离散数学数理逻辑
你好!拌三丝2023-05-18 05:46:311
理科数学在大学里哪个专业有学数理逻辑
应该是计算机专业韦斯特兰2023-05-18 05:46:303
数理逻辑是大学数学专业的必修课程吗
因为数理逻辑的难度很大,而实用性却不大——事实上只有集合论、理论计算机等少数领域的研究人员需要用到这样高度形式化的抽象语言。数学系的研究生也没几个有动力把它完全学明白,何况其他专业的本科生。西柚不是西游2023-05-18 05:46:301
离散数学(一、数理逻辑)
讲义安排 第一讲:数理逻辑 第二讲:集合论 第三讲:图论 第四讲:代数结构 第五讲:排列组合与容斥原理 第六讲:母函数与递推关系 第七讲:典型例题和真题讲解 第一讲:数理逻辑 一、命题 称能判断真假但不能既真又假的陈述句为命题 例1 、判断下列句子是否为命题 (1)8小于10 (2) 是有理数 (3)2是素数 (4)x + y > 10 (5)请把门开一开 (6)明年的劳动节和国庆节的晚上都是晴天 (7)21世纪末,人类将居住在太空 此种题型的关键 第一步判断是否是陈述句(陈述句才能为命题) 第二部能不能判断真假 第三部是不是既真又假 答案(1)真命题(2)假命题(3)真命题(4)不是命题(5)不是命题(6) 是命题(7)是命题(8)不是命题 解答(1)(2)(3)(6)(7)是命题,(4)(5)(8)不是命题 注意:命题必须为==陈述句==,不能为疑问句,祈使句,感叹句,命题必须具有真假值,但能判断真假,并不意味着现在就能确定其实真还是假,只要它==具有能够唯一确定的真假值==即可,如果命题的真值为真,则称为真命题,否则称为假命题,不能分成更简单的陈述句的命题为==简单命题或原子命题==,否则称为==复核命题== 2、复合命题的联结词 设p是任意命题,复合命题“非p”称为p的==否定(非)==,记为 p 设p和q是任意命题,复合命题“p且q”称为p和q的==合取(与)==,记为p q 设p和q是任意命题,复合命题“p或q”称为p和q的==析取(或)==,记为p q 设p和q是任意命题,复合命题“如果p则q”称为==p蕴含q==,记为p q 设p和q是任意命题,复合命题“p当且晋档q”称为==p与q等价==,记为p q 注意:联结词的优先顺序为: , , , , 从左到右,如有括号,括号在先 $ $阿啵呲嘚2023-05-18 05:46:291
什么是数学逻辑?
规律是每个方向上数字的和=15。所以绿3,蓝8,黄1,红1。真颛2023-05-18 05:46:293
数理逻辑与数学的区别与联系
数理逻辑又称符号逻辑、理论逻辑.它是数学的一个分支,是用数学方法研究逻辑或形式逻辑的学科.其研究对象是对证明和计算这两个直观概念进行符号化以后的形式系统.数理逻辑是数学基础的一个不可缺少的组成部分.虽然名...ardim2023-05-18 05:46:291
事物总是有规律的,比如:要想学物理就必须学数学,那要想学好数学应该先学什么再学什么呢?谢谢。
不能这么说、科科之间都是相辅相成的、如果你的语文理解能力不好.就读不懂物理题意.更别说解答了。所以要全面发展康康map2023-05-18 05:46:233
有没有一本书可以系统的介绍微积分,概率论,线性代数等数学知识
应该有的mlhxueli 2023-05-18 05:46:234
数学是一个什么样的东西?
巧妙而好玩的学科,加油少年北境漫步2023-05-18 05:46:222
数学有意义是什么意思?
