自然对数

MATLAB中的自然对数e,是怎么表示的

函数exp()
大鱼炖火锅2023-08-13 09:26:253

e是怎么得出来的,为什么叫以e为底数的对数叫自然对数

好问题!
u投在线2023-08-04 11:14:485

自然对数e是什么

(1+1/x)^x 正是这种从无限变化中获得的有限,从两个相反方向发展(当X趋向正无穷大的时,上式的极限等于e=2.71828……,当X趋向负无穷大时候,上式的结果也等于e=2.71828……)得来的共同形式,充分体现了宇宙的形成、发展及衰亡的最本质的东西。 e=2.71828……是“自然律”的一种量的表达。“自然律”的形象表达是螺线。螺线的数学表达式通常有下面五种:(1)对数螺线;(2)阿基米德螺线;(3)连锁螺线;(4)双曲螺线;(5)回旋螺线。对数螺线在自然界中最为普遍存在,其它螺线也与对数螺线有一定的关系,不过目前我们仍未找到螺线的通式。对数螺线是1638年经笛卡尔引进的,后来瑞士数学家雅各·伯努利曾详细研究过它,发现对数螺线的渐屈线和渐伸线仍是对数螺线,极点在对数螺线各点的切线仍是对数螺线,等等。伯努利对这些有趣的性质惊叹不止,竟留下遗嘱要将对数螺线画在自己的墓碑上。
CarieVinne 2023-08-04 11:14:451

有谁知道自然对数e跟圆周率π的关系式

这就是数学界公认的数学中最奇妙的公式:e^(iπ)+1=00: 代表算术;加法的不变量: 任一数与其加法逆相加为0:a+(-a)=0任一数与0相加则不变: a+0=a任一数与0相乘则为0: ax0=01:代表算术;自然数的单位;乘法的不变量:任一数与1相乘则不变:ax1=a任一数(0除外)与其乘法逆相乘为1:axa-1=1 (a≠0)i: 代表代数;虚数的单位;i=√-1;i与自身相乘(平方)转换为实数-1,恰好是1的加法的逆。e: 代表分析;自然对数的底;为一个超越数,分析学中无处不在。 e=1+1/1!+1/2!+1/3!+1/4!+……=2.718281828459045……π:代表几何;圆周率;最常用的一个超越数;在无数的公式中出现。 π=4(1-1/3+1/5-1/7+1/9-……)=3.141592653589793……这个简洁的公式把数学中最重要的五个元素结合在一起,堪称经典!
左迁2023-07-26 13:55:431

自然对数求导?过程!!

//
大鱼炖火锅2023-07-21 08:57:457

怎样excel求自然对数的反函数?

1、首先让我们打开一个样表作为例子。2、插入exp函数,函数的格式是=Exp( number ),number参数是底数e的指数。3、插入ln函数,函数的格式是=ln(number),number参数是想要计算其自然对数的正实数。4、我们可以看到结果上exp函数和ln函数互为自然对数中的指数和底,两个函数其实就是颠倒函数。5、然后记住这两个函数求的是自然对数,如果需要求幂,使用的是^求幂公式。
韦斯特兰2023-07-16 12:31:201

自然对数ln0.1等于多少?1

ln0.1=ln1-ln10=-ln10查阅自然对数表得-ln10=-2.302585于是ln0.1=-2.302585
wpBeta2023-07-15 09:36:211

