后,再用留数基本定理化为被积分函数在闭合回路曲线内部孤立奇点上求留数的计算,当奇点是极点的时候,计算更加简洁。九万里风9 2023-05-22 18:14:161
复变函数
z=(1+i)/(1-i)=i,z^{100}+z^{75}+z^{50}=-if(z)=z^2ln z,f"(z)=2zln z+z,f"(0)=01-e^{-z}=0,-z=i2kpi,z=-2ikpi曲线参数方程为:x=t^2,y=t,0<=t<=1int_Czdz=int_0^1(t^2+it)d(t^2+it)=int_0^1(t^2+it)(2t+i)dt=int_0^1(2t^3-t+3t^2i)dt=i水元素sl2023-05-22 18:14:161
复变函数有什么用
以复数作为自变量和因变量的函数就叫做复变函数,而与之相关的理论就是复变函数论。解析函数是复变函数中一类具有解析性质的函数,复变函数论主要就是研究复数域上的解析函数,因此通常也称复变函数论为解析函数论。复数的概念起源于求方程的根,在二次、三次代数方程的求根中就出现了负数开平方的情况。在很长时间里,人们对这类数不能理解。但随着数学的发展,这类数的重要性就日益显现出来。发展简况复变函数论产生于十八世纪。1774年,欧拉在他的一篇论文中考虑了由复变函数的积分导出的两个方程。而比他更早时,法国数学家达朗贝尔在他的关于流体力学的论文中,就已经得到了它们。因此,后来人们提到这两个方程,把它们叫做“达朗贝尔-欧拉方程”。到了十九世纪,上述两个方程在柯西和黎曼研究流体力学时,作了更详细的研究,所以这两个方程也被叫做“柯西-黎曼条件”。复变函数论的全面发展是在十九世纪,就像微积分的直接扩展统治了十八世纪的数学那样,复变函数这个新的分支统治了十九世纪的数学。当时的数学家公认复变函数论是最丰饶的数学分支,并且称为这个世纪的数学享受,也有人称赞它是抽象科学中最和谐的理论之一。为复变函数论的创建做了最早期工作的是欧拉、达朗贝尔,法国的拉普拉斯也随后研究过复变函数的积分,他们都是创建这门学科的先驱。后来为这门学科的发展作了大量奠基工作的要算是柯西、黎曼和德国数学家维尔斯特拉斯了。二十世纪初,复变函数论又有了很大的进展,维尔斯特拉斯的学生,瑞典数学家列夫勒、法国数学家庞加莱、阿达玛等都作了大量的研究工作,开拓了复变函数论更广阔的研究领域,为这门学科的发展做出了贡献。复变函数论在应用方面,涉及的面很广,有很多复杂的计算都是用它来解决的。比如物理学上有很多不同的稳定平面场,所谓场就是每点对应有物理量的一个区域,对它们的计算就是通过复变函数来解决的。比如俄国的茹柯夫斯基在设计飞机的时候,就用复变函数论解决了飞机机翼的结构问题,他在运用复变函数论解决流体力学和航空力学方面的问题上也做出了贡献。复变函数论不但在其他学科得到了广泛的应用,而且在数学领域的许多分支也都应用了它的理论。它已经深入到微分方程、积分方程、概率论和数论等学科,对它们的发展很有影响。NerveM 2023-05-22 18:14:161
复变函数复积分,沿指定曲线的方向
复积分和第二类曲线积分有类似之处,即积分是按着有方向的曲线求解。讨论积分路径,积分区域。利用被积函数的解析性,积分区域的奇点,留数定理,复合闭路定理求解。 实数积分定积分是所有的积分的基础,包括曲线积分,曲面积分,二重积分,三重...凡尘2023-05-22 18:14:163
复变函数问题
这个题实际上是要说明对于复变函数而言,幂函数可能是多值的。所谓的多值,就是指对于一个自变量z,z^α会有多个取值。在实变函数里面,这种情况出现得比较少,只有反三角函数会出现多值,而且对这类多值函数取它们的“主值”,这时候多值函数就变成单值函数了。但是在复变函数里面,为了考虑方程所有的根,这时候反而希望兼顾函数的所有值,而不是单个的值。在这个题,决定函数多值性的是整数k。当α为整数的时候,2kα必定是偶数,而函数exp(z)是周期函数,所以当自变量相差2πi的整数倍的时候,函数值是相同的,也就是说函数值和整数k无关,所以这个时候是单值的。当α是有理数的时候,不妨假设α=p/q(既约分数),那么2kα=2kp/q。当k1和k2之间相差q的整数倍的时候,2k1α和2k2α之间的差也是偶数,这个时候还是因为exp(z)的周期性,从而得到exp(i2k1α)和exp(i2k2α)是相等的,因此当不同的k之间相差q的整数倍的时候,函数值是相等的。而如果不同的k之间相差不足q的整数倍,也就是说被q除还有余数,那么函数值就有可能不同。因为不同的余数恰好有0,1,2,……,q-1共q种可能,所以会有q个值。这个时候,幂函数z^α是多值函数,且有q个值。当α是无理数的时候,就不满足整除余数的周期性了,所以对于不同的k值,就有不同的函数值,因此z^α函数也是多值函数,函数值的个数是可数无穷多个。善士六合2023-05-22 18:14:161
复变函数求解?
