特征值

矩阵a和b相似,则它们的特征向量和特征值相同吗

a与b相似所以存在一个矩阵p使得a=pbp^(-1)设α是a的属于λ的一个特征向量所以aα=λα将a=pbp^(-1)带入pbp^(-1)α=λα得bp^(-1)α=λp^(-1)α所以x是b的属于λ的一个特征向量x=p^(-1)α
mlhxueli 2023-05-24 18:38:013

矩阵的特征值是什么意思?

特征根:特征根法也可用于通过数列的递推公式(即差分方程,必须为线性)求通项公式,其本质与微分方程相同。 称为二阶齐次线性差分方程:  加权的特征方程。特征向量:A为n阶矩阵,若数λ和n维非0列向量x满足Ax=λx,那么数λ称为A的特征值,x称为A的对应于特征值λ的特征向量。式Ax=λx也可写成( A-λE)x=0,并且|λE-A|叫做A 的特征多项式。当特征多项式等于0的时候,称为A的特征方程,特征方程是一个齐次线性方程组,求解特征值的过程其实就是求解特征方程的解。令|A-λE|=0,求出λ值。A是n阶矩阵,Ax=λx,则x为特征向量,λ为特征值。一旦找到两两互不相同的特征值λ,相应的特征向量可以通过求解方程(A – λI) v = 0 得到,其中v为待求特征向量,I为单位阵。当特征值出现重根时,如λ1=λ2,此时,特征向量v1的求解方法为(A-λ1I)v1=0,v2为(A-λ2I)v2=v1,依次递推。没有实特征值的一个矩阵的例子是顺时针旋转90度。扩展资料:矩阵的特征向量是矩阵理论上的重要概念之一,它有着广泛的应用。数学上,线性变换的特征向量(本征向量)是一个非简并的向量,其方向在该变换下不变。该向量在此变换下缩放的比例称为其特征值(本征值)。一个线性变换通常可以由其特征值和特征向量完全描述。特征空间是相同特征值的特征向量的集合。“特征”一词来自德语的eigen。1904年希尔伯特首先在这个意义下使用了这个词,更早亥尔姆霍尔兹也在相关意义下使用过该词。eigen一词可翻译为”自身的”、“特定于……的”、“有特征的”、或者“个体的”,这显示了特征值对于定义特定的线性变换的重要性。从数学上看,如果向量v与变换A满足Av=λv,则称向量v是变换A的一个特征向量,λ是相应的特征值。这一等式被称作“特征值方程”。假设它是一个线性变换,那么v可以由其所在向量空间的一组基表示为:其中vi是向量在基向量上的投影(即坐标),这里假设向量空间为n 维。由此,可以直接以坐标向量表示。利用基向量,线性变换也可以用一个简单的矩阵乘法表示。上述的特征值方程可以表示为:但是,有时候用矩阵形式写下特征值方程是不自然甚或不可能的。例如在向量空间是无穷维的时候,上述的弦的情况就是一例。取决于变换和它所作用的空间的性质,有时将特征值方程表示为一组微分方程更好。若是一个微分算子,其特征向量通常称为该微分算子的特征函数。例如,微分本身是一个线性变换因为(若M和N是可微函数,而a和b是常数)考虑对于时间t的微分。其特征函数满足如下特征值方程:其中λ是该函数所对应的特征值。这样一个时间的函数,如果λ = 0,它就不变,如果λ为正,它就按比例增长,如果λ是负的,它就按比例衰减。例如,理想化的兔子的总数在兔子更多的地方繁殖更快,从而满足一个正λ的特征值方程。特征根法是数学中解常系数线性微分方程的一种通用方法。特征根法也可用于通过数列的递推公式(即差分方程,必须为线性)求通项公式,其本质与微分方程相同。例如 称为二阶齐次线性差分方程: 加权的特征方程。参考资料:百度百科-特征根法 百度百科-特征向量
水元素sl2023-05-24 18:38:011

线性代数::一矩阵与其转置矩阵的特征值是否相同??????急。。。为什么???、

是的 在复数域存在可逆矩阵P 使得 P^(-1)AP=上三角矩阵 对角线元素为A的特征值 两端取转置有 P`A`(P`)^(-1)=下三角矩阵 对角线元素为A`的特征值
左迁2023-05-24 18:38:014

矩阵的特征值是如何求出来的?

求n阶矩阵A的特征值的基本方法:根据定义可改写为关系式,为单位矩阵(其形式为主对角线元素为λ- ,其余元素乘以-1)。要求向量具有非零解,即求齐次线性方程组有非零解的值。即要求行列式。 解次行列式获得的值即为矩阵A的特征值。将此值回代入原式求得相应的,即为输入这个行列式的特征向量。具体操作以右图为例。  定义1设是一个阶方阵(即使一个n*n的矩阵),是一个数,如果方程(1)存在非零解向量,则称为的一个特征值,相应的非零解向量称为属于特征值的特征向量.(1)式也可写成,(2)这是个未知数个方程的齐次线性方程组,它有非零解的充分必要条件是系数行列式, (3)即 上式是以为未知数的一元次方程,称为方阵的特征方程.其左端是的次多项式,记作,称为方阵的特征多项式.===显然,的特征值就是特征方程的解.特征方程在复数范围内恒有解,其个数为方程的次数(重根按重数计算),因此,阶矩阵有个特征值.设阶矩阵的特征值为由多项式的根与系数之间的关系,不难证明(Ⅰ)(Ⅱ)若为的一个特征值,则一定是方程的根,因此又称特征根,若为方程的重根,则称为的重特征根.方程的每一个非零解向量都是相应于的特征向量,于是我们可以得到求矩阵的全部特征值和特征向量的方法如下:第一步:计算的特征多项式;第二步:求出特征方程的全部根,即为的全部特征值;第三步:对于的每一个特征值,求出齐次线性方程组:的一个基础解系,则的属于特征值的全部特征向量是(其中是不全为零的任意实数).[注]:若是的属于的特征向量,则也是对应于的特征向量,因而特征向量不能由特征值惟一确定.反之,不同特征值对应的特征向量不会相等,亦即一个特征向量只能属于一个特征值.由以上讨论可知,对于方阵的每一个特征值,我们都可以求出其全部的特征向量.但对于属于不同特征值的特征向量,它们之间存在什么关系呢?这一问题的讨论在对角化理论中有很重要的作用.对此我们给出以下结论:定理1 属于不同特征值的特征向量一定线性无关.
北境漫步2023-05-24 18:38:001

如何理解矩阵的特征值和特征向量

矩阵特征向量是置换相抵下的不变量,,,简单点说就是一个线性变换作用在向量上,可以把矩阵看作那个线性变换的线性算子,,,这个作用不改变这个向量的方向,只改变这个向量的大小,而特征值就是那个改变的倍数,,,,特征值在控制理论中有广泛的应用,,,因为它的性质非常好,,,,,,
陶小凡2023-05-24 18:38:002

为什么矩阵不同的特征值对应的特征向量是相互正交的呢?

命题应该是实对称矩阵不同的特征值对应的特征向量是相互正交的。证明如下:设λ1,λ2是两个A的不同特征值,α1, α2分别是其对应的特征向量,有A * α1 = λ1 * α1, A * α2 = λ2 *α2分别取转置,并分别两边右乘α2和α1,得α1" * A" * α2 =λ2 * α1" * α2, α2" * A" * α1 =λ1 * α2" * α1 对应相减并注意到α2" * A" * α1=(α2" * A" * α1)"= α1" * A" * α2 所以 (λ1 - λ2) α1" * α2 = α1" * A" * α2 - α2" * A" * α1 = α1" * A" * α2 - α1" * A" * α2 =0而 λ1 - λ2≠ 0,因此 α1" * α2 = 0即 α1与α2 正交。
肖振2023-05-24 18:38:001

矩阵a和b相似,则它们的特征向量和特征值相同吗

若A~ B,则A与B有相同的特征方程,有相同的特征值
u投在线2023-05-24 18:37:594

实对称矩阵的特征值和特征向量各有什么特殊性质?

