傅里叶级数

周期性傅里叶级数的问题

傅里叶级数干什么的,这个给你讲起来很复杂。在不同的领域有不同的应用。简单说就是可以从频域去分析一个函数。比如说在通信领域,时域分析一个信号有时候计算非常复杂,相反在频域会很简单。我们把它延拓是为了更方便写出它的傅里叶级数。但是,根据这个写出的傅里叶级数不完全等价于原函数。等价的是延拓的函数。这样有它的意义就是,这个延拓的函数在(0,1)区间内与原来的函数是一样的。其实傅里叶不需要周期函数的界定,非周期的你可以认为它是周期无穷大的.不懂的在追问吧,
wpBeta2023-05-25 22:21:031

电力谐波的傅里叶级数

法国数学家傅立叶在1807年就写成关于热传导的基本论文《热的传播》,向巴黎科学院呈交,但经拉格朗日、拉普拉斯和勒让德审阅后被科学院拒绝,1811年又提交了经修改的论文,该文获科学院大奖,却未正式发表。傅立叶在论文中推导出著名的热传导方程 ,并在求解该方程时发现解函数可以由三角函数构成的级数形式表示,从而提出任一函数都可以展成三角函数的无穷级数。傅立叶级数(即三角级数)、傅立叶分析等理论均由此创始。1822年,傅立叶出版了专著《热的解析理论》(Theorieanalytique de la Chaleur ,Didot ,Paris,1822)。这部经典著作将欧拉、伯努利等人在一些特殊情形下应用的三角级数方法发展成内容丰富的一般理论,三角级数后来就以傅立叶的名字命名。傅立叶应用三角级数求解热传导方程,为了处理无穷区域的热传导问题又导出了当前所称的“傅立叶积分”,这一切都极大地推动了偏微分方程边值问题的研究。然而傅立叶的工作意义远不止此,它迫使人们对函数概念作修正、推广,特别是引起了对不连续函数的探讨;三角级数收敛性问题更刺激了集合论的诞生。因此,《热的解析理论》影响了整个19世纪分析严格化的进程。傅立叶1822年成为科学院终身秘书。根据傅立叶级数的原理,周期函数都可以展开为常数与一组具有共同周期的正弦函数和余弦函数之和。满足Dirichlet条件的、以T为周期的时间的周期函数f(t),在连续点处,可用下述的三角函数的线性组合(傅里叶级数)来表示:上式称为f(t)的傅里叶级数,其中,ω=2π/T。n为整数,n>=0。n为整数,n>=1。在间断点处,下式成立:a0/2为信号f(t)的直流分量。令c1为基波幅值,cn为n次谐波的幅值。c1有时也称一次谐波的幅值。a0/2有时也称0次谐波的幅值。谐波的频率必然也等于基波的频率的整数倍,基波频率3倍的波称之为三次谐波,基波频率5倍的波称之为五次谐波,以此类推。不管几次谐波,他们都是正弦波。
西柚不是西游2023-05-25 22:21:031

泰勒级数相较于傅里叶级数有什么用?

若函数f(x)在点的某一临域内具有直到(n+1)阶导数用泰勒级数展开;若是周期函数则用傅里叶级数展开。
kikcik2023-05-25 22:21:022

函数展开为什么可以用傅里叶级数?

函数展开成正弦级数或余弦级数中有时需要把定义在[0,π]或[-π,0]上的函数f(x)展开成正弦级数或余弦级数,为此,可在(-π,0)或(0,π)上补充f(x)的定义,若有必要,可改变f(x)在点x=0的定义,如果使之成为奇函数,按这种方法拓广函数定义域的过程称为奇延拓;如果使之成为偶函数,按这种方法拓广函数定义域的过程称为偶延拓。根据以上讨论,拓广后的函数的傅里叶展开式是正弦或余弦级数,限制x在f(x)原定义区间上即得函数f(x)在[0,π]或[-π,0]上的正弦或余弦级数。在实际应用中,有时还需要把定义在区间[0,π]的函数f(x)展开成正弦级数或余弦级数. 这个问题可按如下方法解决。设函数f(x)定义在区间[0,π]上且满足狄利克雷收敛定理的条件. 我们先要把函数f(x)的定义延拓到区间(-π,0]上,得到定义在(-π,π]上的函数F(x),根据实际的需要,常采用以下两种延拓方式:1.奇延拓  令F(x)={cf(x),&0<xlepi}\{0,}&{x=0}\{-f(-x),}&{-pi<x<0}\end{array} ight.$< span="">,则F(x)是定义在(-π,π]上的奇函数,将F(x)在(-π,π]上展开成傅里叶级数,所得级数必是正弦级数. 再限制x在(0,π]上,就得到f(x)的正弦级数展开式。2.偶延拓  令F(x)={cf(x),&0≤x≤π&f(-x),&-π<x<0}\end{array} ight.$< span="">,则F(x)是定义在(-π,π]上的偶函数,将F(x)在(-π,π]上展开成傅里叶级数,所得级数必是余弦级数. 再限制x在(0,π]上,就得到f(x)的余弦级数展开式。
余辉2023-05-25 22:21:021

非正弦周期电流电路应用傅里叶级数展开。

“金属物质与其它物质不同的地方,在于其最外层的电子很松弛地束缚于原子,电子能够很容易地逃离原子。因此,满布于金属的内部,有很多未被束缚的电子,毫无目标地游动,就好像一群无家可归的醉汉。当施加电压于一根金属导线的两端,这些自由电子会朝着电
bikbok2023-05-25 22:21:022

为什么周期为2π的函数都可以表示成傅里叶级数的形式?

