已知函数f(x)是定义在R上的奇函数,且对任意实数有f(x+1)=f(1-x)成立. 证明:f(x)是周期为4的周期函数。
f(x+1)=f(1-x)令x=t-1f(t)=f(t-1+1)=f(1-t+1)=f(2-t)又有f(x)为奇函数f(2-t)=-f(t-2)=-f((t-3)+1)=-f(1-(t-3))=-f(4-t)=f(t-4)因此,f(t)=f(t-4)再令t=x+4f(x)=f(x+4)因此,f(x)是周期为4的周期函数有不懂欢迎追问豆豆staR2023-08-08 09:02:361
已知f(x)是定义在R上的奇函数,且是周期为2的周期函数,当x属于〔0,1)时,...
log(0.5)6≈-2.58log(0.5)6+2≈-0.58-(log(0.5)6+2)≈0.58属于[0,1)所以f(log(0.5)6)=-f(-log(0.5)6-2)=-[2^(-log(0.5)6-2)-1]=-[2^(log(2)6-2)-1]=-[6/(2^2)-1]=-[1.5-1]=-0.5我跟楼主算法一样……可能是答案错了……tt白2023-08-08 09:02:111
arctanX的定义域是多少是不是周期函数
苏州马小云2023-07-04 07:10:392
已知函数f(x)在其定义域上都满足f(x+2)=-1/f(x),求证函数f(x)是一周期函数
f(x+2)=-1/f(x) 即-1/f(x+2)=f(x) 则f(x+4) =f[(x+2)+2] =-1/f(x+2) =f(x) 即f(x+4)=f(x) 所以f(x)是周期函数左迁2023-06-30 08:52:121
考研数学,周期函数积分有个性质是,周期函数以T为周期充要条件是它积分等于零,那不是所有周期函数积分
衍生物(衍生)是微积分概念的重要基础。当参数的增量趋于零时,因变量的增量与自变量增量商的限制。当一个函数的导数的存在,调用此函数可导致或鉴别。推导函数必须是连续的。不连续的功能,不应导致。衍生物本质上是求的范围内,从四个算法的限制来自四个算法的衍生物的处理。 数季一鸣,衍生,改变速度的问题和困难曲线相切一个抽象的数学概念。也被称为变化率。 由于汽车在10小时内去600公里,它的平均时速为60公里/小时,但在移动的实际过程中,有节奏的变化,并非所有的60公里每小时。为了驱动速度的变化过程中,以更好地反映该汽车时,时间间隔可以缩短,其中车辆设定时间ts对于s = F(T)之间的关系,则轿厢从时刻t0改变在这段时间内的平均到T1转速范围内[F(T1)-f(T0)] / [T1-T0],当T1和T0非常接近,变化的速度也不会伟大的汽车,平均车速将能更好地反映汽车运动这一段时间t0到t1中,自然放限制并[f(t1)的-f(T 0)] / [T1-T0]作为汽车的瞬时速度在时间t0,这就是通常所说的速度范围内变化。在一般情况下,假设一元函数y = f(x)的在点X0的附近(X0-一个,X0 +α)内,当自变量增量ΔX= X-X0→0的增量函数ΔY= f定义( x)的 - 限制率f(X0)增量参数的存在,并且是有限的,表示函数f在点X0衍生的衍生物(或f的在x0变化率称为点)。如果在每一个点的间隔I可以指导的函数f,我会得到一个新的功能的域,表示为F",称为微分函数f,称为衍生物。函数y = f(x)的在点X0衍生物F"(X0)几何意义:升中的曲线P0 [X0中,f(X0)]的切点。在一般情况下,我们都来使用导数函数,以确定增加或减少在性功能的规则:令y = F(x)的在(A,B)可导致内部。若(a,b)在中,f"(X)> 0,则f(x)的在该区间单调增加。 。若(a,b)在中,f"(X)<0,则f(x)的在该区间单调递减。因此,当f"(X)= 0时,Y = F(X)的最大值或最小值,最大值为最大的最大值,最小值的最小值是一个最小值。函数曲线的衍生物几何意义是在这一点上与所述切线斜率。 (1)找到的函数y = f(x)的在x0在步骤衍生物:①求增量值Δy= F的函数(X0 +ΔX)-f(X0)② 需求变化的平均速率③取极限,太衍生物。 公式几种常见的功能(2)衍生品:① C"= 0(C是常数函数); ②(X ^ N)= NX ^(N-1)(n∈Q); ③(氮化硅)"= cosx; ④(cosx)= - sinx的; ⑤(E ^ X)= E ^ X; ⑥(一^ X)"= A ^ xlna(ln为自然对数)⑦(INX)"= 1 /×(ln为自然对数)⑧(logax)"=( xlna)^( - 1),(A> 0和不等于1)补充一下。代表上述公式是不是一个常数去,只能代表的功能,新的学校往往衍生忽略这一点,造成歧义,我们应该多加注意。四种算法(3)衍生:①(U±V)= U"±V"②(UV)"= u"v +紫外线“③(U / V )"=(u"v-UV“)/ V ^ 2 衍生物(4)复合函数独立变量的导数的复合函数,等于中间变量的衍生物的已知函数,乘以参数的中间变量微分 - 称为链式法则。 衍生是微积分的重要支柱。牛顿和莱布尼茨做出了杰出的贡献,这个!点击看详细衍生应用(1)使用符号的 1. 单调函数来确定改变的函数的导数在使用衍生变化的迹象在判断的功能,这是在曲线的变化的研究应用的衍生物的几何意义,它充分体现数形结合想法。 通常,在一个时间间隔(A,B)内,如果> 0,则该函数y = f(x)的在单调的间隔;如果<0,则该函数y = f(x)的在此单调递减的时间间隔。 如果恒有= 0,则f(x)是一个范围的功能内恒定。 注意:在一定的时间间隔,> 0是f(x)在此区间的充分条件为增函数,而不是一个必要条件,如F(X)= X 3是增函数,包括,但。步骤(2)需求函数的单调区间①确定函数f(x)的定义域; ②衍生; ③由(或)相应的解x范围。当f"时(X)> 0,F(X)中的相应的时间间隔为增函数; f出现"时(X)<0,函数f(x)在各时间间隔是一个递减函数。 2.极端功能(1)函数的极值确定①如果对符号的两侧是相同的,这不是F(X)的极端点; ②如果左侧的右侧附近,那么,是最大或最小值。域功能 3.求函数极限一步①定义; ②衍生; ③在方程和所有居民的定义域获得发现所有的实根;周围的符号④检查停滞,如果左和右是否定的,则函数f(x),以获得在根中的最大值;如果左负权,则f(x)的,以获得在根的最小值。 4.最值功能(1)若函数f(x)在[A,B]的最大(或最小)是在一个点(A,B)中的收购显然这个最大(或极小值)的同时是最大值(或最小值),它是f(x)的所有的最大值(或最小值),在(A,B)内的最大(或最小),但该值的也可以是[A,B]在端a或b,和极值值获得的两个不同的概念。步骤(2)发现的f(x)在[A,B]上的最大和最小①找到的f(x)在(A,B)的极限之内; ②各自的极值到f(一)中,f(B)的比较,其中最大的是最大值的F(X),一个最低限度是最小值。常在生活中遇到 5.人生最优化问题追求最大的利润,材料最省,效率最高等问题,这些所谓的优化问题,优化问题,也被称为最大的价值。为了解决这些问题,一个非常现实的意义。这些问题通常可以转化为有问题的数学函数,然后进入大(小)为求函数值的问题苏州马小云2023-06-13 07:27:191
复变函数f(t)=isint是周期函数吗
拉普拉斯变换(英文:Laplace Transform),是工程数学中常用的一种积分变换。 如果定义: f(t),是一个关于t,的函数,使得当t<0,时候,f(t)=0,; s, 是一个复变量; mathcal 是一个运算符号,它代表对其对象进行拉普拉斯积分int_0^infty e^ ,dt;F(s),是f(t),的拉普拉斯变换结果。 则f(t),的拉普拉斯变换由下列式子给出: F(s),=mathcal left =int_ ^infty f(t),e^ ,dt 拉普拉斯逆变换,是已知F(s),,求解f(t),的过程。用符号 mathcal ^ ,表示。 拉普拉斯逆变换的公式是: 对于所有的t>0,; f(t) = mathcal ^ left =frac int_ ^ F(s),e^ ,ds c,是收敛区间的横坐标值,是一个实常数且大于所有F(s),的个别点的实部值。 为简化计算而建立的实变量函数和复变量函数间的一种函数变换。对一个实变量函数作拉普拉斯变换,并在复数域中作各种运算,再将运算结果作拉普拉斯反变换来求得实数域中的相应结果,往往比直接在实数域中求出同样的结果在计算上容易得多。拉普拉斯变换的这种运算步骤对于求解线性微分方程尤为有效,它可把微分方程化为容易求解的代数方程来处理,从而使计算简化。在经典控制理论中,对控制系统的分析和综合,都是建立在拉普拉斯变换的基础上的。引入拉普拉斯变换的一个主要优点,是可采用传递函数代替微分方程来描述系统的特性。这就为采用直观和简便的图解方法来确定控制系统的整个特性(见信号流程图、动态结构图)、分析控制系统的运动过程(见奈奎斯特稳定判据、根轨迹法),以及综合控制系统的校正装置(见控制系统校正方法)提供了可能性。 用 f(t)表示实变量t的一个函数,F(s)表示它的拉普拉斯变换,它是复变量s=σ+j&owega;的一个函数,其中σ和&owega; 均为实变数,j2=-1。F(s)和f(t)间的关系由下面定义的积分所确定: 如果对于实部σ >σc的所有s值上述积分均存在,而对σ ≤σc时积分不存在,便称 σc为f(t)的收敛系数。对给定的实变量函数 f(t),只有当σc为有限值时,其拉普拉斯变换F(s)才存在。习惯上,常称F(s)为f(t)的象函数,记为F(s)=L[f(t)];称f(t)为F(s)的原函数,记为ft=L-1[F(s)]。 函数变换对和运算变换性质 利用定义积分,很容易建立起原函数 f(t)和象函数 F(s)间的变换对,以及f(t)在实数域内的运算与F(s)在复数域内的运算间的对应关系。表1和表2分别列出了最常用的一些函数变换对和运算变换性质。 在工程学上的应用 应用拉普拉斯变换解常变量齐次微分方程,可以将微分方程化为代数方程,使问题得以解决。在工程学上,拉普拉斯变换的重大意义在于:将一个信号从时域上,转换为复频域(s域)上来表示;在线性系统,控制自动化上都有广泛的应用。gitcloud2023-06-11 08:36:293
傅里叶级数问题 不只是周期函数才可以展成傅里叶级数吧?
是的 。只要可以延拓就行。水元素sl2023-05-25 22:21:023
有木有周期函数的傅里叶级数不收敛的例子?
1余辉2023-05-25 22:21:002
傅里叶级数问题 不只是周期函数才可以展成傅里叶级数吧?
只有周期函数才能展成傅氏级数。傅里叶级数的收敛性:满足狄利赫里条件的周期函数表示成的傅里叶级数都收敛。狄利赫里条件如下:在任何周期内,x(t)须绝对可积;在任一有限区间中,x(t)只能取有限个最大值或最小值;在任何有限区间上,x(t)只能有有限个第一类间断点。吉布斯现象:在x(t)的不可导点上,如果我们只取(1)式右边的无穷级数中的有限项作和x(t),那么x(t)在这些点上会有起伏。一个简单的例子是方波信号。扩展资料:法国数学家J.-B.-J.傅里叶在研究偏微分方程的边值问题时提出。从而极大地推动了偏微分方程理论的发展。在中国,程民德最早系统研究多元三角级数与多元傅里叶级数。他首先证明多元三角级数球形和的唯一性定理,并揭示了多元傅里叶级数的里斯- 博赫纳球形平均的许多特性。傅里叶级数曾极大地推动了偏微分方程理论的发展。在数学物理以及工程中都具有重要的应用。善士六合2023-05-25 22:20:591
为什么周期函数的傅里叶级数的n是整数?n如果为任意常数,不一样可以通过三角函数的正交性证明其成立吗?