问题一:在数学中,“有意义”是什么意思 在数学中,“有意义”指的是在定义限制的范围之内,符合规定、要求或限制。 例如: (1)分数或分式的分母以及除数要求不能为“0”。如果分数或分式的分母以及除数为“0”了,就违反了分数或分式的规定,就是“无意义”的;反之,分数或分式的分母以及除数不是“0”就是符合规定的,就是“有意义”的; (2)在实数范围内,二次根式要求被开方数不能为负数(即只能是非负数――正数和0)。如果二次根式的被开方数为负数了,就违反了在实数范围内二次根式被开方数的规定,就是“无意义”的;反之,二次根式的被开方数不是负数,就是符合规定的,就是“有意义”的。 问题二:数学中的至少是什么意思? 是最少的意思。例如:三角形中至少有两个角是锐角, 就是最少有两个角是锐角,多可以不能再少了,即不能是只有一个锐角也不能是没有锐角, 但最少有两个锐角,也可以有三个锐角。 问题三:数学中 <=> 是什么意思? 数学中 是代钉推理中左边可以推出右边,右边也可推出左边的意思,它读作“等价于”。 例如:a、b、c、d都不为0.a∶b=c∶dad=bc ? 问题四:数学是什么意思 数学数学(mathematics或maths),是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。 而在人类历史发展和社会生活中,数学也发挥着不可替代的作用,也是学习和研究现代科学技术必不可少的基本工具。 数学分支 1:数学史 2:数理逻辑与数学基础 X轴Y轴(4张) a:演绎逻辑学(亦称符号逻辑学)b:证明论 (亦称元数学) c:递归论 d:模型论 e:公理 *** 论 f:数学基础 g:数理逻辑与数学基础其他学科 3:数论 a:初等数论 b:解析数论 c:代数数论 d:超越数论 e:丢番图逼近 f:数的几何 g:概率数论 h:计算数论 i:数论其他学科 4:代数学 a:线性代数 b:群论 c:域论 d:李群 e:李代数 f:Kac-Moody代数 g:环论 (包括交换环与交换代数,结合环与结合代数,非结合环与非结 合代数等) h:模论 i:格论 j:泛代数理论 k:范畴论 l:同调代数 m:代数K理论 n:微分代数 o:代数编码理论 p:代数学其他学科 5:代数几何学 6:几何学 a:几何学基础 b:欧氏几何学 c:非欧几何学 (包括黎曼几何学等) d:球面几何学 e:向量和张量分析 f:仿射几何学 g:射影几何学 h:微分几何学 i:分数维几何 j:计算几何学 k:几何学其他学科 7:拓扑学 a:点集拓扑学 b:代数拓扑学 c:同伦论 d:低维拓扑学 e:同调论 f:维数论 g:格上拓扑学 h:纤维丛论 i:几何拓扑学 j:奇点理论 k:微分拓扑学 l:拓扑学其他学科 8:数学分析 a:微分学 b:积分学 c:级数论 d:数学分析其他学科 9:非标准分析 10:函数论 a:实变函数论 b:单复变函数论 c:多复变函数论 d:函数逼近论 e:调和分析 f:复流形 g:特殊函数论 h:函数论其他学科 11:常微分方程 a:定性理论 b:稳定性理论 c:解析理论 d:常微分方程其他学科 12:偏微分方程 a:椭圆型偏微分方程 b:双曲型偏微分方程 c:抛物型偏微分方程 d:非线性偏微分方程 e:偏微分方程其他学科 13:动力系统 a:微分动力系统 b:拓扑动力系统 c:复动力系统 d:动力系统其他学科 14:积分方程 15:泛函分析 a:线性算子理论 b:变分法 c:拓扑线性空间 d:希尔伯特空间 e:函数空间 f:巴拿赫空间 g:算子代数 h:测度与积分 i:广义函数论 j:非线性泛函分析 k:泛函分析其他学科 16:计算数学 a:插值法与逼近论 b:常微分方程数值解 c:偏微分方程数值解 d:积分方程数值解 e:数值代数 f:连续问题离散化方法 g:随机数值实验 h:误差分析 i:计算数学其他学科 17:概率论 a:几何概率 b:概率分布 c:极限理论 d:随机过程 (包括正态过程与平稳过程、点过程等) e:马尔可夫过程 f:随机分析 g:鞅论 h:应用概率论 (具体应用入有关学科) i:概率论其他学科 18:数理统计学 a:抽样理论 (包括抽样分布、抽样调查等 )b:假设检验 c:非参数统计 d:方差分析 e:相关回归分析 f:统计推断 g:贝叶斯统计 (包括参数估计等) h:试验设计 i:多元分析 j:统计判决理论 k:时间序列分析 l:数理统计学其他学科 19:应用统计数学 a:统计质量控制 b:可靠性数学 c:保险数学 d:统计模拟 20:应用统计数学其他学科 ......>> 问题五:数学中的0都有什么含义 0是最小的自然数。 0不是奇数,而是偶数(一个非正非负的特殊偶数)。 0不是质数,也不是合数 0在多位数中起占位作用,如108中的0表示十位上没有,切不可写作18。 0不可作为多位数的最高位。 0既不是正数也不是负数,而是正数和负数的分界点。当某个数X大于0(即X>0)时,称为正数;反之,当X小于0(即X 问题六:数学中常说"有意义时,那么什么是无意义 答: 计算结果的得数“无意义是指以下各种情况: 1、”得数“不符合已知条件; 2、不符合生活常识或有关事物的常识; 3、超过了应有的取值范围; 计算过程中的”无意义“是指”: 1、分数的分母为零; 2、开偶次方的被开方数为负数; 3、对数函数的真数≤0; 4、幂指数中0的0次幂; 等等。 问题七:什么是使根式有意义?什么算有意义?数学 根号里的数不能为负数 问题八:/在数学是什么意思 10分 数学是研究数量、结构、变化以及空间模型等概念的一门科学。透过抽象化和逻辑推理的使用,由计数、计算、量度和对物体形状及运动的观察中产生。数学的基本要素是:逻辑和直观、分析和推理、共性和个性kikcik2023-05-18 05:46:221
关于数学的资料
你可以写点数学例子铁血嘟嘟2023-05-18 05:46:2114
数学课堂教学
340÷(1-15%)=340÷85%=400(元)促销价340元就是现在的价格,比原价便宜15%,说明现价是原价的(1-15%),由于340元与原价的(1-15%)是相对应的,根据这组对应关系就能求出原价了。CarieVinne 2023-05-18 05:46:212
数学的分支有哪些?
