matlab,显示傅里叶变换(双边指数函数)
%f(t)=exp(-1000|t|) 双边FTformat compact;clc;%前面两句纯粹是个人习惯syms t;y=exp(-1000*abs(t));Y=fourier(y)%利用maple的函数直接进行符号运算ezplot(Y);%作出图像u投在线2023-08-13 09:26:241
怎么用matlab对指数函数xa(t)=exp(-1000*t)进行进行傅里叶变换得到Xa(jΩ)呀,
t=0:0.01:10;x=exp(-1000*t);[f,sf]=T2F(t,x);axis([min(sf)-1 max(sf)+1 min(f)-1 max(f)+1]);plot(f,sf);xlabel("f")ylabel("sf")调用函数function [f,sf]=T2F(t,st);dt=t(2)-t(1);T=t(end);df=1/T;N=length(st);f=-N/2*df:df:N/2*df-df;sf=fft(st);sf=T/N*fftshift(sf);结果是目前分数没到二级,故无法插入图片此后故乡只2023-08-13 09:26:201
DFT(离散傅里叶变换)和DCT(离散余弦变换)有何区别和联系?
首先,在理解这3个变量之前,你要知道DTFT:DTFT是离散时间傅里叶变换,用来表达连续的信号的频谱。然后理解DFT:DFT是离散傅里叶变换,针对的是离散的信号和频谱。DFT是DTFT变化而来,其实就是将连续时间t变成了nT. 为什么要这样做呢,因为计算机是在数字环境下工作的,它不可能看见或者处理现实中连续的信号,只能够进行离散计算,在真实性上尽可能地逼近连续信号。所以DFT是为了我们能够去用工具分析信号而创造出来的,通常我们直接用DTFT的机会很少。然后再理解FFT:记着FFT从本质上来说和DFT没有任何区别,它只是DFT的一种快速的实现方法而已,比如你要用工具来计算1024个点的DFT来分析一个信号的频谱,用原来的DFT算法比起FFT算法要慢很多,仅此而已。从软件和硬件的角度看,实现同样点数的FFT比DFT要快和省程序空间。DSP的书籍都会解释为什么FFT实现起来会快一些。最后理解DCT:首先,DCT是DFT的一种形式。所谓“余弦变换”,是在DTFT傅立叶级数展开式中,如果被展开的函数是实偶函数,那么其傅立叶级数中只包含余弦项,再将其离散化(DFT)可导出余弦变换,因此称之为离散余弦变换(DCT)。其实DCT属于DFT的一个子集。DCT用于语音和图像处理比较多。再也不做站长了2023-07-15 09:29:471
DFT(离散傅里叶变换)和DCT(离散余弦变换)有何区别和联系?
首先,在理解这3个变量之前,你要知道DTFT: DTFT是离散时间傅里叶变换,用来表达连续的信号的频谱。 然后理解DFT: DFT是离散傅里叶变换,针对的是离散的信号和频谱。DFT是DTFT变化而来,其实就是将连续时间t变成了nT. 为什么要这样做呢,因为计算机是在数字环境下工作的,它不可能看见或者处理现实中连续的信号,只能够进行离散计算,在真实性上尽可能地逼近连续信号。所以DFT是为了我们能够去用工具分析信号而创造出来的,通常我们直接用DTFT的机会很少。 然后再理解FFT: 首先,DCT是DFT的一种形式。所谓“余弦变换”,是在DTFT傅立叶级数展开式中,如果被展开的函数是实偶函数,那么其傅立叶级数中只包含余弦项,再将其离散化(DFT)可导出余弦变换,因此称之为离散余弦变换(DCT)。其实DCT属于DFT的一个子集。DCT用于语音和图像处理比较多。左迁2023-07-15 09:29:451
DFT(离散傅里叶变换)和DCT(离散余弦变换)有何区别和联系?
首先,在理解这3个变量之前,你要知道DTFT: DTFT是离散时间傅里叶变换,用来表达连续的信号的频谱。 然后理解DFT: DFT是离散傅里叶变换,针对的是离散的信号和频谱。DFT是DTFT变化而来,其实就是将连续时间t变成了nT. 为什么要这样做呢,因为计算机是在数字环境下工作的,它不可能看见或者处理现实中连续的信号,只能够进行离散计算,在真实性上尽可能地逼近连续信号。所以DFT是为了我们能够去用工具分析信号而创造出来的,通常我们直接用DTFT的机会很少。 然后再理解FFT: 首先,DCT是DFT的一种形式。所谓“余弦变换”,是在DTFT傅立叶级数展开式中,如果被展开的函数是实偶函数,那么其傅立叶级数中只包含余弦项,再将其离散化(DFT)可导出余弦变换,因此称之为离散余弦变换(DCT)。其实DCT属于DFT的一个子集。DCT用于语音和图像处理比较多。小菜G的建站之路2023-07-15 09:29:451
DFT(离散傅里叶变换)和DCT(离散余弦变换)有何区别和联系?
首先,在理解这3个变量之前,你要知道DTFT: DTFT是离散时间傅里叶变换,用来表达连续的信号的频谱。 然后理解DFT: DFT是离散傅里叶变换,针对的是离散的信号和频谱。DFT是DTFT变化而来,其实就是将连续时间t变成了nT. 为什么要这样做呢,因为计算机是在数字环境下工作的,它不可能看见或者处理现实中连续的信号,只能够进行离散计算,在真实性上尽可能地逼近连续信号。所以DFT是为了我们能够去用工具分析信号而创造出来的,通常我们直接用DTFT的机会很少。 然后再理解FFT: 首先,DCT是DFT的一种形式。所谓“余弦变换”,是在DTFT傅立叶级数展开式中,如果被展开的函数是实偶函数,那么其傅立叶级数中只包含余弦项,再将其离散化(DFT)可导出余弦变换,因此称之为离散余弦变换(DCT)。其实DCT属于DFT的一个子集。DCT用于语音和图像处理比较多。无尘剑 2023-07-15 09:29:451
快速傅里叶变换的简要介绍
有限长序列可以通过离散傅里叶变换(DFT)将其频域也离散化成有限长序列。但其计算量太大,很难实时地处理问题,因此引出了快速傅里叶变换(FFT). 1965年,Cooley和Tukey提出了计算离散傅里叶变换(DFT)的快速算法,将DFT的运算量减少了几个数量级。从此,对快速傅里叶变换(FFT)算法的研究便不断深入,数字信号处理这门新兴学科也随FFT的出现和发展而迅速发展。根据对序列分解与选取方法的不同而产生了FFT的多种算法,基本算法是基2DIT和基2DIF。FFT在离散傅里叶反变换、线性卷积和线性相关等方面也有重要应用。快速傅氏变换(FFT),是离散傅氏变换的快速算法,它是根据离散傅氏变换的奇、偶、虚、实等特性,对离散傅立叶变换的算法进行改进获得的。它对傅氏变换的理论并没有新的发现,但是对于在计算机系统或者说数字系统中应用离散傅立叶变换,可以说是进了一大步。设x(n)为N项的复数序列,由DFT变换,任一X(m)的计算都需要N次复数乘法和N-1次复数加法,而一次复数乘法等于四次实数乘法和两次实数加法,一次复数加法等于两次实数加法,即使把一次复数乘法和一次复数加法定义成一次“运算”(四次实数乘法和四次实数加法),那么求出N项复数序列的X(m),即N点DFT变换大约就需要N^2次运算。当N=1024点甚至更多的时候,需要N2=1048576次运算,在FFT中,利用WN的周期性和对称性,把一个N项序列(设N=2k,k为正整数),分为两个N/2项的子序列,每个N/2点DFT变换需要(N/2)^2次运算,再用N次运算把两个N/2点的DFT变换组合成一个N点的DFT变换。这样变换以后,总的运算次数就变成N+2*(N/2)^2=N+N^2/2。继续上面的例子,N=1024时,总的运算次数就变成了525312次,节省了大约50%的运算量。而如果我们将这种“一分为二”的思想不断进行下去,直到分成两两一组的DFT运算单元,那么N点的DFT变换就只需要Nlog2N次的运算,N在1024点时,运算量仅有10240次,是先前的直接算法的1%,点数越多,运算量的节约就越大,这就是FFT的优越性。拌三丝2023-07-15 09:29:441
离散傅里叶变换DFT 和FFT 输入的参数是什么,计算出来的又是什么?
1,简单的用的话,输入参数为一系列的数据点,例如在MATLAB中,先定义t=0:0.01:1;y=sin(t);dft(y);即输入参数其实是100个数据点值,要求稍微高点的,可以用dft(y,n),n代表采样频率,即采样点数,按照采样定理,采样频率须大于2倍的样本的频率,一般去5倍,根据离散傅里叶的原理,n一般取2的整数立方,可以取256,512,1024等。即便你不取这些数,在系统内部计算时,它也是按照这些数进行采样计算的。2.傅里叶变换就是频谱分析,输出的是对应不同频率该函数的幅值是多少。CarieVinne 2023-07-15 09:29:421
DFT(离散傅里叶变换)和DCT(离散余弦变换)有何区别和联系?
首先,在理解这3个变量之前,你要知道DTFT:DTFT是离散时间傅里叶变换,用来表达连续的信号的频谱。然后理解DFT:DFT是离散傅里叶变换,针对的是离散的信号和频谱。DFT是DTFT变化而来,其实就是将连续时间t变成了nT.为什么要这样做呢,因为计算机是在数字环境下工作的,它不可能看见或者处理现实中连续的信号,只能够进行离散计算,在真实性上尽可能地逼近连续信号。所以DFT是为了我们能够去用工具分析信号而创造出来的,通常我们直接用DTFT的机会很少。然后再理解FFT:首先,DCT是DFT的一种形式。所谓“余弦变换”,是在DTFT傅立叶级数展开式中,如果被展开的函数是实偶函数,那么其傅立叶级数中只包含余弦项,再将其离散化(DFT)可导出余弦变换,因此称之为离散余弦变换(DCT)。其实DCT属于DFT的一个子集。DCT用于语音和图像处理比较多。kikcik2023-07-15 09:29:411
DFT和Z变换、DFT和序列的傅里叶变换之间的关系分别是什么?
【答案】:DFT变换是Z变换在单位圆上的N点等间隔采样;DFT变换是序列的傅里叶变换在[0,2π]上的N点等间隔采样。gitcloud2023-07-15 09:29:411
离散傅里叶变换dft公式
DFT全称离散傅里叶变换,公式为Xk = ∑N 1n = 0xne j2πkn / N。其中N为时域离散信号的点数,n为时域离散信号的编号(取值范围为0~N-1),m为频域信号的编号(取值范围为0~N-1),频域信号的点数也为N。因此离散傅里叶变换的输入为N个离散的点(时域信号),输出为N个离散的点(频域信号,频域信号的每个点都用一个复数表示)。离散傅里叶变换中频域变换的核心就是三角函数的和差化积。sinA* sinB在某些情况下就是一个直流电平和一个(A+B)频率的交流之和,如果交流的累加积分值是0,则用直流来表示当前频率相位的幅度。DFT的引入有两个关键点。一点是截断,另一点是(频域)采样。截断的原因是机器无法表示无限长的序列,只能处理有限长序列。采样是理解DFT的重点。前面提到离散非周期序列的傅里叶变换(DTFT)在频域上是连续的,这连续的频域特征是机器无法表达的,因此我们需要对它进行采样,又由于频域上具有周期性,所以只需要对2pi长度的区间采样即可。由此,DFT的两个引入动机就清楚了:它是对无限长序列截断成有限长序列,进行DTFT以后再在频域采样。bikbok2023-07-15 09:29:401
关于通信原理中的傅里叶变换问题
这里的关键是冲激函数Δ(t)的理解,冲激函数Δ(t)是一种奇异函数,这不是我们常规意义上的函数,所以不要从常规函数的角度去理解,具体可以看看郑君里教授《信号与系统》的“以分配函数的概念认识冲激函数Δ(t)”章节。冲激函数Δ(t)有这样的性质:若w = 2π*f,则Δ(w) = Δ(2π*f) = Δ(f)/(2π),上面的问题也就解决了。人类地板流精华2023-06-10 07:52:106
傅里叶变换只能对时间变量变换而不能对空间变量变换吗
不是,但不能对空间变量转换。傅里叶变换不限于时间函数,但原始函数的域通常被称为时域。傅里叶变换,表示能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。最初傅里叶分析是作为热过程的解析分析的工具被提出的。该理论是由傅里叶,一位法国数学家和物理学家的名字命名的。余辉2023-06-10 07:46:571
雷达信号处理基础-傅里叶变换
首先,思考一个问题, 关于傅里叶变换这个工具,有什么用? 对于这个问题,在雷达中,我们一般得到的回波里面不仅仅有目标,还有大量的杂波和其他干扰,我们利用频域的表示将这些信号和干扰等等进行分离,而傅里叶变换就是把回波信号放在频域中的工具,除了对信号和干扰进行分离外,还有一些其他的目的,比如多普勒频移,成像等等。 连续变量信号的傅里叶变换主要涉及一些采样需求的分析,考虑一个一维连续信号,其在时域内表示为x(t),其傅里叶变换为X(Ω), 可以给出其逆变换为 其中,频域内变量Ω即为角频率,单位为rad/s,另外,如果我们之前考虑的信号不是时域中,而是放在空域进行考虑,那么此时的频域内变量Ω则为空间频率,若空间变量的单位为m,空间频率的单位就对应为rad/m。 一种是类似连续变量傅里叶变换的形式,考虑一维离散变量信号 ,它的傅里叶变换对可以表示为: 上面的式子中,ω是归一化的连续频率变量,它的单位是rad,归一化频率ω和常规的频率Ω之间的对应关系为: 其中Ts为采样间隔。上述的X(ω)即为x[n]的离散时间傅里叶变换(DTFT),可以发现,X(ω)在频率变量ω上是连续的,周期为2π rad,也就是说DTFT每2π rad重复一次。 虽然对于所有的ω,DTFT都是有定义的,但是我们通常只讨论它的主值周期,即-π≤ω<π。 但是,我们不可能对无限多的连续频率变量ω去求X(ω),这里定义了离散傅里叶变换(DFT),只取有限长度的离散变量信号,比如,现在取了离散信号x[n]的N点,其DFT的变换对可以表示为: 可以发现,如果对离散信号x[n]做N点采样,得到的X[k]为N个均匀分布在其DTFT主值周期上的采样。 题图:Ignotus the Mage 来自网络铁血嘟嘟2023-06-08 07:31:421
利用傅里叶变换计算卷积,需要使用哪些数学知识?
本题利用了卷积定理求解。扩展资料:卷积定理指出,函数卷积的傅里叶变换是函数傅里叶变换的乘积。即,一个域中的卷积相当于另一个域中的乘积,例如时域中的卷积就对应于频域中的乘积。F(g(x)*f(x)) = F(g(x))F(f(x))其中F表示的是傅里叶变换。这一定理对拉普拉斯变换、双边拉普拉斯变换、Z变换、Mellin变换和Hartley变换(参见Mellin inversion theorem)等各种傅里叶变换的变体同样成立。在调和分析中还可以推广到在局部紧致的阿贝尔群上定义的傅里叶变换。利用卷积定理可以简化卷积的运算量。对于长度为n的序列,按照卷积的定义进行计算,需要做2n- 1组对位乘法,其计算复杂度为;而利用傅里叶变换将序列变换到频域上后,只需要一组对位乘法,利用傅里叶变换的快速算法之后,总的计算复杂度为。这一结果可以在快速乘法计算中得到应用。参考资料来源:百度百科-卷积hi投2023-05-26 08:17:511
为什么离散傅里叶变换的频谱是连续的,麻烦详细解释一下。数字信号处理技术都有哪些应用呢?手机系统?