实对称矩阵的特征值都是实数属于不同特征值的特征向量正交k重特征值有k个线性无关的特征向量
大鱼炖火锅2023-05-24 18:37:591

线性代数问题,一个矩阵A的特征向值钱为2、3、4。为什么A-E的特征值都减1。这是怎么推出来的

这是利用矩阵多项式的特征值,是矩阵特征值的多项式,这一原理,简单来讲,就是A-E,相当于多项式f(x)=x-1那么f(A)=A-E的全部特征值,就是f(t)=t-1,其中t是矩阵A的全部特征值
韦斯特兰2023-05-24 18:37:591

设3阶实对数矩阵A的特征值是1,2,3,矩阵A属于特征值1,2的特征向量分别 急求

解1. 设 x=(x1,x2,x3) 是A的属于特征值3的特征向量.由于实对称矩阵的属于不同特征值的特征向量是正交的所以有 (α1,x)=(α2,x)=0. 即有-x1-x2+x3=0 x1-2x2-x3 = 0-1 -1 1 1 -2 -1r1+r2 0 -3 0 1 -2 -1r1*(-1/3), r2+2r1 0 1 0 1 0 -1得 α3=(1,0,1)^T.令P = (α1,α2,α3), 则 P^(-1)AP = diag(1,2,3)所以有 A = Pdiag(1,2,3)P^(-1).P=-1 1 1-1 -2 0 1 -1 1P^(-1) = -1/3 -1/3 1/3 1/6 -1/3 -1/6 1/2 0 1/2 计算得 A = 13/6 -1/3 5/6 -1/3 5/3 1/3 5/6 1/3 13/6 注: 可这样验证: AP = Pdiag(1,2,3).
CarieVinne 2023-05-24 18:37:591

矩阵可逆条件下矩阵的特征值和特征向量怎样判断呢?

当A可逆时, 若 λ是A的特征值, α 是A的属于特征值λ的特征向量;则 |A| / λ 是 A*的特征值, α 仍是A*的属于特征值 |A| / λ 的特征向量。设A是n阶方阵,如果数λ和n维非零列向量x使关系式Ax=λx成立,那么这样的数λ称为矩阵A特征值,非零向量x称为A的对应于特征值λ的特征向量。式Ax=λx也可写成( A-λE)X=0。这是n个未知数n个方程的齐次线性方程组,它有非零解的充分必要条件是系数行列式| A-λE|=0。设A是数域P上的一个n阶矩阵,λ是一个未知量,称为A的特征多项式,记¦(λ)=|λE-A|,是一个P上的关于λ的n次多项式,E是单位矩阵。¦(λ)=|λE-A|=λ+a1λ+…+an= 0是一个n次代数方程,称为A的特征方程。特征方程¦(λ)=|λE-A|=0的根(如:λ0)称为A的特征根(或特征值)。n次代数方程在复数域内有且仅有n个根,而在实数域内不一定有根,因此特征根的多少和有无,不仅与A有关,与数域P也有关。以A的特征值λ0代入(λE-A)X=θ,得方程组(λ0E-A)X=θ,是一个齐次方程组,称为A的关于λ0的特征方程组。因为|λ0E-A|=0,(λ0E-A)X=θ必存在非零解  ,  称为A的属于λ0的特征向量。所有λ0的特征向量全体构成了λ0的特征向量空间。 扩展资料:性质1:n阶方阵A=(aij)的所有特征根为λ1,λ2,…,λn(包括重根),则:性质2:若λ是可逆阵A的一个特征根,x为对应的特征向量,则1/λ 是A的逆的一个特征根,x仍为对应的特征向量。性质3:若 λ是方阵A的一个特征根,x为对应的特征向量,则λ 的m次方是A的m次方的一个特征根,x仍为对应的特征向量。性质4:设λ1,λ2,…,λm是方阵A的互不相同的特征值。xj是属于λi的特征向量( i=1,2,…,m),则x1,x2,…,xm线性无关,即不相同特征值的特征向量线性无关。如将特征值的取值扩展到复数领域,则一个广义特征值有如下形式:Aν=λBν其中A和B为矩阵。其广义特征值(第二种意义)λ 可以通过求解方程(A-λB)ν=0,得到det(A-λB)=0(其中det即行列式)构成形如A-λB的矩阵的集合。其中特征值中存在的复数项,称为一个“丛(pencil)”。若B可逆,则原关系式可以写作  ,也即标准的特征值问题。当B为非可逆矩阵(无法进行逆变换)时,广义特征值问题应该以其原始表述来求解。如果A和B是实对称矩阵,则特征值为实数。这在上面的第二种等价关系式表述中并不明显,因为  A矩阵未必是对称的。参考资料:百度百科——矩阵特征值
无尘剑 2023-05-24 18:37:581

矩阵的特征值和特征向量是什么?

|A| = 1 · 2 · 3 = 6A* = |A|A^(-1) = 6A^(-1)(A*)^2 + E = 36A^(-2) + E 的特征值分别是36 · 1^2 + 1 = 3736 / 2^2 + 1 = 10 36 / 3^2 + 1 = 5 最大特征值 37简介矩阵A为n阶方阵,若存在n阶矩阵B,使得矩阵A、B的乘积为单位阵,则称A为可逆阵,B为A的逆矩阵。若方阵的逆阵存在,则称为可逆矩阵或非奇异矩阵,且其逆矩阵唯一。
无尘剑 2023-05-24 18:37:572

主成分分析中计算特征值的方法

直接用matlab啊输入指令[coeff,score,latent,tsquared]=princomp(X)把X换成你要分析的矩阵输出的数据中,latent就是你要的特征值
康康map2023-05-23 19:24:221

矩阵一定有特征值吗?如何证明矩阵有特征值?

一定,一个n阶矩阵一定有n个特征值(包括重根),也可能是复根。一个n阶实对称矩阵一定有n个实特征值(包括重根)。每一个特征值至少有一个特征向量(不止一个)。不同特征值对应特征向量线性无关。矩阵分解是将一个矩阵分解为比较简单的或具有某种特性的若干矩阵的和或乘积 ,矩阵的分解法一般有三角分解、谱分解、奇异值分解、满秩分解等。扩展资料:在线性代数中,相似矩阵是指存在相似关系的矩阵。相似关系是两个矩阵之间的一种等价关系。两个n×n矩阵A与B为相似矩阵当且仅当存在一个n×n的可逆矩阵P。若是的属于的特征向量,则也是对应于的特征向量,因而特征向量不能由特征值唯一确定。反之,不同特征值对应的特征向量不会相等,亦即一个特征向量只能属于一个特征值。参考资料来源:百度百科--矩阵参考资料来源:百度百科--特征值
左迁2023-05-23 19:24:121

带未知数的对称矩阵的行列式怎么算,也就是怎么算特征值,公式我会的,就是不会配方,所以算不出来特征值

我说个技巧性的方法吧:求三阶行列式的特征值的问题最后会变成求一元三次方程的解。对于一般的一元三次方程组通常不易求解,但考试的时候一般都会给比较特殊的一般题目给出的特征值不会是几分之几倍根号几,一般都是整数通过观察可以得出其中一个解,比如x=1,那么用原多项式除以(x-1)就得到一个二次多项式,再求剩下两个解就简单了
西柚不是西游2023-05-23 19:24:122

特征值的个数和矩阵的秩

矩阵特征值的个数等于其阶数,因此有4个特征值又有P-1AP=∧,A与∧具有相同的秩,其中∧=diag(λ1,λ2,λ3,λ4)R(A)=1,所以R(∧)=1,可以判断矩阵A有3个为零的重根∑λi=∑aii,a11+a22+a33+a44=30所以得到λ1=30
Chen2023-05-23 19:24:123

如何用QR算法求矩阵特征值??