复变函数,是指以复数作为自变量和因变量的函数[1] ,而与之相关的理论就是复变函数论。解析函数是复变函数中一类具有解析性质的函数,复变函数论主要就是研究复数域上的解析函数,因此通常也称复变函数论为解析函数论。复数的概念起源于求方程的根,在二次、三次代数方程的求根中就出现了负数开平方的情况。在很长时间里,人们对这类数不能理解。但随着数学的发展,这类数的重要性就日益显现出来。复变数复值函数的简称。设A是一个复数集,如果对A中的任一复数z,通过一个确定的规则有一个或若干个复数w与之对应,就说在复数集A上定义了一个复变函数,记为w=ƒ(z)这个记号表示,ƒ(z)是z通过规则ƒ而确定的复数。如果记z=x+iy,w=u+iv,那么复变函数w=ƒ(z)可分解为w=u(x,y)+iv(x,y);所以一个复变函数w=ƒ(z)就对应着一对两个实变数的实值函数。除非有特殊的说明,函数一般指单值函数,即对A中的每一z,有且仅有一个w与之对应。例如,f(z)=是复平面上的复变函数。但f(z)=在复平面上并非单值,而是多值函数。对这种多值函数要有特殊的处理方法(见解析开拓、黎曼曲面)。对于z∈A,(z)的全体所成的数集称为A关于的像,记为(A)。函数规定了A与(A)之间的一个映射。例如在w=z2的映射下,z平面上的射线argz=θ与w平面上的射线argw=2θ对应;如果(A)∈A*,称把A映入A*。如果(A)=A*,则称把A映成A*,此时称A为A*的原像。对于把A映成A*的映射,如果z1与z2相异必导致(z1)与(z2)也相异,则称是一对一的。在一对一的映射下,对A*上的任一w,A上必有一个z与之对应,称此映射为的反函数,记为z=ƒ-1(w)设(z)是A上的复变函数,α是A中一点。如果对任一正数ε,都有正数δ,当z∈A且|z-α|<δ时,|(z)-(α)|<ε恒成立,则称(z)在α处是连续的,如果在A上处处连续,则称为A上的连续函数或连续映射。设是紧集A上的连续函数,则对任一正数ε,必存在不依赖自变数z的正数δ,当z1,z2∈A且|z1-z2<δ时|(z1)-(z2)|<ε恒成立。这个性质称为(z)在A上的一致连续性或均匀连续性。设(z)是平面开集D内的复变函数。对于z∈D,如果极限存在且有限,则称(z)在z处是可导的,此极限值称为(z)在z处的导数,记为"(z)。这是实变函数导数概念的推广,但复变函数导数的存在却蕴含着丰富的内容。这是因为z+h是z的二维邻域内的任意一点,极限的存在条件比起一维的实数情形要强得多。一个复变函数如在z的某一邻域内处处有导数,则该函数必在z处有高阶导数,而且可以展成一个收敛的幂级数(见解析函数)。所以复变函数导数的存在,对函数本身的结构有重大影响,而这些结果的研究,构成了一门学科──复变函数论。希望我能帮助你解疑释惑。拌三丝2023-05-22 18:14:161
求解释 复变函数
因为当z=0时,f(z)的极限为2,所以z=0为可去极点;而当z=kπ,分子不为0,分母为0,故z=kπ为极点。拌三丝2023-05-22 18:14:161
复变函数问题?