1.离散信号的不连续性是相对于时间T来说的。经过离散傅里叶变换后,将时间域转化到频率域,自变量变成了频率。回到时域上,序列的值的变化规律是连续的,频率变化是一个连续过程。因此对应到频域上的频谱就是连续的。2. 数字信号处理技术应用很多,图形处理、雷达系统、语言识别,涉及方方面面。任何模拟信号(电磁波)经过A/D采样后,变成了一个采样间隔为T的数字序列,数字信号处理的作用就是通过一些算法(FFT、DFT)对这个序列进行处理,得到想要的效果。善士六合2023-05-26 08:17:511
应用傅里叶变换求积分
如图所示:meira2023-05-26 08:17:511
周期信号的傅里叶变换可以用应用傅里叶的变换的性质么?
可以。mlhxueli 2023-05-26 08:17:511
应用傅里叶变换求积分
如图所示:水元素sl2023-05-26 08:17:511
为什么一个周期冲激串的傅里叶变换还是一个周期冲激串
因为周期信号可以通过傅里叶级数变换为一些列COS,SIN的正弦波项(其实就是傅里叶变换的原理,虽然有差别,只是应用范围不同)。 也就是说的所有波形都可以用一系列正弦波表示。因为冲激函数dei尔塔t只在0时刻有值,其他时刻为0,所以可以用抽样把后面的指数函数的t变成0,那么指数那一部分就等于1可以作为非0因子提出积分号。扩展资料:脉冲信号特点:瞬间突然变化,作用时间极短的电压或电流称为脉冲信号。可以是周期性重复的,也可以是非周期性的或单次的。脉冲信号是一种离散信号,形状多种多样,与普通模拟信号(如正弦波)相比,波形之间在时间轴不连续(波形与波形之间有明显的间隔)但具有一定的周期性是它的特点。最常见的脉冲波是矩形波(也就是方波)。脉冲信号可以用来表示信息,也可以用来作为载波,比如脉冲调制中的脉冲编码调制(PCM),脉冲宽度调制(PWM)等等,还可以作为各种数字电路、高性能芯片的时钟信号。阿啵呲嘚2023-05-26 08:17:511
谁能从傅里叶变换的原理上解释matlab中FFT函数输出结果的含义
fft为一阶快速傅里叶变换函数,在数字信号处理中有着广泛的应用,变换结果为复数Y = fft(X,n),n为变化点数,一般取2的倍数例如:t = 0:0.001:0.6;x = sin(2*pi*50*t)+sin(2*pi*120*t);y = x + 2*randn(size(t));Y = fft(y,512);黑桃花2023-05-26 08:17:501
傅里叶变换一般在大学阶段什么书中讲到
高等数学。书名和课名都是这个。一般是大一上这个。小白2023-05-26 08:17:503
快速傅里叶变换为什么要求1024点,1000点可不可以?
FFT(Fast Fourier Transformation),即为快速傅氏变换,是离散傅氏变换的快速算法,它是根据离散傅氏变换的奇、偶、虚、实等特性,对离散傅立叶变换的算法进行改进获得的。它对傅氏变换的理论并没有新的 发现,但是对于在计算机系统或者说数字系统中应用离散傅立叶变换,可以说是进了一大步。在FFT中,利用WN的周期性和对称性,把一个N项序列(设N=2k,k为正整数),分为两个N/2项的子序列,每个N/2点DFT变换需要(N/2)2次运算,再用N次运算把两个N/2点的DFT变换组合成一个N点的DFT变换。这样变换以后,总的运算次数就变成N+2*(N/2)^2=N+N^2/2。也就是说,FFT提高了运算速度,但是,也对参与运算的样本序列作出了限制,即要求样本数为2^N点。1024=2^10满足FFT运算要求。1000点则不满足,若采用1000点,FFT算法会在其后补零,自动不足1024点,但是,这样,被分析的样本就变了,结果误差较大。墨然殇2023-05-26 08:17:504
快速傅里叶变换中,加0补充数据点数时,出现的问题
你的零加在什么地方西柚不是西游2023-05-26 08:17:503
傅里叶变换红外光谱分析的图书目录
第1章 红外光谱的基本概念1.1 红外光谱的产生和红外光谱区间的划分1.2 分子的量子化能级1.3 分子的转动光谱1.3.1 转动能级1.3.2 转动频率1.4 分子的纯振动光谱1.4.1 双原子分子的伸缩振动1.4.2 多原子分子的振动1.5 分子的振.转光谱1.6 振动模式1.6.1 伸缩振动1.6.2 弯曲振动1.7 振动频率、基团频率和指纹频率1.7.1 振动频率1.7.2 基团频率1.7.3 指纹频率1.8 倍频峰1.9 合(组)频峰1.10 振动耦合1.10.1 伸缩振动之间的耦合1.10.2 伸缩振动和弯曲振动之间的耦合I.10.3 弯曲振动之间的耦合1.11 费米共振1.12 诱导效应1.13 共轭效应1.13.1 7c一7c共轭效应1.13.2 p-r共轭效应1.13.3 超共轭效应1.14 氢键效应1.15 稀释剂效应第2章 傅里叶变换红外光谱学的基本原理2.1 单色光干涉图和基本方程2.2 二色光干涉图和基本方程2.3 多色光和连续光源的干涉图及基本方程2.4 干涉图数据的采集2.4.1 干涉图数据点间隔2.4.2 单向采集数据2.4.3 双向采集数据2.4.4 动镜的移动速度2.5 切趾(变迹)函数2.6 相位校正2.6.1 干涉图数据点采集漂移引起相位误差2.6.2 干涉图的余弦分量相位滞后引起相位误差2.7 红外光谱仪器的分辨率2.7.1 分辨率的定义2.7.2 分辨率的测定方法2.8 噪声和信噪比2.8.1 红外光谱仪的噪声和信噪比2.8.2 红外光谱的噪声和信噪比2.8.3 影响红外光谱信噪比的因素第3章 傅里叶变换红外光谱仪3.1 中红外光谱仪3.1.1 红外光学台3.1.2 红外光源3.1.3 光阑3.1.4 干涉仪3.1.5 检测器3.2 近红外光谱仪和近红外光谱3.2.1 仪器配置3.2.2 近红外光谱的特点3.2.3 近红外光谱测试技术3.3 远红外光谱仪和远红外光谱3.3.1 仪器配置3.3.2 远红外光谱样品制备技术3.3.3 影响远红外光谱测试的因素3.3.4 远红外光谱的应用第4章 傅里叶变换红外光谱仪附件4.1 红外显微镜4.1.1 红外显微镜的种类、原理和结构4.1.2 红外显微镜的附件4.1.3 红外显微镜的使用技术4.2 傅里叶变换拉曼光谱附件4.2.1 傅里叶变换拉曼附件的结构4.2.2 拉曼光谱和红外光谱的区别4.2.3 FT-Raman光谱的热效应和荧光效应4.2.4 FT-Raman光谱的波数校正4.2.5 FT-Raman光谱的应用4.3 气红联用(GC/FTIR)附件4.3.1 气红联用接口4.3.2 样品的测定和分析4.4 衰减全反射附件4.4.1 ATR附件工作原理4.4.2 水平ATR(TATR)附件4.4.3 单次反射ATR附件4.5 漫反射附件4.5.1 漫反射附件的工作原理4.5.2 漫反射附件的种类4.5.3 漫反射附件的使用技术4.6 镜面反射和掠角反射附件4.6.1 镜面反射和掠角反射附件工作原理4.6.2 镜面反射附件的种类4.6.3 镜面反射和掠角反射附件使用技术4.7 变温红外光谱附件4.7.1 变温红外光谱附件的种类4.7.2 变温红外光谱的应用4.8 红外偏振器附件4.8.1 偏振光4.8.2 红外偏振器4.8.3 偏振红外光谱4.9 光声光谱附件4.10 高压红外光谱附件4.11 样品穿梭器附件第5章 红外光谱样品制备和测试技术5.1 固体样品的制备和测试5.1.1 压片法……第6章 红外光谱数据处理技术第7章 红外光谱的定量分析和未和物的剖析第8章 基团的振动频率分析第9章 红外光谱仪的保养与维护附录 有机化合物基团振动频率表参考文献水元素sl2023-05-26 08:17:501
傅里叶变换和拉普拉斯变换的意义
傅里叶变换和拉普拉斯变换都是数学中的重要工具,用于分析和处理信号和系统。傅里叶变换可以将一个时间域上的信号分解成不同频率的正弦和余弦波,从而更好地理解信号在频域上的特性。它在信号处理、图像处理、通信系统等领域中有着广泛的应用。而拉普拉斯变换则是一种更为通用的变换方法,它可以将一个时间域上的函数转化成一个复平面上的函数,从而更好地描述函数在复平面上的性质。它在控制理论、电路分析、微积分等领域中有着广泛应用。总之,傅里叶变换和拉普拉斯变换都是数学中非常重要的工具,它们为我们研究和理解信号与系统提供了强大的数学工具。Jm-R2023-05-26 08:17:491
什么是傅里叶变换?如何计算?傅里叶变换在电气类专业的应用如何?
傅立叶变换,表示能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅立叶变换具有多种不同的变体形式,如连续傅立叶变换和离散傅立叶变换。最初傅立叶分析是作为热过程的解析分析的工具被提出的。阿啵呲嘚2023-05-26 08:17:491
傅里叶变换的物理意义 一起来了解一下
傅里叶变换是数字信号处理领域一种很重要的算法。要知道傅里叶变换算法的意义,首先要了解傅里叶原理的意义。傅里叶原理表明:任何连续测量的时序或信号,都可以表示为不同频率的正弦波信号的无限叠加。而根据该原理创立的傅里叶变换算法利用直接测量到的原始信号,以累加方式来计算该信号中不同正弦波信号的频率、振幅和相位。 和傅里叶变换算法对应的是反傅里叶变换算法。该反变换从本质上说也是一种累加处理,这样就可以将单独改变的正弦波信号转换成一个信号。因此,可以说,傅里叶变换将原来难以处理的时域信号转换成了易于分析的频域信号(信号的频谱),可以利用一些工具对这些频域信号进行处理、加工。最后还可以利用傅里叶反变换将这些频域信号转换成时域信号。 从现代数学的眼光来看,傅里叶变换是一种特殊的积分变换。它能将满足一定条件的某个函数表示成正弦基函数的线性组合或者积分。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。 在数学领域,尽管最初傅里叶分析是作为热过程的解析分析的工具,但是其思想方法仍然具有典型的还原论和分析主义的特征。任意的函数通过一定的分解,都能够表示为正弦函数的线性组合的形式,而正弦函数在物理上是被充分研究而相对简单的函数类:1. 傅里叶变换是线性算子,若赋予适当的范数,它还是酉算子;2. 傅里叶变换的逆变换容易求出,而且形式与正变换非常类似;3. 正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解,在线性时复杂的卷积运算为简单的乘积运算,从而提供了计算卷积的一种简单手段;4. 离散形式的傅里叶的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取;5. 著名的卷积定理指出:傅里叶变换可以化复变换可以利用数字计算机快速的算出(其算法称为快速傅里叶变换算法(FFT))。 正是由于上述的良好性质,傅里叶变换在物理学、数论、组合数学、信号处理、概率、统计、密码学、声学、光学等领域都有着广泛的应用。人类地板流精华2023-05-26 08:17:491
激光散斑图像处理,傅里叶变换和滤波的应用目的是什么
函数的一次傅里叶变换反映了函数在系统频谱面上的频率分布,如果希望在频谱函数上作某些特定的处理,从而改变函数的某些特性,(例如:图像增强),那么可以再对函数进行二次福利叶变换。另外,图像经过一定的福利叶变换后,图像频谱函数的统计特性表明:图像的大部分能量都是集中在低中频段的,高频分量很弱,仅仅体现了图像的某些细节,因此,可以通过图像变换来消除图像的高频段,从而达到图像压缩的目的。在图像变换中,应用最广泛的变换就是福利叶变换,从某种意义上说,福利叶变换就是函数的第二种语言,掌握了福利叶变换,人们就可以再空域或频域中同时思考处理问题。滤波的应用目的是除去一些噪声,干扰,使图像变的光滑,如低通,带通滤波。。。利用滤波技术可以从复杂的信号中提取出所需要的信号,抑制不需要的信号,所谓滤波器就是一种选频器件或结构,它对某一频率的信号给予很小的衰减,使这部分信号能顺利通过,而对其他不需要的频率信号则进行大幅度的衰减,尽可能阻止这些信号通过,在图像处理中,滤波常常用来修改或增强图像,以提高图像的信息量。铁血嘟嘟2023-05-26 08:17:491
傅里叶变换 拉普拉斯变换 Z变换在工程应用意义,求举出实例,越详细越好
这个你为什么不去问问你的高数老师???豆豆staR2023-05-26 08:17:492
2的傅里叶变换是多少
2的傅里叶变换在0等于2,其他整数等于0。傅里叶积分是一种积分在运算过程中的变换,2的傅里叶变换在0等于2,其他整数等于0。来源于函数的傅里叶积分表示。以傅里叶变换为工具,研究函数的许多性质,是傅里叶分析的主要内容。傅里叶变换在数学、物理以及工程技术中都有重要的应用。NerveM 2023-05-26 08:17:491
傅里叶变换法的优点
傅立叶变换是拉普拉斯变换的一种特例,在拉普拉斯变换中,只要令Re[s]=1,就得到傅立叶变换。当然,两者可以转换的前提是信号的拉普拉斯变换的收敛域要包含单位圆(即包含圆周上的点)。 很多信号都不一定有傅立叶变换,因为狄力克雷条件比较苛刻,而绝大多数信号都有拉普拉斯变换。故对于连续信号,拉普拉斯变换比傅立叶变换用得更广泛。傅立叶变换 中文译名 Transformée de Fourier有多种中文译名,常见的有“傅里叶变换”、“傅立叶变换”、“付立叶变换”、“富里叶变换”、“富里哀变换”等等。为方便起见,本文统一写作“傅里叶变换”。 应用 傅里叶变换在物理学、数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学、海洋学、结构动力学等领域都有着广泛的应用(例如在信号处理中,傅里叶变换的典型用途是将信号分解成幅值分量和频率分量)。 概要介绍 * 傅里叶变换能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。最初傅里叶分析是作为热过程的解析分析的工具被提出的(参见:林家翘、西格尔著《自然科学中确定性问题的应用数学》,科学出版社,北京。原版书名为 C. C. Lin & L. A. Segel, Mathematics Applied to Deterministic Problems in the Natural Sciences, Macmillan Inc., New York, 1974)。 * 傅里叶变换属于谐波分析。 * 傅里叶变换的逆变换容易求出,而且形式与正变换非常类似; * 正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解.在线性时不变的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取; * 卷积定理指出:傅里叶变换可以化复杂的卷积运算为简单的乘积运算,从而提供了计算卷积的一种简单手段; * 离散形式的傅里叶变换可以利用数字计算机快速的算出(其算法称为快速傅里叶变换算法(FFT)). 基本性质 线性性质 两函数之和的傅里叶变换等于各自变换之和。数学描述是:若函数f left( x ight )和g left(x ight)的傅里叶变换mathcal[f]和mathcal[g]都存在,α 和 β 为任意常系数,则mathcal[alpha f+eta g]=alphamathcal[f]+etamathcal[g];傅里叶变换算符mathcal可经归一化成为么正算符; 频移性质 若函数f left( x ight )存在傅里叶变换,则对任意实数 ω0,函数f(x) e^{i omega_ x}也存在傅里叶变换,且有mathcal[f(x)e^{i omega_ x}]=F(omega + omega _0 ) 。