function l = rqrtz(A,M)%瑞利商位移的QR算法求矩阵全部特征值%已知矩阵:A%迭代步数:M%求得的矩阵特征值:lA = hess(A);for(i=1:M) N = size(A); n = N(1,1); u = A(n,n); [q,r]=qr(A-u*eye(n,n)); A = r*q+u*eye(n,n); l = diag(A);end4.4 QR算 法 QR算法也是一种迭代算法,是目前计算任意实的非奇异矩阵全部特征值问题的最有效的方法之一.该方法的基础是构造矩阵序列 ,并对它进行QR分解. 由线性代数知识知道,若A为非奇异方阵,则A可以分解为正交矩阵Q与上三角形矩阵R的乘积,即A=QR,而且当R的对角线元素符号取定时,分解式是唯一的. 若A为奇异方阵,则零为A的特征值.任取一数p不是A的特征值,则A-pI为非奇异方阵.只要求出A-pI的特征值,就很容易求出A的特征值,所以假设A为非奇异方阵,并不妨碍讨论的一般性. 设A为非奇异方阵,令 ,对 进行QR分解,即把 分解为正交矩阵 与上三角形矩阵 的乘积 = 做矩阵 继续对 进行QR分解 并定义 一般地,递推公式为 QR算法就是利用矩阵的QR分解,按上述递推公式构造矩阵序列 .只要A为非奇异方阵,则由QR算法就完全确定 .这个矩阵序列 具有下列性质. 性质1 所有 都相似,它们具有相同的特征值. 证明 因为 若令 ,则 为正交阵,且有 因此 与A相似,它们具有相同的特征值. 性质2 的QR分解式为 其中 证明 用归纳法.显然当k=1时,有 假设 有分解式 于是 因为 ,所以 因为 都是正交阵,所以 也是正交阵,同样 也是上三角形阵,从而 的QR分解式为 由前面的讨论知 .这说明QR算法的收敛性有正交矩阵序列 的性质决定. 定理1 如果 收敛于非奇异矩阵 为上三角形矩阵,则 存在并且是上三角形矩阵. 证明 因为 收敛,故下面极限存在 由于 为上三角形矩阵,所以 为上三角形矩阵.又因为 所以 存在,并且是上三角形矩阵. 定理2 (QR算法的收敛性)设A为n 阶实矩阵,且1) A的特征值满足: 2) ,其中 且设 有三角分解式 =LU(L为单位下三角阵,U为上三角阵),则由QR算法得到的矩阵序列 本质上收敛于上三角形矩阵.即 满足 当 当 的极限不一定存在 证明 因为 ,矩阵 决定 的收敛性.又 我们利用 求 ,然后讨论 的收敛性. 由定理条件 得 令 其中 的(i,j)元素 为 于是 由假设,当i>j时, 故 设方阵X的QR分解式为 由 由 知,对充分大的 非奇异,它应有唯一的QR分解式 ,并且 于是 但上三角阵 的对角线元素不一定大于零.为此,引入对角矩阵 以便保证( )的对角线元素都是正数,从而得到 的QR分解式 由 的QR分解式的唯一性得到 从而 由于 ,所以 从而 其中 于是 因为 为上三角阵, 为对角阵,且元素为1或-1,所以 当 当 的极限不一定存在 例 用QR算法求矩阵 的特征值.A的特征值为-1,4,1+2i,1-2i. 解 令 ,用施密特正交化过程将 分解为 将 与 逆序相乘,求出 用 代替A重复上面过程,计算11次得 由 不难看出,矩阵A的一个特征值是4,另一个特征值是-1,其他两个特征值是方程 的根.求得为
肖振2023-05-23 19:24:121

设x=2是可逆矩阵A的一个特征值,则矩阵(1/3A^2)^-1的一个特征值是多少? 答案知道,请具体证明?

构造一个对角矩阵算算。或者用分解因式法证明:|2E-A|=0;|4E-A^2|=0;|4/3E-(1/3A^(2))|=0;|3/4E-(1/3A^2)^(-1))|=0,
Ntou1232023-05-23 19:24:123

题目:设3阶矩阵A=(a1,a2,a3)有3个不同的特征值,且a3=a1+2a2

A的列线性相关说明A有零特征值, 没什么奇怪的
苏萦2023-05-23 19:24:123

二重特征值是什么意思 二重特征值是啥意思

1、二重特征值是指矩阵的特征值是特征多项式的2重根。 2、矩阵是一个按照长方阵列排列的复数或实数集合,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。 3、矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。 矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。在天体物理、量子力学等领域,也会出现无穷维的矩阵,是矩阵的一种推广。
北境漫步2023-05-23 19:24:121

是不是所有的矩阵(方阵)都有特征值

可以没有实特征值,但一定有复特征值. 原因是矩阵的特征多项式在复数域内一定能分解成一次因式.在实数域内就不一定了~
再也不做站长了2023-05-23 19:24:121

设n阶矩阵A满足A^2=A,求A的特征值,并证明E+A可逆。

A^2=A又Ax=YxA^2x=AYx=YAx=YAx=Y^2xA(Y^2-Y)x=0故特征值是0和1这里面Y表示什么自己应该知道吧可逆:主要证明|A+E|值不为零
余辉2023-05-23 19:24:127

证明证明实对称矩阵是正定矩阵的充要条件是它的特征值都是正数

这个问题首先要知道什么是正定阵,以及实对称矩阵的性质. 第一正定阵定义:A正定,就是任意非零列向量x,x"Ax>0[这里注意x"Ax按照矩阵乘法后是一个数,既不是矩阵也不是向量] 第二谱分解定理:实对称矩阵A,存在正交矩阵P,使得 P"AP为对角形,对角线上是A的n个特征值,即P"AP=diag. 我们先来证明充分性 A实对称,则存在正交矩阵P"AP=diag,对角线上是n个特征值. 当对角线上特征值全是正数时:对任意的非零向量x,y=Px(此时x和y一一对应).则y"Ay=x"P"APx=x"diagx 此时x"diagx按照矩阵乘法展开,可见是正数.这就说明了这样一个结论:任意非零向量y,令x=P逆y,则y"Ay>0,满足正定定义. 反之,当A正定时,任意的向量尤其列向量x=(1,0...0)",令y=Px,那么y"Ay=x"P"APx=x"diagx=k1(对角阵的第一个元素,也就是A的第一个特征值).按照正定定义y"Ay>0,所以k1>0. 一下分别取x=(0,1,...0)"直到x=(0,.,0,1),就会有对角阵上(2,2)位(3,3)位直到(n,n)位的元素是正数,因此n个特征值都大于0. 本题的关键是要会运用正定性的定义(非零向量x的任意性,二次型是个数),谱分解定理(P是由A唯一决定的,对角阵对角线上是n个特征值)
mlhxueli 2023-05-23 19:24:121

设A,B均为n阶实对称矩阵,且A正定,证明AB的特征值全为实数

把A分解成A=CC^T,其中C可逆 那么AB=CC^TB相似于C^TBC,后者的特征值都是实数
阿啵呲嘚2023-05-23 19:24:121

矩阵的秩和特征值有什么关系?

矩阵的秩和特征值的关系:如果矩阵可以对角化,那么非0特征值的个数就等于矩阵的秩;如果矩阵不可以对角化,这个结论就不一定成立。从线性空间的角度看,在一个定义了内积的线性空间里,对一个N阶对称方阵进行特征分解,就是产生了该空间的N个标准正交基,然后把矩阵投影到这N个基上。N个特征向量就是N个标准正交基,而特征值的模则代表矩阵在每个基上的投影长度。特征值越大,说明矩阵在对应的特征向量上的方差越大,功率越大,信息量越多。矩阵特征值的定义:设A是n阶方阵,如果数λ和n维非零列向量x使关系式Ax=λx成立,那么这样的数λ称为矩阵A特征值,非零向量x称为A的对应于特征值λ的特征向量。式Ax=λx也可写成(A-λE)X=0。这是n个未知数n个方程的齐次线性方程组,它有非零解的充分必要条件是系数行列式|A-λE|=0。
小菜G的建站之路2023-05-23 19:24:111

矩阵一定有特征值吗?如何证明矩阵有特征值?

矩阵特征值的求法是写出特征方程lλE-Al=0 左边解出含有λ的特征多项式比如说是含有λ的2次多项式,我们学过 ,是可能没有实数解的,(Δ<0)这个时候 我们说这个矩阵没有【实特征值】但是如果考虑比如Δ<0时 有虚数的解,,也就是有虚数的特征值的 这样说来就必有特征值啦
gitcloud2023-05-23 19:24:112

特征值的个数和矩阵的秩

特征值的个数和矩阵的秩特征值的个数和矩阵的秩为什么rA=1三个特征值为0?而且为什么特征值有4个?
ardim2023-05-23 19:24:117

矩阵一定有特征值吗?如何证明矩阵有特征值?

矩阵特征值的求法是写出特征方程lλE-Al=0左边解出含有λ的特征多项式比如说是含有λ的2次多项式,我们学过,是可能没有实数解的,(Δ<0)这个时候我们说这个矩阵没有【实特征值】但是如果考虑比如Δ<0时有虚数的解,,也就是有虚数的特征值的这样说来就必有特征值啦
meira2023-05-23 19:24:112

求下列矩阵的特征值和特征向量{0 0 0 1} {0 0 1 0} {0 1 0 0}{0 0 0 1}

设矩阵A的特征值为λ那么|A-λE|=-λ 0 0 10 -λ 1 00 1 -λ 01 0 0 -λ r1+r4 *λ ,r2+r3 *λ=0 0 0 1-λ^20 0 1-λ^2 00 1 -λ 01 0 0 -λ解得1-λ^2=0即λ=1或 -1即矩阵有2重特征值特征值1和-1λ=1时,A-E=-1 0 0 10 -1 1 00 1 -1 01 0 0 -1 r1+r4,r2+r3,交换行次序~1 0 0 -10 1 -1 00 0 0 00 0 0 0得到特征向量(0,1,1,0)^T和(1,0,0,1)^Tλ=-1时,A+E=1 0 0 10 1 1 00 1 1 01 0 0 1 r4-r1,r3-r2~1 0 0 10 1 1 00 0 0 00 0 0 0得到特征向量(0,1,-1,0)^T和(1,0,0,-1)^T
水元素sl2023-05-23 19:24:113

矩阵的迹和特征值关系是什么?