这个题实际上是要说明对于复变函数而言,幂函数可能是多值的。所谓的多值,就是指对于一个自变量z,z^α会有多个取值。在实变函数里面,这种情况出现得比较少,只有反三角函数会出现多值,而且对这类多值函数取它们的“主值”,这时候多值函数就变成单值函数了。但是在复变函数里面,为了考虑方程所有的根,这时候反而希望兼顾函数的所有值,而不是单个的值。在这个题,决定函数多值性的是整数k。当α为整数的时候,2kα必定是偶数,而函数exp(z)是周期函数,所以当自变量相差2πi的整数倍的时候,函数值是相同的,也就是说函数值和整数k无关,所以这个时候是单值的。当α是有理数的时候,不妨假设α=p/q(既约分数),那么2kα=2kp/q。当k1和k2之间相差q的整数倍的时候,2k1α和2k2α之间的差也是偶数,这个时候还是因为exp(z)的周期性,从而得到exp(i2k1α)和exp(i2k2α)是相等的,因此当不同的k之间相差q的整数倍的时候,函数值是相等的。而如果不同的k之间相差不足q的整数倍,也就是说被q除还有余数,那么函数值就有可能不同。因为不同的余数恰好有0,1,2,……,q-1共q种可能,所以会有q个值。这个时候,幂函数z^α是多值函数,且有q个值。当α是无理数的时候,就不满足整除余数的周期性了,所以对于不同的k值,就有不同的函数值,因此z^α函数也是多值函数,函数值的个数是可数无穷多个。wpBeta2023-05-22 18:14:161
复变函数的几何意义
复变函数,是指以复数作为自变量和因变量的函数[1],而与之相关的理论就是复变函数论。解析函数是复变函数中一类具有解析性质的函数,复变函数论主要就是研究复数域上的解析函数,因此通常也称复变函数论为解析函数论。中文名复变函数外文名complex function产生时间十八世纪又名解析函数论定义以复数作为自变量和因变量的函数快速导航发展简况内容定义极限与连续性复变函数的导数起源复数的概念起源于求方程的根,在二次、三次代数方程的求根中就出现了负数开平方的情况。在很长时间里,人们对这类数不能理解。但随着数学的发展,这类数的重要性就日益显现出来。[1]发展简况复变函数论产生于十八世纪。1774年,欧拉在他的一篇论文中考虑了由复变函数的积分导出的两个方程。而比他更早时,法国数学家达朗贝尔在他的关于流体力学的论文中,就已经得到了它们。因此,后来人们提到这两个方程,把它们叫做“达朗贝尔-欧拉方程”。到了十九世纪,上述两个方程在柯西和黎曼研究流体力学时,作了更详细的研究,所以这两个方程也被叫做“柯西-黎曼条件”。复变函数论的全面发展是在十九世纪,就像微积分的直接扩展统治了十八世纪的数学那样,复变函数这个新的分支统治了十九世纪的数学。当时的数学家公认复变函数论是最丰饶的数学分支,并且称为这个世纪的数学享受,也有人称赞它是抽象科学中最和谐的理论之一。为复变函数论的创建做了最早期工作的是欧拉、达朗贝尔,法国的拉普拉斯也随后研究过复变函数的积分,他们都是创建这门学科的先驱。后来为这门学科的发展作了大量奠基工作的要算是柯西、黎曼和德国数学家维尔斯特拉斯了。二十世纪初,复变函数论又有了很大的进展,维尔斯特拉斯的学生,瑞典数学家列夫勒、法国数学家庞加莱、阿达玛等都作了大量的研究工作,开拓了复变函数论更广阔的研究领域,为这门学科的发展做出了贡献。复变函数论在应用方面,涉及的面很广,有很多复杂的计算都是用它来解决的。比如物理学上有很多不同的稳定平面场,所谓场就是每点对应有物理量的一个区域,对它们的计算就是通过复变函数来解决的。比如俄国的茹柯夫斯基在设计飞机的时候,就用复变函数论解决了飞机机翼的结构问题,他在运用复变函数论解决流体力学和航空力学方面的问题上也做出了贡献。复变函数论不但在其他学科得到了广泛的应用,而且在数学领域的许多分支也都应用了它的理论。它已经深入到微分方程、积分方程、概率论和数论等学科,对它们的发展很有影响。[1]内容复变函数论主要包括单值解析函数理论、黎曼曲面理论、几何函数论、留数理论、广义解析函数等方面的内容。