式中花体mathcal是傅里叶变换的作用算子,平体F表示变换的结果(复函数),e 为自然对数的底,i 为虚数单位sqrt; 微分关系 若函数f left( x ight )当|x| ightarrowinfty时的极限为0,而其导函数f"(x)的傅里叶变换存在,则有mathcal[f"(x)]=-i omega mathcal[f(x)] ,即导函数的傅里叶变换等于原函数的傅里叶变换乘以因子 − iω 。更一般地,若f(pminfty)=f"(pminfty)=ldots=f^{(k-1)}(pminfty)=0,且mathcal[f^{(k)}(x)]存在,则mathcal[f^{(k)}(x)]=(-i omega)^ mathcal[f] ,即 k 阶导数的傅里叶变换等于原函数的傅里叶变换乘以因子( − iω)k。 卷积特性 若函数f left( x ight )及g left( x ight )都在(-infty,+infty)上绝对可积,则卷积函数f*g=int_{-infty}^{+infty} f(x-xi)g(xi)dxi的傅里叶变换存在,且mathcal[f*g]=mathcal[f]cdotmathcal[g] 。卷积性质的逆形式为mathcal^[F(omega)G(omega)]=mathcal^[F(omega)]*mathcal^[G(omega)] ,即两个函数乘积的傅里叶逆变换等于它们各自的傅里叶逆变换的卷积。 Parseval定理 若函数f left( x ight )可积且平方可积,则int_{-infty}^{+infty} f^2 (x)dx = frac{2pi}int_{-infty}^{+infty} |F(omega)|^domega 。其中 F(ω) 是 f(x) 的傅里叶变换。 傅里叶变换的不同变种 连续傅里叶变换 主条目:连续傅立叶变换 一般情况下,若“傅立叶变换”一词的前面未加任何限定语,则指的是“连续傅里叶变换”。“连续傅里叶变换”将平方可积的函数f(t) 表示成复指数函数的积分或级数形式。 f(t) = mathcal^[F(omega)] = frac{sqrt{2pi}} intlimits_{-infty}^infty F(omega) e^{iomega t},domega. 上式其实表示的是连续傅里叶变换的逆变换,即将时间域的函数f(t)表示为频率域的函数F(ω)的积分。反过来,其正变换恰好是将频率域的函数F(ω)表示为时间域的函数f(t)的积分形式。一般可称函数f(t)为原函数,而称函数F(ω)为傅里叶变换的像函数,原函数和像函数构成一个傅立叶变换对(transform pair)。 一种对连续傅里叶变换的推广称为分数傅里叶变换(Fractional Fourier Transform)。 当f(t)为奇函数(或偶函数)时,其余弦(或正弦)分量将消亡,而可以称这时的变换为余弦转换(cosine transform) 或 正弦转换(sine transform). 另一个值得注意的性质是,当f(t) 为纯实函数时,F(−ω) = F(ω)*成立. 傅里叶级数 主条目:傅里叶级数 连续形式的傅里叶变换其实是傅里叶级数的推广,因为积分其实是一种极限形式的求和算子而已。对于周期函数,其傅里叶级数是存在的: f(x) = sum_{n=-infty}^{infty} F_n ,e^ , 其中Fn 为复振幅。对于实值函数,函数的傅里叶级数可以写成: f(x) = fraca_0 + sum_{n=1}^inftyleft[a_ncos(nx)+b_nsin(nx) ight], 其中an和bn是实频率分量的振幅。 离散时间傅里叶变换 主条目:离散时间傅里叶变换 离散傅里叶变换是离散时间傅里叶变换(DTFT)的特例(有时作为后者的近似)。DTFT在时域上离散,在频域上则是周期的。DTFT可以被看作是傅里叶级数的逆。 离散傅里叶变换 主条目:离散傅里叶变换 为了在科学计算和数字信号处理等领域使用计算机进行傅里叶变换,必须将函数xn 定义在离散点而非连续域内,且须满足有限性或周期性条件。这种情况下, 使用离散傅里叶变换,将函数 xn 表示为下面的求和形式: x_n = frac1 sum_{k=0}^ X_k e^{ifrac{2pi} kn} qquad n = 0,dots,N-1 其中Xk是傅里叶振幅。直接使用这个公式计算的计算复杂度为mathcal(n^2),而快速傅里叶变换(FFT)可以将复杂度改进为mathcal(n log n)。计算复杂度的降低以及数字电路计算能力的发展使得DFT成为在信号处理领域十分实用且重要的方法。 在阿贝尔群上的统一描述 以上各种傅里叶变换可以被更统一的表述成任意局部紧致的阿贝尔群上的傅里叶变换。这一问题属于调和分析的范畴。在调和分析中, 一个变换从一个群变换到它的对偶群(dual group)。此外,将傅里叶变换与卷积相联系的卷积定理在调和分析中也有类似的结论。傅里叶变换的广义理论基础参见庞特里雅金对偶性(英文版)中的介绍。 时频分析变换 主条目:时频分析变换 小波变换,chirplet转换和分数傅里叶转换试图得到时间信号的频率信息。同时解析频率和时间的能力在数学上受不确定性原理的限制。 傅里叶变换家族 下表列出了傅里叶变换家族的成员. 容易发现,函数在时(频)域的离散对应于其像函数在频(时)域的周期性.反之连续则意味着在对应域的信号的非周期性. 变换 时间 频率 连续傅里叶变换 连续, 非周期性 连续, 非周期性 傅里叶级数 连续, 周期性 离散, 非周期性 离散时间傅里叶变换 离散, 非周期性 连续, 周期性 离散傅里叶变换 离散, 周期性 离散, 周期性 傅里叶变换的基本思想首先由法国学者傅里叶系统提出,所以以其名字来命名以示纪念。 从现代数学的眼光来看,傅里叶变换是一种特殊的积分变换。它能将满足一定条件的某个函数表示成正弦基函数的线性组合或者积分。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。 傅立叶变换属于调和分析的内容。"分析"二字,可以解释为深入的研究。从字面上来看,"分析"二字,实际就是"条分缕析"而已。它通过对函数的"条分缕析"来达到对复杂函数的深入理解和研究。从哲学上看,"分析主义"和"还原主义",就是要通过对事物内部适当的分析达到增进对其本质理解的目的。比如近代原子论试图把世界上所有物质的本源分析为原子,而原子不过数百种而已,相对物质世界的无限丰富,这种分析和分类无疑为认识事物的各种性质提供了很好的手段。 在数学领域,也是这样,尽管最初傅立叶分析是作为热过程的解析分析的工具,但是其思想方法仍然具有典型的还原论和分析主义的特征。"任意"的函数通过一定的分解,都能够表示为正弦函数的线性组合的形式,而正弦函数在物理上是被充分研究而相对简单的函数类,这一想法跟化学上的原子论想法何其相似!奇妙的是,现代数学发现傅立叶变换具有非常好的性质,使得它如此的好用和有用,让人不得不感叹造物的神奇: 1. 傅立叶变换是线性算子,若赋予适当的范数,它还是酉算子; 2. 傅立叶变换的逆变换容易求出,而且形式与正变换非常类似; 3. 正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解.在线性时不变的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取; 4. 著名的卷积定理指出:傅立叶变换可以化复杂的卷积运算为简单的乘积运算,从而提供了计算卷积的一种简单手段; 5. 离散形式的傅立叶变换可以利用数字计算机快速的算出(其算法称为快速傅立叶变换算法(FFT)). 正是由于上述的良好性质,傅里叶变换在物理学、数论、组合数学、信号处理、概率、统计、密码学、声学、光学等领域都有着广泛的应用。 拉普拉斯变换 拉普拉斯变换(英文:Laplace Transform),是工程数学中常用的一种积分变换。 如果定义: f(t),是一个关于t,的函数,使得当t<0,时候,f(t)=0,; s, 是一个复变量; mathcal 是一个运算符号,它代表对其对象进行拉普拉斯积分int_0^infty e^ ,dt;F(s),是f(t),的拉普拉斯变换结果。 则f(t),的拉普拉斯变换由下列式子给出: F(s),=mathcal left =int_ ^infty f(t),e^ ,dt 拉普拉斯逆变换,是已知F(s),,求解f(t),的过程。用符号 mathcal ^ ,表示。 拉普拉斯逆变换的公式是: 对于所有的t>0,; f(t) = mathcal ^ left =frac int_ ^ F(s),e^ ,ds c,是收敛区间的横坐标值,是一个实常数且大于所有F(s),的个别点的实部值。 为简化计算而建立的实变量函数和复变量函数间的一种函数变换。对一个实变量函数作拉普拉斯变换,并在复数域中作各种运算,再将运算结果作拉普拉斯反变换来求得实数域中的相应结果,往往比直接在实数域中求出同样的结果在计算上容易得多。拉普拉斯变换的这种运算步骤对于求解线性微分方程尤为有效,它可把微分方程化为容易求解的代数方程来处理,从而使计算简化。在经典控制理论中,对控制系统的分析和综合,都是建立在拉普拉斯变换的基础上的。引入拉普拉斯变换的一个主要优点,是可采用传递函数代替微分方程来描述系统的特性。这就为采用直观和简便的图解方法来确定控制系统的整个特性(见信号流程图、动态结构图)、分析控制系统的运动过程(见奈奎斯特稳定判据、根轨迹法),以及综合控制系统的校正装置(见控制系统校正方法)提供了可能性。 用 f(t)表示实变量t的一个函数,F(s)表示它的拉普拉斯变换,它是复变量s=σ+j&owega;的一个函数,其中σ和&owega; 均为实变数,j2=-1。F(s)和f(t)间的关系由下面定义的积分所确定: 如果对于实部σ >σc的所有s值上述积分均存在,而对σ ≤σc时积分不存在,便称 σc为f(t)的收敛系数。对给定的实变量函数 f(t),只有当σc为有限值时,其拉普拉斯变换F(s)才存在。习惯上,常称F(s)为f(t)的象函数,记为F(s)=L[f(t)];称f(t)为F(s)的原函数,记为ft=L-1[F(s)]。 函数变换对和运算变换性质 利用定义积分,很容易建立起原函数 f(t)和象函数 F(s)间的变换对,以及f(t)在实数域内的运算与F(s)在复数域内的运算间的对应关系。表1和表2分别列出了最常用的一些函数变换对和运算变换性质。小白2023-05-26 08:17:492
matlab是如何进行傅里叶变换的?采用什么方法进行积分运算?
第一步,双击matlab软件图标,打开matlab软件,可以看到matlab软件的界面。2/8第二步,使用syms命令,创建四个符号变量a、b、c、x、t。simulink如何提升仿真速度_想告别蜗牛效率_找速石科技速石CAE仿真云计算平台,即算即用,无需IT基础,本地怎么操作,上云就怎么操作让流体力学/有限元分析效率翻倍。欢迎免费试用。上海速石信息科技有..广告3/8第三步,使用符号变量a,创建代数式A,其中A=7*sin(a)。4/8第四步,使用函数fourier(A,a,t),对代数式A进行傅里叶变换。得到的结果中diract(t-1)是狄拉克函数。5/8第五步,使用符号变量c,创建代数式B,其中A=3*c^2。6/8第六步,使用函数fourier(B,c,t),对代数式B进行傅里叶变换。得到的结果中dirac(2,t)是对狄拉克函数的二阶导数。7/8第七步,使用符号变量x,创建代数式C,其中C=abs(4*x)。8/8第八步,使用函数fourier(C,x,t),对代数式C进行傅里叶变换matlab软件是一款科学计算软件,在工程和科学研究中应用广泛。这篇经验告诉你,如何使用matlab软件创建代数式,并对代数式进行傅里叶变换。gitcloud2023-05-26 08:17:491
关于傅里叶变换对偶问题有哪些?
关于傅里叶变换对偶问题:FFT是针对余弦信号的傅里叶变换,得到的傅里叶变换后的相角应该是余弦信号的相角,这里你的原始信号是正弦信号,转化成余弦信号以后相角就是-90度了。x(t)=2*sa(2pai*(t-2));根据对偶性:sa(2pi(t-2))的变换为pi/(2*pi)*[u(w+2*pi-2)+u(w-2*pi-2)]*exp(-i*2*w);其实主要就是用哪门函数的傅里叶变换的来对偶的。傅里叶变换是数字信号处理中的基本操作,广泛应用于表述及分析离散时域信号领域。但由于其运算量与变换点数N的平方成正比关系,因此,在N较大时,直接应用DFT算法进行谱变换是不切合实际的。然而,快速傅里叶变换技术的出现使情况发生了根本性的变化。本文主要描述了采用FPGA来实现2k/4k/8k点FFT的设计方法。Ntou1232023-05-26 08:17:491
傅里叶变换在生活中的应用有哪些
有人可以回答下傅里叶变换在电信中的应用吗?谢谢哦!傅里叶变换能卷积定理指出:傅里叶变换可以化复杂的卷积运算为简单的乘积运算,从而提供了豆豆staR2023-05-26 08:17:492
哪位可以给个 离散傅里叶变换(DFT)的应用的资料?
您对于傅里叶变换恐怕并不十分理解 傅里叶变换的实质是将一个信号分离为无穷多多正弦/复指数信号的加成,也就是说,把信号变成正弦信号相加的形式——既然是无穷多个信号相加,那对于非周期信号来说,每个信号的加权应该都是零——但有密度上的差别,你可以对比概率论中的概率密度来思考一下——落到每一个点的概率都是无限小,但这些无限小是有差别的 所以,傅里叶变换之后,横坐标即为分离出的正弦信号的频率,纵坐标对应的是加权密度 对于周期信号来说,因为确实可以提取出某些频率的正弦波成分,所以其加权不为零——在幅度谱上,表现为无限大——但这些无限大显然是有区别的,所以我们用冲激函数表示 已经说过,傅里叶变换是把各种形式的信号用正弦信号表示,因此非正弦信号进行傅里叶变换,会得到与原信号频率不同的成分——都是原信号频率的整数倍。这些高频信号是用来修饰频率与原信号相同的正弦信号,使之趋近于原信号的。所以说,频谱上频率最低的一个峰(往往是幅度上最高的),就是原信号频率。 傅里叶变换把信号由时域转为频域,因此把不同频率的信号在时域上拼接起来进行傅里叶变换是没有意义的——实际情况下,我们隔一段时间采集一次信号进行变换,才能体现出信号在频域上随时间的变化。 我的语言可能比较晦涩,但我已尽我所能向你讲述我的一点理解——真心希望能对你有用。我已经很久没在知道上回答过问题了,之所以回答这个问题,是因为我本人在学习傅里叶变换及拉普拉斯变换的过程中着实受益匪浅——它们几乎改变了我对世界的认识。傅里叶变换值得你用心去理解——哪怕苦苦思索几个月也是值得的——我当初也想过:只要会算题就行。但浙大校训“求是”时时刻刻鞭策着我追求对理论的理解——最终经过很痛苦的一番思索才恍然大悟。建议你看一下我们信号与系统课程的教材:化学工业出版社的《信号与系统》,会有所帮助。康康map2023-05-26 08:17:491
为什么说傅里叶变换是频域分析方法?