不止是2π,任何周期函数都可以,高等数学里有,在无穷级数那一章。
韦斯特兰2023-05-25 22:21:022

傅里叶级数的和函数是什么

傅里叶级数的和函数是分段函数,法国数学家傅里叶发现,任何周期函数都可以用正弦函数和余弦函数构成的无穷级数来表示,后世称傅里叶级数为一种特殊的三角级数,根据欧拉公式,三角函数又能化成指数形式,也称傅立叶级数为一种指数级数。法国数学家J·-B·-J·傅里叶在研究偏微分方程的边值问题时提出。从而极大地推动了偏微分方程理论的发展。在中国,程民德最早系统研究多元三角级数与多元傅里叶级数。他首先证明多元三角级数球形和的唯一性定理,并揭示了多元傅里叶级数的里斯·博赫纳球形平均的许多特性。傅里叶级数曾极大地推动了偏微分方程理论的发展。在数学物理以及工程中都具有重要的应用。
再也不做站长了2023-05-25 22:21:021

复指数形式的傅里叶级数

复指数形式的傅里叶级数是指将傅里叶级数中正弦、余弦函数用复指数函数来表示的形式,它的一般形式为:其中,$i$表示虚数单位,$omega$表示角频率,$c_n$为傅里叶系数,可以通过函数$f(x)$的周期性和积分运算来计算。复指数形式的傅里叶级数可以将正弦、余弦函数表示为复指数函数,从而简化傅里叶级数的求解和处理过程,同时方便进行傅里叶级数的运算和推导。需要注意的是,虽然复指数形式的傅里叶级数和三角形式的傅里叶级数表达方式不同,但它们表示的是同一个函数,可以相互转化。同时,复指数形式的傅里叶级数在处理一些具有复杂周期性的信号时,具有一定的优势和应用价值。
墨然殇2023-05-25 22:21:021

傅里叶级数问题 不只是周期函数才可以展成傅里叶级数吧?

是的 。只要可以延拓就行。
水元素sl2023-05-25 22:21:023

傅立叶变换 傅里叶级数 的区别和他们之间的关系?

傅里叶级数针对的是周期函数,傅里叶变换针对的是非周期函数,本质上都是一种把信号表示成复正选信号的叠加,都有相似的特性,因为四种傅里叶表示都利用了复正选信号,这些特性提供了一种透彻了解时域和频域信号表示的特征的方法.
tt白2023-05-25 22:21:021

傅里叶级数为什么引入负频率

因为在频谱域中存在负频,如果你应用到电子领域的话,会发现这个很必要的
kikcik2023-05-25 22:21:022

傅里叶级数的用法

傅里叶级数最常见的是正弦,余弦级数展开的应用,这里需要函数的拓延(奇拓延与偶拓延)
余辉2023-05-25 22:21:011

请问各位大侠,傅里叶级数在生活中有些什么应用?简述。

在交流电中会用到,交流电是正弦波形式的,但在经过感性负载和容性负载后会使波形发生变化,具体变成什么样不能直观的看出来,可以通过采样电压、电流将其波形显示出来,但采样到的是点,这里就要用到傅里叶变化将点变换成线。
豆豆staR2023-05-25 22:21:011

傅里叶级数的应用和电路学。

通讯传上来的应该是A/D芯片的采样值,对于50Hz交流信号,它是正负都有的正弦波瞬时值,(负值应该是补码表示的),要得到有效值,可根据一周波内的采样个数和采样值,用离散的傅里叶变换,计算出50Hz频率的实部a1和虚部b1,再求出a1和b1的平方和,然后开方除以1.414就可以了。离散的傅里叶变换公式在不好表示,你搜索一下网上的论文,有很多。另外,离散的傅里叶变换还可以算出高次谐波值。
大鱼炖火锅2023-05-25 22:21:011

高数——泰勒级数和傅里叶级数

泰勒级数: 就是用无穷级数去逼近一个光滑函数。当 时,就转变为麦克劳林公式。 拉格朗日余项:n+1阶项;皮亚诺余项: 泰勒公式和拉格朗日中值定理的关系:拉格朗日中值定理是n=0时的泰勒公式(带拉格朗日余项)。 泰勒公式的应用:①可以把复杂函数拆分为多项式的近似函数,便于用计算机求解;②用来推导欧拉公式(把 展开,令 ,比较sinx和cosx的展开式)。 傅里叶级数:任何周期函数都可以用 正弦函数 和 余弦函数 构成的无穷级数来表示。 泰勒级数与傅里叶级数的关系:傅里叶级数以三角函数为基底,基有正交性;泰勒级数以幂函数为基底,没有正交性。(正交性:任意两个不同函数的乘积在[-π,π]上的积分值为0.)
韦斯特兰2023-05-25 22:21:011

傅里叶级数应用 求极限积分

不会
水元素sl2023-05-25 22:21:011

信号与系统中的傅里叶级数的意义

简单的说:傅立叶级数或者傅立叶变换就是将时间信号和频率信号进行相互转换,达到使计算更简便,理解起来更容易的东西!!!
肖振2023-05-25 22:21:014

如图高数第五题,傅里叶级数求解谢谢!