需要正交且完备,如果这两个条件满足就行。比如你说的这个情况,如果满足条件,也可以(未具体证明,可能不满足正交完备性条件),但不叫傅里叶级数,而且傅里叶级数应用范围很广,你这个展开没有应用场合,那就没啥意义。大鱼炖火锅2023-05-25 22:20:541
设f(x)是周期为2π的周期函数,f(x)=x平方(-π
解:分享一种解法。根据傅里叶级数的定义,f(x)=(a0)/2+∑[(an)cos(nx)+(bn)sin(nx)],其中,n=1,2,…,∞。而,a0=(1/π)∫(-π,π)f(x)dx=(1/π)∫(-π,π)(3x2+1)dx=2(π2+1)。an=(1/π)∫(-π,π)f(x)cos(nx)dx=(1/π)∫(-π,π)(3x2+1)cos(nx)dx=12(-1)^n/n2。bn=(1/π)∫(-π,π)f(x)sin(nx)dx。∵f(x)sin(nx)在积分区间是奇函数,其值为0,∴bn=0。∴f(x)=π2+1+12∑[(-1)^n/n2]cos(nx),其中,n=1,2,…,∞。供参考。拌三丝2023-05-25 22:20:501
设f(x)是周期为2Π的周期函数,它在【-Π,Π)上的表达式为f(x)=x则f(x)的傅里叶级数在x=3处收敛于?
解:分享一种解法。根据傅里叶级数的定义,f(x)=(a0)/2+∑[(an)cos(nx)+(bn)sin(nx)],其中,n=1,2,…,∞。而,a0=(1/π)∫(-π,π)f(x)dx=(1/π)∫(-π,π)(3x2+1)dx=2(π2+1)。 an=(1/π)∫(-π,π)f(x)cos(nx)dx=(1/π)∫(-π,π)(3x2+1)cos(nx)dx=12(-1)^n/n2。 bn=(1/π)∫(-π,π)f(x)sin(nx)dx。∵f(x)sin(nx)在积分区间是奇函数,其值为0,∴bn=0。 ∴f(x)=π2+1+12∑[(-1)^n/n2]cos(nx),其中,n=1,2,…,∞。供参考。Jm-R2023-05-25 22:20:504
什么叫函数可展开成傅里叶级数?是周期函数么?还有,展开成傅里叶级数是说明这个傅里叶级数就是f自己么
只要给出一个f,然后由公式求出an,bn,那么在构成的三角级数就叫傅立叶级数。也就是说它就是一个普通的三角级数(系数给定了怎么求而已) 一个三角级数肯定不一定收敛,需要判断其收敛性。 之前的定理15.2只是一个充分条件:若f表示为某个三角级数收且一致收敛,那么an,bn特定求出来,这个形式就是傅立叶级数。这只是个充分条件,给一个傅立叶级数不一定收敛。。。kikcik2023-05-25 22:20:482
周期函数的定积分的一个性质实在不明白
(2)∫(0,x)f(t)dt以T为周期的充要条件是∫(0,T)f(t)dt=0你理解错了,这是指函数F(x)=∫(0,x)f(t)dt 也以T为周期∫(0,x+T)f(t)dt=∫(0,x)f(t)dt+∫(x,x+T)f(t)dt=∫(0,x)f(t)dt+∫(0,T)f(t)dt,因为T是∫(0,x)f(t)dt的周期,故:∫(0,T)f(t)dt=0反之是一样证明。(3)本质上与(2)是一样的,因为f(x)连续,故∫(0,x)f(t)dt就是f(x)的一个原函数,全体原函数与它相差一个常数罢了。Ntou1232023-05-25 18:52:183
周期函数的定积分的一个性质实在不明白
首先这个结论是可证出来的:设g(x)=∫[0→x]f(t)dt若g(x)是以T为周期的函数,则g(x)=g(x+T)得:∫[0→x]f(t)dt=∫[0→x+T]f(t)dt注意右边=∫[0→x]f(t)dt+∫[x→x+T]f(t)dt由(1)得:∫[x→x+T]f(t)dt=∫[0→T]f(t)dt右边=∫[0→x]f(t)dt+∫[0→T]f(t)dt=f(t)+∫[0→T]f(t)dt这样我们看到,左边与右边相比,右边多出一个∫[0→T]f(t)dt,因此两要想相等,只有∫[0→T]f(t)dt=0面积的代数和有可能会为0的,那就是必须x轴上方和下方都要有。g(x)=∫[0→x]f(t)dt是对f(t)的一个面积累加,你想累加到最后居然函数值重复出现了,说明这个累加没有增加面积,也就是说累加了一个面积为0的东西。黑桃花2023-05-25 18:52:161
周期函数定积分的性质是什么,最好的有例题,
1、f上限a+T下限a等于f上限T下限0 2、f上限a+T下限T等于f上限a下限0 例题:自己画个周期函数然后按照定积分的几何意义即面积去理解就可以了. 自己做题记住的两点.瑞瑞爱吃桃2023-05-25 18:52:161
被积函数是周期函数的定积分的性质
你求导都求错了好吧,应该用换元法bikbok2023-05-25 18:52:158
周期函数的定积分的一个性质实在不明白
(2)∫(0,x)f(t)dt以T为周期的充要条件是∫(0,T)f(t)dt=0你理解错了,这是指函数F(x)=∫(0,x)f(t)dt也以T为周期∫(0,x+T)f(t)dt=∫(0,x)f(t)dt+∫(x,x+T)f(t)dt=∫(0,x)f(t)dt+∫(0,T)f(t)dt,因为T是∫(0,x)f(t)dt的周期,故:∫(0,T)f(t)dt=0反之是一样证明。真颛2023-05-25 18:52:153
周期函数用什么回归模型
周期函数通常使用三角函数模型来拟合,其中最常见的是正弦函数模型。正弦函数的周期性质与许多周期性现象的本质相吻合,使得正弦函数能够很好地描述周期性现象的变化规律。正弦函数的一般式为:$$f(x) = Acdot sin(omega x+phi)+D$$其中,$A$ 为振幅,表示周期函数在正弦曲线上下波动的最大值;$omega$ 为角速度,表示周期函数在单位时间内沿着正弦曲线变化的速度;$phi$ 为初相位,表示正弦曲线在 $x=0$ 处的相位;$D$ 为纵向位移,表示正弦曲线在 $y$ 轴上的位置。在实际应用中,周期函数的具体形式和参数取值需要根据具体情况进行调整和确定。此外,如果周期函数的变化规律具有多个周期,则可以使用多项式拟合等方法来进一步提高模型的精度。无尘剑 2023-05-25 18:52:002
这是周期函数吗?
1.常值函数是初等函数中最简单的一种,2.就是值域只包含一个元素的函数;3.换句话说,就是因变量取固定值的函数。4.复变函数论中的刘维尔定理告诉人们:平面上的有界全纯函数只能是常值函数。5.常值函数是周期函数,但没有最小正周期小白2023-05-24 07:49:013
泛函分析的几乎周期函数有哪些
泛函分析中的几乎周期函数是指一类几乎在全局范围内具有周期性的函数。具体来说,假设$f$是定义在实数集上的函数,存在实数$T>0$和常数$epsilon>0$,使得对于所有的$xinmathbb{R}$,都有$|f(x+T)-f(x)|<epsilon$,那么$f$就被称为几乎周期函数。其中,$T$被称为几乎周期,$epsilon$被称为几乎周期的误差界。通常情况下,$epsilon$非常小,可以看作是$f$在全局范围内具有周期性的一个微弱偏差。几乎周期函数是泛函分析中的重要概念,具有广泛的应用。以下列举几个典型的几乎周期函数:1. 小波函数:小波函数是在时间和频率上都具有一定局部性质的函数,具有良好的压缩性和近似性。一些小波函数具有几乎周期性质,例如Haar小波、Daubechies小波等。2. 周期卷积函数:周期卷积函数指的是一类周期性函数的卷积。一些周期性函数的卷积结果具有几乎周期性,例如周期方波的卷积函数。3. 周期延拓函数:周期延拓函数是指将一个有限区间上的函数在整个实数轴上进行周期性延拓得到的周期函数。一些函数的周期延拓函数具有几乎周期性,例如三角函数。需要注意的是,几乎周期函数并不是严格的周期函数,因此在具体应用中需要考虑其周期性和误差界的限制。Chen2023-05-22 18:14:091
狄利克雷函数为什么是周期函数?
周期函数的定义是:若存在T>0使得f(x+T)=f(x), 则f(x)为周期函数,不要求有最小周期。按照定义验证对任意有理数T>0, 如果x是有理数则x+T也是有理数,所以f(x+T)=1=f(x).如果x是无理数,则x+T也是有理数,所以f(x+T)=0=f(x).所以狄利可雷函数以任意正有理数为周期,但没有最小周期。善士六合2023-05-20 08:55:311
狄利克雷收敛定理一定是周期函数吗
函数的周期不必要求是2π,可以任意. 教材先是针对周期为2π的函数的傅里叶级数展开进行讨论,此时的狄利克雷收敛定理中的函数自然是周期为2π.此后讨论了一般情形,函数的周期为2L,一般都省略了新的狄利克雷收敛定理的叙述,因为没有多大必要,只要把周期2π换成2L,连续点、间断点的讨论是一样的.小菜G的建站之路2023-05-20 08:55:311
连续的周期函数都有最小正周期吗?
不一定。狄利克雷函数(英语:dirichlet function)是一个定义在实数范围上、值域为不连续的函数。狄利克雷函数的图像Y轴以Y轴为对称轴,是一个偶函数;它处处不连续;处处极限不存在;不可积分。这是一个处处不连续的可测函数。狄利克雷函数即f(x)=1(当x为有理数);f(x)=0(当x为无理数);而周期函数的定义是对任意x,若f(x)=f(x+T),则f(x)是周期为T的周期函数。显然,取T为任意一个确定的有理数,则当x是有理数时f(x)=1,且x+T是有理数,故f(x+T)=1,即f(x)=f(x+T);当x是无理数时,f(x)=0,且x+T是无理数,故有f(x+T)=0,即f(x)=f(x+T)。综上,狄利克雷函数是周期函数,其周期可以是任意个有理数,所以没有最小正周期。周期函数的性质共分以下几个类型:(1)若T(≠0)是f(x)的周期,则-T也是f(x)的周期。(2)若T(≠0)是f(x)的周期,则nT(n为任意非零整数)也是f(x)的周期。(3)若T1与T2都是f(x)的周期,则T1±T2也是f(x)的周期。(4)若f(x)有最小正周期T*,那么f(x)的任何正周期T一定是T*的正整数倍。(5)若T1、T2是f(x)的两个周期,且T1/T2是无理数,则f(x)不存在最小正周期。(6)周期函数f(x)的定义域M必定是至少一方无界的集合。大鱼炖火锅2023-05-20 08:55:281
所有周期函数都有最小正周期吗
不是所有周期函数都有最小正周期。周期函数f(x)的周期T是与x无关的非零常数,存在没有最小正周期的函数,而这个函数就是狄利克雷函数。狄利克雷函数(是一个定义在实数范围上、值域不连续的函数。狄利克雷函数的图像以Y轴为对称轴,是一个偶函数,它处处不连续,处处极限不存在,不可黎曼积分。实数域上的狄利克雷(Dirichlet)函数表示为:(k,j为整数)也可以简单地表示分段函数的形式D(x)= 0(x是无理数)或1(x是有理数)假设f(x)=0,x为无理数f(x)=1,x为有理数由有理数和无理数的运算法则可以知道,所有的有理数与有理数的和都是有理数,与无理数的和都是无理数。那么对于这个函数而言,取T为任意有理数,就都满足了,无论x是有理数还是无理数,这就意味着狄利克雷就是一个周期函数。它的最小正周期是最小的有理数,而显然是不存在最小的有理数的,因而这个函数也就没有最小正周期了。扩展资料对于函数f(x),如果存在一个不为0的正数T,使得当x取定义域中的每一个数时,f(x+T)=f(x)总成立,那么称f(x)是周期函数,T称为这个函数的周期。如果函数f(x的所有周期中存在最小值T0,称T0为周期函数f(x)的最小正周期。周期函数的性质共分以下几个类型:1、若T(≠0)是f(x)的周期,则-T也是f(x)的周期。2、若T(≠0)是f(x)的周期,则nT(n为任意非零整数)也是f(x)的周期。3、若T1与T2都是f(x)的周期,则T1±T2也是f(x)的周期。4、若f(x)有最小正周期T*,那么f(x)的任何正周期T一定是T*的正整数倍。5、若T1、T2是f(x)的两个周期,且T1/T2是无理数,则f(x)不存在最小正周期。6、周期函数f(x)的定义域M必定是至少一方无界的集合。参考资料来源:百度百科-狄利克雷函数参考资料来源:百度百科-周期函数gitcloud2023-05-20 08:55:281
狄利克雷函数为什么是周期函数?