自然对数的公式以及推导

用^表示乘方,用log(a)(b)表示以a为底,b的对数*表示乘号,/表示除号定义式:若a^n=b(a>0且a≠1)则n=log(a)(b)基本性质:1.a^(log(a)(b))=b2.log(a)(MN)=log(a)(M)+log(a)(N);3.log(a)(M/N)=log(a)(M)-log(a)(N);4.log(a)(M^n)=nlog(a)(M)推导1.这个就不用推了吧,直接由定义式可得(把定义式中的[n=log(a)(b)]带入a^n=b)2.MN=M*N由基本性质1(换掉M和N)a^[log(a)(MN)]=a^[log(a)(M)]*a^[log(a)(N)]由指数的性质a^[log(a)(MN)]=a^{[log(a)(M)]+[log(a)(N)]}又因为指数函数是单调函数,所以log(a)(MN)=log(a)(M)+log(a)(N)3.与2类似处理MN=M/N由基本性质1(换掉M和N)a^[log(a)(M/N)]=a^[log(a)(M)]/a^[log(a)(N)]由指数的性质a^[log(a)(M/N)]=a^{[log(a)(M)]-[log(a)(N)]}又因为指数函数是单调函数,所以log(a)(M/N)=log(a)(M)-log(a)(N)4.与2类似处理M^n=M^n由基本性质1(换掉M)a^[log(a)(M^n)]={a^[log(a)(M)]}^n由指数的性质a^[log(a)(M^n)]=a^{[log(a)(M)]*n}又因为指数函数是单调函数,所以log(a)(M^n)=nlog(a)(M)
meira2023-07-13 09:30:422

已知函数f(x)的导函数为…其中e为自然对数的底数k为实数且f(x)在R上不是单调函数,求k的取值范围。

f(x) 不是单调函数,说明 f "(x) 的值有正有负,这就要求 e^x+k^2/e^x 的最小值小于 1/k ,由于 e^x+k^2/e^x>=2|k| (均值不等式),所以 2|k|<1/k ,显然 k>0 ,因此 2k<1/k ,2k^2<1 ,k^2<1/2 ,解得 0<k<√2/2 。选 C 。
再也不做站长了2023-07-06 07:58:452

自然对数的复数的对数

问题:求复数的自然对数解答:把复数写成指数形式,也就是。(为复数的模,即。为复数的辐角主值)∵∴这就是当真数为复数时的自然对数运算公式例:求ln(-1)解:-1=-1+0i,对应复平面上的点为(-1,0),则其幅角主值为π,模长为1。代入公式得:由此可见,即,这就是欧拉恒等式。
韦斯特兰2023-06-18 17:14:071

为什么计量经济学要引入自然对数

单项数值与平均值之间的差称为离差,它是一个不可观测的随机变量,又称为随机干扰项或随机误差项。一般计算离差平方和来表示数据分布的集中程度,反映了估计量与真实值之间的差距。可能出现结果与平均预期的偏离程度,代表风险程度的大小。在总体回归函数中引入随机干扰项,主要有以下几个方面的原因:(1)代表未知的影响因素。由于对所考察总体认识上的非完备性,许多未知的影响因素还无法引入模型,因此,只能用随机干扰项代表这些未知的影响因素。(2)代表残缺数据。即使所有的影响变量都能够被包括在模型中,也会有某些变量的数据无法取得。(3)代表众多细小影响因素。有一些影响因素已经被认识,而且其数据也可以收集到,但它们对被解释变量的影响却是细小的。考虑到模型的简洁性,以及取得诸多变量数据可能带来的较大成本,建模时往往省掉这些细小变量,而将它们的影响综合到随机干扰项中。(4)代表数据观测误差。由于某些主客观的原因,在取得观测数据时,往往存在测量误差,这些观测误差也被归入随机干扰项。(5)代表模型设定误差。由于经济现象的复杂性,模型的真实函数形式往往是未知的,因此,实际设定的模型可能与真实的模型有偏差。随机干扰项包括了这种模型的设定误差。(6)变量的内在随机性。即使模型没有设定误差,也不存在数据观测误差,由于某些变量所固有的内在随机性,也会对被解释变量产生随机性影响。总之,随机干扰项具有非常丰富的内容,在计量经济学模型的建立中起着重要的作用。
真颛2023-06-11 08:26:061

自然对数怎么求导,详细点?

你问的这个问题,那就要通过导数的定义来看了,所谓导数,当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。用表达式可表示如下:f"(x)=lim(h→0)[f(x+h)-f(x)]/h.对于本题:(lnx)"=lim(h→0)[ln(x+h)-lnx]/h.=lim(h→0)ln[(x+h)/x]/h.=lim(h→0)ln[1+(h/x)]/h.=lim(h→0)ln[1+(h/x)]/[x*(h/x)].=(1/x)lim(h→0)ln[1+(h/x)]/[(h/x)].......(1)此处变形的目的是为了使用等价无穷小代换,因为:lim(h→0)ln[1+(h/x)]=lim(h→0)(h/x)所以:lim(h→0)ln[1+(h/x)]/[(h/x)]=1,代入到(1)式子,即可得到:(lnx)"=1/x.
瑞瑞爱吃桃2023-06-04 09:17:101

自然对数怎么转换成常用对数?