傅里叶变换是频域分析方法的原因:傅立叶变换和Bode图可以结合在一起使用,用以预测当线性过程对象受到控制作用的时序影响时产生的反应。利用傅立叶变换这一数学方法,把提供给过程对象的控制作用,从理论上分解为不同的正弦波的信号组成或者频谱。利用Bode图可以判断出,每种正弦波信号在经由过程对象时发生了那些变化。换言之,在该图上可以找到正弦波在每种频率下的振幅和相位的改变。 反之,利用反傅立叶变换这一方法,又可以将每个单独改变的正弦波信号转换成一个信号。该算法利用直接测量到的原始信号,以累加方式来计算不同正弦波信号的频率、振幅和相位。频域结构参数与性能信号频谱代表了信号在不同频率分量成分的大小,能够提供比时域信号波形更直观,丰富的信息。在频率域研究系统的结构参数与性能的关系,揭示了信号内在的频率特性以及信号时间特性与其频率特性之间的密切关系,从而导出了信号的频谱、带宽以及滤波、调制和频分复用等重要概念。优点是无需求解微分方程,图解(频率特性图)法,间接揭示系统性能并指明改进性能的方向和易于实验分析,可推广应用于某些非线性系统(如含有延迟环节的系统)以及可方便设计出能有效抑制噪声的系统。左迁2023-05-26 08:17:491
一维复数序列的快速傅里叶变换(FFT)
设x(N)为N点有限长离散序列,代入式(8-3)、式(8-4),并令 其傅里叶变换(DFT)为地球物理数据处理基础反变换(IDFT)为地球物理数据处理基础两者的差异只在于W的指数符号不同,以及差一个常数1/N,因此下面我们只讨论DFT正变换式(8-5)的运算量,其反变换式(8-6)的运算是完全相同的。一般来说,W是复数,因此,X(j)也是复数,对于式(8-5)的傅里叶变换(DFT),计算一个X(j)值需要N次复数乘法和N-1次复数加法。而X(j)一共有N个值(j=0,1,…,N-1),所以完成整个DFT运算总共需要N2次复数乘法和N(N-1)次复数加法。直接计算DFT,乘法次数和加法次数都是与N2成正比的,当N很大时,运算量会很大,例如,当N=8时,DFT需64次复数乘法;而当N=1024时,DFT所需乘法为1048576次,即一百多万次的复数乘法运算,对运算速度要求高。所以需要改进DFT的计算方法,以减少运算次数。分析Wjk,表面上有N2个数值,由于其周期性,实际上仅有N个不同的值W0,W1,…,WN-1。对于N=2m时,由于其对称性,只有N/2个不同的值W0,W1,…,地球物理数据处理基础因此可以把长序列的DFT分解为短序列DFT,而前面已经分析DFT与N2成正比,所以N越小越有利。同时,利用ab+ac=a(b+c)结合律法则,可以将同一个Wr对应的系数x(k)相加后再乘以Wr,就能大大减少运算次数。这就是快速傅里叶变换(FFT)的算法思路。下面,我们来分析N=2m情况下的FFT算法。1.N=4的FFT算法对于m=2,N=4,式(8-5)傅里叶变换为地球物理数据处理基础将式(8-7)写成矩阵形式地球物理数据处理基础为了便于分析,将上式中的j,k写成二进制形式,即地球物理数据处理基础代入式(8-7),得地球物理数据处理基础分析Wjk的周期性来减少乘法次数地球物理数据处理基础则 代回式(8-9),整理得地球物理数据处理基础上式可分层计算,先计算内层,再计算外层时就利用内层计算的结果,可避免重复计算。写成分层形式地球物理数据处理基础则X(j1 j0)=X2(j1 j0)。上式表明对于N=4的FFT,利用Wr的周期关系可分为m=2步计算。实际上,利用Wr的对称性,仍可以对式(8-11)进行简化计算。考虑到地球物理数据处理基础式(8-11)可以简化为地球物理数据处理基础令j=j0;k=k0,并把上式表示为十进制,得地球物理数据处理基础可以看到,完成上式N=4的FFT计算(表8-1)需要N·(m-1)/2=2次复数乘法和N·m=8次复数加法,比N=4的DFT算法的N2=16次复数乘法和N·(N-1)=12次复数加法要少得多。表8-1 N=4的FFT算法计算过程注:W0=1;W1=-i。[例1]求N=4样本序列1,3,3,1的频谱(表8-2)。表8-2 N=4样本序列2.N=8的FFT算法类似N=4的情况,用二进制形式表示,有地球物理数据处理基础写成分层计算的形式:地球物理数据处理基础则X(j2 j1 j0)=X3(j2 j1 j0)。对式(8-14)的X1(k1 k0 j0)进行展开,有地球物理数据处理基础还原成十进制,并令k=2k1+k0,即k=0,1,2,3,有地球物理数据处理基础用类似的方法对式(8-14)的X2(k0 j1 j0),X3(j2 j1 j0)进行展开,整理得地球物理数据处理基础用式(8-16)、式(8-17)逐次计算到X3(j)=X(j)(j=0,1,…,7),即完成N=23=8的FFT计算,其详细过程见表8-3。表8-3 N=8的FFT算法计算过程注:对于正变换 对于反变换 所 [例2]求N=8样本序列(表8-4)x(k)=1,2,1,1,3,2,1,2的频谱。表8-4 N=8样本序列3.任意N=2m的FFT算法列出N=4,N=8的FFT计算公式,进行对比地球物理数据处理基础观察式(8-18)、式(8-19),不难看出,遵循如下规律:(1)等式左边的下标由1递增到m,可用q=1,2,…,m代替,则等式右边为q-1;(2)k的上限为奇数且随q的增大而减小,至q=m时为0,所以其取值范围为k=0,1,2,…,(2m-q-1);(3)j的上限为奇数且随q的增大而增大,且q=1时为0,其取值范围为j=0,1,2,…,(2q-1-1);(4)k的系数,在等式左边为2q,等式右边为2q-1(包括W的幂指数);(5)等式左边序号中的常数是2的乘方形式,且幂指数比下标q小1,即2q-1;等式右边m对式子序号中的常数都是定值2m-1。归纳上述规则,写出对于任意正整数m,N=2m的FFT算法如下:由X0(p)=x(p)(p=0,1,…,N-1)开始:(1)对q=1,2,…,m,执行(2)~(3)步;(2)对k=0,1,2,…,(2m-q-1)及j=0,1,2,…,(2q-1-1),执行地球物理数据处理基础(3)j,k循环结束;(4)q循环结束;由Xm(p)(p=0,1,…,N-1)输出原始序列x(p)的频谱X(p)。在计算机上很容易实现上述FFT算法程序,仅需要三个复数数组,编程步骤如下:(1)设置复数数组X1(N-1),X2(N-1)和 (数组下界都从0开始);(2)把样本序列x赋给X1,即X1(k)=x(k)(k=0,1,…,N-1);(3)计算W,即正变换 反变换 (4)q=1,2,…,m,若q为偶数,执行(6),否则执行第(5)步;(5)k=0,1,2,…,(2m-q-1)和j=0,1,2,…,(2q-1-1)循环,作X2(2qk+j)=X1(2q-1k+j)+X1(2q-1k+j+2m-1)X2(2qk+j+2q-1)=[X1(2q-1k+j)-X1(2q-1k+j+2m-1)]W(2q-1k)至k,j循环结束;(6)k=0,1,2,…,(2m-q-1)和j=0,1,2,…,(2q-1-1)循环,作X1(2qk+j)=X2(2q-1k+j)+X2(2q-1k+j+2m-1)X1(2qk+j+2q-1)=[X2(2q-1k+j)-X2(2q-1k+j+2m-1)]W(2q-1k)至k,j循环结束;(7)q循环结束,若m为偶数,输出X1(j),否则输出X2(j)(j=0,1,…,N-1),即为所求。wpBeta2023-05-26 08:17:481
如何求两个时域函数乘积的傅里叶变换?(急死了!)
时域乘积的傅里叶变换和时域卷积的傅里叶变换类似,时域乘积的傅里叶变换等于两函数频域的卷积: FFT(f(x)g(x))=FFT(f(x))*FFT(g(x))北有云溪2023-05-26 08:17:482
急!!求x(2n+1)的傅里叶变换。
编辑词条傅立叶变换 中文译名 Transformée de Fourier有多种中文译名,常见的有“傅里叶变换”、“傅立叶变换”、“付立叶变换”、“富里叶变换”、“富里哀变换”等等。为方便起见,本文统一写作“傅里叶变换”。 应用 傅里叶变换在物理学、数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学、海洋学、结构动力学等领域都有着广泛的应用(例如在信号处理中,傅里叶变换的典型用途是将信号分解成幅值分量和频率分量)。 概要介绍 * 傅里叶变换能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。最初傅里叶分析是作为热过程的解析分析的工具被提出的(参见:林家翘、西格尔著《自然科学中确定性问题的应用数学》,科学出版社,北京。原版书名为 C. C. Lin & L. A. Segel, Mathematics Applied to Deterministic Problems in the Natural Sciences, Macmillan Inc., New York, 1974)。 * 傅里叶变换属于谐波分析。 * 傅里叶变换的逆变换容易求出,而且形式与正变换非常类似; * 正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解.在线性时不变的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取; * 卷积定理指出:傅里叶变换可以化复杂的卷积运算为简单的乘积运算,从而提供了计算卷积的一种简单手段; * 离散形式的傅里叶变换可以利用数字计算机快速的算出(其算法称为快速傅里叶变换算法(FFT)). 基本性质 线性性质 两函数之和的傅里叶变换等于各自变换之和。数学描述是:若函数f left( x ight )和g left(x ight)的傅里叶变换mathcal[f]和mathcal[g]都存在,α 和 β 为任意常系数,则mathcal[alpha f+eta g]=alphamathcal[f]+etamathcal[g];傅里叶变换算符mathcal可经归一化成为么正算符; 频移性质 若函数f left( x ight )存在傅里叶变换,则对任意实数 ω0,函数f(x) e^{i omega_ x}也存在傅里叶变换,且有mathcal[f(x)e^{i omega_ x}]=F(omega + omega _0 ) 。式中花体mathcal是傅里叶变换的作用算子,平体F表示变换的结果(复函数),e 为自然对数的底,i 为虚数单位sqrt; 微分关系 若函数f left( x ight )当|x| ightarrowinfty时的极限为0,而其导函数f"(x)的傅里叶变换存在,则有mathcal[f"(x)]=-i omega mathcal[f(x)] ,即导函数的傅里叶变换等于原函数的傅里叶变换乘以因子 − iω 。更一般地,若f(pminfty)=f"(pminfty)=ldots=f^{(k-1)}(pminfty)=0,且mathcal[f^{(k)}(x)]存在,则mathcal[f^{(k)}(x)]=(-i omega)^ mathcal[f] ,即 k 阶导数的傅里叶变换等于原函数的傅里叶变换乘以因子( − iω)k。 卷积特性 若函数f left( x ight )及g left( x ight )都在(-infty,+infty)上绝对可积,则卷积函数f*g=int_{-infty}^{+infty} f(x-xi)g(xi)dxi的傅里叶变换存在,且mathcal[f*g]=mathcal[f]cdotmathcal[g] 。卷积性质的逆形式为mathcal^[F(omega)G(omega)]=mathcal^[F(omega)]*mathcal^[G(omega)] ,即两个函数乘积的傅里叶逆变换等于它们各自的傅里叶逆变换的卷积。 Parseval定理 若函数f left( x ight )可积且平方可积,则int_{-infty}^{+infty} f^2 (x)dx = frac{2pi}int_{-infty}^{+infty} |F(omega)|^domega 。其中 F(ω) 是 f(x) 的傅里叶变换。 傅里叶变换的不同变种 连续傅里叶变换 主条目:连续傅立叶变换 一般情况下,若“傅立叶变换”一词的前面未加任何限定语,则指的是“连续傅里叶变换”。“连续傅里叶变换”将平方可积的函数f(t) 表示成复指数函数的积分或级数形式。 f(t) = mathcal^[F(omega)] = frac{sqrt{2pi}} intlimits_{-infty}^infty F(omega) e^{iomega t},domega. 上式其实表示的是连续傅里叶变换的逆变换,即将时间域的函数f(t)表示为频率域的函数F(ω)的积分。反过来,其正变换恰好是将频率域的函数F(ω)表示为时间域的函数f(t)的积分形式。一般可称函数f(t)为原函数,而称函数F(ω)为傅里叶变换的像函数,原函数和像函数构成一个傅立叶变换对(transform pair)。 一种对连续傅里叶变换的推广称为分数傅里叶变换(Fractional Fourier Transform)。 当f(t)为奇函数(或偶函数)时,其余弦(或正弦)分量将消亡,而可以称这时的变换为余弦转换(cosine transform) 或 正弦转换(sine transform). 另一个值得注意的性质是,当f(t) 为纯实函数时,F(−ω) = F(ω)*成立. 傅里叶级数 主条目:傅里叶级数 连续形式的傅里叶变换其实是傅里叶级数的推广,因为积分其实是一种极限形式的求和算子而已。对于周期函数,其傅里叶级数是存在的: f(x) = sum_{n=-infty}^{infty} F_n ,e^ , 其中Fn 为复振幅。对于实值函数,函数的傅里叶级数可以写成: f(x) = fraca_0 + sum_{n=1}^inftyleft[a_ncos(nx)+b_nsin(nx) ight], 其中an和bn是实频率分量的振幅。 离散时间傅里叶变换 主条目:离散时间傅里叶变换 离散傅里叶变换是离散时间傅里叶变换(DTFT)的特例(有时作为后者的近似)。DTFT在时域上离散,在频域上则是周期的。DTFT可以被看作是傅里叶级数的逆。 离散傅里叶变换 主条目:离散傅里叶变换 为了在科学计算和数字信号处理等领域使用计算机进行傅里叶变换,必须将函数xn 定义在离散点而非连续域内,且须满足有限性或周期性条件。这种情况下, 使用离散傅里叶变换,将函数 xn 表示为下面的求和形式: x_n = frac1 sum_{k=0}^ X_k e^{ifrac{2pi} kn} qquad n = 0,dots,N-1 其中Xk是傅里叶振幅。直接使用这个公式计算的计算复杂度为mathcal(n^2),而快速傅里叶变换(FFT)可以将复杂度改进为mathcal(n log n)。计算复杂度的降低以及数字电路计算能力的发展使得DFT成为在信号处理领域十分实用且重要的方法。 在阿贝尔群上的统一描述 以上各种傅里叶变换可以被更统一的表述成任意局部紧致的阿贝尔群上的傅里叶变换。这一问题属于调和分析的范畴。在调和分析中, 一个变换从一个群变换到它的对偶群(dual group)。此外,将傅里叶变换与卷积相联系的卷积定理在调和分析中也有类似的结论。傅里叶变换的广义理论基础参见庞特里雅金对偶性(英文版)中的介绍。 时频分析变换 主条目:时频分析变换 小波变换,chirplet转换和分数傅里叶转换试图得到时间信号的频率信息。同时解析频率和时间的能力在数学上受不确定性原理的限制。 傅里叶变换家族 下表列出了傅里叶变换家族的成员. 容易发现,函数在时(频)域的离散对应于其像函数在频(时)域的周期性.反之连续则意味着在对应域的信号的非周期性. 变换 时间 频率 连续傅里叶变换 连续, 非周期性 连续, 非周期性 傅里叶级数 连续, 周期性 离散, 非周期性 离散时间傅里叶变换 离散, 非周期性 连续, 周期性 离散傅里叶变换 离散, 周期性 离散, 周期性 傅里叶变换的基本思想首先由法国学者傅里叶系统提出,所以以其名字来命名以示纪念。 从现代数学的眼光来看,傅里叶变换是一种特殊的积分变换。它能将满足一定条件的某个函数表示成正弦基函数的线性组合或者积分。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。 傅立叶变换属于调和分析的内容。"分析"二字,可以解释为深入的研究。从字面上来看,"分析"二字,实际就是"条分缕析"而已。它通过对函数的"条分缕析"来达到对复杂函数的深入理解和研究。从哲学上看,"分析主义"和"还原主义",就是要通过对事物内部适当的分析达到增进对其本质理解的目的。比如近代原子论试图把世界上所有物质的本源分析为原子,而原子不过数百种而已,相对物质世界的无限丰富,这种分析和分类无疑为认识事物的各种性质提供了很好的手段。 在数学领域,也是这样,尽管最初傅立叶分析是作为热过程的解析分析的工具,但是其思想方法仍然具有典型的还原论和分析主义的特征。"任意"的函数通过一定的分解,都能够表示为正弦函数的线性组合的形式,而正弦函数在物理上是被充分研究而相对简单的函数类,这一想法跟化学上的原子论想法何其相似!奇妙的是,现代数学发现傅立叶变换具有非常好的性质,使得它如此的好用和有用,让人不得不感叹造物的神奇: 1. 傅立叶变换是线性算子,若赋予适当的范数,它还是酉算子; 2. 傅立叶变换的逆变换容易求出,而且形式与正变换非常类似; 3. 正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解.在线性时不变的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取; 4. 著名的卷积定理指出:傅立叶变换可以化复杂的卷积运算为简单的乘积运算,从而提供了计算卷积的一种简单手段; 5. 离散形式的傅立叶变换可以利用数字计算机快速的算出(其算法称为快速傅立叶变换算法(FFT)). 正是由于上述的良好性质,傅里叶变换在物理学、数论、组合数学、信号处理、概率、统计、密码学、声学、光学等领域都有着广泛的应用。 有関傅立叶变换的FPGA実现 傅立叶变换是数字信号处理中的基本操作,广泛应用于表述及分析离散时域信号领域。