一份中国学科分类国家标准,看看,就一个数学中的一个分支一个人一辈子都研究不完。其中也说明了,应用数学归为每个具体应用学科里面。除了专门数学专业的,其他专业的也只是学了其中在本学科需要的一小部分而已。 110 数学a.. 110.11 数学史b.. 110.14 数理逻辑与数学基础 a.. 110.1410 演绎逻辑学 亦称符号逻辑学 b.. 110.1420 证明论 亦称元数学 c.. 110.1430 递归论 d.. 110.1440 模型论 e.. 110.1450 公理集合论 f.. 110.1460 数学基础 g.. 110.1499 数理逻辑与数学基础其他学科c.. 110.17 数论 a.. 110.1710 初等数论 b.. 110.1720 解析数论 c.. 110.1730 代数数论 d.. 110.1740 超越数论 e.. 110.1750 丢番图逼近 f.. 110.1760 数的几何 g.. 110.1770 概率数论 h.. 110.1780 计算数论 i.. 110.1799 数论其他学科d.. 110.21 代数学 a.. 110.2110 线性代数 b.. 110.2115 群论 c.. 110.2120 域论 d.. 110.2125 李群 e.. 110.2130 李代数 f.. 110.2135 Kac-Moody代数 g.. 110.2140 环论 包括交换环与交换代数,结合环与结合代数,非结合环与非结合代数等 h.. 110.2145 模论 i.. 110.2150 格论 j.. 110.2155 泛代数理论 k.. 110.2160 范畴论 l.. 110.2165 同调代数 m.. 110.2170 代数K理论 n.. 110.2175 微分代数 o.. 110.2180 代数编码理论 p.. 110.2199 代数学其他学科e.. 110.24 代数几何学f.. 110.27 几何学 a.. 110.2710 几何学基础 b.. 110.2715 欧氏几何学 c.. 110.2720 非欧几何学 包括黎曼几何学等 d.. 110.2725 球面几何学 e.. 110.2730 向量和张量分析 f.. 110.2735 仿射几何学 g.. 110.2740 射影几何学 h.. 110.2745 微分几何学 i.. 110.2750 分数维几何 j.. 110.2755 计算几何学 k.. 110.2799 几何学其他学科g.. 110.31 拓扑学 a.. 110.3110 点集拓扑学 b.. 110.3115 代数拓扑学 c.. 110.3120 同伦论 d.. 110.3125 低维拓扑学 e.. 110.3130 同调论 f.. 110.3135 维数论 g.. 110.3140 格上拓扑学 h.. 110.3145 纤维丛论 i.. 110.3150 几何拓扑学 j.. 110.3155 奇点理论 k.. 110.3160 微分拓扑学 l.. 110.3199 拓扑学其他学科h.. 110.34 数学分析 a.. 110.3410 微分学 b.. 110.3420 积分学 c.. 110.3430 级数论 d.. 110.3499 数学分析其他学科i.. 110.37 非标准分析j.. 110.41 函数论 a.. 110.4110 实变函数论 b.. 110.4120 单复变函数论 c.. 110.4130 多复变函数论 d.. 110.4140 函数逼近论 e.. 110.4150 调和分析 f.. 110.4160 复流形 g.. 110.4170 特殊函数论 h.. 110.4199 函数论其他学科k.. 110.44 常微分方程 a.. 110.4410 定性理论 b.. 110.4420 稳定性理论 c.. 110.4430 解析理论 d.. 110.4499 常微分方程其他学科l.. 110.47 偏微分方程 a.. 110.4710 椭圆型偏微分方程 b.. 110.4720 双曲型偏微分方程 c.. 110.4730 抛物型偏微分方程 d.. 110.4740 非线性偏微分方程 e.. 110.4799 偏微分方程其他学科m.. 110.51 动力系统 a.. 110.5110 微分动力系统 b.. 110.5120 拓扑动力系统 c.. 110.5130 复动力系统 d.. 110.5199 动力系统其他学科n.. 110.54 积分方程o.. 110.57 泛函分析 a.. 110.5710 线性算子理论 b.. 110.5715 变分法 c.. 110.5720 拓扑线性空间 d.. 110.5725 希尔伯特空间 e.. 110.5730 函数空间 f.. 110.5735 巴拿赫空间 g.. 110.5740 算子代数 h.. 110.5745 测度与积分 i.. 110.5750 广义函数论 j.. 110.5755 非线性泛函分析 k.. 110.5799 泛函分析其他学科p.. 