自然对数转换成常用对数的方法:lnx=loga(x)/loga(e),这样就把以e为底的自然对数转化成了以a为底的对数。自然对数是指以常数e为底数的对数叫做自然对数,记作lnN(N>0)。自然对数在物理学,生物学等自然科学中有重要的意义。自然对数的一般表示方法为lnx。数学中也常见以logx表示自然对数。若为了避免与基为10的常用对数lgx混淆,可用“全写”㏒ex。
瑞瑞爱吃桃2023-05-20 08:56:111

常用对数和自然对数的转换_______

凡尘2023-05-20 08:56:101

常用对数和自然对数怎么读?

以10为底的对数叫做常用对数为底的对数叫做自然对数
小菜G的建站之路2023-05-20 08:56:095

自然对数底e的来源

e,作为数学常数,是自然对数函数的底数。有时称它为欧拉数(Euler number),以瑞士数学家欧拉命名;也有个较鲜见的名字纳皮尔常数,以纪念苏格兰数学家约翰•纳皮尔引进对数。它就像圆周率π和虚数单位i,e是数学中最重要的常数之一。 它的数值约是(小数点后100位):e ≈ 2.71828 18284 59045 23536 02874 71352 66249 77572 47093 69995 95749 66967 62772 40766 30353 54759 45713 82178 52516 64274 第一次提到常数e,是约翰•纳皮尔于1618年出版的对数著作附录中的一张表。但它没有记录这常数,只有由它为底计算出的一张自然对数列表,通常认为是由威廉•奥特雷德(William Oughtred)制作。第一次把e看为常数的是雅各•伯努利(Jacob Bernoulli). 已知的第一次用到常数e,是莱布尼茨于1690年和1691年给惠更斯的通信,以b表示。1727年欧拉开始用e来表示这常数;而e第一次在出版物用到,是1736年欧拉的《力学》(Mechanica)。虽然以后也有研究者用字母c表示,但e较常用,终于成为标准。 用e表示的确实原因不明,但可能因为e是“指数”(exponential)一字的首字母。另一看法则称a,b,c和d有其他经常用途,而e是第一个可用字母。不过,欧拉选这个字母的原因,不太可能是因为这是他自己名字Euler的首字母,因为他是个很谦虚的人,总是恰当地肯定他人的工作。 很多增长或衰减过程都可以用指数函数模拟。指数函数的重要方面在于它是唯一的函数与其导数相等(乘以常数)。e是无理数和超越数(见林德曼—魏尔施特拉斯定理(Lindemann-Weierstrass))。这是第一个获证为超越数,而非故意构造的(比较刘维尔数);由夏尔•埃尔米特(Charles Hermite)于1873年证明。 当x趋于正无穷大或负无穷大时,“1加x分之一的x次方”这个函数表达式(1+1/x)^x的极限就等于e,用公式表示,即:lim(1+1/x)^x=e(x趋于±∞) 实际上e就是欧拉通过这个极限而发现的,它是个无限不循环小数,其值等于2.71828……。以e为底的对数叫做自然对数,用符号“ln”表示。 以e为底的对数(自然对数)和指数,从数学角度揭示了自然界的许多客观规律,比如指数函数“e的x次方”对x的微分和积分都仍然是函数本身。后人把这个规律叫做“自然律”,其中e是自然律的精髓。因此,上述求极限e的公式被英国科学期刊《物理世界》2004年10月号公布为读者选出的科学界历来“最伟大的公式”之一,并且名列第二。 欧拉(Leonhard Euler 公元1707-1783年) 1707年出生在瑞士的巴塞尔(Basel)城,13岁就进巴塞尔大学读书,得到当时最有名的数学家约翰•伯努利(Johann Bernoulli,1667-1748年)的精心指导。 欧拉渊博的知识,无穷无尽的创作精力和空前丰富的著作,都是令人惊叹不已的!他从19岁开始发表论文,直到76岁,半个多世纪写下了浩如烟海的书籍和论文。到如今几乎每一个数学领域都可以看到欧拉的名字,从初等几何的欧拉线,多面体的欧拉定理,立体解析几何的欧拉变换公式,四次方程的欧拉解法到数论中的欧拉函数,微分方程的欧拉方程,级数论的欧拉常数,变分学的欧拉方程,复变函数的欧拉公式等等,数也数不清。他对数学分析的贡献更独具匠心,《无穷小分析引论》一书便是他划时代的代表作,当时数学家们称他为“分析学的化身”。 欧拉是科学史上最多产的一位杰出的数学家,称为数学界的莎士比亚。