在x=3/2处,连续,所以,收敛于f(3/2)=3/2
mlhxueli 2023-05-25 22:21:002

傅里叶级数的an,bn代表什么意义

使用傅立叶展开的话(傅立叶级数收敛才有意义),将信号叠加成不同频率信号的和.an,bn都是表示某一个频率信号的系数.对于一个信号的话,视为该信号的幅度.an是n倍频余弦的系数(幅度),bn是n倍频正弦的系数(幅度).
凡尘2023-05-25 22:21:001

请哪位朋友解一下这个傅里叶级数的详细过程

f(x)在x=π处的左极限为0,右极限为-π,其傅里叶级数在x=π处收敛于左右极限的平均值,即-π/2
Jm-R2023-05-25 22:21:001

设f(x)是以2为周期的函数,在(-1,1)上,f(x)=2,x^2傅里叶级数在x=1处收敛于……

收敛于f(1)=2
u投在线2023-05-25 22:21:001

F(X)的周期为2π,在[0,2π]上F(X)=x²,则F(x)的傅里叶级数在x=0出收敛于多少? 高数

设f(x)是以2π为周期的周期函数,在[-π,π)上的表达式为f(x)=x,则f(x)的傅里叶级数为()。
人类地板流精华2023-05-25 22:21:002

有木有周期函数的傅里叶级数不收敛的例子?

1
余辉2023-05-25 22:21:002

φ(x)的半幅傅里叶级数连续点一定收敛于φ(x)吗?

根据是【收敛定理】也称【狄里克雷收敛定理】定理结论是【在f(x)的连续点x处,级数收敛到f(x);在f(x)的间断点x处,级数收敛到(f(x+0)+f(x-0))/2,即f(x)在间断点处的左右极限的平均值。
九万里风9 2023-05-25 22:21:001

F(X)的周期为2π,在[0,2π]上F(X)=x²,则F(x)的傅里叶级数在x=4π出收敛于多少?

F(x)的Fourier级数在x0收敛于F(x0),若F(x)在x0连续的话。本题中收敛于F(4pi)=F(2pi)=4pi^2。
gitcloud2023-05-25 22:21:001

傅里叶级数的收敛定理中的按段光滑是什么意思?无法理解。。。

就是这一区间里,函数至多有有限个第一类间断点,这个函数至多有有限个导数不存在的点,除了这些导数不存在的点,其他小区间内导函数连续。而这些点的导数的左右极限存在
铁血嘟嘟2023-05-25 22:21:002

傅里叶级数cosnx积分为什么有Sa

因为需要收敛。法国数学家傅里叶发现,任何周期函数都可以用正弦函数和余弦函数构成的无穷级数来表示(选择正弦函数与余弦函数作为基函数是因为它们是正交的),后世称为傅里叶级数(法文:sériedeFourier,或译为傅里叶级数)一种特殊的三角级数。
水元素sl2023-05-25 22:21:001

傅里叶级数在现实当中的作用

傅里叶级数在信号处理中用的比较多,有些信号多多少少或有噪音干扰(比如打电话听筒有噪音),信号中有用信号为低频信号,傅里叶级数可以对信号进行处理,将高频噪音滤除
瑞瑞爱吃桃2023-05-25 22:21:001

F(X)的周期为2π,在[0,2π]上F(X)=x²,则F(x)的傅里叶级数在x=0处收敛于多少?

北境漫步2023-05-25 22:20:591

数学分析 大学高等数学 傅立叶傅里叶级数 收敛定理,如图两个画横线n趋于无穷时的极限为什么是0,谢

它山之石可以攻玉
NerveM 2023-05-25 22:20:591

傅里叶级数间断点处的收敛怎么求???

就是f(x)在点x处的左右极限啊,根据函数解析式算出来就是了
铁血嘟嘟2023-05-25 22:20:592

求助!傅里叶级数的an,bn代表什么意义?

使用傅立叶展开的话(傅立叶级数收敛才有意义),将信号叠加成不同频率信号的和。an,bn都是表示某一个频率信号的系数。对于一个信号的话,视为该信号的幅度。
九万里风9 2023-05-25 22:20:591

高等数学傅里叶级数,求解答,求分析,谢谢!

1、 高等数学傅里叶级数解答见上图。2、这道 高等数学傅里叶级数,用的是狄里克莱收敛定理。3、在端点出, 傅里叶级数收敛于(左端点的右极限+右端点的左极限)/2。具体的 高等数学傅里叶级数,解答分析求的过程见上。
肖振2023-05-25 22:20:591

单位脉冲函数δ(x)的傅里叶级数

冲激函数是广义函数,不是经典函数,也就是不是点映射,而是函数映射。冲激函数可以由某个连续偶函数,函数值向中间集中,最后取极限得到,比如正态分布概率密度函数。类似连续的性质,故傅立叶级数收敛于δ(0)。
铁血嘟嘟2023-05-25 22:20:591

傅里叶级数考研考了几回

隔年考一次。傅里叶展开式是指用三角级数表示的形式,即一个函数的傅里叶级数在它收敛于此函数本身时的一种称呼,基本上隔年考一次,傅里叶级数得名于法国数学家约瑟夫·傅里叶,其提出任何函数都可以展开为三角级数。
苏州马小云2023-05-25 22:20:591

为什么傅里叶级数端点的收敛值不是函数值

说白了就是:在函数间断处Fourier级数也间断,但Fourier间断处值始终为1/2(展开式左右极限和),而函数间断处值是人为定义的,你想取多少就取多少。如果恰巧取1/2(展开式左右极限和),那么Fourier级数在这点就收敛,否则反之
大鱼炖火锅2023-05-25 22:20:591