110.61 计算数学 a.. 110.6110 插值法与逼近论 b.. 110.6120 常微分方程数值解 c.. 110.6130 偏微分方程数值解 d.. 110.6140 积分方程数值解 e.. 110.6150 数值代数 f.. 110.6160 连续问题离散化方法 g.. 110.6170 随机数值实验 h.. 110.6180 误差分析 i.. 110.6199 计算数学其他学科q.. 110.64 概率论 a.. 110.6410 几何概率 b.. 110.6420 概率分布 c.. 110.6430 极限理论 d.. 110.6440 随机过程 包括正态过程与平稳过程、点过程等 e.. 110.6450 马尔可夫过程 f.. 110.6460 随机分析 g.. 110.6470 鞅论 h.. 110.6480 应用概率论 具体应用入有关学科 i.. 110.6499 概率论其他学科r.. 110.67 数理统计学 a.. 110.6710 抽样理论 包括抽样分布、抽样调查等 b.. 110.6715 假设检验 c.. 110.6720 非参数统计 d.. 110.6725 方差分析 e.. 110.6730 相关回归分析 f.. 110.6735 统计推断 g.. 110.6740 贝叶斯统计 包括参数估计等 h.. 110.6745 试验设计 i.. 110.6750 多元分析 j.. 110.6755 统计判决理论 k.. 110.6760 时间序列分析 l.. 110.6799 数理统计学其他学科s.. 110.71 应用统计数学 a.. 110.7110 统计质量控制 b.. 110.7120 可靠性数学 c.. 110.7130 保险数学 d.. 110.7140 统计模拟t.. 110.7199 应用统计数学其他学科u.. 110.74 运筹学 a.. 110.7410 线性规划 b.. 110.7415 非线性规划 c.. 110.7420 动态规划 d.. 110.7425 组合最优化 e.. 110.7430 参数规划 f.. 110.7435 整数规划 g.. 110.7440 随机规划 h.. 110.7445 排队论 i.. 110.7450 对策论 亦称博奕论 j.. 110.7455 库存论 k.. 110.7460 决策论 l.. 110.7465 搜索论 m.. 110.7470 图论 n.. 110.7475 统筹论 o.. 110.7480 最优化 p.. 110.7499 运筹学其他学科v.. 110.77 组合数学w.. 110.81 离散数学x.. 110.84 模糊数学y.. 110.87 应用数学 具体应用入有关学科z.. 110.99 数学其他学科北有云溪2023-05-18 05:46:211
数学在生活中的运用有哪些例子
1、数学加减乘除的计算。如商品的买卖,日期的计算,时间的计算。2、投资理财。利息的计算、股票、保险等方面。3、面积计算。住房、占地、种地、种花等。4、体积容积的计算。家具、汽车、房屋空间等等。5、工资、支出管理。豆豆staR2023-05-18 05:46:212
现代数学的分支有哪些?泛函,群论,几何代数,解析数论,黎曼几何,环论,非线性?
1..数学史 2..数理逻辑与数学基础 a..演绎逻辑学 亦称符号逻辑学 b..证明论 亦称元数学 c..递归论 d..模型论 e..公理集合论 f..数学基础 g..数理逻辑与数学基础其他学科 3..数论 a..初等数论 b..解析数论 c..代数数论 d..超越数论 e..丢番图逼近 f..数的几何 g..概率数论 h..计算数论 i..数论其他学科 4..代数学 a..线性代数 b..群论 c..域论 d..李群 e..李代数 f..Kac-Moody代数 g..环论 包括交换环与交换代数,结合环与结合代数,非结合环与非结 合代数等 h..模论 i..格论 j..泛代数理论 k..范畴论 l..同调代数 m..代数K理论 n..微分代数 o..代数编码理论 p..代数学其他学科 5..代数几何学 6..几何学 a..几何学基础 b..欧氏几何学 c..非欧几何学 包括黎曼几何学等 d..球面几何学 e..向量和张量分析 f..仿射几何学 g..射影几何学 h..微分几何学 i..分数维几何 j..计算几何学 k..几何学其他学科 7..拓扑学 a..点集拓扑学 b..代数拓扑学 c..同伦论 d..低维拓扑学 e..同调论 f..维数论 g..格上拓扑学 h..纤维丛论 i..