据统计他那不倦的一生,共写下了886部书籍和论文,其中分析、代数、数论占40%,几何占18%,物理和力学占28%,天文学占11%,弹道学、航海学、建筑学等占3%。彼得堡科学院为了整理他的著作,足足忙碌了47年!数学史上称18世纪为“欧拉时代”。 欧拉还创设了许多数学符号,例如函数f(x)(1734年),π(1736年),log和 e(1748年),sin和cos(1748年),tg(1753年),△x(1755年),∑(1755年),虚数i(1777年)等等。 欧拉著作的惊人多产并不是偶然的,他可以在任何不良的环境中工作,他常常抱着孩子在膝上完成论文,也不顾13个孩子在旁边喧哗。他那顽强的毅力和孜孜不倦的治学精神,使他在59岁双目失明后的17年间,他还口述了几本书和400篇左右的论文。 19世纪伟大数学家高斯(Gauss,1777-1855年)曾说:“研究欧拉的著作永远是了解数学的最好方法。”欧拉的父亲保罗•欧拉(Paul Euler)也是一个数学家,原希望小欧拉学神学,同时教他一点教学。由于小欧拉的才华和异常勤奋的精神,又受到约翰•伯努利的赏识和特殊指导,当他在19岁时写了一篇关于船桅的论文,获得巴黎科学院的奖的奖金后,他的父亲就不再反对他攻读数学了。 1725年约翰•伯努利的儿子丹尼尔•伯努利赴俄国,并向沙皇喀德林一世推荐了欧拉,这样,在1727年5月17日欧拉来到了彼得堡。1733年,年仅26岁的欧拉担任了彼得堡科学院数学教授。 1735年,欧拉解决了一个天文学的难题(计算慧星轨道),这个问题经几个著名数学家几个月的努力才得到解决,而欧拉却用自己发明的方法,三天便完成了。然而过度的工作使他得了眼病,并且不幸右眼失明了,这时他才28岁。 1741年欧拉应普鲁士彼德烈大帝的邀请,到柏林担任科学院物理数学所所长,直到1766年,后来在沙皇喀德林二世的诚恳敦聘下重回彼得堡,不料没有多久,左眼视力急剧衰退,最后也完全失明。不幸的事情接踵而来。1771年彼得堡的大火灾殃及欧拉住宅,带病且双目失明的64岁的欧拉,被围困在大火中。虽然他被别人从火海中救了出来,但他的书房和大量研究成果全部化为灰烬了。沉重的打击,仍然没有使欧拉倒下,他发誓要把损失夺回来。欧拉完全失明以后,仍然以惊人的毅力与黑暗搏斗,凭着记忆和心算进行研究,直到逝世,竟达17年之久。欧拉的记忆力和心算能力是罕见的,他能够复述年青时代笔记的内容,心算并不限于简单的运算,高等数学一样可以用心算去完成。欧拉在失明的17年中,还解决了使牛顿头痛的月离问题和很多复杂的分析问题。 欧拉的风格是很高的,拉格朗日是稍后于欧拉的大数学家,从19岁起和欧拉通信,讨论等周问题的一般解法,这引起变分法的诞生.等周问题是欧拉多年来苦心考虑的问题,拉格朗日的解法,博得欧拉的热烈赞扬,1759年10月2日欧拉在回信中盛称拉格朗日的成就,并谦虚地压下自己在这方面较不成熟的作品暂不发表,使年青的拉格朗日的工作得以发表和流传,并赢得巨大的声誉。他晚年的时候,欧洲所有的数学家都把他当作老师,著名数学家拉普拉斯(Laplace)曾说过:“欧拉是我们的导师。” 欧拉充沛的精力保持到最后一刻,1783年9月18日下午,欧拉为了庆祝他计算气球上升定律的成功,请朋友们吃饭,那时天王星刚发现不久,欧拉写出了计算天王星轨道的要领,还和他的孙子逗笑,喝完茶后,突然疾病发作,烟斗从手中落下,口里喃喃地说:“我死了”,欧拉终于“停止了生命和计算”。 欧拉的一生,是为数学发展而奋斗的一生,他那杰出的智慧,顽强的毅力,孜孜不倦的奋斗精神和高尚的科学道德,永远是值得我们学习的。 欧拉一生谦逊,从没有用自己的名字给他发现的东西命名。只有那个大约等于2.71828的自然对数的底,被他命名为e。但因他对数学广泛的贡献,因此在许多数学分支中,反而经常见到后人以他的名字命名的重要常数、公式和定理。 相对于π是希腊文字中圆周第一个字母,e的由来较不为人熟知。有人甚至认为:欧拉取自己名字的第一个字母e作为自然对数的底。 其实欧拉选择e的理由,较为多数人所接受的说法有二:一为在a,b,c,d等四个常被使用的字母后面,第一个尚未被经常使用的字母就是e,所以,他很自然地选了这个符号,代表自然对数的底数;另一说法为e是“指数”一词英文的第一个字母,虽然你或许会怀疑瑞士人欧拉的母语不是英文,可事实上法文、德文的“指数”都是它。究竟e的来历是什么?至今仍然是个谜。
再也不做站长了2023-05-20 08:56:061