以任意有理数为周期(有理数相加得有理数,无理数加有理数还是无理数)kikcik2023-05-20 08:55:283
狄利克雷函数是周期函数吗?为什么处处不连续、处处不可导?
狄利克雷函数D(x)是周期函数,但没有最小正周期。当x趋向于x。时,D(x)并不能趋向于一个确定的值,因此极限不存在,当然不连续,更不可导。肖振2023-05-20 08:55:283
狄利克雷函数为什么是周期函数啊
以任意有理数为周期。通过查看狄利克雷函数的定义,狄利克雷函数是在实数范围上、值域不连续的函数。该函数图像以Y轴为对称轴,是一个偶函数,处处不连续,处处极限不存在。狄利克雷函数因为以任意有理数为周期是周期函数,有理数相加得有理数,无理数加有理数还是无理数。狄利克雷函数在整个实数轴上都没有连续点,因此在数学分析、函数论等领域中具有一些特殊的性质和应用。水元素sl2023-05-20 08:55:281
什么是狄立克雷函数?怎么证明它是偶函数和周期函数?
狄利克雷函数是:当x是有理数时,f(x)=1;当x是无理数时,f(x)=0。显然该函数是个偶函数,因为x和-x要么都是有理数,要么都是无理数。容易看出任何正的有理数都是该函数的周期,比如1,0.5都是它的周期,不过由于没有最小的正有理数,它没有最小正周期。肖振2023-05-20 08:55:272
狄利克雷函数为什么是周期函数 如何证明
取T为任意一个确定的有理数,则当x是有理数时f(x)=1,且x+T是有理数,故f(x+T)=1,即f(x)=f(x+T);当x是无理数时,f(x)=0,且x+T是无理数,故有f(x+T)=0,即f(x)=f(x+T)。综上,狄利克雷函数是周期函数。 狄利克雷函数和周期函数的定义 狄利克雷函数是一个定义在实数范围上、值域不连续的函数。狄利克雷函数的图像以Y轴为对称轴,是一个偶函数,它处处不连续,处处极限不存在,不可黎曼积分。这是一个处处不连续的可测函数。 对于函数y=f(x),如果存在一个不为零的常数T,使得当x取定义域内的每一个值时,f(x+T)=f(x)都成立,那么就把函数y=f(x)叫做周期函数,不为零的常数T叫做这个函数的周期。事实上,任何一个常数kT(k∈Z,且k≠0)都是它的周期。并且周期函数f(x)的周期T是与x无关的非零常数,且周期函数不一定有最小正周期。 狄利克雷函数 额 基本性质 1、定义域为整个实数域R。 2、值域为{0,1}。 3、函数为偶函数。 4、无法画出函数图像,但是它的函数图像客观存在。 5、以任意正有理数为其周期,无最小正周期(由实数的连续统理论可知其无最小正周期)。瑞瑞爱吃桃2023-05-20 08:55:271
如何确定一个周期函数的周期
1、三角函数的,公式法:T=2π/ω,Asin(ωx+φ),Acos(ωx+φ);T=π/ω,Atan(ωx+φ),Acot(ωx+φ)。2、一般的,定义法:f(x+c)=f(x),C≠0是周期,其最小正数是最小正周期T。3、对称的,具有对称性函数的周期:(1)如果函数f(x)在R上的图象有两条对称轴x=a和x=b(a≠b),那么,f(x)是周期函数,且2(a-b)是它的一个周期.(2)如果函数f(x)在R上的图象有两个对称中心(a,0)和 (b,0) (a≠b),那么f(x)是周期函数,且2(a-b)是它的一个周期.(3)如果函数f(x)在R上的图象有一个对称轴x=a和一个对称中心(b,c)(a≠b).那么f(x)是周期函数,且4(a-b)是它的一个周期.4.抽象的,充分条件法。设m是非零常数,若对于函数f(x)定义域R中的任意x,恒有下列条件之一成立,则f(x)是周期函数,2m是它的一个周期.①f(x +m)=-f(x),②f(x+m)=1/f(x),④f(x+m)=f(x-m),③f(x+m)= -1/f(x).5.函数运算。函数f(x)与g(x)都是周期为T的周期函数,则它们的和,差、积、商(分母不为0)也是周期函数,这时T是一个周期。瑞瑞爱吃桃2023-05-19 20:19:583
周期函数怎么算
没有具体的通用公式,具体问题具体分析常见的题型有三种:一,y=Asin(ωx+φ),最小正周期T=2π/|ω|二,h(x)=f(x)±g(x)或h(x)=f(x)*g(x) (f(x)和g(x)均是周期函数)三,周期函数和奇函数/偶函数结合在一起苏州马小云2023-05-19 20:19:583
周期函数有什么性质呢?
对于函数y=f(x),如果存在一个不为零的常数T,使得当x取定义域内的每一个值时,f(x+T)=f(x)都成立,那么就把函数y=f(x)叫做周期函数,不为零的常数T叫做这个函数的周期。事实上,任何一个常数kT(k∈Z,且k≠0)都是它的周期。并且周期函数f(x)的周期T是与x无关的非零常数,且周期函数不一定有最小正周期。1,做变量替换令y=x+1 ,得到 f(y)= -f(y+2)2,再一次套用这个式子,得到f(y+2)=-f(y+4)3,两个式子结合,得到f(y)=f(y+4),所以,周期是4关键的地方是:凑出f(x)=f(x+T),这时候T就是周期。而上面3个步骤就是往这个方向凑扩展资料:1 .周期函数:对于函数f(x),如果存在非零常数T,使得当x取定义域D内的任何值时,都有f(x+T)=f(x),那么就称函数f(x)为周期函数,称T为这个函数的 一个周期. 2.最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫作函数f(x)的最小正周期. 3.若函数f(x)具有周期性,且非零常数T是f(x)的一个周期, 则kT(其中k是不等于零的任意整数)也是f(x)的周期.4.若数列{an}满足:对于任意的正整数n,都有则称数列{an}是以K为周期的周期数列。函数周期性的判定与应用(1)判定:判断函数的周期性只需证明f(x+T)=f(x)(T≠0)便可证明函数是周期函数,且周期为T。(2)应用:根据函数的周期性,可以由函数局部的性质得到函数的整体性质,在解决具体问题时,要注意结论:若T是函数的周期,则kT(k∈Z且k≠0)也是函数的周期。再也不做站长了2023-05-19 20:19:571
周期函数的性质?
y=sinx,y=cosx的周期为2π,y=sin(wx+θ),y=cos(wx+θ)的周期为2π/∣w∣;y=tanx,y=cotx的周期为π,y=tan(wx+θ),y=cot(wx+θ)的周期为π/∣w∣;其它的三角函数一般先化简,化为基本函数的复合函数,再求其周期.如y=sin²x,先化为y=(1-cos2x)/2,则周期为2π/2,即周期为π.情况比较多.kikcik2023-05-19 20:19:575
怎么判断函数为周期函数
存在任意 a,b ∈R, 且a,b不同时为0 使得 f(x + a) = f(x+b) 对于定义域内的任意x恒成立 那么f(x)就是周期函数九万里风9 2023-05-19 20:19:561
周期函数怎么求周期?
对于函数y=f(x),如果存在一个不为零的常数T,使得当x取定义域内的每一个值时,f(x+T)=f(x)都成立,那么就把函数y=f(x)叫做周期函数,不为零的常数T叫做这个函数的周期。事实上,任何一个常数kT(k∈Z,且k≠0)都是它的周期。并且周期函数f(x)的周期T是与x无关的非零常数,且周期函数不一定有最小正周期。1,做变量替换令y=x+1 ,得到 f(y)= -f(y+2)2,再一次套用这个式子,得到f(y+2)=-f(y+4)3,两个式子结合,得到f(y)=f(y+4),所以,周期是4关键的地方是:凑出f(x)=f(x+T),这时候T就是周期。而上面3个步骤就是往这个方向凑扩展资料:1 .周期函数:对于函数f(x),如果存在非零常数T,使得当x取定义域D内的任何值时,都有f(x+T)=f(x),那么就称函数f(x)为周期函数,称T为这个函数的 一个周期. 2.最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫作函数f(x)的最小正周期. 3.若函数f(x)具有周期性,且非零常数T是f(x)的一个周期, 则kT(其中k是不等于零的任意整数)也是f(x)的周期.4.若数列{an}满足:对于任意的正整数n,都有则称数列{an}是以K为周期的周期数列。函数周期性的判定与应用(1)判定:判断函数的周期性只需证明f(x+T)=f(x)(T≠0)便可证明函数是周期函数,且周期为T。(2)应用:根据函数的周期性,可以由函数局部的性质得到函数的整体性质,在解决具体问题时,要注意结论:若T是函数的周期,则kT(k∈Z且k≠0)也是函数的周期。韦斯特兰2023-05-19 20:19:561
如何证明函数是周期函数
先简单来说,如果函数是周而复始,一轮完了接着还是一摸一样的轮回着,就是周期函数。对于函数y=f(x),如果存在一个不为零的常数T,使得当x取定义域内的每一个值时,f(x+T)=f(x)都成立,那么就把函数y=f(x)叫做周期函数,不为零的常数T叫做这个函数的周期。事实上,任何一个常数kT(k∈Z且k≠0)都是它的周期。设f(x)是定义在数集M上的函数,如果存在非零常数T具有性质:f(x+T)=f(x),则说他是周期为T的函数。wpBeta2023-05-19 20:19:562
什么是周期函数?
利用周期函数的定义求周期:对于函数y=f(x),如果存在一个不为零的常数T,使得当x取定义域内的每一个值时,f(x+T)=f(x)都成立,那么就把函数y=f(x)叫做周期函数。求周期时,利用配凑换元法,把式子变形为f(x+T)=f(x)的形式,即可求出周期函数的周期。例:f(x+1)=f(3+x)先做变量替换令y=x+1 ,得到 f(y)= f(y+2) ,再一次套用这个式子,得到f(y+2)=f(y+4) ,两个式子结合,得到f(y)=f(y+4) ,即可得到函数的周期是4。扩展资料设f(x)是定义在数集M上的函数,如果存在非零常数T具有性质:f(x+T)=f(x),则称f(x)是数集M上的周期函数,常数T称为f(x)的一个周期。如果在所有正周期中有一个最小的,则称它是函数f(x)的最小正周期。(1)若T(≠0)是f(x)的周期,则-T也是f(x)的周期。(2)若T(≠0)是f(x)的周期,则nT(n为任意非零整数)也是f(x)的周期。(3)若T1与T2都是f(x)的周期,则T1±T2也是f(x)的周期。(4)若f(x)有最小正周期T*,那么f(x)的任何正周期T一定是T*的正整数倍。(5)若T1、T2是f(x)的两个周期,且T1/T2是无理数,则f(x)不存在最小正周期。(6)周期函数f(x)的定义域M必定是至少一方无界的集合。由定义可得:周期函数f(x)的周期T是与x无关的非零常数,且周期函数不一定有最小正周期,譬如狄利克雷函数。参考资料百度百科-周期函数真颛2023-05-19 20:19:561
怎样证明一个函数为周期函数
存在T使对任意x f(x+T)=f(x)成立拌三丝2023-05-19 20:19:564
周期函数是怎么定义的?
对于函数y=f(x),如果存在一个不为零的常数T,使得当x取定义域内的每一个值时,f(x+T)=f(x)都成立,那么就把函数y=f(x)叫做周期函数,不为零的常数T叫做这个函数的周期。事实上,任何一个常数kT(k∈Z,且k≠0)都是它的周期。并且周期函数f(x)的周期T是与x无关的非零常数,且周期函数不一定有最小正周期。1,做变量替换令y=x+1 ,得到 f(y)= -f(y+2)2,再一次套用这个式子,得到f(y+2)=-f(y+4)3,两个式子结合,得到f(y)=f(y+4),所以,周期是4关键的地方是:凑出f(x)=f(x+T),这时候T就是周期。而上面3个步骤就是往这个方向凑扩展资料:1 .周期函数:对于函数f(x),如果存在非零常数T,使得当x取定义域D内的任何值时,都有f(x+T)=f(x),那么就称函数f(x)为周期函数,称T为这个函数的 一个周期. 2.最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫作函数f(x)的最小正周期. 3.若函数f(x)具有周期性,且非零常数T是f(x)的一个周期, 则kT(其中k是不等于零的任意整数)也是f(x)的周期.4.若数列{an}满足:对于任意的正整数n,都有则称数列{an}是以K为周期的周期数列。函数周期性的判定与应用(1)判定:判断函数的周期性只需证明f(x+T)=f(x)(T≠0)便可证明函数是周期函数,且周期为T。(2)应用:根据函数的周期性,可以由函数局部的性质得到函数的整体性质,在解决具体问题时,要注意结论:若T是函数的周期,则kT(k∈Z且k≠0)也是函数的周期。此后故乡只2023-05-19 20:19:561
怎么判断是不是周期函数
这是高数17页对不对再也不做站长了2023-05-19 20:19:568
周期函数的周期怎么求?
y=sin(1/2x)的周期T=2π/(1/2)=4π你画的x∈[0,2π]为半个周期下面我给的是x∈[0,4π]1个周期 列表: x 0 π 2π 3π 4π x/2 0 π/2 π 3π/2 2π y 0 1 0 -1 0 描点成图NerveM 2023-05-19 20:19:561
周期函数怎么求周期?