求解,求解,求解傅里叶级数在间断点处的收敛值为什么跟函数值不一样

傅里叶级数并不是处处都收敛到函数f的,而是仅在f连续点处收敛至f的。f的第一类间断点处 傅里叶级数收敛到左右极限的平均值。
瑞瑞爱吃桃2023-05-25 22:20:591

傅里叶级数的有关定理不太懂

f(a-0)是函数f(x)在x=a处的左极限,f(a-0)=limf(x) (下面符号是x→a-)。就是x只从左边趋近于a时,函数f(x)的极限值。f(a+0)是函数f(x)在x=a处的右极限,f(a+0)=limf(x) (下面符号是x→a+)。就是x只从右边趋近于a时,函数f(x)的极限值。 [f(x-0)+f(x+0)]/2是平均值
西柚不是西游2023-05-25 22:20:591

求这道题的详细解答傅里叶级数的和是不是就的收敛的值?

不是。傅里叶级数 在连续点才能收敛于函数值 不然只能收敛到左右极限的平均值
余辉2023-05-25 22:20:591

高数问题,傅里叶级数,求解

你写的对的很。
西柚不是西游2023-05-25 22:20:592

傅里叶级数问题 不只是周期函数才可以展成傅里叶级数吧?

只有周期函数才能展成傅氏级数。傅里叶级数的收敛性:满足狄利赫里条件的周期函数表示成的傅里叶级数都收敛。狄利赫里条件如下:在任何周期内,x(t)须绝对可积;在任一有限区间中,x(t)只能取有限个最大值或最小值;在任何有限区间上,x(t)只能有有限个第一类间断点。吉布斯现象:在x(t)的不可导点上,如果我们只取(1)式右边的无穷级数中的有限项作和x(t),那么x(t)在这些点上会有起伏。一个简单的例子是方波信号。扩展资料:法国数学家J.-B.-J.傅里叶在研究偏微分方程的边值问题时提出。从而极大地推动了偏微分方程理论的发展。在中国,程民德最早系统研究多元三角级数与多元傅里叶级数。他首先证明多元三角级数球形和的唯一性定理,并揭示了多元傅里叶级数的里斯- 博赫纳球形平均的许多特性。傅里叶级数曾极大地推动了偏微分方程理论的发展。在数学物理以及工程中都具有重要的应用。
善士六合2023-05-25 22:20:591

请问利用傅里叶级数计算级数和有什么规律或方法吗?求大神指导…

把一个函数展成傅立叶级数,在收敛点上带入某个特定的值就可以得到此级数和结果如下:http://zhidao.baidu.com/question/239173597581851124.html?oldq=1&from=evaluateTo#reply-box-1489102572令x=0带入,然后就可以得到………………结果是(pi^2)/12
陶小凡2023-05-25 22:20:581

关于傅里叶级数的问题

傅里叶级数干什么的,这个给你讲起来很复杂。在不同的领域有不同的应用。简单说就是可以从频域去分析一个函数。比如说在通信领域,时域分析一个信号有时候计算非常复杂,相反在频域会很简单。我们把它延拓是为了更方便写出它的傅里叶级数。但是,根据这个写出的傅里叶级数不完全等价于原函数。等价的是延拓的函数。这样有它的意义就是,这个延拓的函数在(0,1)区间内与原来的函数是一样的。其实傅里叶不需要周期函数的界定,非周期的你可以认为它是周期无穷大的.不懂的在追问吧,
陶小凡2023-05-25 22:20:581

求傅里叶级数的和函数

ccccccc
九万里风9 2023-05-25 22:20:583

一、求函数f(x)=x²,x∈[-π,π)的傅里叶级数展开式。

如图所示:
墨然殇2023-05-25 22:20:583

请问:傅里叶级数的和函数怎么求啊?

一般情况下,我们无法求一个三角级数的和函数.大学学习内容,是已知 f(x),由它产生一列 F 系数,生成一个三角级数.由收敛定理可以写出,这个三角级数的和函数.查看原帖>>
北境漫步2023-05-25 22:20:581

第四小题 傅里叶级数的和函数怎么算啊

根据狄利克雷充分条件,f(x)的傅里叶级数在x0点收敛于1/2·[f(x0+)+f(x0-)]【x0点处f(x)左右极限的平均数】本题中,f(π-)=1+π²f(π+)=f(-π+)【根据周期性】=-1∴f(x)的傅里叶级数在x=π处收敛于1/2·[f(π+)+f(π-)]=1/2·(1+π²-1)=1/2·π²
可桃可挑2023-05-25 22:20:581

傅里叶级数收敛,能写一下详细过程,怎么带值算出二分之π的的

都忘了
小菜G的建站之路2023-05-25 22:20:583

傅里叶级数为什么要收敛

因为他是级数。级数为什么要收敛?再说f(x)的傅里叶在一个周期都是恒等于f(x)的。如果不收敛,那在不收敛的点f(x)=正无穷或负无穷。唯一可能就是fx在那个点不连续,那傅里叶就无意义
meira2023-05-25 22:20:581

傅里叶级数收敛定理在第一类间断点有说:傅里叶级数收敛于1/2[f(x-0)+f(x+0)] ,为什么?