主对角线是元素的和,线性代数中有定理:相似矩阵迹相等,而矩阵相似于它的Jordan标准型之后,迹就成为特征值的和,而从维达定理,一个方程根的和就是它的第二项系数的反号,用于特征多项式,就是你需要的结果。奇异值分解非常有用,对于矩阵A(p*q),存在U(p*p),V(q*q),B(p*q)(由对角阵与增广行或列组成),满足A = U*B*V。矩阵的分解矩阵分解是将一个矩阵分解为比较简单的或具有某种特性的若干矩阵的和或乘积 ,矩阵的分解法一般有三角分解、谱分解、奇异值分解、满秩分解等。谱分解(Spectral decomposition)是将矩阵分解为由其特征值和特征向量表示的矩阵之积的方法。需要注意只有对可对角化矩阵才可以施以特征分解。假设M是一个m×n阶矩阵,其中的元素全部属于域K,也就是实数域或复数域。
善士六合2023-05-23 19:24:111

老师想问一下,线性代数行列式求特征值的方法

一般可用这个方法你先试一下|A-λE|c1+c3r3-r1这样就可以按第1列展开, 提出了 1-λ之后的2次多项式用十字相乘法分解你体会一下上面的做法, 是将 (2,1) 元素化为0的同时, (1,1) 与 (3,1) 元素成比例
小菜G的建站之路2023-05-23 19:24:112

急求,matlab中, 已知矩阵A,已完成对A的QR分解,下一步求A的特征值和特征向量,程序怎么编写?

求特征向量用matlab中eig命令第三个问题应该是阶段误差的原因吧!
meira2023-05-23 19:24:112

一个矩阵的特征值和它的奇异值有什么关系

设 A 是n阶方阵,如果存在数m和非零n维列向量 x,使得 Ax=mx 成立,则称 m 是A的一个特征值(characteristic value)或本征值(eigenvalue)。非零n维列向量x称为矩阵A的属于(对应于)特征值m的特征向量或本征向量,简称A的特征向量或A的本征向量。2求矩阵特征值的方法Ax=mx,等价于求m,使得(mE-A)x=0,其中E是单位矩阵,0为零矩阵。|mE-A|=0,求得的m值即为A的特征值。|mE-A| 是一个n次多项式,它的全部根就是n阶方阵A的全部特征值,这些根有可能相重复,也有可能是复数。如果n阶矩阵A的全部特征值为m1 m2 ... mn,则|A|=m1*m2*...*mn同时矩阵A的迹是特征值之和:tr(A)=m1+m2+m3+…+mn[1]如果n阶矩阵A满足矩阵多项式方程g(A)=0, 则矩阵A的特征值m一定满足条件g(m)=0;特征值m可以通过解方程g(m)=0求得。如果您觉得正确或者采纳的话,麻烦给我好评哦,谢谢。
再也不做站长了2023-05-23 19:24:112

信道矩阵SVD分解得到的非零特征值表示什么?

表示等价的信道的信道各项增益因子.当前信道通过正交变换之后可以表示为等价信道(无干扰)的形式.但是接收方和发送方都要经过矩阵处理.
康康map2023-05-23 19:24:111

特征值与根向量

(1)定理:复数域上的线性空间可以分解为线性变换Ə的根子空间的直和接下来回到原题可知,不妨设X属于U1,那么记U=U2U3。。。Um则可知,X-X1属于U1同时有,X2+….Xm属于U故元素X-X1同时属于U1和U且易证:不同特征值的根向量线性无关所以X-X1不为零元素这就与U和U1是直和矛盾! 从而原命题得证!(2)用(1)的结论就可以了
康康map2023-05-23 19:24:111

矩阵一定有特征值吗?如何证明矩阵有特征值?

设k是矩阵a的特征值,x是对应k的矩阵a的非零的特征向量。则,ax=kx,(a-ki)x=0,若det(a-ki)不等于0.则,方程(a-ki)x=0只有唯一的解x=0.与x非零矛盾。因此,det(a-ki)=0.
左迁2023-05-23 19:24:113

svd是否只能用特征值分解的方法去求左右奇异向量?

特征值解奇异值解区别所矩阵都进行奇异值解阵才进行特征值解所给矩阵称阵A(T)=A二者结相同说称矩阵特征值解所奇异值解特例二者存些差异奇异值解需要奇异值排序且全部于等于零于特征值解 [v,d] = eig( A ) , 即 A = v*d*inv(v)于奇异值解,其解基本形式 [u,s,v] = svd(C), C = u*s*v". 若C阵称阵, 则 u = v; 所 C = v*s*v";
NerveM 2023-05-23 19:24:101

矩阵的奇异值与特征值有什么相似之处与区别之处?

可以理解为奇异值是特征值的推广,对长方形或者正方形但不满秩的矩阵,我们总可以求其奇异值。对于一般方阵两者不一定有联系。对于对称方阵,二者相等。
hi投2023-05-23 19:24:102

matlab怎么计算矩阵的特征值和特征向量

[V, D]=eig(A)
bikbok2023-05-23 19:24:106

Matlab 矩阵特征值排序问题

矩阵的特征值分解是非常重要的数学工具。在matlab中一般使用eig()函数完成矩阵特征值和特征向量的提取,其用法如下 结果如下: 显然eig()就是一般意义上的计算矩阵的特征值和特征向量 E = eig(A) 返回方阵A的所有特征值,构成列向量E。 [V,D] = eig(A) 返回方阵A的特征值和特征向量,其中特征值排满对角阵D的对角元素,对应的特征向量排列为方阵V的每一列。 而eigs()也能求取矩阵的特征值和特征向量,不过其返回的方阵幅值最大的6个特征值和特征向量,用法和eig()类似。不过eigs()通过迭代的方式来求解特征值,所以其在加快运算速度的同时降低了准确度。另外,一般eigs()处理的大型稀疏矩阵。 [V,D] = eigs(A) 返回方阵A的前6个最大特征特征值和特征向量。 [V,D] = eigs(A,k) 返回前k个最大特征值和特征向量。 一般情况下,eig()和eigs()返回的特征值是从大到小排列,然而这并不是一定的。经过测试,两者的特征值排序都可能为乱序,所以,在对顺序有要求的情况下,需要通过sort()函数来自动排序。 如下 按特征值大小排序结果如下: John D"Errico设计了一个eigenshuffle.m函数能够得到排序后的特征值和特征向量。该方法排序方式为特征值大小降序排列。 速度测试: 结果: 显然eigenshuffle函数的速度比传统方法略低。 参考: https://cn.mathworks.com/matlabcentral/fileexchange/22885-eigenshuffle
bikbok2023-05-23 19:24:101

求特征值问题,这个行列式是怎么化出来的

豆豆staR2023-05-23 19:24:102

你好!简单矩阵(7,2),(2,3)用QR分解迭代,为啥求不出特征值?谢谢!

人类地板流精华2023-05-23 19:24:101

3×3矩阵的特征值怎么求

3×3矩阵的特征值怎么求:不要想成是高阶方程求特征值基本上就是因式分解按第3列展开得到(2-λ)[(-1-λ)(3-λ)+4]=(2-λ)(λ^2-2λ+1)当然就是(2-λ)(1-λ)^2”矩阵的特征值是线性代数里面的一个重要内容,无论是期末考试还是考研都是一个重点。
此后故乡只2023-05-23 19:24:101

矩阵的奇异值与特征值有什么相似之处与区别之处?