一、周期定义一般地,如果存在一个非零常数T,使得对于函数f(x)的定义域中的任意一个x和x+T,都有f(x+T)=f(x)。那么,函数f(x)就叫做周期函数,并且把非零常数T叫作这个函数的一个周期。【注】一般情况下,如果一个周期函数有最小正周期的话,“周期”通常指的都是这个周期函数的“最小正周期”。二、中学数学常用到的周期函数的公式1、设周期函数y=f(x)的周期(最小正周期)为T,则f(x+nT)=f(x),f(x-nT)=f(x)。这里的n可以是任意整数。2、设周期函数y=f(x)的周期(最小正周期)为T,则y=f(x)+b、y=Af(x)、y=Af(x)+b,(注:A不等于0),都是最小正周期为T的周期函数。3、设周期函数y=f(x)的周期(最小正周期)为T,则y=f(wx)+b、y=Af(wx)、y=Af(wx)+b都是周期函数,并且最小正周期为“T/|w|”。(注:A、w都不为0)三、高中数学常见的周期函数的周期1、(1)y=sinx ,最小正周期T=2π;(2)y=|sinx|,最小正周期T= π。2、(1)y=cosx,最小正周期T=2π;(2)y=|cosx|,最小正周期T= π。3、(1)y=tanx,最小正周期T=π;(2)y=cotx,最小正周期T=π。4、y=Asin(wx+φ)+b,最小正周期T=2π/|w|。(注:“A”、“w”为非0常数,下同。)5、y=Acos(wx+φ)+b,最小正周期T=2π/|w|。6、y=Atan(wx+φ)+b,最小正周期T=π/|w|。7、常函数“y=c(c为常数)”,是以任意非零常数为周期的周期函数。【注】常函数没有最小正周期。NerveM 2023-05-19 20:19:551
周期函数的周期怎么求呢?
令t=x-1;则f(t)=f(t+4)周期为4。求周期函数的周期,可以直接利用定义来求,也可以利用基本周期函数的周期间接来求。基本周期函数的周期是:y=sinx 、y=cosx的周期是2π,y=tanx的周期是π。比如: y=sin3x, y=sin3x=sin(3x+2π)=sin[3(x+2π/3)∴ y=sin3x的周期是 2π/3。再比如说:y=sin²x y=sin²x =1/2(1-cos2x) cos2x的周期是π, ∴ y=sin²x 的周期是 π。扩展资料:周期函数的性质 共分以下几个类型:(1)若T(≠0)是f(x)的周期,则-T也是f(x)的周期。(2)若T(≠0)是f(x)的周期,则nT(n为任意非零整数)也是f(x)的周期。(3)若T1与T2都是f(x)的周期,则T1±T2也是f(x)的周期。(4)若f(x)有最小正周期T*,那么f(x)的任何正周期T一定是T*的正整数倍。(5)若T1、T2是f(x)的两个周期,且T1/T2是无理数,则f(x)不存在最小正周期。(6)周期函数f(x)的定义域M必定是至少一方无界的集合。参考资料:周期函数_百度百科九万里风9 2023-05-19 20:19:551
周期函数的定义
根据所含化学成分不同,熔点不同,高速钢的熔点通常在1350℃~1520℃之间。高速钢是一种具有高硬度、高耐磨性和高耐热性的工具钢,又称高速工具钢或锋钢,俗称白钢。高速钢是美国的F.W.泰勒和M.怀特于1898年创制的。高速钢的工艺性能好,强度和韧性配合好,因此主要用来制造复杂的薄刃和耐冲击的金属切削刀具,也可制造高温轴承和冷挤压模具等。除用熔炼方法生产的高速钢外,20世纪60年代以后又出现了粉末冶金高速钢,它的优点是避免了熔炼法生产所造成的碳化物偏析而引起机械性能降低和热处理变形。Jm-R2023-05-19 20:19:554
关于周期函数的定义
当然了。f(x+t)=-f(x)=f(x-t)水元素sl2023-05-19 20:19:552
什么是周期函数?怎么求周期?
形如f(x)=f(x+a)之类的应该就是周期函数有一些函数周期是固定的 例如三角函数,都是2π tanx为π但如果出现sin(2x)等复合函数第一可以用2π/2得知周期为π。三角函数周期只与x前系数有关另外我认为难理解的是抽象函数的周期例如f(x+a)=-f(x)求函数周期可以将x+a看成整体f((x+a)+a)=-f(x+a)又因为f(x+a)=-f(x)f(x+2a)=f(x)负负得正,这里简单的跳跃下总之求函数周期最后格式是一定要落到f(x)=f(x+a)好吧。。。。高一学生纯手打希望能够理解瑞瑞爱吃桃2023-05-19 20:19:551
周期函数怎么判断
一般的函数根据定义来判断,除了三角函数外,没有给出解析式的函数是周期的函数。推知周期,常见的周期情况有f(x+T)=f(x),周期为T,f(x+a)=-f(x),周期为2a。1、根据定义讨论函数的周期性可知非零实数T在关系式f(X+T)= f(X)中是与X无关的,故讨论时可通过解关于T的方程f(X+T)- f(X)=0,若能解出与X无关的非零常数T便可断定函数f(X)是周期函数,若这样的T不存在则f(X)为非周期函数。2、一般用反证法证明。(若f(X)是周期函数,推出矛盾,从而得出f(x)是非周期函数)。善士六合2023-05-19 20:19:551
周期函数的定义是什么?
定义通俗定义 对于函数y=f(x),如果存在一个不为零的常数T,使得当x取定义域内的每一个值时,f(x+T)=f(x)都成立,那么就把函数y=f(x)叫做周期函数,不为零的常数T叫做这个函数的周期。 严格定义 设f(x)是定义在数集M上的函数,如果存在非零常数T具有性质; (1)对 有(X±T) ; (2)对 有f(X+T)=f(X) 则称f(X)是数集M上的周期函数,常数T称为f(X)的一个周期。如果在所有正周期中有一个最小的,则称它是函数f(X)的最小正周期。 由定义可得:周期函数f(X)的周期T是与X无关的非零常数,且周期函数不一定有最小正周期。 [编辑本段]周期函数性质 (1)若T(≠0)是f(X)的周期,则-T也是f(X)的周期。 (2)若T(≠0)是f(X)的周期,则nT(n为任意非零整数)也是f(X)的周期。 (3)若T1与T2都是f(X)的周期,则T1±T2也是f(X)的周期。 (4)若f(X)有最小正周期T*,那么f(X)的任何正周期T一定是T*的正整数倍。 (5)T*是f(X)的最小正周期,且T1、T2分别是f(X)的两个周期,则 (Q是有理数集) (6)若T1、T2是f(X)的两个周期,且T1/T2是无理数,则f(X)不存在最小正周期。 (7)周期函数f(X)的定义域M必定是双方无界的集合。 [编辑本段]周期函数的判定 定理1 若f(X)是在集M上以T*为最小正周期的周期函数则K f(X)+C(K≠0)和1/ f(X)分别是集M和集{X/ f(X) ≠0,X }上的以T*为最小正周期的周期函数。 [1] 证: ∵T*是f(X)的周期,∴对 有X±T* 且f(X+T*)= f(X),∴K f(X)+C=K f(X+T*)+C, ∴K f(X)+C也是M上以T*为周期的周期函数。 假设T* 不是Kf(X)+C的最小正周期,则必存在T"( 0<T"<T*)是K f(X)+C的周期,则对 , 有K f(X+T")+C=K f(X) +C K[f(X+T")- f(X)]=0,∵K≠0,∴f(X+T")- f(X)=0,∴f(X+T")= f(X), ∴T"是f(X)的周期,与T*是f(X)的最小正周期矛盾,∴T*也是K f(X)+C的最小正周期。 同理可证1/ f(X)是集{X/ f(X) ≠0,X }上的以T*为最小正周期的周期函数。 定理2 若f(X)是集M上以T*为最小正周期的周期函数,则f(aX+n)是集{X/aX+ b }上的以T*/ 为最小正周期的周期函数,(其中a、b为常数)。 证: 先证 是f(ax+b)的周期 ∵T*是f(X)的周期,∴ ,有X±T*∈M,∴a(X± )+b=ax+b±T*∈M,且f[a(X+ )+b]=f(ax+b±T*)=f(ax+b)∴ 是f(ax+b)的周期。 再证 是f(ax+b)的最小正周期 假设存在T"(0<T"< )是f(ax+b)的周期, 则f(a(x+T")+b)=f(ax+b),即f(ax+b+aT")=f(ax+b), 因当X取遍{X/X∈M,ax+b∈M}的各数时,ax+b就取遍M所有的各数, ∴aT"是f(X)的周期,但 <=T*这与T*是f(X)的最小正周期矛盾。 定理3 设f(u)是定义在集M上的函数u=g(x)是集M1上的周期函数,且当X∈M1时,g(x)∈M,则复合函数f(g(x))是M1上的周期函数。 证: 设T是u=g(x)的周期,则 1有(x±T)∈M1且g(x+T)=g(x) ∴f(g(x+T))=f(g(x)) ∴=f(g(x))是M1上的周期函数。 例1 设=f(u)=u2是非周期函数,u= g(X)=cosx是实数集R上的周期函数,则f(g(x))=cos2x是R上的周期函数。 同理可得:(1)f(X)=Sin(cosx),(2)f(X)=Sin(tgx),(3)f(X)=Sin2x,(4)f(n)=Log2Sinx(sinx>0)也都是周期函数。 例2 f(n)=Sinn是周期函数,n=g(x)=ax+b(a≠0)是非周期函数,f(g(x))=Sin(ax+b)是周期函数(中学数学中已证)。 例3 f(n)=cosn是周期函数,n=g(x)= (非周期函数)而f(g(x))=cos 是非周期函数。 证:假设cos 是周期函数,则存在T>0使cos (k∈Z) 与定义中T是与X无关的常数矛盾, ∴cos 不是周期函数。 由例2、例3说明,若f(u)是周期函数,u= g(X)是非周期函数,这时f(g(x))可能是,也可能不是周期函数。 定理4 设f1(X)、f2(X)都是集合M上的周期函数,T1、T2分别是它们的周期,若T1/T2∈Q则它们的和差与积也是M上的周期函数,T1与T2的公倍 数为它们的周期。 证: 设 ((p·q)=1)设T=T1q=T2p则有: 有(x±T)=(x±T1q)=(x±T2p)∈M,且f1(x+T) ±f2(x+T)= f1(x+T1q) ±f2(x+T2p)= f1(X)±f2(X) ∴f1(X) ±f2(X)是以T1和T2的公倍数T为周期的周期函数。同理可证:f1(X) 、f2(X)是以T为周期的周期函数。 定理4推论 设f1(X) 、f2(X)……fn(X) 是集M上的有限个周期函数T1、T2……Tn分别是它们的周期,若, … (或T1,T2……Tn中任意两个之比)都是有理数,则此n个函数之和、差、积也是M上的周期函数。 例4 f(X)=Sinx-2cos2x+sin4x是以2π、π、π/2的最小公倍 数2π为周期的周期函数。 例5 讨论f(X)= 的周期性 解:2tg3 是以T1= 为最小正周期的周期函数。 5tg 是以T2 为最小正周期的周期函数。 tg2 是以T3= 为最小正周期的周期函数。 又 都是有理数 ∴f(X)是以T1、T2、T3最小公倍数(T1、T2、T3)= 为最小正周期的周期函数。 同理可证: (1)f(X)=cos ; (2)f(x)=sin2xcos2x+cos2xcos3x+cos3xsin3x。是周期函数。 定理5 设f1(x)=sin a1x,f2(x)=cosa2x,则f1(x)与f2(x)之和、差、积是周期函数的充要条件是a1/a2∈Q。 证 先证充分性: 若a1/a2∈Q,设T1、T2分别为f1(x)与f2(x)的最小正周期,则T1= 、T2= ,又 ∈Q 由定理4可得f1(x)与f2(x)之和、差、积是周期函数。 再证必要性(仅就f1(x)与f2(x)的差和积加以证明)。 (1)设sina1x-cosa2x为周期函数,则必存在常数T>0, 使sina1(x+T)-sina1x=cosa2(x+T)-cosa2x 2cos(a1x+ )sin = -2sin s(a2x+ ) sin (1)。 令x= 得2cos(a1x+ ),则 (K∈Z)。(2) 或 C∈Z(3) 又在(1)中令 2sin(a2x+ )sin =-2sin =0 由(4) 由sin (5) 由上述(2)与(3),(4)与(5)都分别至少有一个成立。 由(3)、(5得 )(6) ∴无论(2)、(4)、(6)中那一式成立都有a1/a2 。 (2)设sinaxcosa2x为周期函数,则 是周期函数。 [编辑本段]非周期函数的判定 [1](1)若f(X)的定义域有界 例:f(X)=cosx( ≤10)不是周期函数。 (2)根据定义讨论函数的周期性可知非零实数T在关系式f(X+T)= f(X)中是与X无关的,故讨论时可通过解关于T的方程f(X+T)- f(X)=0,若能解出与X无关的非零常数T便可断定函数f(X)是周期函数,若这样的T不存在则f(X)为非周期函数。 例:f(X)=cos 是非周期函数。 (3)一般用反证法证明。(若f(X)是周期函数,推出矛盾,从而得出f(X)是非周期函数)。 例:证f(X)=ax+b(a≠0)是非周期函数。 证:假设f(X)=ax+b是周期函数,则存在T(≠0),使对 ,a(x+T)+b=ax+b ax+aT-ax=0 aT=0 又a≠0,∴T=0与T≠0矛盾,∴f(X)是非周期函数。 例:证f(X)= 是非周期函数。 证:假设f(X)是周期函数,则必存在T(≠0)对 ,有(x+T)= f(X),当x=0时,f(X)=0,但x+T≠0, ∴f(x+T)=1,∴f(x+T) ≠f(X)与f(x+T)= f(X)矛盾,∴f(X)是非周期函数。 例:证f(X)=sinx2是非周期函数 证:若f(X)= sinx2是周期函数,则存在T(>0),使对 ,有sin(x+T)2=sinx2,取x=0有sinT2=sin0=0,∴T2=Kπ(K∈Z),又取X= T有sin( T+T)2=sin( T)2=sin2kπ=0,∴( +1)2 T2=Lπ(L∈Z+),∴ 与3+2 是无理数矛盾,∴f(X)=sinx2是非周期函数。人类地板流精华2023-05-19 20:19:551
如何求周期函数的周期?