这个属于狄利克雷条件如果不是数学专业的,是不要求证的,考试也不会涉及到你,只需要背下来,结论就可以了因为这个证明是涉及到非常多东西的证明定理所需要的篇幅非常大,如果感兴趣的话,可以自己在网上搜索狄利克雷条件的证明所以说,不需要知道为什么,只需要记住结论就可以了
大鱼炖火锅2023-05-25 22:20:581

为什么傅里叶级数端点的收敛值不是函数值

在间断点,Fourier级数会突变。说白了就是:在函数间断处Fourier级数也间断,但Fourier间断处值始终为1/2(展开式左右极限和),而函数间断处值是人为定义的,你想取多少就取多少。如果恰巧取1/2(展开式左右极限和),那么Fourier级数在这点就收敛,否则反之
西柚不是西游2023-05-25 22:20:581

φ(x)的半幅傅里叶级数连续点一定收敛于φ(x)吗?

想想sin(nx)/cos(nx)时是怎么证明的,这个可以类似证明
LuckySXyd2023-05-25 22:20:582

求助,高数傅里叶级数

法国数学家傅里叶发现,任何周期函数都可以用正弦函数和余弦函数构成的无穷级数来表示(选择正弦函数与余弦函数作为基函数是因为它们是正交的),后世称傅里叶级数为一种特殊的三角级数,根据欧拉公式,三角函数又能化成指数形式,也称傅立叶级数为一种指数级数。
墨然殇2023-05-25 22:20:571

关于傅里叶级数的题,求解法

gitcloud2023-05-25 22:20:571

傅里叶级数!求高数大神解答!详解秒采纳!谢谢!

这个太麻烦了,主要是写太麻烦,懒得去找符号
左迁2023-05-25 22:20:573

求傅里叶级数的和函数

设分段函数为f(x),那么s(x)与f(x)的关系如下:在f(x)的连续点处的值s(x)与f(x)一样,在f(x)的间断点处s(x)的值等于f(x)在此点处的左右极限的算术平均值
可桃可挑2023-05-25 22:20:573

傅里叶变换与傅里叶级数怎么算,是不是只要知道x或w的实值就可以计算了,过程详细点,我没学过高数

自己做
瑞瑞爱吃桃2023-05-25 22:20:572

第四小题 傅里叶级数的和函数怎么算啊

根据狄利克雷充分条件,f(x)的傅里叶级数在x0点收敛于1/2·[f(x0+)+f(x0-)]【x0点处f(x)左右极限的平均数】本题中,f(π-)=1+π²f(π+)=f(-π+)【根据周期性】=-1∴f(x)的傅里叶级数在x=π处收敛于1/2·[f(π+)+f(π-)]=1/2·(1+π²-1)=1/2·π²
西柚不是西游2023-05-25 22:20:571

高等数学 傅里叶级数

直接套书上的计算公式呀
CarieVinne 2023-05-25 22:20:572

傅里叶级数有什么重要性吗??

一.傅里叶级数的三角函数形式设f(t)为一非正弦周期函数,其周期为T,频率和角频率分别为f,ω1。由于工程实际中的非正弦周期函数,一般都满足狄里赫利条件,所以可将它展开成傅里叶级数。即其中A0/2称为直流分量或恒定分量;其余所有的项是具有不同振幅,不同初相角而频率成整数倍关系的一些正弦量。A1cos(ω1t+ψ1)项称为一次谐波或基波,A1,ψ1分别为其振幅和初相角;A2cos(ω2t+ψ2)项的角频率为基波角频率ω1的2倍,称为二次谐波,A2,ψ2分别为其振幅和初相角;其余的项分别称为三次谐波,四次谐波等。基波,三次谐波,五次谐波……统称为奇次谐波;二次谐波,四次谐波……统称为偶次谐波;除恒定分量和基波外,其余各项统称为高次谐波。式(10-2-1)说明一个非正弦周期函数可以表示一个直流分量与一系列不同频率的正弦量的叠加。上式有可改写为如下形式,即当A0,An,ψn求得后,代入式(10-2-1),即求得了非正弦周期函数f(t)的傅里叶级数展开式。把非正弦周期函数f(t)展开成傅里叶级数也称为谐波分析。工程实际中所遇到的非正弦周期函数大约有十余种,它们的傅里叶级数展开式前人都已作出,可从各种数学书籍中直接查用。从式(10-2-3)中看出,将n换成(-n)后即可证明有a-n=anb-n=-bnA-n=Anψ-n=-ψn即an和An是离散变量n的偶函数,bn和ψn是n的奇函数。二.傅里叶级数的复指数形式将式(10-2-2)改写为可见与互为共轭复数。代入式(10-2-4)有上式即为傅里叶级数的复指数形式。下面对和上式的物理意义予以说明:由式(10-2-5)得的模和辐角分别为可见的模与幅角即分别为傅里叶级数第n次谐波的振幅An与初相角ψn,物理意义十分明确,故称为第n次谐波的复数振幅。的求法如下:将式(10-2-3a,b)代入式(10-2-5)有上式即为从已知的f(t)求的公式。这样我们即得到了一对相互的变换式(10-2-8)与(10-2-7),通常用下列符号表示,即即根据式(10-2-8)由已知的f(t)求得,再将所求得的代入式(10-2-7),即将f(t)展开成了复指数形式的傅立叶级数。在(10-2-7)中,由于离散变量n是从(-∞)取值,从而出现了负频率(-nω1)。但实际工程中负频率是无意义的,负频率的出现只具有数学意义,负频率(-nω1)一定是与正频率nω1成对存在的,它们的和构成了一个频率为nω1的正弦分量。即引入傅立叶级数复指数形式的好处有二:(1)复数振幅同时描述了第n次谐波的振幅An和初相角ψn;(2)为研究信号的频谱提供了途径和方便。
肖振2023-05-25 22:20:571

已知函数f (x)=cosx,求此函数的傅里叶级数

由三倍角公式,cos³x=(3cosx+cos3x)/4故f(x)=cos³x=(3/4)cosx+(1/4)cos3x这就是它的傅里叶展开式,只有2项。
可桃可挑2023-05-25 22:20:572

高数 傅里叶级数 请问这个怎么算?