几何拓扑学 j..奇点理论 k..微分拓扑学 l..拓扑学其他学科 8..数学分析 a..微分学 b..积分学 c..级数论 d..数学分析其他学科 9..非标准分析 10..函数论 a..实变函数论 b..单复变函数论 c..多复变函数论 d..函数逼近论 e..调和分析 f..复流形 g..特殊函数论 h..函数论其他学科 11..常微分方程 a..定性理论 b..稳定性理论 c..解析理论 d..常微分方程其他学科 12..偏微分方程 a..椭圆型偏微分方程 b..双曲型偏微分方程 c..抛物型偏微分方程 d..非线性偏微分方程 e..偏微分方程其他学科 13..动力系统 a..微分动力系统 b..拓扑动力系统 c..复动力系统 d..动力系统其他学科 14..积分方程 15..泛函分析 a..线性算子理论 b..变分法 c..拓扑线性空间 d..希尔伯特空间 e..函数空间 f..巴拿赫空间 g..算子代数 h..测度与积分 i..广义函数论 j..非线性泛函分析 k..泛函分析其他学科 16..计算数学 a..插值法与逼近论 b..常微分方程数值解 c..偏微分方程数值解 d..积分方程数值解 e..数值代数 f..连续问题离散化方法 g..随机数值实验 h..误差分析 i..计算数学其他学科 17..概率论 a..几何概率 b..概率分布 c..极限理论 d..包括正态过程与平稳过程、点过程等 e..马尔可夫过程 f..随机分析 g..鞅论 h..应用概率论 具体应用入有关学科 i..概率论其他学科 18..数理统计学 a..抽样理论 包括抽样分布、抽样调查等b..假设检验 c..非参数统计 d..方差分析 e..相关回归分析 f..统计推断 g..贝叶斯统计 包括参数估计等 h..试验设计 i..多元分析 j..统计判决理论 k..时间序列分析 l..数理统计学其他学科 19..应用统计数学 a..统计质量控制 b..可靠性数学 c..保险数学 d..统计模拟 20..应用统计数学其他学科 21..运筹学 a..线性规划 b..非线性规划 c..动态规划 d..组合最优化 e..参数规划 f..整数规划 g..随机规划 h..排队论 i..对策论 亦称博弈论 j..库存论 k..决策论 l..搜索论 m..图论 n..统筹论 o..最优化 p..运筹学其他学科 22..组合数学 23..模糊数学 24..应用数学 具体应用入有关学科 25..数学其他学科就这些,其他的太偏或者是不讨论Jm-R2023-05-18 05:46:201
爱好数学的朋友,来回答一下这个问题。
有 抽象数学 具象数学Ntou1232023-05-18 05:46:205
‘现代全部数学分支’有哪些
这种垃圾答案也能最佳?真颛2023-05-18 05:46:203
数学分支有哪些
主要分基础数学和应用数学,基础数学偏重于理论,包括数论,代数,几何,拓扑,函数,泛函分析,常(偏)微分方程,数学物理方程,概率论,组合数学(这些都是本科大学数学专业学习的课程,我就是数学专业的,学的都是纯理论,没啥用,说白了就是锻炼你的逻辑思维能力);应用数学基本上都是到研究生才学的,分的较细,包括数理统计,运筹学,控制论,计算机的数学基础,可以在企业里面直接用小菜G的建站之路2023-05-18 05:46:203
数学与应用数学有哪些分支
借用网友的,希望对你有用数学分支有:1.. 数学史 2.. 数理逻辑与数学基础 a.. 演绎逻辑学 亦称符号逻辑学 b.. 证明论 亦称元数学 c.. 递归论 d.. 模型论 e.. 公理集合论 f.. 数学基础 g.. 数理逻辑与数学基础其他学科 3.. 数论 a.. 初等数论 b.. 解析数论 c.. 代数数论 d.. 超越数论 e.. 丢番图逼近 f.. 数的几何 g.. 概率数论 h.. 计算数论 i.. 数论其他学科 4.. 代数学 a.. 线性代数 b.. 群论 c.. 域论 d.. 李群 e.. 李代数 f.. Kac-Moody代数 g.. 环论 包括交换环与交换代数,结合环与结合代数,非结合环与非结 合代数等 h.. 模论 i.. 格论 j.. 泛代数理论 k.. 范畴论 l.. 同调代数 m.. 代数K理论 n.. 微分代数 o.. 代数编码理论 p.. 代数学其他学科 5.. 代数几何学 6.. 几何学 a.. 几何学基础 b.. 欧氏几何学 c.. 非欧几何学 包括黎曼几何学等 d.. 球面几何学 e.. 向量和张量分析 f.. 仿射几何学 g.. 射影几何学 h.. 微分几何学 i.. 分数维几何 j.. 计算几何学 k.. 几何学其他学科 7.. 拓扑学 a.. 点集拓扑学 b.. 代数拓扑学 c.. 同伦论 d.. 低维拓扑学 e.. 同调论 f.. 