但由于其运算量与变换点数N的平方成正比关系,因此,在N较大时,直接应用DFT算法进行谱变换是不切合实际的。然而,快速傅立叶变换技术的出现使情况发生了根本性的变化。本文主要描述了采用FPGA来实现2k/4k/8k点FFT的设计方法。 1 整体结构 一般情况下,N点的傅立叶变换对为: 其中,WN=exp(-2pi/N)。X(k)和x(n)都为复数。与之相对的快速傅立叶变换有很多种,如DIT(时域抽取法)、DIF(频域抽取法)、Cooley-Tukey和Winograd等。对于2n傅立叶变换,Cooley-Tukey算法可导出DIT和DIF算法。本文运用的基本思想是Cooley-Tukey算法,即将高点数的傅立叶变换通过多重低点数傅立叶变换来实现。虽然DIT与DIF有差别,但由于它们在本质上都是一种基于标号分解的算法,故在运算量和算法复杂性等方面完全一样,而没有性能上的优劣之分,所以可以根据需要任取其中一种,本文主要以DIT方法为对象来讨论。 N=8192点DFT的运算表达式为: 式中,m=(4n1+n2)(2048k1+k2)(n=4n1+n2,k=2048k1+k2)其中n1和k2可取0,1,...,2047,k1和n2可取0,1,2,3。 由式(3)可知,8k傅立叶变换可由4×2k的傅立叶变换构成。同理,4k傅立叶变换可由2×2k的傅立叶变换构成。而2k傅立叶变换可由128×16的傅立叶变换构成。128的傅立叶变换可进一步由16×8的傅立叶变换构成,归根结底,整个傅立叶变换可由基2、基4的傅立叶变换构成。2k的FFT可以通过5个基4和1个基2变换来实现;4k的FFT变换可通过6个基4变换来实现;8k的FFT可以通过6个基4和1个基2变换来实现。也就是说:FFT的基本结构可由基2/4模块、复数乘法器、存储单元和存储器控制模块构成,其整体结构如图1所示。 图1中,RAM用来存储输入数据、运算过程中的中间结果以及运算完成后的数据,ROM用来存储旋转因子表。蝶形运算单元即为基2/4模块,控制模块可用于产生控制时序及地址信号,以控制中间运算过程及最后输出结果。 2 蝶形运算器的实现 基4和基2的信号流如图2所示。图中,若A=r0+j*i0,B=r1+j*i1,C=r2+j*i2,D=r3+j*i3是要进行变换的信号,Wk0=c0+j*s0=1,Wk1=c1+j*s1,Wk2=c2+j*s2,Wk3=c3+j*s3为旋转因子,将其分别代入图2中的基4蝶形运算单元,则有: A′=[r0+(r1×c1-i1×s1)+(r2×c2-i2×s2)+(r3×c3-i3×s3)]+j[i0+(i1×c1+r1×s1)+(i2×c2+r2×s2)+(i3×c3+r3×s3)]� (4) B′=[r0+(i1×c1+r1×s1)-(r2×c2-i2×s2)-(i3×c3+r3×s3)]+j[i0-(r1×c1-i1×s1)-(i2×c2+r2×s2)+(r3×c3-i3×s3)] (5) C′=[r0-(r1×c1-i1×s1)+(r2×c2-i2×s2)-(r3×c3-i3×s3)]+j[i0-(i1×c1+r1×s1)+(i2×c2+r2×s2)-(i3×c3+r3×s3)] (6) D′=[r0-(i1×c1+r1×s1)-(r2×c2-i2×s2)+(i3×c3+r3×s3)]+j[i0+(r1×c1-i1×s1)-(i2×c2+r2×s2)-(r3×c3-i3×s3)]� (7) 而在基2蝶形中,Wk0和Wk2的值均为1,这样,将A,B,C和D的表达式代入图2中的基2运算的四个等式中,则有: A′=r0+(r1×c1-i1×s1)+j[i0+(i1×c1+r1×s1)]� (8) B′=r0- (r1×c1-i1×s1)+j[i0-(i1×c1+r1×s1)] (9) C′=r2+(r3×c3-i3×s3)+j[i0+(i3×c3+r3×s3)]� (10) D′=r2-(r3×c3-i3×s3)+j[i0-(i3×c3+r3×s3)]� (11) 在上述式(4)~(11)中有很多类同项,如i1×c1+r1×s1和r1×c1-i1×s1等,它们仅仅是加减号的不同,其结构和运算均类似,这就为简化电路提供了可能。同时,在蝶形运算中,复数乘法可以由实数乘法以一定的格式来表示,这也为设计复数乘法器提供了一种实现的途径。 以基4为例,在其运算单元中,实际上只需做三个复数乘法运算,即只须计算BWk1、CWk2和DWk3的值即可,这样在一个基4蝶形单元里面,最多只需要3个复数乘法器就可以了。在实际过程中,在不提高时钟频率下,只要将时序控制好�便可利用流水线(Pipeline)技术并只用一个复数乘法器就可完成这三个复数乘法,大大节省了硬件资源。 图2 基2和基4蝶形算法的信号流图 3 FFT的地址 FFT变换后输出的结果通常为一特定的倒序,因此,几级变换后对地址的控制必须准确无误。 倒序的规律是和分解的方式密切相关的,以基8为例,其基本倒序规则如下: 基8可以用2×2×2三级基2变换来表示,则其输入顺序则可用二进制序列(n1 n2 n3)来表示,变换结束后,其顺序将变为(n3 n2 n1),如:X�011 → x�110 ,即输入顺序为3,输出时顺序变为6。 更进一步,对于基16的变换,可由2×2×2×2,4×4,4×2×2等形式来构成,相对于不同的分解形式,往往会有不同的倒序方式。以4×4为例,其输入顺序可以用二进制序列(n1 n2 n3n4)来表示变换结束后,其顺序可变为((n3 n4)(n1 n2)),如: X�0111 → x�1101 。即输入顺序为7,输出时顺序变为13。 在2k/4k/8k的傅立叶变换中,由于要经过多次的基4和基2运算,因此,从每次运算完成后到进入下一次运算前,应对运算的结果进行倒序,以保证运算的正确性。 4 旋转因子 N点傅立叶变换的旋转因子有着明显的周期性和对称性。其周期性表现为: FFT之所以可使运算效率得到提高,就是利用 FFT之所以可使运算效率得到提高,就是利用了对称性和周期性把长序列的DFT逐级分解成几个序列的DFT,并最终以短点数变换来实现长点数变换。 根据旋转因子的对称性和周期性,在利用ROM存储旋转因子时,可以只存储旋转因子表的一部分,而在读出时增加读出地址及符号的控制,这样可以正确实现FFT。因此,充分利用旋转因子的性质,可节省70%以上存储单元。 实际上,由于旋转因子可分解为正、余弦函数的组合,故ROM中存的值为正、余弦函数值的组合。对2k/4k/8k的傅立叶变换来说,只是对一个周期进行不同的分割。由于8k变换的旋转因子包括了2k/4k的所有因子,因此,实现时只要对读ROM的地址进行控制,即可实现2k/4k/8k变换的通用。 5 存储器的控制 因FFT是为时序电路而设计的,因此,控制信号要包括时序的控制信号及存储器的读写地址,并产生各种辅助的指示信号。同时在计算模块的内部,为保证高速,所有的乘法器都须始终保持较高的利用率。这意味着在每一个时钟来临时都要向这些单元输入新的操作数,而这一切都需要控制信号的紧密配合。 为了实现FFT的流形运算,在运算的同时,存储器也要接收数据。这可以采用乒乓RAM的方法来完成。这种方式决定了实现FFT运算的最大时间。对于4k操作,其接收时间为4096个数据周期,这样�FFT的最大运算时间就是4096个数据周期。另外,由于输入数据是以一定的时钟为周期依次输入的,故在进行内部运算时,可以用较高的内部时钟进行运算,然后再存入RAM依次输出。 为节省资源,可对存储数据RAM采用原址读出原址写入的方法,即在进行下一级变换的同时,首先应将结果回写到读出数据的RAM存贮器中;而对于ROM,则应采用与运算的数据相对应的方法来读出存储器中旋转因子的值。 在2k/4k/8k傅立叶变换中,要实现通用性,控制器是最主要的模块。2k、4k、8k变换具有不同的内部运算时间和存储器地址,在设计中,针对不同的点数应设计不同的存储器存取地址,同时,在完成变换后,还要对开始输出有用信号的时刻进行指示。 6 硬件的选择 本设计的硬件实现选用的是现场可编程门阵列(FPGA)来满足较高速度的需要。本系统在设计时选用的是ALTERA公司的STRATIX芯片,该芯片中包含有DSP单元,可以完成较为耗费资源的乘法器单元。同时,该器件也包含有大量存储单元,从而可保证旋转因子的精度。 除了一些专用引脚外,FPGA上几乎所有的引脚均可供用户使用,这使得FPGA信号处理方案具有非常好的I/O带宽。大量的I/O引脚和多块存储器可使设计获得优越的并行处理性能。其独立的存储块可作为输入/工作存储区和结果的缓存区,这使得I/O可与FFT计算同时进行。在实现的时间方面,该设计能在4096个时钟周期内完成一个4096点的FFT。若采用10MHz的输入时钟,其变换时间在200μs左右。而由于最新的FPGA使用了MultiTrack互连技术,故可在250MHz以下频率稳定地工作,同时,FFT的实现时间也可以大大缩小。 FFT运算结果的精度与输入数据的位数及运算过程中的位数有关,同时和数据的表示形式也有很大关系。一般来说,浮点方式比定点方式精度高。而在定点计算中,存储器数据的位数越大,运算精度越高,使用的存储单元和逻辑单元也越多。在实际应用中,应根据实际情况折衷选择精度和资源。本设计通过MATLAB进行仿真证明:其实现的变换结果与MATLAB工具箱中的FFT函数相比,信噪比可以达到65db以上,完全可以满足一般工程的实际应用要求。左迁2023-05-26 08:17:485
t的傅里叶变换 老师说t是有傅里叶变换的,求教授,求详细解法
t的傅里叶变换为(i/2pi)&(f) 1/t傅里叶变换为 -i*pi*sgn(f) &(f)为狄拉克函数 sgn(f)为符号函数 i的平方等于1小菜G的建站之路2023-05-26 08:17:481
请问这个分段函数的傅里叶变换怎样求?
最佳答案是什么玩意FinCloud2023-05-26 08:17:482
|sinwt| 的傅里叶变换怎么计算?
这个好办 你可以按着定义去求积分 肯定能出来的!|sinwt|=sinwt平方开方 所以可以写成1-coswt的平方,wpBeta2023-05-26 08:17:481
已知f(x)的傅里叶变换F(w)如何求x^3*f(2x)的傅里叶变换
F【f(2x)】=1/2 * F(w/2)F【x^3f(2x)】=i^3 * (1/2 * F(w/2))"""=-i/16F"""(w/2)西柚不是西游2023-05-26 08:17:481
求函数f(t)=e^ (-α|t|)的傅里叶变换
你好!“数学之美”团员448755083为你解答!用傅里叶变换的定义进行计算具体过程见图片。图片稍后显示。如满意,请采纳,加赞同;不满意,请反馈,“数学之美”与你共同进步!u投在线2023-05-26 08:17:481
开刷:《信号与系统》 Lec #21 第一部分 由零极点图求傅里叶变换
课本是电子工业出版社出版的奥本海姆《信号与系统》第二版,刘树棠译。 视频课可以在网易公开课看到,搜索MIT的信号与系统,老师就是课本的作者。 p.430 - p.435 我们知道一个信号的拉普拉斯变换当取 时,就变成了该信号的傅里叶变换。那么对应在s平面上,若想求一个信号的傅里叶变换,就可以理解为,在s平面 轴上求拉普拉斯变换的值。 这篇笔记就来学习课本第430页讲到的,由 (与一个有理拉普拉斯变换有关的零极点图) 来求傅里叶变换的一种求值方法,并且更一般的,这个方法可以求任意s点上的拉普拉斯变换的值。 首先从简单的开始,考虑只有一个零点的拉普拉斯变换,即, 求这个拉普拉斯变换在某一给定 处的值。考虑到 是两个复数的和,一个是 ,一个是 ,回忆以前本科学习复变函数,每个复数都可以表示为复平面内的一个向量,向量方向为从原点指向该复数。那么代表复数和 的向量就是向量 和向量 的和,如下图所示, 那么, 的模就是向量 的长度,而 的相位就是这个向量与实轴的角度。 如果 是一个极点,即 ,这时 的模就是向量 的长度的倒数,相位是该向量相对于实轴角度的负值。 推广开来,一个更为一般的拉普拉斯变换是由上述讨论的零点项和极点项的乘积所组成,如下所示, 为了求 在 的值,上式乘积中的每一项都可以用一个从零/极点到 点的向量来表示。那么 的模就是 乘以各零点向量长度的乘积再除以各极点向量长度的乘积,而 的相角就是各零点向量角度的和减去各极点向量角度的和,如果 为负,那么对应一个附加相角 。 如果 中存在多阶零点或极点,那么在计算 时要计算上对应的倍数等于阶数。 例9.12 , 那么傅里叶变换就等于 ,即 画 的零极点图如下所示, 为了用几何法确定傅里叶变换,在图中构造了极点向量。傅里叶变换在频率 处的模,就是从极点到虚轴上 点的向量的长度的倒数,傅里叶变换的相位就是这个向量的与实轴夹角的负值。那么根据上图就可以利用几何关系写出傅里叶变换模和相位的表达式, 利用几何法求傅里叶变换最大的价值在于可以很快的近似观察傅里叶变换的整体特性,从上面这个例子的图中可看出,极点向量长度随着 的增加而单调增加,那么傅里叶变换的模将随着 的增加而单调递减,相位的变化也可以用同样的方法进行分析。 参考我写的lec#12的笔记第5.1节,有关一阶连续时间系统,其微分方程有如下表示, 不计算这个连续时间一阶系统的单位冲激响应了,直接复制过来, 该单位冲激响应的拉普拉斯变换为, 其零极点图如下图所示,从图中可以看出,极点向量的长度在 处最短,随着 增加而单调增加。对于极点向量的角度,随着 从0增加到无穷大,角度从0增加到 。 那么因为这是一个极点,因此系统单位冲激响应的傅里叶变换的模会随着 增加而单调递减,傅里叶变换的相位会随着 增加而从0减小到 ,对应如下伯德图, 注意到,当 时,利用几何法可以确定极点向量的实部和虚部相等,那么傅里叶变换的模下降到 时的 ,或近似下降了3dB,傅里叶变换的相位为 。 这与我写的lec#12的笔记就对应了起来, 称为转折频率,在这个频率下, 的伯德图在这里发生转折。 我们当时说过,时间常数 控制了系统的响应速度,现在看到,这样一个系统在 处的极点在负实轴上,这个极点到原点的距离就是时间常数的倒数。 利用零极点图来看时间常数,或者等效的说 的极点位置变化,如何影响or改变一阶系统的特性。当极点向左侧移动时,系统的转折频率或有效截止频率就会增加,从图上看,就是极点越往左移,那么在虚轴上找与极点和原点长度相等的 点越高,对应的系统转折频率增加。同时,极点向左移动,对应着时间常数逐渐减小,导致系统单位冲激响应衰减更快,阶跃响应具有更快的上升时间。 极点位置的实部和系统响应速度之间的关系总是成立的,即越是远离 轴的那些极点,总是对应着单位冲激响应中的快速响应项。 学习lec#12时的梦魇。。。我又回来了。。。 利用如下线性常系数微分方程表示一个连续时间二阶系统,这种表示方式在许多实际物理系统具有很重要的应用,比如汽车减震系统和RLC二阶电路分析, 对上面的方程做拉普拉斯变换, 那么单位冲激响应的拉普拉斯变换就可以写作, 其中, 我们在这里插一句,该系统的单位冲激响应可以表示为, 其中, 好的,现在回来分析 ,分为两种情况分析, 此时 和 都是实数,因此两个极点都在实轴上,如下图所示,图(a)和图(b)分别是不同 时的零极点图, 是距离虚轴更近的那个极点, 是距离虚轴远的那个极点。 可以看做两个一次项的乘积,那么 随着 增加而单调递减,而 在 时为0变化到,当 时趋于 。两个极点中的每一个,其到 点的向量长度都随着 增加而单调增加,而每个极点向量的相角则随 从0变化到 相应的从0增加到 。 同时注意到,随着 的增加,一个极点移向 轴(这就是在单位冲激响应中衰减较慢的一项),而另一个极点则向更左边移动(对应着在单位冲激响应中衰减较快的一项)。这部分也对应着上文讲一阶系统时极点位置对单位冲激响应的影响。 如图(b)所示,在较大的 值下,紧靠着 轴的这一极点支配着系统的响应。在低频部分,紧靠 轴的极点向量的长度和相角随 变化的灵敏程度,远远大于另外那个远处的极点。因此在低频区域,频率响应特性主要受紧靠 轴的极点的影响。 当 时, 和 都是复数,零极点图如图(c)所示。注意两个极点是复数共轭的,我也不知道为啥书上的插图看起来两个极点不对称,可能是我截图用的教材是老版本的?新版本教材上就没有这个问题。先不管了,知道两个极点是复数共轭的,在s平面上应该关于实轴对称。实际上,任何一个实值信号,其复数极点或零点总是共轭成对出现的。 实轴上方的极点是 ,下方的极点是 。简单计算可以发现,极点与原点的距离等于 。 当 较小时,这些极点很靠近 轴,随着频率 接近于 ,也就是极点的虚部时,频率响应特性主要由 所决定。尤其当 时,该极点向量的长度具有最小值,那么定性来看,频率响应的模在这个频率会有一个峰值,实际上因为其他极点的存在,频率响应的模真正出现在比频率 略小一点的位置。如下图所示,频率响应的模的峰值出现在 的位置。 由上图看出,这个二阶系统是个非理想的带通滤波器,参数 控制着频率响应的尖锐程度和峰值宽度。参考下图图(d),极点的高度也就是极点虚部为 ,当频率在这个位置时,频率响应的模取得峰值。利用几何法,当频率在这个位置上下各变化 时,几何法确定极点向量的长度变长了 倍。记住在 较小时,第三象限的极点对频率响应的影响可以忽略。 那么, 在频率范围 内,变化范围是峰值的 。 定义相对带宽为上述的频率间隔除以自然频率,得, 因此, 越接近0,频率响应的峰值越尖锐,峰值宽度越窄。 另外, 的倒数就是二阶系统品质因数 。因此随着品质因数增加,相对带宽减小,滤波器的频率选择性越强。 现在再来研究二阶系统频率响应的相位特性。从图(d)可以看出,在频率范围 内变化时,图(d)中看出向量角度有 的变化量,对应着频率响应相位特性中 的迅速变化。 上面的讨论都是固定 来看 变化对系统频率响应的影响,实际上,如果单单考虑变化 对系统的影响,就是两个极点远离原点,对应在s平面上,就是改变了频率坐标的尺度。也就是说, 和 只取决于 。 作为书上利用几何法求频率响应的最后一各例子,全通系统的单位冲激响应的拉普拉斯变换具有下图所示的零极点图, 沿着 轴,零点向量和极点向量具有相等的长度,因此其频率响应的模与频率无关,是一个常数。而两个向量的角度之和等于180度,所以 的模特性和相位特性如下图所示,苏萦2023-05-26 08:17:481
抽样函数的傅里叶变换怎么算?