题目绿字的地方看不清
无尘剑 2023-05-25 22:20:561

高等数学,傅里叶级数,求详细步骤。

瑞瑞爱吃桃2023-05-25 22:20:561

大学数学,即高数中说到的傅里叶级数究竟怎么算的,

多看一些书就好啊,别人说再多也没用
此后故乡只2023-05-25 22:20:563

高等数学 傅里叶级数计算问题

这里更换了求和指标.因为当n为偶数时, 1-(-1)^n = 0, 所以求和中只剩下了n为奇数的项.设n = 2k-1, 则变为2/(2k-1)·sin((2k-1)x)对k从1到无穷求和.再把求和指标k换回n (用什么字母都一样), 就成了最后的结果.
北境漫步2023-05-25 22:20:561

周期半波余弦信号傅里叶级数求解~ 要过程 谢谢 越细越好

频域分析法即傅里叶分析法,是变换域分析法的基石。其中,傅里叶级数是变换域分析法的理论基础,傅里叶变换作为频域分析法的重要数学工具,具有明确的物理意义,在不同的领域得到广泛的应用连续时间周期信号的分解:以高等数学的知识,任何周期为T的周期函数,在满足狄里赫利条件时,则该周期信号可以展开成傅里叶级数。傅里叶级数有三角形式和指数形式两种。根据欧拉公式并考虑和奇偶性可将改写为指数形式的傅里叶级数:即周期信号可分解为一系列不同频率的虚指数信号之和。扩展资料:注意事项:如果对一个系统输入复指数信号,输出必定也是复指数信号,根据复数相等实部实部相等、虚部虚部相等的原则,那么输出的实部与输入的实部:cos(wt)相对应,输出的虚部与输入的虚部:sin(wt)相对应。输入一个复指数函数就同时解决了系统输出的振幅和相位的问题:因为输出的振幅等于响应实部的平方与虚部的平方和的开方,而输出的相位等于响应虚部与实部的比值的反正切。对于线性控制系统输入是正弦的输出也是正弦的,且周期不变。参考资料来源:百度百科-余弦波参考资料来源:百度百科-傅里叶级数
LuckySXyd2023-05-25 22:20:561

高数 信号 积分 傅里叶级数 怎么由①式推至②式的?

利用傅立叶变换求解傅立叶级数是有公式转化的,不是定义,如果让你求的是三角函数的级数,一般采用傅立叶级数展开,就是题目中的带fn的公式,如果不是三角函数而让你求级数,往往先利用傅立叶变换公式算出其傅立叶变化然后在利用傅立叶变换和级数之间的一个简单公式就可以算出其傅立叶级数
水元素sl2023-05-25 22:20:561

f(x)=e^x求傅里叶级数 要详细过程~~

拌三丝2023-05-25 22:20:562

这个傅里叶级数怎么求

差不多混元两句没啥变化要求操作规程一样。
瑞瑞爱吃桃2023-05-25 22:20:568

大一高数:傅里叶级数怎么求

傅里叶级数就那么求,看懂例题了吗?
小菜G的建站之路2023-05-25 22:20:562

f(x)=x,x∈(-π,π).展开成傅里叶级数,要解答步骤,在线跪等

对f(x)做周期为2π的奇拓展,将f(x)拓展为实数域上的奇函数,由狄利克雷定理可知f(x)可以拓展为傅里叶级数;设f(x)=a_{0}+ Sigma(a_{n}cosnx)+Sigma(b_{n}sinnx);(Sigma从1到无穷求和)两边乘以cosnx,在(-π,π)上求定积分可得a_{n}=0;等式两边在(-π,π)上求定积分可得a_{0}=0;两边乘以sinnx,在(-π,π)上求定积分可得b_{n}=(-1)^{n+1}2/n;最后一步的计算过程中(sinnx)^2在(0,π)上的定积分为π/2;xsinnx在(0,π)上的定积分为}=(-1)^{n+1}π/n;
凡尘2023-05-25 22:20:563