令t=x-1;则f(t)=f(t+4)周期为4。求周期函数的周期,可以直接利用定义来求,也可以利用基本周期函数的周期间接来求。基本周期函数的周期是:y=sinx 、y=cosx的周期是2π,y=tanx的周期是π。比如: y=sin3x, y=sin3x=sin(3x+2π)=sin[3(x+2π/3)∴ y=sin3x的周期是 2π/3。再比如说:y=sin²x y=sin²x =1/2(1-cos2x) cos2x的周期是π, ∴ y=sin²x 的周期是 π。扩展资料:周期函数的性质 共分以下几个类型:(1)若T(≠0)是f(x)的周期,则-T也是f(x)的周期。(2)若T(≠0)是f(x)的周期,则nT(n为任意非零整数)也是f(x)的周期。(3)若T1与T2都是f(x)的周期,则T1±T2也是f(x)的周期。(4)若f(x)有最小正周期T*,那么f(x)的任何正周期T一定是T*的正整数倍。(5)若T1、T2是f(x)的两个周期,且T1/T2是无理数,则f(x)不存在最小正周期。(6)周期函数f(x)的定义域M必定是至少一方无界的集合。参考资料:周期函数_百度百科阿啵呲嘚2023-05-19 20:19:551
周期函数的周期是多少?
f(x+a)=-f(x)周期为2a。证明过程:因为f(x+a)=-f(x),且f(x)=-f(x-a),所以f(x+a)=f(x-a),即f(x+2a)=f(x),所以周期是2a。sinx的函数周期公式T=2π,sinx是正弦函数,周期是2πcosx的函数周期公式T=2π,cosx是余弦函数,周期2π。tanx和cotx的函数周期公式T=π,tanx和cotx分别是正切和余切secx 和cscx的函数周期公式T=2π,secx和cscx是正割和余割。扩展资料:y=Asin(wx+b) 周期公式T=2π/wy=Acos(wx+b) 周期公式T=2π/wy=Atan(wx+b) 周期公式T=π/w重要推论:如果函数f(x)(x∈D)在定义域内有两条对称轴x=a,x=b则函数f(x)是周期函数,且周期T=2|b-a|(不一定为最小正周期)。如果函数f(x)(x∈D)在定义域内有两个对称中心A(a,0),B(b,0)则函数f(x)是周期函数,且周期T=2|b-a|(不一定为最小正周期)。如果函数f(x)(x∈D)在定义域内有一条对称轴x=a和一个对称中心B(b, 0)(a≠b),则函数f(x)是周期函数,且周期T=4|b-a|(不一定为最小正周期)。铁血嘟嘟2023-05-19 20:19:551
周期函数的周期是怎样定义的?
定义通俗定义 对于函数y=f(x),如果存在一个不为零的常数T,使得当x取定义域内的每一个值时,f(x+T)=f(x)都成立,那么就把函数y=f(x)叫做周期函数,不为零的常数T叫做这个函数的周期。 严格定义 设f(x)是定义在数集M上的函数,如果存在非零常数T具有性质; (1)对 有(X±T) ; (2)对 有f(X+T)=f(X) 则称f(X)是数集M上的周期函数,常数T称为f(X)的一个周期。如果在所有正周期中有一个最小的,则称它是函数f(X)的最小正周期。 由定义可得:周期函数f(X)的周期T是与X无关的非零常数,且周期函数不一定有最小正周期。 [编辑本段]周期函数性质 (1)若T(≠0)是f(X)的周期,则-T也是f(X)的周期。 (2)若T(≠0)是f(X)的周期,则nT(n为任意非零整数)也是f(X)的周期。 (3)若T1与T2都是f(X)的周期,则T1±T2也是f(X)的周期。 (4)若f(X)有最小正周期T*,那么f(X)的任何正周期T一定是T*的正整数倍。 (5)T*是f(X)的最小正周期,且T1、T2分别是f(X)的两个周期,则 (Q是有理数集) (6)若T1、T2是f(X)的两个周期,且T1/T2是无理数,则f(X)不存在最小正周期。 (7)周期函数f(X)的定义域M必定是双方无界的集合。 [编辑本段]周期函数的判定 定理1 若f(X)是在集M上以T*为最小正周期的周期函数则K f(X)+C(K≠0)和1/ f(X)分别是集M和集{X/ f(X) ≠0,X }上的以T*为最小正周期的周期函数。 [1] 证: ∵T*是f(X)的周期,∴对 有X±T* 且f(X+T*)= f(X),∴K f(X)+C=K f(X+T*)+C, ∴K f(X)+C也是M上以T*为周期的周期函数。 假设T* 不是Kf(X)+C的最小正周期,则必存在T"( 0<T"<T*)是K f(X)+C的周期,则对 , 有K f(X+T")+C=K f(X) +C K[f(X+T")- f(X)]=0,∵K≠0,∴f(X+T")- f(X)=0,∴f(X+T")= f(X), ∴T"是f(X)的周期,与T*是f(X)的最小正周期矛盾,∴T*也是K f(X)+C的最小正周期。 同理可证1/ f(X)是集{X/ f(X) ≠0,X }上的以T*为最小正周期的周期函数。 定理2 若f(X)是集M上以T*为最小正周期的周期函数,则f(aX+n)是集{X/aX+ b }上的以T*/ 为最小正周期的周期函数,(其中a、b为常数)。 证: 先证 是f(ax+b)的周期 ∵T*是f(X)的周期,∴ ,有X±T*∈M,∴a(X± )+b=ax+b±T*∈M,且f[a(X+ )+b]=f(ax+b±T*)=f(ax+b)∴ 是f(ax+b)的周期。 再证 是f(ax+b)的最小正周期 假设存在T"(0<T"< )是f(ax+b)的周期, 则f(a(x+T")+b)=f(ax+b),即f(ax+b+aT")=f(ax+b), 因当X取遍{X/X∈M,ax+b∈M}的各数时,ax+b就取遍M所有的各数, ∴aT"是f(X)的周期,但 <=T*这与T*是f(X)的最小正周期矛盾。 定理3 设f(u)是定义在集M上的函数u=g(x)是集M1上的周期函数,且当X∈M1时,g(x)∈M,则复合函数f(g(x))是M1上的周期函数。 证: 设T是u=g(x)的周期,则 1有(x±T)∈M1且g(x+T)=g(x) ∴f(g(x+T))=f(g(x)) ∴=f(g(x))是M1上的周期函数。 例1 设=f(u)=u2是非周期函数,u= g(X)=cosx是实数集R上的周期函数,则f(g(x))=cos2x是R上的周期函数。 同理可得:(1)f(X)=Sin(cosx),(2)f(X)=Sin(tgx),(3)f(X)=Sin2x,(4)f(n)=Log2Sinx(sinx>0)也都是周期函数。 例2 f(n)=Sinn是周期函数,n=g(x)=ax+b(a≠0)是非周期函数,f(g(x))=Sin(ax+b)是周期函数(中学数学中已证)。 例3 f(n)=cosn是周期函数,n=g(x)= (非周期函数)而f(g(x))=cos 是非周期函数。 证:假设cos 是周期函数,则存在T>0使cos (k∈Z) 与定义中T是与X无关的常数矛盾, ∴cos 不是周期函数。 由例2、例3说明,若f(u)是周期函数,u= g(X)是非周期函数,这时f(g(x))可能是,也可能不是周期函数。 定理4 设f1(X)、f2(X)都是集合M上的周期函数,T1、T2分别是它们的周期,若T1/T2∈Q则它们的和差与积也是M上的周期函数,T1与T2的公倍 数为它们的周期。 证: 设 ((p·q)=1)设T=T1q=T2p则有: 有(x±T)=(x±T1q)=(x±T2p)∈M,且f1(x+T) ±f2(x+T)= f1(x+T1q) ±f2(x+T2p)= f1(X)±f2(X) ∴f1(X) ±f2(X)是以T1和T2的公倍数T为周期的周期函数。同理可证:f1(X) 、f2(X)是以T为周期的周期函数。 定理4推论 设f1(X) 、f2(X)……fn(X) 是集M上的有限个周期函数T1、T2……Tn分别是它们的周期,若, … (或T1,T2……Tn中任意两个之比)都是有理数,则此n个函数之和、差、积也是M上的周期函数。 例4 f(X)=Sinx-2cos2x+sin4x是以2π、π、π/2的最小公倍 数2π为周期的周期函数。 例5 讨论f(X)= 的周期性 解:2tg3 是以T1= 为最小正周期的周期函数。 5tg 是以T2 为最小正周期的周期函数。 tg2 是以T3= 为最小正周期的周期函数。 又 都是有理数 ∴f(X)是以T1、T2、T3最小公倍数(T1、T2、T3)= 为最小正周期的周期函数。 同理可证: (1)f(X)=cos ; (2)f(x)=sin2xcos2x+cos2xcos3x+cos3xsin3x。是周期函数。 定理5 设f1(x)=sin a1x,f2(x)=cosa2x,则f1(x)与f2(x)之和、差、积是周期函数的充要条件是a1/a2∈Q。 证 先证充分性: 若a1/a2∈Q,设T1、T2分别为f1(x)与f2(x)的最小正周期,则T1= 、T2= ,又 ∈Q 由定理4可得f1(x)与f2(x)之和、差、积是周期函数。 再证必要性(仅就f1(x)与f2(x)的差和积加以证明)。 (1)设sina1x-cosa2x为周期函数,则必存在常数T>0, 使sina1(x+T)-sina1x=cosa2(x+T)-cosa2x 2cos(a1x+ )sin = -2sin s(a2x+ ) sin (1)。 令x= 得2cos(a1x+ ),则 (K∈Z)。(2) 或 C∈Z(3) 又在(1)中令 2sin(a2x+ )sin =-2sin =0 由(4) 由sin (5) 由上述(2)与(3),(4)与(5)都分别至少有一个成立。 由(3)、(5得 )(6) ∴无论(2)、(4)、(6)中那一式成立都有a1/a2 。 (2)设sinaxcosa2x为周期函数,则 是周期函数。 [编辑本段]非周期函数的判定 [1](1)若f(X)的定义域有界 例:f(X)=cosx( ≤10)不是周期函数。 (2)根据定义讨论函数的周期性可知非零实数T在关系式f(X+T)= f(X)中是与X无关的,故讨论时可通过解关于T的方程f(X+T)- f(X)=0,若能解出与X无关的非零常数T便可断定函数f(X)是周期函数,若这样的T不存在则f(X)为非周期函数。 例:f(X)=cos 是非周期函数。 (3)一般用反证法证明。(若f(X)是周期函数,推出矛盾,从而得出f(X)是非周期函数)。 例:证f(X)=ax+b(a≠0)是非周期函数。 证:假设f(X)=ax+b是周期函数,则存在T(≠0),使对 ,a(x+T)+b=ax+b ax+aT-ax=0 aT=0 又a≠0,∴T=0与T≠0矛盾,∴f(X)是非周期函数。 例:证f(X)= 是非周期函数。 证:假设f(X)是周期函数,则必存在T(≠0)对 ,有(x+T)= f(X),当x=0时,f(X)=0,但x+T≠0, ∴f(x+T)=1,∴f(x+T) ≠f(X)与f(x+T)= f(X)矛盾,∴f(X)是非周期函数。 例:证f(X)=sinx2是非周期函数 证:若f(X)= sinx2是周期函数,则存在T(>0),使对 ,有sin(x+T)2=sinx2,取x=0有sinT2=sin0=0,∴T2=Kπ(K∈Z),又取X= T有sin( T+T)2=sin( T)2=sin2kπ=0,∴( +1)2 T2=Lπ(L∈Z+),∴ 与3+2 是无理数矛盾,∴f(X)=sinx2是非周期函数。陶小凡2023-05-19 20:19:551
周期函数的计算公式是什么?