傅里叶变换能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。最初傅里叶分析是作为热过程的解析分析的工具被提出的。目录定义中文译名应用概要介绍基本性质线性性质频移性质微分关系卷积特性Parseval定理傅里叶变换的不同变种连续傅里叶变换傅里叶级数离散傅里叶变换时频分析变换数学领域整体结构蝶形运算器的实现FFT的地址旋转因子存储器的控制硬件的选择相关书籍推荐定义 中文译名应用 概要介绍 基本性质 线性性质 频移性质 微分关系 卷积特性 Parseval定理傅里叶变换的不同变种 连续傅里叶变换 傅里叶级数 离散傅里叶变换 时频分析变换数学领域 整体结构 蝶形运算器的实现 FFT的地址 旋转因子 存储器的控制 硬件的选择相关书籍推荐展开 编辑本段定义 f(t)满足傅立叶积分定理条件时,下图①式的积分运算称为f(t)的傅立叶变换, ②式的积分运算叫做F(ω)的傅立叶逆变换。F(ω)叫做f(t)的象函数,f(t)叫做 F(ω)的象原函数。 傅里叶变换① 傅里叶逆变换②中文译名 Fourier transform 或Transformée de Fourier有多个中文译名,常见的有“傅里叶变换”、“傅立叶变换”、“付立叶变换”、“傅里叶转换”、“傅氏转换”、“傅氏变换”、等等。为方便起见,本文统一写作“傅里叶变换”。编辑本段应用 傅里叶变换在物理学、电子类学科、数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学、海洋学、结构动力学等领域都有着广泛的应用(例如在信号处理中,傅里叶变换的典型用途是将信号分解成幅值分量和频率分量)。编辑本段概要介绍 概要参见:林家翘、西格尔著《自然科学中确定性问题的应用数学》,科学出版社,北京。原版书名为 C. C. Lin & L. A. Segel, Mathematics Applied to Deterministic Problems in the Natural Sciences, Macmillan Inc., New York, 1974。 * 傅里叶变换属于谐波分析。 * 傅里叶变换的逆变换容易求出,而且形式与正变换非常类似; * 正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解.在线性时不变的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取; * 卷积定理指出:傅里叶变换可以化复杂的卷积运算为简单的乘积运算,从而提供了计算卷积的一种简单手段; * 离散形式的傅里叶变换可以利用数字计算机快速的算出(其算法称为快速傅里叶变换算法(FFT)).编辑本段基本性质线性性质 两函数之和的傅里叶变换等于各自变换之和。数学描述是:若函数f left( x ight )和g left(x ight)的傅里叶变换mathcal[f]和mathcal[g]都存在,α 和 β 为任意常系数,则mathcal[alpha f+eta g]=alphamathcal[f]+etamathcal[g];傅里叶变换算符mathcal可经归一化成为么正算符;频移性质 若函数f left( x ight )存在傅里叶变换,则对任意实数 ω0,函数f(x) e^{i omega_ x}也存在傅里叶变换,且有mathcal[f(x)e^{i omega_ x}]=F(omega + omega _0 ) 。式中花体mathcal是傅里叶变换的作用算子,平体F表示变换的结果(复函数),e 为自然对数的底,i 为虚数单位sqrt;微分关系 若函数f left( x ight )当|x| ightarrowinfty时的极限为0,而其导函数f"(x)的傅里叶变换存在,则有mathcal[f"(x)]=-i omega mathcal[f(x)] ,即导函数的傅里叶变换等于原函数的傅里叶变换乘以因子 − iω 。更一般地,若f(pminfty)=f"(pminfty)=ldots=f^{(k-1)}(pminfty)=0,且mathcal[f^{(k)}(x)]存在,则mathcal[f^{(k)}(x)]=(-i omega)^ mathcal[f] ,即 k 阶导数的傅里叶变换等于原函数的傅里叶变换乘以因子( − iω)k。卷积特性 若函数f left( x ight )及g left( x ight )都在(-infty,+infty)上绝对可积,则卷积函数f*g=int_{-infty}^{+infty} f(x-xi)g(xi)dxi的傅里叶变换存在,且mathcal[f*g]=mathcal[f]cdotmathcal[g] 。卷积性质的逆形式为mathcal^[F(omega)G(omega)]=mathcal^[F(omega)]*mathcal^[G(omega)] ,即两个函数乘积的傅里叶逆变换等于它们各自的傅里叶逆变换的卷积,同时还有两个函数卷积的傅里叶逆变换等于它们各自的傅里叶逆变换的乘积。Parseval定理 若函数f left( x ight )可积且平方可积,则int_{-infty}^{+infty} f^2 (x)dx = frac{2pi}int_{-infty}^{+infty} |F(omega)|^domega 。其中 F(ω) 是 f(x) 的傅里叶变换。编辑本段傅里叶变换的不同变种连续傅里叶变换 主条目:连续傅立叶变换 一般情况下,若“傅立叶变换”一词的前面未加任何限定语,则指的是“连续傅里叶变换”。“连续傅里叶变换”将平方可积的函数f(t) 表示成复指数函数的积分或级数形式。 f(t) = mathcal^[F(omega)] = frac{sqrt{2pi}} intlimits_{-infty}^infty F(omega) e^{iomega t},domega. 上式其实表示的是连续傅里叶变换的逆变换,即将时间域的函数f(t)表示为频率域的函数F(ω)的积分。反过来,其正变换恰好是将频率域的函数F(ω)表示为时间域的函数f(t)的积分形式。一般可称函数f(t)为原函数,而称函数F(ω)为傅里叶变换的像函数,原函数和像函数构成一个傅立叶变换对(transform pair)。 一种对连续傅里叶变换的推广称为分数傅里叶变换(Fractional Fourier Transform)。 当f(t)为奇函数(或偶函数)时,其余弦(或正弦)分量将消亡,而可以称这时的变换为余弦转换(cosine transform) 或 正弦转换(sine transform). 另一个值得注意的性质是,当f(t) 为纯实函数时,F(−ω) = F(ω)*成立.傅里叶级数 主条目:傅里叶级数 连续形式的傅里叶变换其实是傅里叶级数的推广,因为积分其实是一种极限形式的求和算子而已。对于周期函数,其傅里叶级数是存在的: f(x) = sum_{n=-infty}^{infty} F_n ,e^ , 其中Fn 为复振幅。对于实值函数,函数的傅里叶级数可以写成: f(x) = fraca_0 + sum_{n=1}^inftyleft[a_ncos(nx)+b_nsin(nx) ight], 其中an和bn是实频率分量的振幅。 离散时间傅里叶变换 主条目:离散时间傅里叶变换 离散傅里叶变换是离散时间傅里叶变换(DTFT)的特例(有时作为后者的近似)。DTFT在时域上离散,在频域上则是周期的。DTFT可以被看作是傅里叶级数的逆。离散傅里叶变换 主条目:离散傅里叶变换 为了在科学计算和数字信号处理等领域使用计算机进行傅里叶变换,必须将函数xn 定义在离散点而非连续域内,且须满足有限性或周期性条件。这种情况下, 使用离散傅里叶变换,将函数 xn 表示为下面的求和形式: x_n = frac1 sum_{k=0}^ X_k e^{ifrac{2pi} kn} qquad n = 0,dots,N-1 其中Xk是傅里叶振幅。直接使用这个公式计算的计算复杂度为mathcal(n^2),而快速傅里叶变换(FFT)可以将复杂度改进为mathcal(n log n)。计算复杂度的降低以及数字电路计算能力的发展使得DFT成为在信号处理领域十分实用且重要的方法。 在阿贝尔群上的统一描述 以上各种傅里叶变换可以被更统一的表述成任意局部紧致的阿贝尔群上的傅里叶变换。这一问题属于调和分析的范畴。在调和分析中, 一个变换从一个群变换到它的对偶群(dual group)。此外,将傅里叶变换与卷积相联系的卷积定理在调和分析中也有类似的结论。傅里叶变换的广义理论基础参见庞特里雅金对偶性(英文版)中的介绍。时频分析变换 主条目:时频分析变换 小波变换,chirplet转换和分数傅里叶转换试图得到时间信号的频率信息。同时解析频率和时间的能力在数学上受不确定性原理的限制。 傅里叶变换家族 下表列出了傅里叶变换家族的成员. 容易发现,函数在时(频)域的离散对应于其像函数在频(时)域的周期性.反之连续则意味着在对应域的信号的非周期性. 变换 时间 频率 连续傅里叶变换 连续, 非周期性 连续, 非周期性 傅里叶级数 连续, 周期性 离散, 非周期性 离散时间傅里叶变换 离散, 非周期性 连续, 周期性 离散傅里叶变换 离散, 周期性 离散, 周期性 傅里叶变换的基本思想首先由法国学者傅里叶系统提出,所以以其名字来命名以示纪念。 从现代数学的眼光来看,傅里叶变换是一种特殊的积分变换。它能将满足一定条件的某个函数表示成正弦基函数的线性组合或者积分。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。 傅立叶变换属于调和分析的内容。"分析"二字,可以解释为深入的研究。从字面上来看,"分析"二字,实际就是"条分缕析"而已。它通过对函数的"条分缕析"来达到对复杂函数的深入理解和研究。从哲学上看,"分析主义"和"还原主义",就是要通过对事物内部适当的分析达到增进对其本质理解的目的。比如近代原子论试图把世界上所有物质的本源分析为原子,而原子不过数百种而已,相对物质世界的无限丰富,这种分析和分类无疑为认识事物的各种性质提供了很好的手段。编辑本段数学领域 尽管最初傅立叶分析是作为热过程的解析分析的工具,但是其思想方法仍然具有典型的还原论和分析主义的特征。"任意"的函数通过一定的分解,都能够表示为正弦函数的线性组合的形式,而正弦函数在物理上是被充分研究而相对简单的函数类,这一想法跟化学上的原子论想法何其相似!奇妙的是,现代数学发现傅立叶变换具有非常好的性质,使得它如此的好用和有用,让人不得不感叹造物的神奇: 1. 傅立叶变换是线性算子,若赋予适当的范数,它还是酉算子; 2. 傅立叶变换的逆变换容易求出,而且形式与正变换非常类似; 3. 正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解.在线性时不变的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取; 4. 著名的卷积定理指出:傅立叶变换可以化复杂的卷积运算为简单的乘积运算,从而提供了计算卷积的一种简单手段; 5. 离散形式的傅立叶变换可以利用数字计算机快速的算出(其算法称为快速傅立叶变换算法(FFT)). 正是由于上述的良好性质,傅里叶变换在物理学、数论、组合数学、信号处理、概率、统计、密码学、声学、光学等领域都有着广泛的应用。 有関傅立叶变换的FPGA实现 傅立叶变换是数字信号处理中的基本操作,广泛应用于表述及分析离散时域信号领域。但由于其运算量与变换点数N的平方成正比关系,因此,在N较大时,直接应用DFT算法进行谱变换是不切合实际的。然而,快速傅立叶变换技术的出现使情况发生了根本性的变化。本文主要描述了采用FPGA来实现2k/4k/8k点FFT的设计方法。整体结构 一般情况下,N点的傅立叶变换对为: 其中,WN=exp(-2pi/N)。X(k)和x(n)都为复数。与之相对的快速傅立叶变换有很多种,如DIT(时域抽取法)、DIF(频域抽取法)、Cooley-Tukey和Winograd等。对于2n傅立叶变换,Cooley-Tukey算法可导出DIT和DIF算法。本文运用的基本思想是Cooley-Tukey算法,即将高点数的傅立叶变换通过多重低点数傅立叶变换来实现。虽然DIT与DIF有差别,但由于它们在本质上都是一种基于标号分解的算法,故在运算量和算法复杂性等方面完全一样,而没有性能上的优劣之分,所以可以根据需要任取其中一种,本文主要以DIT方法为对象来讨论。 N=8192点DFT的运算表达式为: 式中,m=(4n1+n2)(2048k1+k2)(n=4n1+n2,k=2048k1+k2)其中n1和k2可取0,1,...,2047,k1和n2可取0,1,2,3。 由式(3)可知,8k傅立叶变换可由4×2k的傅立叶变换构成。同理,4k傅立叶变换可由2×2k的傅立叶变换构成。而2k傅立叶变换可由128×16的傅立叶变换构成。128的傅立叶变换可进一步由16×8的傅立叶变换构成,归根结底,整个傅立叶变换可由基2、基4的傅立叶变换构成。2k的FFT可以通过5个基4和1个基2变换来实现;4k的FFT变换可通过6个基4变换来实现;8k的FFT可以通过6个基4和1个基2变换来实现。也就是说:FFT的基本结构可由基2/4模块、复数乘法器、存储单元和存储器控制模块构成,其整体结构如图1所示。 图1中,RAM用来存储输入数据、运算过程中的中间结果以及运算完成后的数据,ROM用来存储旋转因子表。蝶形运算单元即为基2/4模块,控制模块可用于产生控制时序及地址信号,以控制中间运算过程及最后输出结果。蝶形运算器的实现 基4和基2的信号流如图2所示。