求f(x)=xsinx的傅里叶级数

一. 傅里叶级数的三角函数形式   设f(t)为一非正弦周期函数,其周期为T,频率和角频率分别为f , ω1。由于工程实际中的非正弦周期函数,一般都满足狄里赫利条件,所以可将它展开成傅里叶级数。即   其中A0/2称为直流分量或恒定分量;其余所有的项是具有不同振幅,不同初相角而频率成整数倍关系的一些正弦量。A1cos(ω1t+ψ1)项称为一次谐波或基波,A1,ψ1分别为其振幅和初相角;A2cos(ω2t+ψ2)项的角频率为基波角频率ω1的2倍,称为二次谐波,A2,ψ2分别为其振幅和初相角;其余的项分别称为三次谐波,四次谐波等。基波,三次谐波,五次谐波……统称为奇次谐波;二次谐波,四次谐波……统称为偶次谐波;除恒定分量和基波外,其余各项统称为高次谐波。式(10-2-1)说明一个非正弦周期函数可以表示一个直流分量与一系列不同频率的正弦量的叠加。   上式有可改写为如下形式,即   当A0,An, ψn求得后,代入式 (10-2-1),即求得了非正弦周期函数f(t)的傅里叶级数展开式。   把非正弦周期函数f(t)展开成傅里叶级数也称为谐波分析。工程实际中所遇到的非正弦周期函数大约有十余种,它们的傅里叶级数展开式前人都已作出,可从各种数学书籍中直接查用。   从式(10-2-3)中看出,将n换成(-n)后即可证明有   a-n=an   b-n=-bn   A-n=An   ψ-n=-ψn   即an和An是离散变量n的偶函数,bn和ψn是n的奇函数。   二. 傅里叶级数的复指数形式   将式(10-2-2)改写为   可见 与 互为共轭复数。代入式(10-2-4)有   上式即为傅里叶级数的复指数形式。   下面对和上式的物理意义予以说明:   由式(10-2-5)得的模和辐角分别为   可见的模与幅角即分别为傅里叶级数第n次谐波的振幅An与初相角ψn,物理意义十分明确,故称为第n次谐波的复数振幅。   的求法如下:将式(10-2-3a,b)代入式(10-2-5)有   上式即为从已知的f(t)求的公式。这样我们即得到了一对相互的变换式(10-2-8)与(10-2-7),通常用下列符号表示,即   即根据式(10-2-8)由已知的f(t)求得,再将所求得的代入式(10-2-7),即将f(t)展开成了复指数形式的傅立叶级数。   在(10-2-7)中,由于离散变量n是从(-∞)取值,从而出现了负频率(-nω1)。但实际工程中负频率是无意义的,负频率的出现只具有数学意义,负频率(-nω1)一定是与正频率nω1成对存在的,它们的和构成了一个频率为nω1的正弦分量。即   引入傅立叶级数复指数形式的好处有二:(1)复数振幅同时描述了第n次谐波的振幅An和初相角ψn;(2)为研究信号的频谱提供了途径和方便。   高等数学中的傅立叶级数  傅立叶系数  傅立叶系数包括系数 ,积分号和它的积分域,以及里面的两个周期函数的乘积——其中一个是关于f的,另一个是关于x的函数f(x),另一个则是和级数项n有关的三角函数值。这个三角函数可以是正弦,也可以是余弦,因此傅立叶系数包括正弦系数和余弦系数。其中当n=0时,余弦值为1,此时存在一个特殊的系数 ,它只与x有关。正弦系数再成一个正弦,余弦再乘一个余弦,相加并且随n求和,再加上一半的 ,就称为了这个特别的函数f(x)的傅立叶级数。为什么它特别呢,我想因为这里只有它只限于一个周期函数而已,而级数的周期就是f(x)的周期,2 。  如果函数f(x)存在一个周期,但是不是2 了,而是关于y轴对称的任意一个范围,它还能写成傅立叶级数么?也可以的。只要把傅立叶系数里的 换成l,并且把积分号里的三角函数中的n 下除一个l,同时把系数以外的那个n 底下也除一个l。其他的都不动。也可以认为,2 周期的傅立叶级数其实三角函数中x前面的系数应该是 ,其他的 (积分域和系数)应该是x,只不过这时所有的l都是 罢了。  前面提及了,周期或是积分域,是关于y轴的一个任意范围。其实周期函数不用强调这个,但是为什么还要说呢?因为要特别强调一下定义域是满的。有些函数的定义域不是满的,是0到l,当然这样它有可能不是周期的。这些函数能写成傅立叶级数么?同样可以。而且,它的写法不再是正弦和余弦函数的累积,而是单独的一个正弦函数或是余弦函数。具体怎么写,就取决于怎么做。因为域是一半的,所以自然而然想到把那一半补齐,f就成了周期函数。补齐既可以补成奇函数也可以补成偶函数。补成积函数,写成的级数只有正弦项,即 为0。补成偶函数,写成的级数就只含有余弦项和第一项,即 为0。而,傅立叶系数相比非积非偶的函数要大一倍。  其实,如果不经延拓,上面那些对于奇偶函数同样使用。  在做题时,常常看到级数后面跟着一个系数还有一个正弦函数,然后后面给出了这个系数很复杂的一串式子,这时候就容易突然短路了。但是如果再定睛一看,会发现其实那个系数不过是一个有积分的傅立叶系数而已。那么一大串,应该看什么呢?应当先看积分域,一下就可以定出周期了。第二步要明确级数和函数的关系即等价关系。函数不但包含在级数中,而且函数本身也是和级数等价的。但一般那个级数里的函数是一个摆设,不起什么作用
ardim2023-05-25 22:20:563

高数求傅里叶级数

取[-2,2],奇函数,周期=4,可仅用sin表示。积分求系数。
阿啵呲嘚2023-05-25 22:20:561

求傅里叶级数

f(x)=Ancosnπx+Bnsinnπx An=∫(-1→1) x^2*cosnπx Bn=∫(-1→1) x^2*sinnπx
bikbok2023-05-25 22:20:561