特征值是线性代数中的一个重要概念。在数学、物理学、化学、计算机等领域有着广泛的应用。设 A 是n阶方阵,如果存在数m和非零n维列向量 x,使得 Ax=mx 成立,则m是A的一个特征值(characteristic value)或本征值(eigenvalue)。非零n维列向量x称为矩阵A的属于(对应于)特征值m的特征向量或本征向量,简称A的特征向量或A的本征向量。设A是向量空间的一个线性变换,如果空间中某一非零向量通过A变换后所奇异矩阵特征值得到的向量和X仅差一个常数因子,即AX=kX,则称k为A的特征值,X称为A的属于特征值k的特征向量或特征矢量(eigenvector)。如在求解薛定谔波动方程时,在波函数满足单值、有限、连续性和归一化条件下,势场中运动粒子的总能量(正)所必须取的特定值,这些值就是正的本征值。
FinCloud2023-05-23 19:24:103

opencv矩阵svd分解最小特征值的解向量怎么获得

我试了一下,eig([1 0 0;0 10 0;0 0 5])结果是 1, 10, 5。说明eig命令得到的特征值未排序。这样的话A的奇异值就是A"A的特征值的开方,可以用sqrt(eig(A"*A))得到对应状态量的奇异值,因为求特征值的操作eig是默认不排序的。
余辉2023-05-23 19:24:101

矩阵经过初等变换,特征值会改变吗?

矩阵经过初等变换特征值当然可能会发生改变特别是每行列乘以除以常数的时候我们都记住基本性质A的特征值为λ那么变换之后的f(A)其特征值就是f(λ)这也是求特征值时的基本方法
FinCloud2023-05-23 19:24:102

线性代数中的特征值特征向量与现实有什么联系,实际生活中用在哪里?

如果你把A*x=lambda*x中的A看做一种变换,一种作用,那么那些在这种作用下,只改变长短不改变方向的那些向量x就是特征向量,而特征值就是lambda,是伸缩系数,起能量增幅或者削减作用。特征值特征向量在各学术领域均有很高级的作用,首先介绍PCA,主成分分析。如果你面前有大维数组,处理起来非常棘手,直接带入问题处理速度又慢,第一想法就是能不能从中取出最有用,最有代表性的内容,俗话说:捞干的。回想tr迹这个性质,trA=A所有特征向量的和,主对角线元的意义非凡,暂且认为主对角线和就是这个矩阵所蕴含的能量。而特征向量就是这些能量集中爆发的方向,如果你很清楚特征分解的几何意义,就知道特征向量就是数据在空间中的对称轴,特征分解就是把其他方面的能量都投影在对称轴上,所以特征分解完或者说投影完,中间就只剩一个对角阵了,非对角元全是0. 此时你把最大的那几个特征向量摘出来,其余的抛掉,如此能很大程度降低你数据的维度,但信息损失仍在可控的范围。假设你求出100个特征值,头五个最大的和能达到这100个和的95%,那么其余95个丢掉,相对应的特征向量也丢掉。此时你的100*100的方阵只剩下5*5了,但信息量保存了95%。 金融业,银行业,保险业大量使用。互联网,Google的PageRank,就是 对www链接关系的修正邻接矩阵的,主要特征向量的投影分量,给出了页面平分。也就是搜索排名,凭什么我靠前你靠后。人像识别,我们把图像A看成矩阵,进一步看成线性变换矩阵,把这个训练图像的特征矩阵求出来(假设取了n个能量最大的特征向量)。用A乘以这个n个特征向量,得到一个n维矢量a,也就是A在特征空间的投影。还有聚类分析,信号处理等等。所以这块你一定要学透。
北境漫步2023-05-23 19:24:101

矩阵特征值分解的两种方法:jacobi分解方法和QR分解方法的各自优点、缺点是什么,请计算数学专业高手解答

粗略一点讲,Jacobi算法相对慢一些,但精度高一些;QR算法相对快一些,但精度低一些。
九万里风9 2023-05-23 19:24:092

对特征值进行,qr分解有什么意义

当A可逆时,若 λ是A的特征值,α 是A的属于特征值λ的特征向量,则 |A| / λ 是 A*的特征值,α 仍是A*的属于特征值 |A| / λ 的特征向量
可桃可挑2023-05-23 19:24:092

matlab 特征值分解

这是因为matlab求解特征值用的是数值解法,对于奇异矩阵当然是有复数的,但是更多的原因是因为数值解法导致的,可以先用SVD命令求解奇异值,实际上奇异值是特征值的开方,所以,而且奇异值求解排列是从大到小,当然接近零的话可能出现负数,就不一定满足这个规律了。
小白2023-05-23 19:24:091

10、将NXN的矩阵R进行特征值分解,并将特征值排列成一个列向量。

[证明] 充分性:已知A具有n个线性无关的特征向量X1,X2,……,则AXi=入iXi i=1,2,……,nA[X1 X2 ……Xn]=[入1X1 入2X2 ……入nXn]=[X1 X2 ……Xn]*X1,X2,Xn线性无关,故P=[X1 X2 Xn]为满秩矩阵,令V=*,则有AP=PVV=AP/P必要性:已知存在可逆方阵P,使AP/P=V=*将P写成列向量P=[P1 P2 Pn] Pn为n维列向量[AP1 AP2……APn]=[入1P1 入2P2……入nPn]可见,入i为A的特征值,Pi为A的特征向量,所以,A具有n个线性无关的特征向量。注:因为上面的过程是我自己手工打上去的,好多符号百度都打不出来,将就能看懂就好,其中*表示的是一个n阶对角矩阵,对角线上的矢量分别为入1,入2……入nn阶矩阵在复数范围内,一定有n个特征值(重特征值按重数计算个数),从这个意义上说,矩阵的特征值个数与矩阵的阶数是有关系的。n阶矩阵在实数范围内有多少个特征值就不一定了。但是有一个重要的结论需要知道:n阶实对称矩阵一定有n个实特征值(重特征值按重数计算个数)。
肖振2023-05-23 19:24:091

请教问题,大型稀疏矩阵的特征值分解

【知识点】若矩阵A的特征值为λ1,λ2,...,λn,那么|A|=λ1·λ2·...·λn【解答】|A|=1×2×...×n=n!设A的特征值为λ,对于的特征向量为α。则Aα=λα那么(A²-A)α=A²α-Aα=λ²α-λα=(λ²-λ)α所以A²-A的特征值为λ²-λ,对应的特征向量为αA²-A的特征值为0,2,6,...,n²-n【评注】对于A的多项式,其特征值为对应的特征多项式。线性代数包括行列式、矩阵、线性方程组、向量空间与线性变换、特征值和特征向量、矩阵的对角化,二次型及应用问题等内容。
tt白2023-05-23 19:24:091

为什么正交矩阵一定可以特征值分解?

1. "正交矩阵的特征值只能是1或者-1"这个是严重错误!随便给你个例子0 1 00 0 11 0 02. "是什么保证了它有足够的特征向量使得它一定可以特征值分解"本质上讲正交矩阵是正规矩阵,所有的正规矩阵都可以酉对角化(当然这个不是非常容易证明,先要酉上三角化,然后用正规性得到非对角元全为零)。如果你已经知道Hermite矩阵可以酉对角化的话还可以用Cayley变换建立酉阵和Hermite矩阵的联系,这样就可以把酉阵看作Hermite阵的矩阵函数,从而也可以酉对角化。
wpBeta2023-05-23 19:24:091

对称半正定矩阵一定可以特征值分解吗?

A的所有主子式都大于等于0,所以必然可以进行特征值分解。不存在你说的哪种情况。
北境漫步2023-05-23 19:24:093

求矩阵特征值如何因式分解

|A-λE|= 2-λ 2 -2 2 5-λ -4 -2 -4 5-λ r3+r2 (消0的同时,还能提出公因子,这是最好的结果) 2-λ 2 -2 2 5-λ -4 0 1-λ 1-λ c2-c3 2-λ 4 -2 2 9-λ -4 0 0 1-λ = (1-λ)[(2-λ)(9-λ)-8] (按第3行展开,再用十字相乘法) = (1-λ)(λ^2-11λ+10) = (10-λ)(1-λ)^2. A的特征值为:λ1=10,λ2=λ3=1.
苏州马小云2023-05-23 19:24:091

线性代数求特征值的时候分解因式用弄不出来,好复杂,有没有什么技巧?例如这题

这种题就是先把方程完全写成一元三次方程,再带根试,-5到5,因为是正常做题,只要自己没做错的话肯定至少能试出一个根,然后就可以分解因式了,像这题就可以试出-4和5.其实一般的题3以内就能试出来。试的时候也不要死算,看奇偶啊,正负啊,个位数啊有时候就可以排除。
豆豆staR2023-05-23 19:24:091