图中,若A=r0+j*i0,B=r1+j*i1,C=r2+j*i2,D=r3+j*i3是要进行变换的信号,Wk0=c0+j*s0=1,Wk1=c1+j*s1,Wk2=c2+j*s2,Wk3=c3+j*s3为旋转因子,将其分别代入图2中的基4蝶形运算单元,则有: A′=[r0+(r1×c1-i1×s1)+(r2×c2-i2×s2)+(r3×c3-i3×s3)]+j[i0+(i1×c1+r1×s1)+(i2×c2+r2×s2)+(i3×c3+r3×s3)]? (4) B′=[r0+(i1×c1+r1×s1)-(r2×c2-i2×s2)-(i3×c3+r3×s3)]+j[i0-(r1×c1-i1×s1)-(i2×c2+r2×s2)+(r3×c3-i3×s3)] (5) C′=[r0-(r1×c1-i1×s1)+(r2×c2-i2×s2)-(r3×c3-i3×s3)]+j[i0-(i1×c1+r1×s1)+(i2×c2+r2×s2)-(i3×c3+r3×s3)] (6) D′=[r0-(i1×c1+r1×s1)-(r2×c2-i2×s2)+(i3×c3+r3×s3)]+j[i0+(r1×c1-i1×s1)-(i2×c2+r2×s2)-(r3×c3-i3×s3)]? (7) 而在基2蝶形中,Wk0和Wk2的值均为1,这样,将A,B,C和D的表达式代入图2中的基2运算的四个等式中,则有: A′=r0+(r1×c1-i1×s1)+j[i0+(i1×c1+r1×s1)]? (8) B′=r0- (r1×c1-i1×s1)+j[i0-(i1×c1+r1×s1)] (9) C′=r2+(r3×c3-i3×s3)+j[i0+(i3×c3+r3×s3)]? (10) D′=r2-(r3×c3-i3×s3)+j[i0-(i3×c3+r3×s3)]? (11) 在上述式(4)~(11)中有很多类同项,如i1×c1+r1×s1和r1×c1-i1×s1等,它们仅仅是加减号的不同,其结构和运算均类似,这就为简化电路提供了可能。同时,在蝶形运算中,复数乘法可以由实数乘法以一定的格式来表示,这也为设计复数乘法器提供了一种实现的途径。 以基4为例,在其运算单元中,实际上只需做三个复数乘法运算,即只须计算BWk1、CWk2和DWk3的值即可,这样在一个基4蝶形单元里面,最多只需要3个复数乘法器就可以了。在实际过程中,在不提高时钟频率下,只要将时序控制好?便可利用流水线(Pipeline)技术并只用一个复数乘法器就可完成这三个复数乘法,大大节省了硬件资源。 图2 基2和基4蝶形算法的信号流图FFT的地址 FFT变换后输出的结果通常为一特定的倒序,因此,几级变换后对地址的控制必须准确无误。 倒序的规律是和分解的方式密切相关的,以基8为例,其基本倒序规则如下: 基8可以用2×2×2三级基2变换来表示,则其输入顺序则可用二进制序列(n1 n2 n3)来表示,变换结束后,其顺序将变为(n3 n2 n1),如:X?011 → x?110 ,即输入顺序为3,输出时顺序变为6。 更进一步,对于基16的变换,可由2×2×2×2,4×4,4×2×2等形式来构成,相对于不同的分解形式,往往会有不同的倒序方式。以4×4为例,其输入顺序可以用二进制序列(n1 n2 n3n4)来表示变换结束后,其顺序可变为((n3 n4)(n1 n2)),如: X?0111 → x?1101 。即输入顺序为7,输出时顺序变为13。 在2k/4k/8k的傅立叶变换中,由于要经过多次的基4和基2运算,因此,从每次运算完成后到进入下一次运算前,应对运算的结果进行倒序,以保证运算的正确性。旋转因子 N点傅立叶变换的旋转因子有着明显的周期性和对称性。其周期性表现为: FFT之所以可使运算效率得到提高,就是利用 FFT之所以可使运算效率得到提高,就是利用了对称性和周期性把长序列的DFT逐级分解成几个序列的DFT,并最终以短点数变换来实现长点数变换。 根据旋转因子的对称性和周期性,在利用ROM存储旋转因子时,可以只存储旋转因子表的一部分,而在读出时增加读出地址及符号的控制,这样可以正确实现FFT。因此,充分利用旋转因子的性质,可节省70%以上存储单元。 实际上,由于旋转因子可分解为正、余弦函数的组合,故ROM中存的值为正、余弦函数值的组合。对2k/4k/8k的傅立叶变换来说,只是对一个周期进行不同的分割。由于8k变换的旋转因子包括了2k/4k的所有因子,因此,实现时只要对读ROM的地址进行控制,即可实现2k/4k/8k变换的通用。存储器的控制 因FFT是为时序电路而设计的,因此,控制信号要包括时序的控制信号及存储器的读写地址,并产生各种辅助的指示信号。同时在计算模块的内部,为保证高速,所有的乘法器都须始终保持较高的利用率。这意味着在每一个时钟来临时都要向这些单元输入新的操作数,而这一切都需要控制信号的紧密配合。 为了实现FFT的流形运算,在运算的同时,存储器也要接收数据。这可以采用乒乓RAM的方法来完成。这种方式决定了实现FFT运算的最大时间。对于4k操作,其接收时间为4096个数据周期,这样?FFT的最大运算时间就是4096个数据周期。另外,由于输入数据是以一定的时钟为周期依次输入的,故在进行内部运算时,可以用较高的内部时钟进行运算,然后再存入RAM依次输出。 为节省资源,可对存储数据RAM采用原址读出原址写入的方法,即在进行下一级变换的同时,首先应将结果回写到读出数据的RAM存贮器中;而对于ROM,则应采用与运算的数据相对应的方法来读出存储器中旋转因子的值。 在2k/4k/8k傅立叶变换中,要实现通用性,控制器是最主要的模块。2k、4k、8k变换具有不同的内部运算时间和存储器地址,在设计中,针对不同的点数应设计不同的存储器存取地址,同时,在完成变换后,还要对开始输出有用信号的时刻进行指示。硬件的选择 本设计的硬件实现选用的是现场可编程门阵列(FPGA)来满足较高速度的需要。本系统在设计时选用的是ALTERA公司的STRATIX芯片,该芯片中包含有DSP单元,可以完成较为耗费资源的乘法器单元。同时,该器件也包含有大量存储单元,从而可保证旋转因子的精度。 除了一些专用引脚外,FPGA上几乎所有的引脚均可供用户使用,这使得FPGA信号处理方案具有非常好的I/O带宽。大量的I/O引脚和多块存储器可使设计获得优越的并行处理性能。其独立的存储块可作为输入/工作存储区和结果的缓存区,这使得I/O可与FFT计算同时进行。在实现的时间方面,该设计能在4096个时钟周期内完成一个4096点的FFT。若采用10MHz的输入时钟,其变换时间在200μs左右。而由于最新的FPGA使用了MultiTrack互连技术,故可在250MHz以下频率稳定地工作,同时,FFT的实现时间也可以大大缩小。 FFT运算结果的精度与输入数据的位数及运算过程中的位数有关,同时和数据的表示形式也有很大关系。一般来说,浮点方式比定点方式精度高。而在定点计算中,存储器数据的位数越大,运算精度越高,使用的存储单元和逻辑单元也越多。在实际应用中,应根据实际情况折衷选择精度和资源。本设计通过MATLAB进行仿真证明:其实现的变换结果与MATLAB工具箱中的FFT函数相比,信噪比可以达到65db以上,完全可以满足一般工程的实际应用要求。人类地板流精华2023-05-26 08:17:482
傅里叶变换有哪些具体的应用
傅里叶变换的实质是将一个信号分离为无穷多多正弦/复指数信号的加成,也就是说,把信号变成正弦信号相加的形式——既然是无穷多个信号相加,那对于非周期信号来说,每个信号的加权应该都是零——但有密度上的差别,你可以对比概率论中的概率密度来思考一下——落到每一个点的概率都是无限小,但这些无限小是有差别的 所以,傅里叶变换之后,横坐标即为分离出的正弦信号的频率,纵坐标对应的是加权密度对于周期信号来说,因为确实可以提取出某些频率的正弦波成分,所以其加权不为零——在幅度谱上,表现为无限大——但这些无限大显然是有区别的,所以我们用冲激函数表示傅里叶变换是把各种形式的信号用正弦信号表示,因此非正弦信号进行傅里叶变换,会得到与原信号频率不同的成分——都是原信号频率的整数倍。这些高频信号是用来修饰频率与原信号相同的正弦信号,使之趋近于原信号的。所以说,频谱上频率最低的一个峰(往往是幅度上最高的),就是原信号频率。傅里叶变换把信号由时域转为频域,因此把不同频率的信号在时域上拼接起来进行傅里叶变换是没有意义的——实际情况下,我们隔一段时间采集一次信号进行变换,才能体现出信号在频域上随时间的变化。肖振2023-05-26 08:17:481
傅里叶变换的应用
傅里叶变换的应用有变换处理图像、存储器的控制、热传导方程与温室效应等。1、变换处理图像。冈萨雷斯在《数字图像处理》一书中,将傅里叶变换比作一个玻璃棱镜。傅里叶变换可以看作是数学上的棱镜,将函数基于频率分解为不同的成分。利用傅里叶变换处理图像,就是将图片信息转化为频谱信息,再对频谱进行处理,转化为照片。比如,照片的边缘轮廓位置,颜色会有比较大的变化,经过傅里叶变换会表现为一个高频信号,如果想弱化这个边缘,就可以利用图像处理软件上的滤波器减弱这个高频信号,再经过傅里叶反变换,不让图像有剧烈的变化。去掉自拍上的痘痘、图像的斑点等都利用了这一原理。2、存储器的控制。因FFT(快速傅里叶变换)是为时序电路而设计的,因此,控制信号要包括时序的控制信号及存储器的读写地址,并产生各种辅助的指示信号。3、热传导方程与温室效应。通过傅里叶变换的正变换以及逆变换,可以在已知热量初值的条件下求解出某一个时刻的热量,并可以预测出温室效应的产生。北营2023-05-26 08:17:481
傅里叶变换在图像处理中的应用
傅里叶变换在图像处理中的应用如下:傅立叶变换在图像处理以下几个话题都有重要作用:1.图像增强与图像去噪绝大部分噪音都是图像的高频分量,通过低通滤波器来滤除高频——噪声; 边缘也是图像的高频分量,可以通过添加高频分量来增强原始图像的边缘。2.图像分割之边缘检测提取图像高频分量。3.图像特征提取:形状特征:傅里叶描述子。纹理特征:直接通过傅里叶系数来计算纹理特征。其他特征:将提取的特征值进行傅里叶变换来使特征具有平移、伸缩、旋转不变性。4.图像压缩可以直接通过傅里叶系数来压缩数据;常用的离散余弦变换是傅立叶变换的实变换。傅立叶变换傅里叶变换是将时域信号分解为不同频率的正弦信号或余弦函数叠加之和。连续情况下要求原始信号在一个周期内满足绝对可积条件。离散情况下,傅里叶变换一定存在。冈萨雷斯版<图像处理>里面的解释非常形象:一个恰当的比喻是将傅里叶变换比作一个玻璃棱镜。棱镜是可以将光分解为不同颜色的物理仪器,每个成分的颜色由波长(或频率)来决定。傅里叶变换可以看作是数学上的棱镜,将函数基于频率分解为不同的成分。当我们考虑光时,讨论它的光谱或频率谱。同样,傅立叶变换使我们能通过频率成分来分析一个函数。傅立叶变换有很多优良的性质。比如线性,对称性(可以用在计算信号的傅里叶变换里面)时移性:函数在时域中的时移,对应于其在频率域中附加产生的相移,而幅度频谱则保持不变。频移性:函数在时域中乘以e^jwt,可以使整个频谱搬移w。这个也叫调制定理,通讯里面信号的频分复用需要用到这个特性(将不同的信号调制到不同的频段上同时传输)。卷积定理:时域卷积等于频域乘积;时域乘积等于频域卷积(附加一个系数)。(图像处理里面这个是个重点)Ntou1232023-05-26 08:17:481
怎样利用傅里叶变换解决实际问题?
本题利用了卷积定理求解。扩展资料:卷积定理指出,函数卷积的傅里叶变换是函数傅里叶变换的乘积。即,一个域中的卷积相当于另一个域中的乘积,例如时域中的卷积就对应于频域中的乘积。F(g(x)*f(x)) = F(g(x))F(f(x))其中F表示的是傅里叶变换。这一定理对拉普拉斯变换、双边拉普拉斯变换、Z变换、Mellin变换和Hartley变换(参见Mellin inversion theorem)等各种傅里叶变换的变体同样成立。在调和分析中还可以推广到在局部紧致的阿贝尔群上定义的傅里叶变换。利用卷积定理可以简化卷积的运算量。对于长度为n的序列,按照卷积的定义进行计算,需要做2n- 1组对位乘法,其计算复杂度为;而利用傅里叶变换将序列变换到频域上后,只需要一组对位乘法,利用傅里叶变换的快速算法之后,总的计算复杂度为。这一结果可以在快速乘法计算中得到应用。参考资料来源:百度百科-卷积tt白2023-05-26 08:17:481
傅里叶变换中相位频谱怎么求?
傅里叶变换后的序列为F(w)=|F(w)|*e(j*f(w))。其中|F(w)|与w的关系就是幅度谱,f(w)与w的关系就是相位谱。让·巴普蒂斯·约瑟夫·傅里叶(Baron Jean Baptiste Joseph Fourier,1768年3月21日-1830年5月16日),法国欧塞尔人,著名数学家、物理学家。人物生平:傅里叶生于法国中部欧塞尔(Auxerre)一个裁缝家庭,9岁时沦为孤儿,被当地一主教收养。1780年起就读于地方军校,1795年任巴黎综合工科大学助教,1798年随拿破仑军队远征埃及,受到拿破仑器重,回国后于1801年被任命为伊泽尔省格伦诺布尔地方长官 。wpBeta2023-05-26 08:17:471
傅里叶变换中的a如何计算
傅里叶变换中的a计算:a=(1,-2,3),b=(0,4,-5),a×b=(-2*(-5)-3*4,-(1*(-5)-0*3),1*4-0*(-2))=(-2,5,4)。因为c与a、b都垂直,因此c=λa×b=λ*(-2i+5j+4k),其中λ为任意实数。令信号序列的长度为N=2,其中M是正整数,可以将时域信号序列x(n)分解成两部分,一是偶数部分x(2n),另一是奇数部分x(2n+1),于是信号序列x(n)的离散傅里叶变换可以用两个N/2抽样点的离散傅里叶变换来表示和计算。有关傅里叶变换傅里叶变换是数字信号处理中的基本操作,广泛应用于表述及分析离散时域信号领域。但由于其运算量与变换点数N的平方成正比关系,因此,在N较大时,直接应用DFT算法进行谱变换是不切合实际的。然而,快速傅里叶变换技术的出现使情况发生了根本性的变化。本文主要描述了采用FPGA来实现2k/4k/8k点FFT的设计方法。肖振2023-05-26 08:17:471
1/t的傅里叶变换怎么求,这个我已经计算出
1/t傅里叶变换为 -i*pi*sgn(w)其中pi为3.1415926&(f)为狄拉克函数sgn(w)为符号函数i的平方等于1!可桃可挑2023-05-26 08:17:471
f=coswt的傅里叶变换怎么求
这样北营2023-05-26 08:17:472
符号函数傅里叶变换怎样求?
符号函数不是绝对可积的函数,不存在常义下的傅里叶变换。在考虑广义函数的条件下是可求的,但不能用定义式F(jw)=∫f(t)e^{-jwt}dt来求,可以这样求:首先已知F{δ(t)}=1,且2δ(t)=d(sgn(t))/dt。根据频域微分定理F{f"(t)}=jwF{f(t)},有F{2δ(t)}=jwF{sgn(t)},得到F{sgn(t)}=2/(jw)苏萦2023-05-26 08:17:471
“f(t)=coswt”的傅里叶变换怎么求?