如果当函数的变量取某一定值的时候,函数就有一个唯一确定的值,那么这个函数解就叫做单值解析函数,多项式就是这样的函数。复变函数也研究多值函数,黎曼曲面理论是研究多值函数的主要工具。由许多层面安放在一起而构成的一种曲面叫做黎曼曲面。利用这种曲面,可以使多值函数的单值枝和枝点概念在几何上有非常直观的表示和说明。对于某一个多值函数,如果能作出它的黎曼曲面,那么,函数在黎曼曲面上就变成单值函数。黎曼曲面理论是复变函数域和几何间的一座桥梁,能够使我们把比较深奥的函数的解析性质和几何联系起来。现时,关于黎曼曲面的研究还对另一门数学分支拓扑学有比较大的影响,逐渐地趋向于讨论它的拓扑性质。复变函数论中用几何方法来说明、解决问题的内容,一般叫做几何函数论,复变函数可以通过共形映象理论为它的性质提供几何说明。导数处处不是零的解析函数所实现的映像就都是共形映象,共形映像也叫做保角变换。共形映象在流体力学、空气动力学、弹性理论、静电场 、电路理论等方面都得到了广泛的应用。留数理论是复变函数论中一个重要的理论。留数也叫做残数,它的定义比较复杂。应用留数理论对于复变函数积分的计算比起线积分计算方便。计算实变函数定积分,可以化为复变函数沿闭回路曲线的积分后,再用留数基本定理化为被积分函数在闭合回路曲线内部孤立奇点上求留数的计算bikbok2023-05-22 18:14:161
复变函数是怎么产生和特征
定义与实函数的连续定义一样,一点的极限等于函数值。当然距离是复平面的距离。有时验证定义比较困难,可以借用实函数时的结论:如初等函数在其定义域内(不取无穷值)连续。连续函数的复合函数一般也连续,只要不取无穷。以复数作为自变量和因变量的函数就叫做复变函数,而与之相关的理论就是复变函数论。解析函数是复变函数中一类具有解析性质的函数,复变函数论主要就研究复数域上的解析函数,因此通常也称复变函数论为解析函数论。苏萦2023-05-22 18:14:162
复变函数
由i=e^[ i(π/2+2kπ)],所以Ln(i)=i(π/2+2kπ),k=0,±1,±2,……再也不做站长了2023-05-22 18:14:161
复变函数计算最基础问题,复变函数怎么计算模和相位啊
设那么这是模和辐角计算的第一层含义。另外有这是模和辐角计算的第二层含义。当然r3和Θ3也可以通过r1,r2,Θ1,Θ2表达出来,直观来看就是把复数看作向量,根据余弦定理来简历关系。再者就是:左迁2023-05-22 18:14:162
复变函数的几何意义
复变函数,是指以复数作为自变量和因变量的函数[1],而与之相关的理论就是复变函数论。解析函数是复变函数中一类具有解析性质的函数,复变函数论主要就是研究复数域上的解析函数,因此通常也称复变函数论为解析函数论。中文名复变函数外文名complex function产生时间十八世纪又名解析函数论定义以复数作为自变量和因变量的函数快速导航发展简况 内容 定义 极限与连续性 复变函数的导数起源复数的概念起源于求方程的根,在二次、三次代数方程的求根中就出现了负数开平方的情况。在很长时间里,人们对这类数不能理解。但随着数学的发展,这类数的重要性就日益显现出来。[1]发展简况复变函数论产生于十八世纪。1774年,欧拉在他的一篇论文中考虑了由复变函数的积分导出的两个方程。而比他更早时,法国数学家达朗贝尔在他的关于流体力学的论文中,就已经得到了它们。因此,后来人们提到这两个方程,把它们叫做“达朗贝尔-欧拉方程”。到了十九世纪,上述两个方程在柯西和黎曼研究流体力学时,作了更详细的研究,所以这两个方程也被叫做“柯西-黎曼条件”。复变函数论的全面发展是在十九世纪,就像微积分的直接扩展统治了十八世纪的数学那样,复变函数这个新的分支统治了十九世纪的数学。当时的数学家公认复变函数论是最丰饶的数学分支,并且称为这个世纪的数学享受,也有人称赞它是抽象科学中最和谐的理论之一。