物理上的周期一般有两个计算公式: 1、T=2πr/v(周期=圆的周长÷线速度); 2、T=2π/ω(“ω”代表角速度)。若f(x)为周期函数,则把使得f(x+l)=f(x)对定义域中的任何x都成立的最小正数l,称为f(x)的(基本)周期。在计算机中,完成一个循环所需要的时间;或访问一次存储器所需要的时间,亦称为周期 。周期函数的实质:两个自变量值整体的差等于周期的倍数时,两个自变量值整体的函数值相等。如:f(x+6) =f(x-2)则函数周期为T=8。扩展资料周期函数的性质共分以下几个类型:(1)若T(≠0)是f(x)的周期,则-T也是f(x)的周期。(2)若T(≠0)是f(x)的周期,则nT(n为任意非零整数)也是f(x)的周期。(3)若T1与T2都是f(x)的周期,则T1±T2也是f(x)的周期。(4)若f(x)有最小正周期T*,那么f(x)的任何正周期T一定是T*的正整数倍。(5)若T1、T2是f(x)的两个周期,且T1/T2是无理数,则f(x)不存在最小正周期。(6)周期函数f(x)的定义域M必定是至少一方无界的集合。肖振2023-05-19 20:19:541
周期函数是什么意思?
对于函数y=f(x),如果存在一个不为零的常数T,使得当x取定义域内的每一个值时,f(x+T)=f(x)都成立,那么就把函数y=f(x)叫做周期函数,不为零的常数T叫做这个函数的周期。事实上,任何一个常数kT(k∈Z,且k≠0)都是它的周期。并且周期函数f(x)的周期T是与x无关的非零常数,且周期函数不一定有最小正周期。1,做变量替换令y=x+1 ,得到 f(y)= -f(y+2)2,再一次套用这个式子,得到f(y+2)=-f(y+4)3,两个式子结合,得到f(y)=f(y+4),所以,周期是4关键的地方是:凑出f(x)=f(x+T),这时候T就是周期。而上面3个步骤就是往这个方向凑扩展资料:设f(x)是定义在数集M上的函数,如果存在非零常数T具有性质:f(x+T)=f(x),则称f(x)是数集M上的周期函数,常数T称为f(x)的一个周期。如果在所有正周期中有一个最小的,则称它是函数f(x)的最小正周期。由定义可得:周期函数f(x)的周期T是与x无关的非零常数,且周期函数不一定有最小正周期,譬如狄利克雷函数。周期函数的性质 共分以下几个类型:(1)若T(≠0)是f(x)的周期,则-T也是f(x)的周期。(2)若T(≠0)是f(x)的周期,则nT(n为任意非零整数)也是f(x)的周期。(3)若T1与T2都是f(x)的周期,则T1±T2也是f(x)的周期。(4)若f(x)有最小正周期T*,那么f(x)的任何正周期T一定是T*的正整数倍。(5)若T1、T2是f(x)的两个周期,且T1/T2是无理数,则f(x)不存在最小正周期。(6)周期函数f(x)的定义域M必定是至少一方无界的集合。参考资料:百度百科-周期函数NerveM 2023-05-19 20:19:541
周期函数的公式是什么?
周期t公式是:1、T=2πr/v(周期=圆的周长÷线速度)。2、T=2π/ω(“ω”代表角速度)。周期函数的实质:两个自变量值整体的差等于周期的倍数时,两个自变量值整体的函数值相等。如:f(x+6) =f(x-2)则函数周期为T=8。周期函数性质:(1)若T(≠0)是f(X)的周期,则-T也是f(X)的周期。(2)若T(≠0)是f(X)的周期,则nT(n为任意非零整数)也是f(X)的周期。(3)若T1与T2都是f(X)的周期,则T1±T2也是f(X)的周期。(4)若f(X)有最小正周期T*,那么f(X)的任何正周期T一定是T*的正整数倍。(5)周期函数f(X)的定义域M必定是双方无界的集合。墨然殇2023-05-19 20:19:541
周期函数有哪些
1、周期函数的定义:对于函数y=f(x),若存在常数T≠0,使得f(x+T) = f(x),则函数y= f(x)称为周期函数,T称为此函数的周期。 性质1:若T是函数y=f(x)的任意一个周期,则T的相反数(-T)也是f(x)的周期。 性质2:若T是函数f(x)的周期,则对于任意的整数n(n≠0),nT也是f(x)的周期。 性质3:若T1、T2都为函数f(x)的周期,且T1±T2≠0,则T1±T2也是f(x)的周期。 2、定义:在函数f(x)的周期的集合中,我们称其正数者为函数f(x)的正周期,称其负数者为函数f(x)的负周期。若所有正周期中存在最小的一个,则我们称之为函数f(x)的最小正周期,记作T※。 性质4:若T※为函数f(x)的最小正周期,T为函数f(x)的任意一个周期,则 Z -(非零整数)。 性质5:若函数f(x)存在最小正周期T※,且T1、T2分别为函数f(x)的任意两个周期,则 为有理数。 注意:常值函数是周期函数,但没有最小正周期再也不做站长了2023-05-19 20:19:542
周期函数f(x)周期的计算公式是什么?
f(x+a)=-f(x)周期为2a。证明过程:因为f(x+a)=-f(x),且f(x)=-f(x-a),所以f(x+a)=f(x-a),即f(x+2a)=f(x),所以周期是2a。sinx的函数周期公式T=2π,sinx是正弦函数,周期是2πcosx的函数周期公式T=2π,cosx是余弦函数,周期2π。tanx和cotx的函数周期公式T=π,tanx和cotx分别是正切和余切secx 和cscx的函数周期公式T=2π,secx和cscx是正割和余割。扩展资料:y=Asin(wx+b) 周期公式T=2π/wy=Acos(wx+b) 周期公式T=2π/wy=Atan(wx+b) 周期公式T=π/w重要推论:如果函数f(x)(x∈D)在定义域内有两条对称轴x=a,x=b则函数f(x)是周期函数,且周期T=2|b-a|(不一定为最小正周期)。如果函数f(x)(x∈D)在定义域内有两个对称中心A(a,0),B(b,0)则函数f(x)是周期函数,且周期T=2|b-a|(不一定为最小正周期)。如果函数f(x)(x∈D)在定义域内有一条对称轴x=a和一个对称中心B(b, 0)(a≠b),则函数f(x)是周期函数,且周期T=4|b-a|(不一定为最小正周期)。tt白2023-05-19 20:19:541
周期函数怎么判断周期
周期函数定理,总结一共分一下几个类型。定理1若f(X)是在集M上以T*为最小正周期的周期函数,则K f(X)+C(K≠0)和1/ f(X)分别是集M和集{X/ f(X) ≠0,X ∈M}上的以T*为最小正周期的周期函数。[2] 证:∵T*是f(X)的周期,∴对 有X±T* 且f(X+T*)= f(X),∴K f(X)+C=K f(X+T*)+C,∴K f(X)+C也是M上以T*为周期的周期函数。假设T* 不是Kf(X)+C的最小正周期,则必存在T"(0<T"<T*)是K f(X)+C的周期,则对T"(0<T"<T*)是K f(X)+C的周期,有K f(X+T")+C=K f(X) +C K[f(X+T")- f(X)]=0,∵K≠0,∴f(X+T")- f(X)=0,∴f(X+T")= f(X),∴T"是f(X)的周期,与T*是f(X)的最小正周期矛盾,∴T*也是K f(X)+C的最小正周期。同理可证1/ f(X)是集{X/ f(X) ≠0,X }上的以T*为最小正周期的周期函数。定理2若f(x)是集M上以T*为最小正周期的周期函数,则f(ax+n)是集{x|ax+b∈M}上的以T*/ a为最小正周期的周期函数,(其中a、b为常数)。证:【先证f(ax+b)的周期】∵T*是f(X)的周期,∴f(x±T*)=f(x),有X±T*∈M,以ax+b替换x得,f(ax±T*+b)=f(ax+b),此时ax+b∈M,提取a为公因式得,f[a(x+T*/a)+b]=f(ax+b)∴T*/a是f(ax+b)的周期。再证是f(ax+b)的最小正周期假设存在T"/a(0<T"<T*;)是f(ax+b)的周期,则f(a(x+T"/a)+b)=f(ax+b),用x/a-b/a替换x,得f(x+T")=f(x)∴T"是f(x)的周期,但 T"<T*这与T*是f(x)的最小正周期矛盾。∴不存在T"/a(0<T"<T*;)是f(ax+b)的周期,即f(ax+b)的最小正周期为T*/ a定理3设f(u)是定义在集M上的函数,u=g(x)是集M1上的周期函数,且当X∈M1时,g(x)∈M,则复合函数f(g(x))是M1上的周期函数。证:设T是u=g(x)的周期,则 1有(x±T)∈M1且g(x+T)=g(x) ∴f(g(x+T))=f(g(x))∴=f(g(x))是M1上的周期函数。例1设=f(u)=u2是非周期函数,u= g(X)=cosx是实数集R上的周期函数,则f(g(x))=cos2x是R上的周期函数。同理可得:⑴f(X)=Sin(cosx),⑵f(X)=Sin(tgx),⑶f(X)=Sin2x,⑷f(n)=Log2Sinx(sinx>0)也都是周期函数。例2f(n)=Sinn是周期函数,n=g(x)=ax+b(a≠0)是非周期函数,f(g(x))=Sin(ax+b)是周期函数(中学数学中已证)。例3f(n)=cosn是周期函数,n=g(x)= (非周期函数)而f(g(x))=cos 是非周期函数。证:假设cos 是周期函数,则存在T>0使cos (k∈Z) 与定义中T是与X无关的常数矛盾,∴cos 不是周期函数。由例2、例3说明,若f(u)是周期函数,u= g(X)是非周期函数,这时f(g(x))可能是,也可能不是周期函数。定理4设f1(X)、f2(X)都是集合M上的周期函数,T1、T2分别是它们的周期,若T1/T2∈Q则它们的和差与积也是M上的周期函数,T1与T2的公倍 数为它们的周期。证:设 ((p·q)=1)设T=T1q=T2p则有:有(x±T)=(x±T1q)=(x±T2p)∈M,且f1(x+T) ±f2(x+T)= f1(x+T1q) ±f2(x+T2p)= f1(X)±f2(X) ∴f1(X) ±f2(X)是以T1和T2的公倍数T为周期的周期函数。同理可证:f1(X) 、f2(X)是以T为周期的周期函数。推论 设f1(X) 、f2(X)……fn(X) 是集M上的有限个周期函数T1、T2……Tn分别是它们的周期,若, … (或T1,T2……Tn中任意两个之比)都是有理数,则此n个函数之和、差、积也是M上的周期函数。例1f(X)=Sinx-2cos2x+sin4x是以2π、π、π/2的最小公倍 数2π为周期的周期函数。例2讨论f(X)= 的周期性解:2tg3 是以T1= 为最小正周期的周期函数。5tg 是以T2 为最小正周期的周期函数。tg2 是以T3= 为最小正周期的周期函数。又 都是有理数∴f(X)是以T1、T2、T3最小公倍数(T1、T2、T3)= 为最小正周期的周期函数。同理可证:⑴f(X)=cos ;⑵f(x)=sin2xcos2x+cos2xcos3x+cos3xsin3x。是周期函数。定理5设f1(x)=sin a1x,f2(x)=cosa2x,则f1(x)与f2(x)之和、差、积是周期函数的充要条件是a1/a2∈Q。证先证充分性:若a1/a2∈Q,设T1、T2分别为f1(x)与f2(x)的最小正周期,则T1= 、T2= ,又 ∈Q由定理4可得f1(x)与f2(x)之和、差、积是周期函数。再证必要性(仅就f1(x)与f2(x)的差和积加以证明)。⑴设sina1x-cosa2x为周期函数,则必存在常数T>0,使sina1(x+T)-sina1x=cosa2(x+T)-cosa2x 2cos(a1x+)sin = -2sin s(a2x+) sin ⑴。