怎么求傅里叶级数的和函数

一. 傅里叶级数的三角函数形式 设f(t)为一非正弦周期函数,其周期为T,频率和角频率分别为f ,ω1.由于工程实际中的非正弦周期函数,一般都满足狄里赫利条件,所以可将它展开成傅里叶级数.即 其中A0/2称为直流分量或恒定分量;其余所有的项是具有不同振幅,不同初相角而频率成整数倍关系的一些正弦量.A1cos(ω1t+ψ1)项称为一次谐波或基波,A1,ψ1分别为其振幅和初相角;A2cos(ω2t+ψ2)项的角频率为基波角频率ω1的2倍,称为二次谐波,A2,ψ2分别为其振幅和初相角;其余的项分别称为三次谐波,四次谐波等.基波,三次谐波,五次谐波……统称为奇次谐波;二次谐波,四次谐波……统称为偶次谐波;除恒定分量和基波外,其余各项统称为高次谐波.式(10-2-1)说明一个非正弦周期函数可以表示一个直流分量与一系列不同频率的正弦量的叠加.上式有可改写为如下形式,即 当A0,An,ψn求得后,代入式 (10-2-1),即求得了非正弦周期函数f(t)的傅里叶级数展开式.把非正弦周期函数f(t)展开成傅里叶级数也称为谐波分析.工程实际中所遇到的非正弦周期函数大约有十余种,它们的傅里叶级数展开式前人都已作出,可从各种数学书籍中直接查用.从式(10-2-3)中看出,将n换成(-n)后即可证明有 a-n=an b-n=-bn A-n=An ψ-n=-ψn 即an和An是离散变量n的偶函数,bn和ψn是n的奇函数.二. 傅里叶级数的复指数形式 将式(10-2-2)改写为 可见 与 互为共轭复数.代入式(10-2-4)有 上式即为傅里叶级数的复指数形式.下面对和上式的物理意义予以说明:由式(10-2-5)得的模和辐角分别为 可见的模与幅角即分别为傅里叶级数第n次谐波的振幅An与初相角ψn,物理意义十分明确,故称为第n次谐波的复数振幅.的求法如下:将式(10-2-3a,b)代入式(10-2-5)有 上式即为从已知的f(t)求的公式.这样我们即得到了一对相互的变换式(10-2-8)与(10-2-7),通常用下列符号表示,即 即根据式(10-2-8)由已知的f(t)求得,再将所求得的代入式(10-2-7),即将f(t)展开成了复指数形式的傅立叶级数.在(10-2-7)中,由于离散变量n是从(-∞)取值,从而出现了负频率(-nω1).但实际工程中负频率是无意义的,负频率的出现只具有数学意义,负频率(-nω1)一定是与正频率nω1成对存在的,它们的和构成了一个频率为nω1的正弦分量.即 引入傅立叶级数复指数形式的好处有二:(1)复数振幅同时描述了第n次谐波的振幅An和初相角ψn;(2)为研究信号的频谱提供了途径和方便.
凡尘2023-05-25 22:20:561

求下图所示周期锯齿波的傅里叶级数展开式

周期锯齿波的描述表明了它是一个奇函数(即,f(-t) = -f(t))。我们可以求解该函数的傅里叶级数展开式。对于奇函数,我们只需要计算正弦项。首先,我们将锯齿波函数定义为:f(t) = t, 对于 -π < t < π因为这是一个周期函数,我们可以将其扩展到整个实数轴上,周期为2π。然后,我们可以计算傅里叶级数的正弦系数(An = 0,因为 f(t) 是奇函数):Bn = (2/π) * ∫[f(t) * sin(n*t)] dt, 从 -π 到 π 积分将 f(t) = t 代入,我们得到:Bn = (2/π) * ∫[t * sin(n*t)] dt, 从 -π 到 π 积分通过分部积分(Integration by Parts)计算上述积分:令 u = t, 则 du = dt令 dv = sin(nt) dt, 则 v = (-1/n) * cos(nt)∫[t * sin(n*t)] dt = uv - ∫[v * du]= -t * (1/n) * cos(nt) - (1/n) * ∫[-cos(nt)] dt= -t * (1/n) * cos(nt) + (1/n^2) * sin(nt)在 -π 到 π 的区间上计算该表达式的值:Bn = (2/π) * [(1/n^2) * sin(nπ) - (1/n^2) * sin(-nπ) - π * (1/n) * cos(nπ) + π * (1/n) * cos(-nπ)]注意 sin(nπ) 和 sin(-nπ) 都等于0,cos(nπ) = (-1)^n,cos(-nπ) = (-1)^n。所以:Bn = (2/π) * [-π * (1/n) * (-1)^n + π * (1/n) * (-1)^n]化简得:Bn = (2*(-1)^n) / n因此,周期锯齿波的傅里叶级数展开式为:f(t) = (2/π) * Σ[((-1)^n)/n * sin(n*t)], 其中 n 从 1 到无穷。
左迁2023-05-25 22:20:561

傅里叶级数计算

两边同时乘以sin3x,积分。
u投在线2023-05-25 22:20:561

求高等数学傅里叶级数问题

bn=0【解释】[f(x)+f(-x)]/2是偶函数,所以,其傅里叶级数是余弦级数,正弦项的系数全是0即,bn=0
人类地板流精华2023-05-25 22:20:551

请问:傅里叶级数的和函数怎么求啊?

一般情况下,我们无法求一个三角级数的和函数。大学学习内容,是已知 f(x),由它产生一列 F 系数,生成一个三角级数。由收敛定理可以写出,这个三角级数的和函数。 查看原帖>>
meira2023-05-25 22:20:551

请问利用傅里叶级数计算级数和有什么规律或方法吗?求大神指导…

把一个函数展成傅立叶级数,在收敛点上带入某个特定的值就可以得到此级数和结果如下:http://zhidao.baidu.com/question/239173597581851124.html?oldq=1&from=evaluateTo#reply-box-1489102572令x=0带入,然后就可以得到………………结果是(pi^2)/12
wpBeta2023-05-25 22:20:551
 1 2 3 4  下一页  尾页