根据欧拉公式,cosω0t=[exp(jω0t)+exp(-jω0t)]/2。我们知道,直流信号的傅里叶变换是2πδ(ω)。根据频移性质可得exp(jω0t)的傅里叶变换是2πδ(ω-ω0)。再根据线性性质,可得cosω0t=[exp(jω0t)+exp(-jω0t)]/2的傅里叶变换是πδ(ω-ω0)+πδ(ω+ω0)。mlhxueli 2023-05-26 08:17:471
求符号函数的傅里叶变换
http://jpkc.wyu.edu.cn/xhyxt/kejian/chapter3/3.3.3.htm铁血嘟嘟2023-05-26 08:17:473
求u(t)的傅里叶变换
单位阶跃函数 u(t) 可以写成常数1和符号函数的和除以2。 (见图。)u(t)={1+ sgn(t)}/2常数1的傅里叶变换是纯实的, 等于2πδ(w)。符号函数的定义是:sgn(t)=1, 当 t>=0; =-1 当 t<0.它是一奇函数。奇函数的傅里叶变换是纯虚的, 等于2(1/jw) 。所以: u(t)={1+ sgn(t)}/2 的傅里叶变换 = (2πδ(w)+ 2(1/jw))/2 = πδ(w)+ (1/jw)阿啵呲嘚2023-05-26 08:17:471
求信号f(x)=0的傅里叶变换。
求f(x)=sinw0t的傅里叶变换(w0为了与w区分)根据欧拉公式得sinw0t=(e^jw0t-e^(-jw0t)/(2j)因为直流信号1的傅里叶变换为2πδ(w)而e^jw0t是直流信号傅里叶变换的频移所以e^jw0t的傅里叶变换为2πδ(w-w0),同理e^(-jw0)的傅里叶变换为2πδ(w+w0)所以F(jw)=[πδ(w-w0)-πδ(w+w0)]/j北营2023-05-26 08:17:471
阶跃函数u[n]的离散傅里叶变换怎么求得的?需要推导过程。
韦斯特兰2023-05-26 08:17:471
求傅里叶变换 (1-t)·f(1-t)
F[(1-t)f(1-t)]=F[f(1-t)]-F[tf(1-t)]=e^(iω)F[f(-t)-tf(-t)]=e^(iω)[F(-ω)-iF"(-ω)]陶小凡2023-05-26 08:17:472
复变函数题,求f(t)=sin³t的傅里叶变换
如果函数本身就是正弦或者余弦那么他的傅里叶分解就是他本身只需要将f(t)降次就可以了利用倍角公式和积化和差公式过程如下:小白2023-05-26 08:17:472
excel中如何进行傅里叶变换
1.对于时间序列,可以展开成傅立叶级数,进行频谱分析。对于时间序列xt其傅立叶级数展开式为展开成傅立叶级数:2.傅立叶分析工具应用操作步骤:(1)输入数据并中心化:时间、时间序号t、观测值xt、中心化(减x平均值)、求频率fi(=i/N).(2)由傅立叶分析工具求中心化数据序列的傅立叶变换。(3)IMREAL和IMAGINARY提取实部和虚部,按公式5计算频率强度(或由IMCONJUGATE求得共轭复数,再由IMPRODUCT求得两共轭复数乘积,得频率强度。(4)以频率为横坐标、频率强度为纵坐标,绘制频率强度图。(5)分析周期性。由频率强度最大的所对应的频率倒数即得周期。3.由图可见,序列显现周期性变化,在整个时期范围内,周期为4.下面利用傅立叶分析工具进行频谱分析。(1)在B18单元格输入“=AVERAGE(B2:B17)”求得观测值的平均值;在C2单元格输入“=B2/B$18”,将观测值中心化(均值为0,并仍保持原序列的方差),并复制到C3:C17。(2)从“数据”选项卡选择“数据分析”|选择“傅利叶分析”弹出对话框并设置如(3)单击“确定”生成傅立叶变换序列(图 20‑2 D列)。(4)在E2单元格输入“=IMCONJUGATE(D2)”求得傅利叶变换值的共轭复数,并复制到E3:E17;在F3至F17输入1至15,列出周期序列;在G3单元格输入“=F3/16”求得频率,并复制到G4:G17;在H3单元格输入“=IMPRODUCT(D3:E3)*8”(即根据公式5)求得频率强度,并复制到H4:H17。(5)以G3:H17为源数据,插入散点图,得图 20‑4所示频率强度频谱图。 由图可见,图形完全对称,通常只取左半部分。频率强度最大的所对应的频率为0.25,其倒数为4,即周期为4.肖振2023-05-26 08:17:473
已知f(x)的傅里叶变换F(w)如何求x^3*f(2x)的傅里叶变换
F【f(2x)】=1/2 * F(w/2) F【x^3f(2x)】=i^3 * (1/2 * F(w/2))"""=-i/16F"""(w/2)北有云溪2023-05-26 08:17:471
1/t的傅里叶变换怎么求,这个我已经计算
meira2023-05-26 08:17:472
傅里叶变换与拉普拉斯变换的条件是什么?
1、傅里叶变换的条件:在一个以2T为周期内f(X)连续或只有有限个第一类间断点,附f(x)单调或可划分成有限个单调区间,则F(x)以2T为周期的傅里叶级数收敛,和函数S(x)也是以2T为周期的周期函数,且在这些间断点上,函数是有限值;在一个周期内具有有限个极值点;绝对可积。2、拉普拉斯变换的条件:t>=0函数值不为零的连续时间函数x(t)。扩展资料:1、傅里叶变换的应用:(1)傅里叶变换是线性算子,若赋予适当的范数,它还是酉算子;(2)傅里叶变换的逆变换容易求出,而且形式与正变换非常类似;(3)正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解.在线性时不变的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取。2、拉普拉斯变换的应用:在经典控制理论中,对控制系统的分析和综合,都是建立在拉普拉斯变换的基础上的。引入拉普拉斯变换的一个主要优点,是可采用传递函数代替常系数微分方程来描述系统的特性。这就为采用直观和简便的图解方法来确定控制系统的整个特性、分析控制系统的运动过程,以及提供控制系统调整的可能性。参考资料来源:百度百科-拉普拉斯变换参考资料来源:百度百科-傅里叶变换康康map2023-05-26 08:17:471
5.8、利用傅里叶变换求卷积+f(t)=Sa(t)×Sa(2t)。
首先,我们需要确定函数 Sa(t) 和 Sa(2t) 的傅里叶变换,这里采用标准的傅里叶变换公式:F(w) = ∫f(t)e^(-jwt)dtf(t) = (1/2π)∫F(w)e^(jwt)dw其中,f(t) 表示函数在时域上的表达式,F(w) 表示函数在频域上的表达式,j 表示虚数单位。根据傅里叶变换的线性性质,我们可以先分别求出 Sa(t) 和 Sa(2t) 的傅里叶变换,然后再将它们相乘即可求得卷积+f(t)的傅里叶变换。首先,Sa(t) 的傅里叶变换为:F1(w) = ∫Sa(t)e^(-jwt)dt= ∫(1/t)sin(t/2)e^(-jwt)dt= (2/π)(w/(w^2+1))其中,我们使用了三角函数的傅里叶变换公式。其次,Sa(2t) 的傅里叶变换为:F2(w) = ∫Sa(2t)e^(-jwt)dt= (1/2)∫Sa(u)e^(-j(w/2)u)du (令 u=2t)= (1/2)F1(w/2)= (2/π)(w/(4+w^2))最后,将 F1(w) 和 F2(w) 相乘得到卷积+f(t)的傅里叶变换 F(w):F(w) = F1(w) × F2(w)= (8/π)w/((w^2+1)(w^2+4))根据傅里叶变换的反演公式,我们可以将 F(w) 转换回时域的表达式:f(t) = (1/2π)∫F(w)e^(jwt)dw= (2/π)∫w/(w^2+1) × w/(w^2+4) × e^(jwt)dw这个积分比较复杂,可以采用偏微积分的方法进行求解。最终得到:f(t) = (1/2)e^(-t/2) × (sin(t) + cos(t))因此,卷积+f(t)的表达式为:f(t) = (1/2)e^(-t/2) × (sin(t) + cos(t))大鱼炖火锅2023-05-26 08:17:471
x(-t)的傅里叶变换式子是什么?
若x(t)的傅里叶变换为X(w),由傅里叶的尺度变换性质的x(-t)的傅里叶变换为X(-w).附 傅里叶变换的尺度变换性质为F[x(at)]=1/|a|X(w/a).Jm-R2023-05-26 08:17:463
导出狄拉克函数δ(x,y)的傅里叶变换
利用复数形式的傅里叶变换,其中,因此δ函数的傅里叶积分是根据δ函数的定义,δ函数并不是通常意义下的一般函数,应当看作一种函数列的极限或者泛函,因此δ函数的傅里叶积分也不是通常意义的傅里叶积分而是一种广义的傅里叶积分。 可见,δ函数与e的复指数(或者是三角函数)是一对傅立叶变换的共轭函数。九万里风9 2023-05-26 08:17:461
傅里叶变换题目 利用对偶性在函数的傅里叶变换.x(t)=sin(2pai*(t-...
这个你肯定要先化简.x(t)=2*sa(2pai*(t-2));根据对偶性:sa(2pi(t-2))的变换为pi/(2*pi)*[u(w+2*pi-2)+u(w-2*pi-2)]*exp(-i*2*w);其实主要就是用哪门函数的傅里叶变换的来对偶的大概就是这样吧,不对的话再hi我北境漫步2023-05-26 08:17:461
升余弦函数的傅里叶变换怎么证明???
从时域到频域的变换是比较困难的,从频域到时域的变换相对容易些。先把频域表达式写出来,然后通过反傅里叶变换回去,自己动手试试吧黑桃花2023-05-26 08:17:461
若x(n)的傅里叶变换为X(e^jw),那么x(2n)的傅里叶变换是什么?
x(2n)是x(n)的增采样,它的傅里叶变换应该是X(e^(j2w)肖振2023-05-26 08:17:461
傅里叶变换 已知F[f(t)]=F(jw) 求tf(2t)的傅里叶变化.
F[f(2t)]=(1/2)*F((jw)/2) F[tf(t)]=F"(jw)/(-2i*pi) 先用第一个公式,然后设2t=k,则F[f(k)]=(1/2)*F((jw)/2) tf(2t)=(k/2)*f(k) =(1/2)*kf(k) 用第二个公式 F[tf(2t)]=(1/2)*F[kf(k)]=(1/2)*(1/2)*F‘((jw)/2)/(-2i*pi)真颛2023-05-26 08:17:461
如何求傅里叶变换?
符号函数不是绝对可积的函数,不存在常义下的傅里叶变换。在考虑广义函数的条件下是可求的,但不能用定义式F(jw)=∫f(t)e^{-jwt}dt来求,可以这样求:首先已知F{δ(t)}=1,且2δ(t)=d(sgn(t))/dt。根据频域微分定理F{f"(t)}=jwF{f(t)},有F{2δ(t)}=jwF{sgn(t)},得到F{sgn(t)}=2/(jw)kikcik2023-05-26 08:17:461
tf2t的傅里叶变换咋求
对于tf(2t),应先利用尺度变换性质求f(2t)的频谱为F(w/2)/2,然后再利用线性加权性质(或频域微分性质)求,对上一个结果以w为变量进行微分,再乘以虚数因子j,结果为jF`(w/2)/4。 对于第二个则先利用时域微分性质求出df(t)/dt的变换为jwF(w),然后再利用线性加权性质求,对jwF(w)以w为变量进行微分,再乘以虚数因子j,结果为-F(w)-wF`(w)。 快速傅氏变换(FFT),是离散傅氏变换的快速算法,它是根据离散傅氏变换的奇、偶、虚、实等特性,对离散傅立叶变换的算法进行改进获得的。 它对傅氏变换的理论并没有新的发现,但是对于在计算机系统或者说数字系统中应用离散傅立叶变换,可以说是进了一大步。铁血嘟嘟2023-05-26 08:17:461
e∧jw0t的傅里叶变换怎么求
f(t)=(e^jw0t)u(t) F(w)=1/[j(w-w0)]傅里叶变换就是把信号表示成正弦波的叠加。经过傅里叶变换,信号f(t)变为F(w),F(w)的大小表征了频率为w的正弦波的强度。数学上,我们说正弦波是正交的,意思是e^(jwt) e^(-jw"t)积分后是delta函数,w"=w时为无穷大,否则为0。试 类比矢量的正交,设x,y分别是二维空间里两个方向的单位矢量,他们正交是指他们之间的点积x.x=y.y=1, x.y=0。 现在请把e^(jwt) e^(-jw"t)的积分看做两个正弦波e^(jwt)和e^(jw"t)的“点积”。一般一些的话,两个任意信号f1和f2的“点积”就定义为f1乘上f2的共轭,再积分。对一个矢量v,它和x的点积v.x就是 矢量v在x方向上的分量大小。类比两个信号的“点积”, 正弦波就相当于单位矢量。CarieVinne 2023-05-26 08:17:461
求sinc函数傅里叶变换的具体步骤
sinc函数有两个定义,有时区分为归一化sinc函数和非归一化的sinc函数。它们都是正弦函数和单调递减函数 1/x的乘积:sinc(x) = sin(pi * x) / (pi *x);归一化rect xsinc函数与窗函数的傅里叶变换对 根据傅里叶变换的对称性质 sinc函数的傅里叶变换的形式就是一个系数1/2π乘以一个窗函数啦 矩形函数与sinc函数互为傅里叶变换。有公式sinc(σt/2π)↔(2π/σ) rect (ω/σ)。 所以你的这个变换为rect(ω/2π)或者为rect(f)MATLAB可以实现傅里叶变换问题韦斯特兰2023-05-26 08:17:462
如何用函数的傅里叶变换求解这个函数?
本题利用了卷积定理求解。扩展资料:卷积定理指出,函数卷积的傅里叶变换是函数傅里叶变换的乘积。即,一个域中的卷积相当于另一个域中的乘积,例如时域中的卷积就对应于频域中的乘积。F(g(x)*f(x)) = F(g(x))F(f(x))其中F表示的是傅里叶变换。这一定理对拉普拉斯变换、双边拉普拉斯变换、Z变换、Mellin变换和Hartley变换(参见Mellin inversion theorem)等各种傅里叶变换的变体同样成立。在调和分析中还可以推广到在局部紧致的阿贝尔群上定义的傅里叶变换。利用卷积定理可以简化卷积的运算量。对于长度为n的序列,按照卷积的定义进行计算,需要做2n- 1组对位乘法,其计算复杂度为;而利用傅里叶变换将序列变换到频域上后,只需要一组对位乘法,利用傅里叶变换的快速算法之后,总的计算复杂度为。这一结果可以在快速乘法计算中得到应用。参考资料来源:百度百科-卷积Chen2023-05-26 08:17:461
tf(t-1)的傅里叶变换咋求
t的傅里叶变换为(i/2pi)&(f) 1/t傅里叶变换为 -i*pi*sgn(f) 其中pi为3.1415926 &(f)为狄拉克函数 sgn(f)为符号函数 i的平方等于1。 sintcost=1/2sin2tF(1/2sin2t)=∫(-∞,+∞) 1/2sin2t · e^-jwt dt用欧拉公式可得原式=1/2∫(-∞,+∞) j/2( e^-2jt - e^2jt )e^-jwt dt=j/4∫(-∞,+∞) e^-j(w+2)t - e^-j(w-2)t dt用δ函数的傅氏变换 得原式=j/2 π[δ(w+2)-δ(w-2)]欧拉公式: sin2t=j/2 (e^-2jt - e^2jt)δ函数的傅氏变换:F(e^jw。t)=∫(-∞,+∞) e^j(w。-w)t dt =2πδ(w。-w)。肖振2023-05-26 08:17:461