为什么正交矩阵一定可以特征值分解

证明:根据题意:n/(n²+nπ) < 1/(n²+π) +1/(n²+2π)+.....+1/(n²+nπ) < n/(n²+π)因此:n²/(n²+nπ) < n[1/(n²+π) +1/(n²+2π)+.....+1/(n²+nπ)] < n²/(n²+π)又∵lim(n→∞) n²/(n²+nπ) = lim(n→∞) 1/[1+(π/n)] = 1lim(n→∞) n²/(n²+π)] = lim(n→∞) 1/[1+(π/n²)] = 1根据夹逼准则:原极限=1
无尘剑 2023-05-23 19:24:091

什么是特征向量,特征值,矩阵分解

特征值是线性代数中的一个重要概念。在数学、物理学、化学、计算机等领域有着广泛的应用。设 A 是n阶方阵,如果存在数m和非零n维列向量 x,使得 Ax=mx 成立,则称 m 是A的一个特征值(characteristic value)或本征值(eigenvalue)。非零n维列向量x称为矩阵A的属于(对应于)特征值m的特征向量或本征向量,简称A的特征向量或A的本征向量。————————摘自百度百科
无尘剑 2023-05-23 19:24:091

c++编程求矩阵的特征值,特征向量和特征值分解

想想特征向量的原始定义Ax= cx,你就恍然大悟了,看到了吗?cx是方阵A对向量x进行变换后的结果,但显然cx和x的方向相同),而且x是特征向量的话,ax也是特征向量(a是标 量且不为零),所以所谓的特征向量不是一个向量而是一个向量族, 另外,特征值只不过反映了特征向量在变换时的伸缩倍数而已
Chen2023-05-23 19:24:091

qr分解怎么求特征向量,求矩阵E的特征值和特征向量

楼主的问题是自己写程序完成矩阵的QR分解,既然是迭代实现QR分解,就与矩阵论中说的计算特征值和特征向量的方法有些区别了。大体的步骤应该是首先将矩阵化成双对角矩阵,然后追赶计算特征值和特征向量,程序代码可以参考 徐士良编的 常用数值算...
可桃可挑2023-05-23 19:24:093

一张简单无向图的邻接矩阵没有退化的特征值意味着什么?

但是有向图就不一定了.因为无向图的邻接矩阵是对称的,则aij=aji=1,aij=1无向图的邻接矩阵一定是对称的,所以也就是多用了一些存储空间,则aji不一定等于1,点i 到 j 有边.因为如果一个点i到j有边、 有向图用邻接矩阵更加节省存储空间,但j到i不一定有边;所以都是对称的
wpBeta2023-05-23 12:58:141

奇异值和特征值的关系

特征值分解和奇异值分解(SVD)在主成分分析(PCA)和机器学习领域都有广泛的应用。PCA的实现由两种方法,一种是特征值分解,另一种是奇异值分解,特征值分解和奇异值分解的目的是一样的,都是提取出一个矩阵最重要的特性。特征值线性代数中对特征值和特征向量的定义:设A是n阶方阵,如果存在 λ 和n维非零向量x,使 Ax=λxAx=λx,则 λ 称为方阵A的一个特征值,x为方阵A对应于或属于特征值 λ 的一个特征向量。从定义可以看出,对特征向量x进行A变换的实质是将特征向量进行缩放,缩放因子为特征值λ。因此,特征向量的代数上含义是:将矩阵乘法转换为数乘操作;特征向量的几何含义是:特征向量通过方阵A变换只进行伸缩,而保持特征向量的方向不变。特征值表示的是这个特征到底有多重要,类似于权重,而特征向量在几何上就是一个点,从原点到该点的方向表示向量的方向。  一个变换方阵的所有特征向量组成了这个变换矩阵的一组基。所谓基,可以理解为坐标系的轴。我们平常用到的大多是直角坐标系,在线性代数中可以把这个坐标系扭曲、拉伸、旋转,称为基变换。我们可以按需求去设定基,但是基的轴之间必须是线性无关的,也就是保证坐标系的不同轴不要指向同一个方向或可以被别的轴组合而成,否则的话原来的空间就“撑”不起来了。从线性空间的角度看,在一个定义了内积的线性空间里,对一个N阶对称方阵进行特征分解,就是产生了该空间的N个标准正交基,然后把矩阵投影到这N个基上。N个特征向量就是N个标准正交基,而特征值的模则代表矩阵在每个基上的投影长度。特征值越大,说明矩阵在对应的特征向量上的方差越大,功率越大,信息量越多。总结一下,特征值分解可以得到特征值与特征向量,特征值表示的是这个特征到底有多重要,而特征向量表示这个特征是什么,可以将每一个特征向量理解为一个线性的子空间,我们可以利用这些线性的子空间干很多的事情。不过,特征值分解也有很多的局限,比如说变换的矩阵必须是方阵。  在机器学习特征提取中,意思就是最大特征值对应的特征向量方向上包含最多的信息量,如果某几个特征值很小,说明这几个方向信息量很小,可以用来降维,也就是删除小特征值对应方向的数据,只保留大特征值方向对应的数据,这样做以后数据量减小,但有用信息量变化不大,PCA降维就是基于这种思路。注意:矩阵的特征值要求矩阵是非奇异矩阵(即方阵且行列式的值不为零)奇异值特征值及特征值分解都是针对方阵而言,现实世界中,我们看到的大部分矩阵不是方阵,比如每道数据有M个点,一共采集了N道数据,这样就形成了一个N*M的矩阵,那么怎样才能像方阵一样提取出它的特征,以及特征的重要性。奇异值分解就是来干这个事情的。奇异值相当于方阵中的特征值,奇异值分解相当于方阵中的特征值分解。奇异值分解(SVD)是一种适用于任意矩阵的分解方法。奇异值分解的原理就不在这里阐述(感兴趣的读者,可以进一步看本博主关于SVD原理的博文)特征值和奇异值关系个人觉得:对于非奇异矩阵,对应着特征值。对于奇异矩阵,就需要进行奇异值分解,对应着奇异值。对于奇异矩阵,将A与其转置相乘ATAATA将会得到一个方阵,再求特征值。值得注意的是,对于非奇异矩阵进行奇异值分解(SVD),得到的奇异值,其实就是特征值。
tt白2023-05-22 22:49:451

特征值分解和奇异值分解的区别

特征值分解和奇异值分解的区别所有的矩阵都可以进行奇异值分解,而只有方阵才可以进行特征值分解。当所给的矩阵是对称的方阵,A(T)=A,二者的结果是相同的。也就是说对称矩阵的特征值分解是所有奇异值分解的一个特例。但是二者还是存在一些小的差异,奇异值分解需要对奇异值从大到小的排序,而且全部是大于等于零。对于特征值分解[v,d]=eig(A),即A=v*d*inv(v)对于奇异值分解,其分解的基本形式为[u,s,v]=svd(C),C=u*s*v".若C阵为对称的方阵,则有u=v;所以有C=v*s*v";
人类地板流精华2023-05-22 22:49:431

如何理解矩阵奇异值和特征值?