维数论 g.. 格上拓扑学 h.. 纤维丛论 i.. 几何拓扑学 j.. 奇点理论 k.. 微分拓扑学 l.. 拓扑学其他学科 8.. 数学分析 a.. 微分学 b.. 积分学 c.. 级数论 d.. 数学分析其他学科 9.. 非标准分析 10.. 函数论 a.. 实变函数论 b.. 单复变函数论 c.. 多复变函数论 d.. 函数逼近论 e.. 调和分析 f.. 复流形 g.. 特殊函数论 h.. 函数论其他学科 11.. 常微分方程 a.. 定性理论 b.. 稳定性理论 c.. 解析理论 d.. 常微分方程其他学科 12.. 偏微分方程 a.. 椭圆型偏微分方程 b.. 双曲型偏微分方程 c.. 抛物型偏微分方程 d.. 非线性偏微分方程 e.. 偏微分方程其他学科 13.. 动力系统 a.. 微分动力系统 b.. 拓扑动力系统 c.. 复动力系统 d.. 动力系统其他学科 14.. 积分方程 15.. 泛函分析 a.. 线性算子理论 b.. 变分法 c.. 拓扑线性空间 d.. 希尔伯特空间 e.. 函数空间 f.. 巴拿赫空间 g.. 算子代数 h.. 测度与积分 i.. 广义函数论 j.. 非线性泛函分析 k.. 泛函分析其他学科 16.. 计算数学 a.. 插值法与逼近论 b.. 常微分方程数值解 c.. 偏微分方程数值解 d.. 积分方程数值解 e.. 数值代数 f.. 连续问题离散化方法 g.. 随机数值实验 h.. 误差分析 i.. 计算数学其他学科 17.. 概率论 a.. 几何概率 b.. 概率分布 c.. 极限理论 d.. 随机过程 包括正态过程与平稳过程、点过程等 e.. 马尔可夫过程 f.. 随机分析 g.. 鞅论 h.. 应用概率论 具体应用入有关学科 i.. 概率论其他学科 18.. 数理统计学 a.. 抽样理论 包括抽样分布、抽样调查等 b.. 假设检验 c.. 非参数统计 d.. 方差分析 e.. 相关回归分析 f.. 统计推断 g.. 贝叶斯统计 包括参数估计等 h.. 试验设计 i.. 多元分析 j.. 统计判决理论 k.. 时间序列分析 l.. 数理统计学其他学科 19.. 应用统计数学 a.. 统计质量控制 b.. 可靠性数学 c.. 保险数学 d.. 统计模拟 20.. 应用统计数学其他学科 21.. 运筹学 a.. 线性规划 b.. 非线性规划 c.. 动态规划 d.. 组合最优化 e.. 参数规划 f.. 整数规划 g.. 随机规划 h.. 排队论 i.. 对策论 亦称博弈论 j.. 库存论 k.. 决策论 l.. 搜索论 m.. 图论 n.. 统筹论 o.. 最优化 p.. 运筹学其他学科 22.. 组合数学 23.. 模糊数学 24.. 应用数学 具体应用入有关学科 25.. 数学其他学科苏州马小云2023-05-18 05:46:201
详细的数学分支介绍
1.. 数学史 2.. 数理逻辑与数学基础 a.. 演绎逻辑学 亦称符号逻辑学 b.. 证明论 亦称元数学 c.. 递归论 d.. 模型论 e.. 公理集合论 f.. 数学基础 g.. 数理逻辑与数学基础其他学科 3.. 数论 a.. 初等数论 b.. 解析数论 c.. 代数数论 d.. 超越数论 e.. 丢番图逼近 f.. 数的几何 g.. 概率数论 h.. 计算数论 i.. 数论其他学科 4.. 代数学 a.. 线性代数 b.. 群论 c.. 域论 d.. 李群 e.. 李代数 f.. Kac-Moody代数 g.. 环论 包括交换环与交换代数,结合环与结合代数,非结合环与非结 合代数等 h.. 模论 i.. 格论 j.. 泛代数理论 k.. 范畴论 l.. 同调代数 m.. 代数K理论 n.. 微分代数 o.. 代数编码理论 p.. 代数学其他学科 5.. 代数几何学 6.. 几何学 a.. 几何学基础 b.. 欧氏几何学 c.. 非欧几何学 包括黎曼几何学等 d.. 球面几何学 e.. 向量和张量分析 f.. 仿射几何学 g.. 射影几何学 h.. 微分几何学 i.. 分数维几何 j.. 计算几何学 k.. 几何学其他学科 7.. 拓扑学 a.. 点集拓扑学 b.. 代数拓扑学 c.. 同伦论 d.. 低维拓扑学 e.. 同调论 f.. 维数论 g.. 格上拓扑学 h.. 纤维丛论 i.. 几何拓扑学 j.. 奇点理论 k.. 微分拓扑学 l.. 拓扑学其他学科 8.. 数学分析 a.. 微分学 b.. 积分学 c.. 级数论 d.. 数学分析其他学科 9.. 非标准分析 10.. 函数论 a.. 实变函数论 b.. 单复变函数论 c.. 多复变函数论 d.. 函数逼近论 e.. 调和分析 f.. 复流形 g.. 特殊函数论 h.. 函数论其他学科 11.. 常微分方程 a.. 