为复变函数论的创建做了最早期工作的是欧拉、达朗贝尔,法国的拉普拉斯也随后研究过复变函数的积分,他们都是创建这门学科的先驱。后来为这门学科的发展作了大量奠基工作的要算是柯西、黎曼和德国数学家维尔斯特拉斯了。二十世纪初,复变函数论又有了很大的进展,维尔斯特拉斯的学生,瑞典数学家列夫勒、法国数学家庞加莱、阿达玛等都作了大量的研究工作,开拓了复变函数论更广阔的研究领域,为这门学科的发展做出了贡献。复变函数论在应用方面,涉及的面很广,有很多复杂的计算都是用它来解决的。比如物理学上有很多不同的稳定平面场,所谓场就是每点对应有物理量的一个区域,对它们的计算就是通过复变函数来解决的。比如俄国的茹柯夫斯基在设计飞机的时候,就用复变函数论解决了飞机机翼的结构问题,他在运用复变函数论解决流体力学和航空力学方面的问题上也做出了贡献。复变函数论不但在其他学科得到了广泛的应用,而且在数学领域的许多分支也都应用了它的理论。它已经深入到微分方程、积分方程、概率论和数论等学科,对它们的发展很有影响。[1]内容复变函数论主要包括单值解析函数理论、黎曼曲面理论、几何函数论、留数理论、广义解析函数等方面的内容。如果当函数的变量取某一定值的时候,函数就有一个唯一确定的值,那么这个函数解就叫做单值解析函数,多项式就是这样的函数。复变函数也研究多值函数,黎曼曲面理论是研究多值函数的主要工具。由许多层面安放在一起而构成的一种曲面叫做黎曼曲面。利用这种曲面,可以使多值函数的单值枝和枝点概念在几何上有非常直观的表示和说明。对于某一个多值函数,如果能作出它的黎曼曲面,那么,函数在黎曼曲面上就变成单值函数。黎曼曲面理论是复变函数域和几何间的一座桥梁,能够使我们把比较深奥的函数的解析性质和几何联系起来。现时,关于黎曼曲面的研究还对另一门数学分支拓扑学有比较大的影响,逐渐地趋向于讨论它的拓扑性质。复变函数论中用几何方法来说明、解决问题的内容,一般叫做几何函数论,复变函数可以通过共形映象理论为它的性质提供几何说明。导数处处不是零的解析函数所实现的映像就都是共形映象,共形映像也叫做保角变换。共形映象在流体力学、空气动力学、弹性理论、静电场 、电路理论等方面都得到了广泛的应用。留数理论是复变函数论中一个重要的理论。留数也叫做残数,它的定义比较复杂。应用留数理论对于复变函数积分的计算比起线积分计算方便。计算实变函数定积分,可以化为复变函数沿闭回路曲线的积分后,再用留数基本定理化为被积分函数在闭合回路曲线内部孤立奇点上求留数的计算bikbok2023-05-22 18:14:161
复变函数问题
这个题实际上是要说明对于复变函数而言,幂函数可能是多值的。所谓的多值,就是指对于一个自变量z,z^α会有多个取值。在实变函数里面,这种情况出现得比较少,只有反三角函数会出现多值,而且对这类多值函数取它们的“主值”,这时候多值函数就变成单值函数了。但是在复变函数里面,为了考虑方程所有的根,这时候反而希望兼顾函数的所有值,而不是单个的值。在这个题,决定函数多值性的是整数k。当α为整数的时候,2kα必定是偶数,而函数exp(z)是周期函数,所以当自变量相差2πi的整数倍的时候,函数值是相同的,也就是说函数值和整数k无关,所以这个时候是单值的。当α是有理数的时候,不妨假设α=p/q(既约分数),那么2kα=2kp/q。当k1和k2之间相差q的整数倍的时候,2k1α和2k2α之间的差也是偶数,这个时候还是因为exp(z)的周期性,从而得到exp(i2k1α)和exp(i2k2α)是相等的,因此当不同的k之间相差q的整数倍的时候,函数值是相等的。而如果不同的k之间相差不足q的整数倍,也就是说被q除还有余数,那么函数值就有可能不同。因为不同的余数恰好有0,1,2,……,q-1共q种可能,所以会有q个值。这个时候,幂函数z^α是多值函数,且有q个值。当α是无理数的时候,就不满足整除余数的周期性了,所以对于不同的k值,就有不同的函数值,因此z^α函数也是多值函数,函数值的个数是可数无穷多个真颛2023-05-22 18:14:161