令x= 得2cos(a1x+),则 (K∈Z)。⑵或 C∈Z⑶又在⑴中令 2sin(a2x+)sin =-2sin =0由⑷由sin ⑸由上述⑵与⑶,⑷与⑸都分别至少有一个成立。由⑶、(5得)⑹∴无论⑵、⑷、⑹中那一式成立都有a1/a2。⑵设sinaxcosa2x为周期函数,则 是周期函数。判定方法编辑⑴若f(X)的定义域有界,[2] 例:f(X)=cosx(≤10)不是周期函数。⑵根据定义讨论函数的周期性可知非零实数T在关系式f(X+T)= f(X)中是与X无关的,故讨论时可通过解关于T的方程f(X+T)- f(X)=0,若能解出与X无关的非零常数T便可断定函数f(X)是周期函数,若这样的T不存在则f(X)为非周期函数。例:f(X)=cosx 是非周期函数。⑶一般用反证法证明。(若f(X)是周期函数,推出矛盾,从而得出f(X)是非周期函数)。例:证f(X)=ax+b(a≠0)是非周期函数。证:假设f(X)=ax+b是周期函数,则存在T(≠0),使true ,a(x+T)+b=ax+b ax+aT-ax=0 aT=0 又a≠0,∴T=0与T≠0矛盾,∴f(X)是非周期函数。例:证f(X)= 是非周期函数。证:假设f(X)是周期函数,则必存在T(≠0)对 ,有(x+T)= f(X),当x=0时,f(X)=0,但x+T≠0,∴f(x+T)=1,∴f(x+T) ≠f(X)与f(x+T)= f(X)矛盾,∴f(X)是非周期函数。例:证f(X)=sinx2是非周期函数证:若f(X)= sinx2是周期函数,则存在T(>0),使之true ,有sin(x+T)2=sinx2,取x=0有sinT2=sin0=0,∴T2=Kπ(K∈Z),又取X= T有sin(T+T)2=sin(T)2=sin2kπ=0,∴(+1)2T2=Lπ(L∈Z+),∴与3+2 是无理数矛盾,∴f(X)=sinx2是非周期函数。瑞瑞爱吃桃2023-05-19 20:19:541
什么是周期函数
通俗定义 对于函数y=f(x),如果存在一个不为零的常数T,使得当x取定义域内的每一个值时,f(x+T)=f(x)都成立,那么就把函数y=f(x)叫做周期函数,不为零的常数T叫做这个函数的周期。严格定义 设f(x)是定义在数集M上的函数,如果存在非零常数T具有性质; 则称f(X)是数集M上的周期函数,常数T称为f(X)的一个周期。如果在所有正周期中有一个最小的,则称它是函数f(X)的最小正周期。 由定义可得:周期函数f(X)的周期T是与X无关的非零常数,且周期函数不一定有最小正周期。其实这种东西建议去百科上直接找,有别的不太懂的知道上问.顺便给你链接...望采纳...http://baike.baidu.com/view/447508.htm善士六合2023-05-19 20:19:542
什么是周期函数,周期函数有哪些特征?
物理上的周期一般有两个计算公式: 1、T=2πr/v(周期=圆的周长÷线速度); 2、T=2π/ω(“ω”代表角速度)。若f(x)为周期函数,则把使得f(x+l)=f(x)对定义域中的任何x都成立的最小正数l,称为f(x)的(基本)周期。在计算机中,完成一个循环所需要的时间;或访问一次存储器所需要的时间,亦称为周期 。周期函数的实质:两个自变量值整体的差等于周期的倍数时,两个自变量值整体的函数值相等。如:f(x+6) =f(x-2)则函数周期为T=8。扩展资料周期函数的性质共分以下几个类型:(1)若T(≠0)是f(x)的周期,则-T也是f(x)的周期。(2)若T(≠0)是f(x)的周期,则nT(n为任意非零整数)也是f(x)的周期。(3)若T1与T2都是f(x)的周期,则T1±T2也是f(x)的周期。(4)若f(x)有最小正周期T*,那么f(x)的任何正周期T一定是T*的正整数倍。(5)若T1、T2是f(x)的两个周期,且T1/T2是无理数,则f(x)不存在最小正周期。(6)周期函数f(x)的定义域M必定是至少一方无界的集合。真颛2023-05-19 20:19:531
周期函数的定义是什么?
对于函数y=f(x),如果存在一个不为零的常数T,使得当x取定义域内的每一个值时,f(x+T)=f(x)都成立,那么就把函数y=f(x)叫做周期函数,不为零的常数T叫做这个函数的周期。事实上,任何一个常数kT(k∈Z,且k≠0)都是它的周期。并且周期函数f(x)的周期T是与x无关的非零常数,且周期函数不一定有最小正周期。1,做变量替换令y=x+1 ,得到 f(y)= -f(y+2)2,再一次套用这个式子,得到f(y+2)=-f(y+4)3,两个式子结合,得到f(y)=f(y+4),所以,周期是4关键的地方是:凑出f(x)=f(x+T),这时候T就是周期。而上面3个步骤就是往这个方向凑扩展资料:1 .周期函数:对于函数f(x),如果存在非零常数T,使得当x取定义域D内的任何值时,都有f(x+T)=f(x),那么就称函数f(x)为周期函数,称T为这个函数的 一个周期. 2.最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫作函数f(x)的最小正周期. 3.若函数f(x)具有周期性,且非零常数T是f(x)的一个周期, 则kT(其中k是不等于零的任意整数)也是f(x)的周期.4.若数列{an}满足:对于任意的正整数n,都有则称数列{an}是以K为周期的周期数列。函数周期性的判定与应用(1)判定:判断函数的周期性只需证明f(x+T)=f(x)(T≠0)便可证明函数是周期函数,且周期为T。(2)应用:根据函数的周期性,可以由函数局部的性质得到函数的整体性质,在解决具体问题时,要注意结论:若T是函数的周期,则kT(k∈Z且k≠0)也是函数的周期。meira2023-05-19 20:19:531
周期函数怎么算
呈周期变化的函数,其周期的求法是根据周期函数的定义,设法找到一个常数c使f(x+c)=f(x)如:奇函数f(x)满足f(2+x)= - f(2-x)求函数的周期:因为f(2+x)= - f(2-x)= - [-f(x-2)]=f(x-2)f(x+4)=f[(2+(x+2)]=f[(x+2)-2]=f(x)所以函数f(x)是 以4为周期的周期函数左迁2023-05-19 20:19:534
周期函数是什么?
对于函数y=f(x),如果存在一个不为零的常数T,使得当x取定义域内的每一个值时,f(x+T)=f(x)都成立,那么就把函数y=f(x)叫做周期函数,不为零的常数T叫做这个函数的周期。事实上,任何一个常数kT(k∈Z,且k≠0)都是它的周期。并且周期函数f(x)的周期T是与x无关的非零常数,且周期函数不一定有最小正周期。1,做变量替换令y=x+1 ,得到 f(y)= -f(y+2)2,再一次套用这个式子,得到f(y+2)=-f(y+4)3,两个式子结合,得到f(y)=f(y+4),所以,周期是4关键的地方是:凑出f(x)=f(x+T),这时候T就是周期。而上面3个步骤就是往这个方向凑扩展资料:设f(x)是定义在数集M上的函数,如果存在非零常数T具有性质:f(x+T)=f(x),则称f(x)是数集M上的周期函数,常数T称为f(x)的一个周期。如果在所有正周期中有一个最小的,则称它是函数f(x)的最小正周期。由定义可得:周期函数f(x)的周期T是与x无关的非零常数,且周期函数不一定有最小正周期,譬如狄利克雷函数。周期函数的性质 共分以下几个类型:(1)若T(≠0)是f(x)的周期,则-T也是f(x)的周期。(2)若T(≠0)是f(x)的周期,则nT(n为任意非零整数)也是f(x)的周期。(3)若T1与T2都是f(x)的周期,则T1±T2也是f(x)的周期。(4)若f(x)有最小正周期T*,那么f(x)的任何正周期T一定是T*的正整数倍。(5)若T1、T2是f(x)的两个周期,且T1/T2是无理数,则f(x)不存在最小正周期。(6)周期函数f(x)的定义域M必定是至少一方无界的集合。参考资料:百度百科-周期函数康康map2023-05-19 20:19:531
如何判断周期函数
假设y=f(x)=sinx²是周期函数,周期为T,则有f(x+T)=sin(x+T)²=f(x)=sinx²,对于x∈R的任意值均成立令x=0sinT²=sin0=0∴T²=kπ k≠0T=√kπf(x+√kπ)=sin(x²+2√kπ·x+kπ)=±sin(x²+2√kπ·x),不恒等于sin(x²),与假设矛盾。∴y=sinx²是周期函数。扩展资料周期函数的性质:(1)若T(≠0)是f(x)的周期,则-T也是f(x)的周期。(2)若T(≠0)是f(x)的周期,则nT(n为任意非零整数)也是f(x)的周期。(3)若T1与T2都是f(x)的周期,则T1±T2也是f(x)的周期。(4)若f(x)有最小正周期T*,那么f(x)的任何正周期T一定是T*的正整数倍。(5)若T1、T2是f(x)的两个周期,且T1/T2是无理数,则f(x)不存在最小正周期。(6)周期函数f(x)的定义域M必定是至少一方无界的集合。参考资料来源:百度百科-周期函数Jm-R2023-05-19 20:19:521
周期函数怎么判断
三角函数的周期根据公式:弦函数的2π/w,切函数的π/w(w为正);一般的函数根据定义来判断,除了三角函数外,没有给出解析式的函数是周期的函数。推知周期,常见的周期情况有f(x+T)=f(x),周期为T,f(x+a)=-f(x),周期为2a。 周期函数的判定方法 1、根据定义讨论函数的周期性可知非零实数T在关系式f(X+T)= f(X)中是与X无关的,故讨论时可通过解关于T的方程f(X+T)- f(X)=0,若能解出与X无关的非零常数T便可断定函数f(X)是周期函数,若这样的T不存在则f(X)为非周期函数。 例:f(X)=cosx 是非周期函数。 2、一般用反证法证明。(若f(X)是周期函数,推出矛盾,从而得出f(X)是非周期函数)。 例:证f(X)=ax+b(a≠0)是非周期函数。 证:假设f(X)=ax+b是周期函数,则存在T(≠0),使true ,a(x+T)+b=ax+b ax+aT-ax=0 aT=0 又a≠0,∴T=0与T≠0矛盾,∴f(X)是非周期函数。 例:证f(X)= 是非周期函数。 证:假设f(X)是周期函数,则必存在T(≠0)对 ,有(x+T)= f(X),当x=0时,f(X)=0,但x+T≠0,∴f(x+T)=1,∴f(x+T) ≠f(X)与f(x+T)= f(X)矛盾,∴f(X)是非周期函数。 例:证f(X)=sinx2是非周期函数 证:若f(X)= sinx2是周期函数,则存在T(>0),使之true,有sin(x+T)2=sinx2,取x=0有sinT2=sin0=0,∴T2=Kπ(K∈Z),又取X= T有sin(T+T)2=sin(T)2=sin2kπ=0,∴(+1)2 T2=Lπ(L∈Z+),∴与3+2 是无理数矛盾,∴f(X)=sinx2是非周期函数。FinCloud2023-05-19 20:19:521
如何求周期函数的周期
呈周期变化的函数,其周期的求法是根据周期函数的定义,设法找到一个常数c使f(x+c)=f(x)如:奇函数f(x)满足f(2+x)=-f(2-x)求函数的周期:因为f(2+x)=-f(2-x)=-[-f(x-2)]=f(x-2)f(x+4)=f[(2+(x+2)]=f[(x+2)-2]=f(x)所以函数f(x)是以4为周期的周期函数mlhxueli 2023-05-19 20:19:521
周期函数的周期为多少?