定性理论 b.. 稳定性理论 c.. 解析理论 d.. 常微分方程其他学科 12.. 偏微分方程 a.. 椭圆型偏微分方程 b.. 双曲型偏微分方程 c.. 抛物型偏微分方程 d.. 非线性偏微分方程 e.. 偏微分方程其他学科 13.. 动力系统 a.. 微分动力系统 b.. 拓扑动力系统 c.. 复动力系统 d.. 动力系统其他学科 14.. 积分方程 15.. 泛函分析 a.. 线性算子理论 b.. 变分法 c.. 拓扑线性空间 d.. 希尔伯特空间 e.. 函数空间 f.. 巴拿赫空间 g.. 算子代数 h.. 测度与积分 i.. 广义函数论 j.. 非线性泛函分析 k.. 泛函分析其他学科 16.. 计算数学 a.. 插值法与逼近论 b.. 常微分方程数值解 c.. 偏微分方程数值解 d.. 积分方程数值解 e.. 数值代数 f.. 连续问题离散化方法 g.. 随机数值实验 h.. 误差分析 i.. 计算数学其他学科 17.. 概率论 a.. 几何概率 b.. 概率分布 c.. 极限理论 d.. 随机过程 包括正态过程与平稳过程、点过程等 e.. 马尔可夫过程 f.. 随机分析 g.. 鞅论 h.. 应用概率论 具体应用入有关学科 i.. 概率论其他学科 18.. 数理统计学 a.. 抽样理论 包括抽样分布、抽样调查等 b.. 假设检验 c.. 非参数统计 d.. 方差分析 e.. 相关回归分析 f.. 统计推断 g.. 贝叶斯统计 包括参数估计等 h.. 试验设计 i.. 多元分析 j.. 统计判决理论 k.. 时间序列分析 l.. 数理统计学其他学科 19.. 应用统计数学 a.. 统计质量控制 b.. 可靠性数学 c.. 保险数学 d.. 统计模拟 20.. 应用统计数学其他学科 21.. 运筹学 a.. 线性规划 b.. 非线性规划 c.. 动态规划 d.. 组合最优化 e.. 参数规划 f.. 整数规划 g.. 随机规划 h.. 排队论 i.. 对策论 亦称博弈论 j.. 库存论 k.. 决策论 l.. 搜索论 m.. 图论 n.. 统筹论 o.. 最优化 p.. 运筹学其他学科 22.. 组合数学 23.. 模糊数学 24.. 应用数学 具体应用入有关学科 25.. 数学其他学科wpBeta2023-05-18 05:46:201
数学有多少分支
就两个分支啊u投在线2023-05-18 05:46:206
一年级数学手抄报内容资料
数学是研究数量、结构、变化、空间以及信息等概念的一门学科,以下是我整理的关于一年级数学手抄报内容资料大全,欢迎阅读。 【数学分支】 1、数学史 2、数理逻辑与数学基础 a、演绎逻辑学(亦称符号逻辑学)b、证明论 (亦称元数学) c、递归论 d、模型论 e、公理集合论 f、数学基础 g、数理逻辑与数学基础其他学科 3、数论 a、初等数论 b、解析数论 c、代数数论 d、超越数论 e、丢番图逼近 f、数的几何 g、概率数论 h、计算数论 i、数论其他学科 4、代数学 a、线性代数 b、群论 c、域论 d、李群 e、李代数 f、Kac—Moody代数 g、环论 (包括交换环与交换代数,结合环与结合代数,非结合环与非结 合代数等) h、模论 i、格论 j、泛代数理论 k、范畴论 l、同调代数 m、代数K理论 n、微分代数 o、代数编码理论 p、代数学其他学科 5、代数几何学 6、几何学 a、几何学基础 b、欧氏几何学 c、非欧几何学 (包括黎曼几何学等) d、球面几何学 e、向量和张量分析 f、仿射几何学 g、射影几何学 h、微分几何学 i、分数维几何 j、计算几何学 k、几何学其他学科 7、拓扑学 a、点集拓扑学 b、代数拓扑学 c、同伦论 d、低维拓扑学 e、同调论 f、维数论 g、格上拓扑学 h、纤维丛论 i、几何拓扑学 j、奇点理论 k、微分拓扑学 l、拓扑学其他学科 8、数学分析 a、微分学 b、积分学 c、级数论 d、数学分析其他学科 9、非标准分析 10、函数论 a、实变函数论 b、单复变函数论 c、多复变函数论 d、函数逼近论 e、调和分析 f、复流形 g、特殊函数论 h、函数论其他学科 11、常微分方程 a、定性理论 b、稳定性理论 c、解析理论 d、常微分方程其他学科 12、偏微分方程 a、椭圆型偏微分方程 b、双曲型偏微分方程 c、抛物型偏微分方程 d、非线性偏微分方程 e、偏微分方程其他学科 13、动力系统 a、微分动力系统 b、拓扑动力系统 c、复动力系统 d、动力系统其他学科 14、积分方程 15、泛函分析 a、线性算子理论 b、变分法 c、拓扑线性空间 d、希尔伯特空间 e、函数空间 f、巴拿赫空间 g、算子代数 h、测度与积分 i、广义函数论 j、非线性泛函分析 k、泛函分析其他学科 16、计算数学 a、插值法与逼近论 