基本介绍奇异值分解在某些方面与对称矩阵或Hermite矩阵基于特征向量的对角化类似。然而这两种矩阵分解尽管有其相关性,但还是有明显的不同。对称阵特征向量分解的基础是谱分析,而奇异值分解则是谱分析理论在任意矩阵上的推广。[1]编辑本段理论描述假设M是一个m×n阶矩阵,其中的元素全部属于域K,也就是实数域或复数域。如此则存在一个分解使得M=UΣV*,其中U是m×m阶酉矩阵;Σ是半正定m×n阶对角矩阵;而V*,即V的共轭转置,是n×n阶酉矩阵。这样的分解就称作M的奇异值分解。Σ对角线上的元素Σi,i即为M的奇异值。常见的做法是为了奇异值由大而小排列。如此Σ便能由M唯一确定了。(虽然U和V仍然不能确定。)直观的解释[2]在矩阵M的奇异值分解中M=UΣV*·V的列(columns)组成一套对M的正交"输入"或"分析"的基向量。这些向量是M*M的特征向量。·U的列(columns)组成一套对M的正交"输出"的基向量。这些向量是MM*的特征向量。·Σ对角线上的元素是奇异值,可视为是在输入与输出间进行的标量的"膨胀控制"。这些是M*M及MM*的奇异值,并与U和V的行向量相对应。奇异值和奇异向量,以及他们与奇异值分解的关系一个非负实数σ是M的一个奇异值仅当存在Km的单位向量u和Kn的单位向量v如下:其中向量u和v分别为σ的左奇异向量和右奇异向量。对于任意的奇异值分解矩阵Σ的对角线上的元素等于M的奇异值.U和V的列分别是奇异值中的左、右奇异向量。因此,上述定理表明:一个m×n的矩阵至少有一个最多有p=min(m,n)个不同的奇异值。总是可以找到在Km的一个正交基U,组成M的左奇异向量。总是可以找到和Kn的一个正交基V,组成M的右奇异向量。如果一个奇异值中可以找到两个左(或右)奇异向量是线性相关的,则称为退化。非退化的奇异值具有唯一的左、右奇异向量,取决于所乘的单位相位因子eiφ(根据实际信号)。因此,如果M的所有奇异值都是非退化且非零,则它的奇异值分解是唯一的,因为U中的一列要乘以一个单位相位因子且同时V中相应的列也要乘以同一个相位因子。根据定义,退化的奇异值具有不唯一的奇异向量。因为,如果u1和u2为奇异值σ的两个左奇异向量,则两个向量的任意规范线性组合也是奇异值σ一个左奇异向量,类似的,右奇异向量也具有相同的性质。因此,如果M具有退化的奇异值,则它的奇异值分解是不唯一的。与特征值分解的联系几何意义因为U和V向量都是单位化的向量,我们知道U的列向量u1,...,um组成了Km空间的一组标准正交基。同样,V的列向量v1,...,vn也组成了Kn空间的一组标准正交基(根据向量空间的标准点积法则).线性变换T:Kn→Km,把向量x变换为Mx。考虑到这些标准正交基,这个变换描述起来就很简单了:T(vi)=σiui,fori=1,...,min(m,n),其中σi是对角阵Σ中的第i个元素;当i>min(m,n)时,T(vi)=0。这样,SVD理论的几何意义就可以做如下的归纳:对于每一个线性映射T:Kn→Km,T把Kn的第i个基向量映射为Km的第i个基向量的非负倍数,然后将余下的基向量映射为零向量。对照这些基向量,映射T就可以表示为一个非负对角阵。
肖振2023-05-22 22:49:431

方阵的奇异值分解和特征值

特征值分解和奇异值分解的区别所有的矩阵都可以进行奇异值分解,而只有方阵才可以进行特征值分解。当所给的矩阵是对称的方阵,A(T)=A,二者的结果是相同的。也就是说对称矩阵的特征值分解是所有奇异值分解的一个特例。但是二者还是存在一些小的差异,奇异值分解需要对奇异值从大到小的排序,而且全部是大于等于零。对于特征值分解 [v,d] = eig( A ) , 即 A = v*d*inv(v)对于奇异值分解,其分解的基本形式为 [u,s,v] = svd(C), C = u*s*v". 若C阵为对称的方阵, 则有 u = v; 所以有 C = v*s*v";
陶小凡2023-05-22 22:49:431

如何理解矩阵奇异值和特征值?

你先讲清楚你能理解到什么程度,然后我再视情况帮你稍微加深一下理解。
ardim2023-05-22 22:49:432

为什么矩阵的各行元素的和等于其特征值

因为 A 乘列向量 (1,1,1.,1)^T 时 相当于把A的各行加起来构成一个列向量。我知道你是想问各行元素的和(设为a)相等,这个和等于特征值吧。特征多项式|A-rE|把从第二列开始的每一列加到第一列,就可以提出一个公因式(a-r),所以a是矩阵A的特征值。
大鱼炖火锅2023-05-22 22:49:434

特征值分解和奇异值分解

特征值和特征向量的定义如下: 其中A是一个 n×n 的矩阵,x 是一个 n 维向量,则我们说λ是矩阵 A 的一个特征值, 而 x 是矩阵 A 的特征值λ所对应的特征向量。求出特征值和特征向量有什么好处呢? 就是我们可以将矩阵 A 特征分解。如果我们求出了矩阵 A 的 n 个特征值 ,以及矩阵这n个特征值所对应的特征向量 。那么矩阵A就可以用下式的特征分解表示: ,其中 为特征向量组成的矩阵, 是特征值所组成的对角矩阵。特征值分解 的前提条件是A是方阵。如果A不是方阵,这种分解(对角化)将无效。 怎样解决这个问题呢? 因此出现了奇异值分解。 奇异值分解可表示成: 如何进行奇异值分解呢?? 奇异值分解性质
Chen2023-05-22 22:49:421

特征值分解和奇异值分解的区别

有的矩阵都可以进行奇异值分解,而只有方阵才可以进行特征值分解。当所给的矩阵是对称的方阵,A(T)=A,二者的结果是相同的。也就是说对称矩阵的特征值分解是所有奇异值分解的一个特例。但是二者还是存在一些小的差异,奇异值分解需要对奇异值从大到小的排序,而且全部是大于等于零。对于特征值分解 [v,d] = eig( A ) , 即 A = v*d*inv(v)对于奇异值分解,其分解的基本形式为 [u,s,v] = svd(C), C = u*s*v". 若C阵为对称的方阵, 则有 u = v; 所以有 C = v*s*v";
再也不做站长了2023-05-22 22:49:413

特征值分解和奇异值分解的区别

特征值分解和奇异值分解的区别所有的矩阵都可以进行奇异值分解,而只有方阵才可以进行特征值分解。当所给的矩阵是对称的方阵,A(T)=A,二者的结果是相同的。也就是说对称矩阵的特征值分解是所有奇异值分解的一个特例。但是二者还是存在一些小的差异,奇异值分解需要对奇异值从大到小的排序,而且全部是大于等于零。对于特征值分解[v,d]=eig(A),即A=v*d*inv(v)对于奇异值分解,其分解的基本形式为[u,s,v]=svd(C),C=u*s*v".若C阵为对称的方阵,则有u=v;所以有C=v*s*v";
NerveM 2023-05-22 22:49:411

矩阵的特征值分解和奇异值分解有什么不同

阿萨德点点滴滴点点滴滴
余辉2023-05-22 22:49:354

如何求矩阵的特征值和特征向量?

特征值是方阵的一种特殊性质,是数,与方阵本身相关。计算特征值的方法如下:1. 假设A是n阶方阵,其特征值为λ,特征向量为x;2. 因为特征向量与特征值相关,即Ax=λx,移项可得到(A-λE)x=0,其中E为n阶单位矩阵;3. 对于非零解,方程(A-λE)x=0有解当且仅当方程系数矩阵(A-λE)的行列式det(A-λE)=0;4. 解出方程det(A-λE)=0的解λ1,λ2,…,λn,即为矩阵A的n个特征值;5. 对于每个特征值λi,求解其对应的特征向量xi,即求解方程(A-λiE)xi=0,得到n个线性无关的特征向量。特征值和特征向量的计算是矩阵分析和线性代数中的重要概念,广泛应用于数学、物理学、工程学等领域。
陶小凡2023-05-22 22:49:311

矩阵的特征值和特征向量怎么算的?

题:矩阵a=0001001001001000求矩阵a的特征值与特征向量。解:特征矩阵te-a=t00-10t-100-1t0-100t|te-a|=(tt-1)^2注:这个可以用第一列进行代数余子式展开,看容易看出解来。也可以用第二三行用二阶子式及其余子式的乘积来计算,也很方便。于是其特征值有四个,分别是1,1,-1,-1特征矩阵te-a的四个解向量,就是相应的特征向量。略。
meira2023-05-22 22:49:311

线性代数,特征值特征向量

参考:设A是秩为1的n阶方阵, 则1. A可表示为αβ^T, 其中α,β为n维非零列向量(或β^Tα≠0).反之,若A=αβ^T,其中α,β为n维非零列向量(或β^Tα≠0), 则r(A)=1.2. A^k = (β^Tα)^(k-1)A3. A的特征值为 α^Tβ(=β^Tα),0,0,...,04. tr(A)=α^Tβ说明:1. 方法: 取A的一个非零的行向量,设为 β^T,则其余各行是此行的ki倍.令α=(k1,...,kn)^T, 则 A=αβ^T.反之, 若A=αβ^T, 其中α,β为n维非零列向量(或β^Tα≠0)则 A≠0, 所以 r(A)>=1又因为 r(A)=r(αβ^T)<=r(α)=1所以 r(A)=1.2. A^k=(αβ^T)(αβ^T)(αβ^T)...(αβ^T)= α(β^Tα)(β^Tα)(β^T...α)β^T= (β^Tα)^(k-1)αβ^T= (β^Tα)^(k-1)A3.因为 Aα=(αβ^T)α=α(β^Tα)=(β^Tα)α所以α是A的属于特征值β^Tα(≠0)的特征向量因为r(A)=1所以齐次线性方程组Ax=0的基础解系含 n-1 个向量即A的属于特征值0的线性无关的特征向量有n-1个所以0至少是A的n-1重特征值而n阶方阵有n个特征值所以A的特征值为 β^Tα,0,0,...,0(n-1重)属于特征值0的特征向量:设β=(b1,b2,...,bn)^T≠0, 不妨设b1≠0则A经初等行变换化为b1 b2...bn0 0 ... 0... ...0 0 ... 0Ax=0的基础解系为(b2,-b1,0,...,0)^T(b3,0,-b1,...,0)^T...(bn,0,0,...,-b1)^T此即为A的属于特征值0的n-1个线性无关的特征向量
善士六合2023-05-22 22:49:301