自然对数的底 e

(1+100/n)^n 好不好?!
mlhxueli 2023-05-19 20:19:282

圆周率∏,自然对数的底数e,欧拉常数y,各是什么? 自然对数的底数又指什么?

答:圆周率∏,自然对数的底数e,欧拉常数y,都是无理数,但其中最有名的两个就是圆周率π和自然对数的底数e.自然对数的底数是指无理数e=2.718281828459045.e是一个奇妙有趣的无理数,它取自数学家欧拉Euler的英文字头.欧拉首先发现此数并称之为自然数 .但这里所说的自然数与常见的自然数:1,2,3,4……是不同的.确切地讲,e应称为“自然对数lnN的底数”.e与圆周率π被认为是数学中最重要的两个超越数(不满足任何整系数代数方程的数,称超越数).而且e、π与虚数i三者之间有一个相当有名的关系式:e^(iπ)=-1.e的近似值可以用以下的计算公式求得: e=1+1/1!+1/2!+1/3!+...+1/(n-1)!+1/n!,n是正整数. n!是阶乘的意思,n!=n*(n-1)*(n-2)*.*3*2*1. 另外,还有一个不常见的无理数:欧拉常数γ=0.5772156649015328.它同时也是一个超越数. e、圆周率π、欧拉常数γ,这是最有名的无限不循环小数,即无理数. 圆周率π的前几千或前几万位比较常见,但自然对数的底数e的前几百位或千位就比较少见了,所以也一起发给你,以便日后有用. 无理数e的前1000位如下: e=2.7182818284590452353602874713526624977572470936999595749669676277240766303535475945713821785251664274274663919320030599218174135966290435729003342952605956307381323286279434907632338298807531952510190115738341879307021540891499348841675092447614606680822648001684774118537423454424371075390777449920695517027618386062613313845830007520449338265602976067371132007093287091274437470472306969772093101416928368190255151086574637721112523897844250569536967707854499699679468644549059879316368892300987931277361782154249992295763514822082698951936680331825288693984964651058209392398294887933203625094431173012381970684161403970198376793206832823764648042953118023287825098194558153017567173613320698112509961818815930416903515988885193458072738667385894228792284998920868058257492796104841984443634632449684875602336248270419786232090021609902353043699418491463140934317381436405462531520961836908887070167683964243781405927145635490613031072085103837505101157477041718986106873969655212671546889570350354. 您不妨试下能否背下来?就像有许多的人在背数万位的圆周率一样.
北营2023-05-19 20:19:271