函数周期性公式及推导:f(x+a)=-f(x)周期为2a。证明过程:因为f(x+a)=-f(x),且f(x)=-f(x-a),所以f(x+a)=f(x-a),即f(x+2a)=f(x),所以周期是2a。f(x+a)=-f(x)那么f(x+2a)=f[(x+a)+a]=-f(x+a)=-[-f(x)]=f(x)所以f(x)是以2a为周期的周期函数。f(x+a)=1/f(x)那么f(x+2a)=f[(x+a)+a]=1/f(x+a)=1/[1/f(x)]=f(x)所以f(x)是以2a为周期的周期函数。f(x+a)=-1/f(x)那么f(x+2a)=f[(x+a)+a]=-1/f(x+a)=1/[-1/f(x)]=f(x)所以f(x)是以2a为周期的周期函数。北有云溪2023-05-19 20:19:521
导数是周期函数原函数一定是周期函数吗
导数是周期函数,原函数不一定是周期函数。 比如导函数为sinx+2,是周期函数。但因为sinx+2>0,因此原函数-cosx+2x一直是增函数,当然就不是周期函数。 导数(Derivative)是微积分中的重要基础概念。当函数y=f(x)的自变量X在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f"(x0)或df/dx(x0)。 对于函数y=f(x),如果存在一个不为零的常数T,使得当x取定义域内的每一个值时,f(x+T)=f(x)都成立,那么就把函数y=f(x)叫做周期函数,Chen2023-05-19 20:19:524
怎么判断一个函数是周期函数呢?
函数周期性公式大总结:f(x+a)=-f(x)。那么f(x+2a)=f=-f(x+a)=-[-f(x)]=f(x)。所以f(x)是以2a为周期的周期函数。f(x+a)=1/f(x)。那么f(x+2a)=f=1/f(x+a)=1/[1/f(x)]=f(x)。所以f(x)是以2a为周期的周期函数。f(x+a)=-1/f(x)。那么f(x+2a)=f=-1/f(x+a)=1/[-1/f(x)]=f(x)。所以f(x)是以2a为周期的周期函数。周期公式sinx的函数周期公式T=2π,sinx是正弦函数,周期是2π。cosx的函数周期公式T=2π,cosx是余弦函数,周期2π。tanx和cotx的函数周期公式T=π,tanx和cotx分别是正切和余切。secx和cscx的函数周期公式T=2π,secx和cscx是正割和余割。拌三丝2023-05-19 20:19:521
什么是周期函数
如果对于函数y=f(x),存在常数T,满足f(x)=f(x+T),则T就是函数的一个周期.肖振2023-05-19 20:19:517
什么是周期函数?
http://baike.baidu.com/view/447508.htm?fr=ala0_1_1百度百科有通俗定义 对于函数y=f(x),如果存在一个不为零的常数T,使得当x取定义域内的每一个值时,f(x+T)=f(x)都成立,那么就把函数y=f(x)叫做周期函数,不为零的常数T叫做这个函数的周期。严格定义 设f(x)是定义在数集M上的函数,如果存在非零常数T具有性质; (1)对有(X±T); (2)对有f(X+T)=f(X) 则称f(X)是数集M上的周期函数,常数T称为f(X)的一个周期。如果在所有正周期中有一个最小的,则称它是函数f(X)的最小正周期。 由定义可得:周期函数f(X)的周期T是与X无关的非零常数,且周期函数不一定有最小正周期。 建议自己去看看希望我的回答能给予你帮助,O(∩_∩)O谢谢人类地板流精华2023-05-19 20:19:513
周期函数是什么
设函数y=f(x)的定义域为D,如果对任意X属于D存在一个非零常数T,使得f(x+T)=f(x),则称函数y=f(x)是周期函数。无尘剑 2023-05-19 20:19:511
什么是周期函数?
物理上的周期一般有两个计算公式: 1、T=2πr/v(周期=圆的周长÷线速度); 2、T=2π/ω(“ω”代表角速度)。若f(x)为周期函数,则把使得f(x+l)=f(x)对定义域中的任何x都成立的最小正数l,称为f(x)的(基本)周期。在计算机中,完成一个循环所需要的时间;或访问一次存储器所需要的时间,亦称为周期 。周期函数的实质:两个自变量值整体的差等于周期的倍数时,两个自变量值整体的函数值相等。如:f(x+6) =f(x-2)则函数周期为T=8。扩展资料周期函数的性质共分以下几个类型:(1)若T(≠0)是f(x)的周期,则-T也是f(x)的周期。(2)若T(≠0)是f(x)的周期,则nT(n为任意非零整数)也是f(x)的周期。(3)若T1与T2都是f(x)的周期,则T1±T2也是f(x)的周期。(4)若f(x)有最小正周期T*,那么f(x)的任何正周期T一定是T*的正整数倍。(5)若T1、T2是f(x)的两个周期,且T1/T2是无理数,则f(x)不存在最小正周期。(6)周期函数f(x)的定义域M必定是至少一方无界的集合。u投在线2023-05-19 20:19:511
周期函数是什么意思?
意思:y为关于x的函数。函数的近代定义是给定一个数集A,假设其中的元素为x,对A中的元素x施加对应法则f,记作f(x),得到另一数集B,假设B中的元素为y,则y与x之间的等量关系可以用y=f(x)表示。函数概念含有三个要素:定义域A、值域C和对应法则f。其中核心是对应法则f,它是函数关系的本质特征。扩展资料:周期函数有以下性质:1、若T(T≠0)是f(x)的周期,则-T也是f(x)的周期。2、若T(T≠0)是f(x)的周期,则nT(n为任意非零整数)也是f(x)的周期。3、若T1与T2都是f(x)的周期,则也是f(x)的周期。4、若f(x)有最小正周期T*,那么f(x)的任何正周期T一定是T*的正整数倍。5、T*是f(x)的最小正周期,且T1、T2分别是f(x)的两个周期,则T1/T2∈Q。6、若T1、T2是f(x)的两个周期,且T1/T2是无理数,则f(x)不存在最小正周期。7、周期函数f(x)的定义域M必定是双方无界的集合。参考资料来源:百度百科-函数NerveM 2023-05-19 20:19:511
周期函数怎么判断
周期函数判断方法:(1)判断f(x)的定义域是否有界。例:f(x)=cosx(≤10)不是周期函数。(2)根据定义讨论函数的周期性可知非零实数T在关系式f(x+T)= f(x)中是与x无关的,故讨论时可通过解关于T的方程f(x+T)- f(x)=0,若能解出与x无关的非零常数T便可断定函数f(x)是周期函数,若这样的T不存在则f(x)为非周期函数。例:f(x)=cosx^2 是非周期函数。(3)一般用反证法证明。(若f(x)是周期函数,推出矛盾,从而得出f(x)是非周期函数)。例:证f(x)=ax+b(a≠0)是非周期函数。证:假设f(x)=ax+b是周期函数,则存在T(≠0),使之成立 ,a(x+T)+b=ax+b ax+aT-ax=0,aT=0 又a≠0,∴T=0与T≠0矛盾,∴f(x)是非周期函数。例:证f(x)= ax+b是非周期函数。证:假设f(x)是周期函数,则必存在T(≠0)对 ,有(x+T)= f(x),当x=0时,f(x)=0,但x+T≠0,∴f(x+T)=1,∴f(x+T) ≠f(x)与f(x+T)= f(x)矛盾,∴f(x)是非周期函数。Ntou1232023-05-19 20:19:511
有哪些典型的周期函数
sin x,cos x,tan x,cot x 等所有的三角函数,三角函数是罪典型的周期函数实际上,你完全可以根据周期函数的定义,自己构造周期函数,比如y=1(当x是奇数),y=2(当x是偶数),注意函数的定义域只在整数上还有一些例子sinsin x等|sin x| 等!注意:周期函数的定义域一定是无限集合,定义在有限集合上的函数都不是周期函数无尘剑 2023-05-19 20:19:512
周期函数是什么意思
导数是周期函数,原函数不一定是周期函数。如导函数为sinx+3,是周期函数。其原函数-cosx+3x就不是周期函数。设f(x)是定义在数集M上的函数,如果存在非零常数T具有性质:f(x+T)=f(x),则称f(x)是数集M上的周期函数,常数T称为f(x)的一个周期。如果在所有正周期中有一个最小的,则称它是函数f(x)的最小正周期。导数(Derivative),也叫导函数值。又名微商,是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f"(x0)或df(x0)/dx。扩展资料:周期函数的判定1、若f(x)是在集M上以T*为最小正周期的周期函数,则K f(x)+C(K≠0)和1/ f(x)分别是集M和集{X/ f(x) ≠0,X ∈M}上的以T*为最小正周期的周期函数。2、若f(x)是集M上以T*为最小正周期的周期函数,则f(ax+n)是集{x|ax+b∈M}上的以T*/ a为最小正周期的周期函数,(其中a、b为常数)。3、设f(u)是定义在集M上的函数,u=g(x)是集M1上的周期函数,且当X∈M1时,g(x)∈M,则复合函数f(g(x))是M1上的周期函数。4、设f1(x)、f2(x)都是集合M上的周期函数,T1、T2分别是它们的周期,若T1/T2∈Q则它们的和差与积也是M上的周期函数,T1与T2的公倍 数为它们的周期。参考资料来源:百度百科-周期函数参考资料来源:百度百科-导数拌三丝2023-05-19 20:19:511
周期函数有哪些?
周期公式sinx的函数周期公式T=2π,sinx是正弦函数,周期是2πcosx的函数周期公式T=2π,cosx是余弦函数,周期2π。tanx和cotx的函数周期公式T=π,tanx和cotx分别是正切和余切。secx和cscx的函数周期公式T=2π,secx和cscx是正割和余割。拓展资料函数周期性公式及推导:f(x+a)=-f(x)周期为2a。证明过程:因为f(x+a)=-f(x),且f(x)=-f(x-a),所以f(x+a)=f(x-a),即f(x+2a)=f(x),所以周期是2a。f(x+a)=-f(x)那么f(x+2a)=f[(x+a)+a]=-f(x+a)=-[-f(x)]=f(x)所以f(x)是以2a为周期的周期函数。f(x+a)=1/f(x)那么f(x+2a)=f[(x+a)+a]=1/f(x+a)=1/[1/f(x)]=f(x)所以f(x)是以2a为周期的周期函数。f(x+a)=-1/f(x)那么f(x+2a)=f[(x+a)+a]=-1/f(x+a)=1/[-1/f(x)]=f(x)所以f(x)是以2a为周期的周期函数。所以得到这三个结论。2函数的周期性设函数f(x)在区间X上有定义,若存在一一个与x无关的正数T,使对于任一x∈X,恒有f(x+T)=f(x)则称f(x)是以T为周期的周期函数,把满足上式的最小正数T称为函数f(x)的周期。二、周期函数的运算性质:①若T为f(x)的周期,则f(ax+b)的周期为T/al。②若f(x),g(x)均是以T为周期的函数,则f(X)+g(X)也是以T为周期的函数。③若f(x),g(x)分别是以T1,T2,T1≠T2为周期的函数,则f(x)+g(x)是以T1,T2的最小公倍数为周期的函数。kikcik2023-05-19 20:19:511