怎么证明幂等矩阵(A^2=A)的特征值只能为0或1

设出特征值和特征向量利用定义和题目条件变形得到关于特征值的方程解出特征值只有0和1两个值过程如下图:向左转|向右转
CarieVinne 2023-05-22 07:48:011

幂等矩阵的特征值是多少

设A是幂等矩阵,则 A^2 = A. 设λ是A的特征值,则 λ^2-λ 是A^2-A的特征值. 而A^2-A=0,零矩阵的特征值只有0 所以 λ^2-λ = 0. 所以 λ(λ-1) = 0. 所以λ=0或λ=1. 即A特征值是0或1. 即幂等矩阵的特征值是0或1.
苏萦2023-05-22 07:47:591

幂等矩阵的特征值是多少

设A是幂等矩阵, 则 A^2 = A.设λ是A的特征值, 则 λ^2-λ 是A^2-A的特征值.而A^2-A=0, 零矩阵的特征值只有0所以 λ^2-λ = 0.所以 λ(λ-1) = 0.所以λ=0或λ=1.即A特征值是0或1.即幂等矩阵的特征值是0或1.满意请采纳^_^
黑桃花2023-05-22 07:47:572

怎么证明幂等矩阵(A^2=A)的特征值只能为0或1

简单计算一下即可,答案如图所示
CarieVinne 2023-05-22 07:47:573

线代中是不是不同的特征值对应的特征向量必是正交的

不是,如矩阵A=[2 3][2 1],它的特征值为-1、4,对应的特征向量为(-1,1)^T,(3,2)^T,显然这两个向量是不正交的但是一般的,对于任意矩阵,不同特征值对应的特征向量必然线性无关;特别地,对于实对称矩阵,不同特征值对应的特征向量必然正交。·每一个线性空间都有一个基。·对一个 n 行 n 列的非零矩阵 A,如果存在一个矩阵 B 使 AB = BA =E(E是单位矩阵),则 A 为非奇异矩阵(或称可逆矩阵),B为A的逆阵。·矩阵非奇异(可逆)当且仅当它的行列式不为零。·矩阵非奇异当且仅当它代表的线性变换是个自同构。·矩阵半正定当且仅当它的每个特征值大于或等于零。·矩阵正定当且仅当它的每个特征值都大于零。·解线性方程组的克拉默法则。·判断线性方程组有无非零实根的增广矩阵和系数矩阵的关系。扩展资料:A的一个特征值λ的代数重次是λ作为A的特征多项式的零点的次数;换句话说,若λ是一个该多项式的根,它是因子(t − λ)在特征多项式中在因式分解后中出现的次数。一个n×n矩阵有n个特征值,如果将代数重次计算在内的话,因为其特征多项式次数为n。一个代数重次1的特征值为“单特征值”。在关于矩阵理论的条目中,可能会遇到如下的命题:"一个矩阵A的特征值为4,4,3,3,3,2,2,1"表示4的代数重次为二,3的是三,2的是二,而1的是1。这样的风格因为代数重次对于矩阵理论中的很多数学证明很重要而被大量使用。所谓“线性”,指的就是如下的数学关系:  。其中,f叫线性算子或线性映射。所谓“代数”,指的就是用符号代替元素和运算,也就是说:我们不关心上面的x,y是实数还是函数,也不关心f是多项式还是微分,我们统一把他们都抽象成一个记号,或是一类矩阵。合在一起,线性代数研究的就是:满足线性关系  的线性算子f都有哪几类,以及他们分别都有什么性质。参考资料:百度百科——线性代数
此后故乡只2023-05-20 08:57:201

求矩阵的特征值和特征向量

矩阵的研究历史悠久,拉丁方阵和幻方在史前年代已有人研究。作为解决线性方程的工具,矩阵也有不短的历史。成书最迟在东汉前期的《九章算术》中,用分离系数法表示线性方程组,得到了其增广矩阵。在消元过程中,使用的把某行乘以某一非零实数、从某行中减去另一行等运算技巧,相当于矩阵的初等变换。但那时并没有现今理解的矩阵概念,虽然它与现有的矩阵形式上相同,但在当时只是作为线性方程组的标准表示与处理方式。矩阵正式作为数学中的研究对象出现,则是在行列式的研究发展起来后。逻辑上,矩阵的概念先于行列式,但在实际的历史上则恰好相反。日本数学家关孝和(1683年)与微积分的发现者之一戈特弗里德·威廉·莱布尼茨(1693年)近乎同时地独立建立了行列式论。其后行列式作为解线性方程组的工具逐步发展。1750年,加布里尔·克拉默发现了克莱姆法则。[1]矩阵的现代概念在19世纪逐渐形成。1800年代,高斯和威廉·若尔当建立了高斯—若尔当消去法。1844年,德国数学家费迪南·艾森斯坦(F.Eisenstein)讨论了“变换”(矩阵)及其乘积。1850年,英国数学家詹姆斯·约瑟夫·西尔维斯特(James Joseph Sylvester)首先使用矩阵一词。[2]英国数学家凯利被公认为矩阵论的奠基人。他开始将矩阵作为独立的数学对象研究时,许多与矩阵有关的性质已经在行列式的研究中被发现了,这也使得凯利认为矩阵的引进是十分自然的。他说:“我决然不是通过四元数而获得矩阵概念的;它或是直接从行列式的概念而来,或是作为一个表达线性方程组的方便方法而来的。”他从1858年开始,发表了《矩阵论的研究报告》等一系列关于矩阵的专门论文,研究了矩阵的运算律、矩阵的逆以及转置和特征多项式方程。凯利还提出了凯莱-哈密尔顿定理,并验证了3×3矩阵的情况,又说进一步的证明是不必要的。哈密尔顿证明了4×4矩阵的情况,而一般情况下的证明是德国数学家弗罗贝尼乌斯(F.G.Frohenius)于1898年给出的。[1]1854年时法国数学家埃尔米特(C.Hermite)使用了“正交矩阵”这一术语,但他的正式定义直到1878年才由费罗贝尼乌斯发表。1879年,费罗贝尼乌斯引入矩阵秩的概念。至此,矩阵的体系基本上建立起来了。无限维矩阵的研究始于1884年。庞加莱在两篇不严谨地使用了无限维矩阵和行列式理论的文章后开始了对这一方面的专门研究。1906年,希尔伯特引入无限二次型(相当于无限维矩阵)对积分方程进行研究,极大地促进了无限维矩阵的研究。在此基础上,施密茨、赫林格和特普利茨发展出算子理论,而无限维矩阵成为了研究函数空间算子的有力工具。[3]矩阵的概念最早在1922年见于中文。1922年,程廷熙在一篇介绍文章中将矩阵译为“纵横阵”。1925年,科学名词审查会算学名词审查组在《科学》第十卷第四期刊登的审定名词表中,矩阵被翻译为“矩阵式”,方块矩阵翻译为“方阵式”,而各类矩阵如“正交矩阵”、“伴随矩阵”中的“矩阵”则被翻译为“方阵”。1935年,中国数学会审查后,中华民国教育部审定的《数学名词》(并“通令全国各院校一律遵用,以昭划一”)中,“矩阵”作为译名首次出现。1938年,曹惠群在接受科学名词审查会委托就数学名词加以校订的《算学名词汇编》中,认为应当的译名是“长方阵”。中华人民共和国成立后编订的《数学名词》中,则将译名定为“(矩)阵”。1993年,中国自然科学名词审定委员会公布的《数学名词》中,“矩阵”被定为正式译名,并沿用至今。
黑桃花2023-05-20 08:57:132
 首页 上一页  1 2 3  下一页  尾页