b、常微分方程数值解 c、偏微分方程数值解 d、积分方程数值解 e、数值代数 f、连续问题离散化方法 g、随机数值实验 h、误差分析 i、计算数学其他学科 17、概率论 a、几何概率 b、概率分布 c、极限理论 d、随机过程 (包括正态过程与平稳过程、点过程等) e、马尔可夫过程 f、随机分析 g、鞅论 h、应用概率论 (具体应用入有关学科) i、概率论其他学科 18、数理统计学 a、抽样理论 (包括抽样分布、抽样调查等 )b、假设检验 c、非参数统计 d、方差分析 e、相关回归分析 f、统计推断 g、贝叶斯统计 (包括参数估计等) h、试验设计 i、多元分析 j、统计判决理论 k、时间序列分析 l、数理统计学其他学科 19、应用统计数学 a、统计质量控制 b、可靠性数学 c、保险数学 d、统计模拟 20、应用统计数学其他学科 21、运筹学 a、线性规划 b、非线性规划 c、动态规划 d、组合最优化 e、参数规划 f、整数规划 g、随机规划 h、排队论 i、对策论 亦称博弈论 j、库存论 k、决策论 l、搜索论 m、图论 n、统筹论 o、最优化 p、运筹学其他学科 22、组合数学 23、模糊数学 24、量子数学 25、应用数学 (具体应用入有关学科) 26、数学其他学科 【发展历史】 数学(汉语拼音、shù xué;希腊语、μαθηματικ;英语、Mathematics),源自于古希腊语的μθημα(máthēma),其有学习、学问、科学之意。古希腊学者视其为哲学之起点,“学问的基础”。另外,还有个较狭隘且技术性的意义——“数学研究”。即使在其语源内,其形容词意义凡与学习有关的,亦会被用来指数学的。 其在英语的复数形式,及在法语中的复数形式+es成mathématiques,可溯至拉丁文的中性复数(Mathematica),由西塞罗译自希腊文复数τα μαθηματικ(ta mathēmatiká)。 在中国古代,数学叫作算术,又称算学,最后才改为数学。中国古代的算术是六艺之一(六艺中称为“数”)。 数学起源于人类早期的生产活动,古巴比伦人从远古时代开始已经积累了一定的数学知识,并能应用实际问题。从数学本身看,他们的数学知识也只是观察和经验所得,没有综合结论和证明,但也要充分肯定他们对数学所做出的贡献。 基础数学的知识与运用是个人与团体生活中不可或缺的一部分。其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见。从那时开始,其发展便持续不断地有小幅度的进展。但当时的代数学和几何学长久以来仍处于独立的状态。 代数学可以说是最为人们广泛接受的“数学”。可以说每一个人从小时候开始学数数起,最先接触到的数学就是代数学。而数学作为一个研究“数”的学科,代数学也是数学最重要的组成部分之一。几何学则是最早开始被人们研究的数学分支。 直到16世纪的文艺复兴时期,笛卡尔创立了解析几何,将当时完全分开的代数和几何学联系到了一起。从那以后,我们终于可以用计算证明几何学的定理;同时也可以用图形来形象的表示抽象的代数方程。而其后更发展出更加精微的微积分。 现时数学已包括多个分支。创立于二十世纪三十年代的法国的布尔巴基学派则认为、数学,至少纯数学,是研究抽象结构的理论。结构,就是以初始概念和公理出发的演绎系统。他们认为,数学有三种基本的母结构、代数结构(群,环,域,格……)、序结构(偏序,全序……)、拓扑结构(邻域,极限,连通性,维数……)。 数学被应用在很多不同的领域上,包括科学、工程、医学和经济学等。数学在这些领域的应用一般被称为应用数学,有时亦会激起新的数学发现,并促成全新数学学科的发展。数学家也研究纯数学,也就是数学本身,而不以任何实际应用为目标。虽然有许多工作以研究纯数学为开端,但之后也许会发现合适的应用。 具体的,有用来探索由数学核心至其他领域上之间的连结的子领域、由逻辑、集合论(数学基础)、至不同科学的经验上的数学(应用数学)、以较近代的对于不确定性的研究(混沌、模糊数学)。 就纵度而言,在数学各自领域上的探索亦越发深入。 图中数字为国家二级学科编号。 【如何提高数学学习能力 】 1、提升视知觉功能。 数学是研究客观世界的“数量与空间形式”,要具备很强的视知觉功能,从纷繁复杂的客观世界的长短、大小、点线等归类辨析出“数与形”,基本策略是以运动为基础,多做视觉上的运动的尝试。 2、提升对数学语言的理解力。 数学是一种“文学兼数字与符号的结构”的语言体系。首先,应提高文字的阅读能力,其次应培养对“数与符号”的理解力,理解上有问题的,要有针对性地补救。 3、提升对数学材料的概括能力。 首先是培养对数学材料的抽象概括能力,其次是培养对数学的概括与推理的能力,最后是培养对图形的概括与推理能力。 4、提升运算能力。 【 数学名言 】 1、数学是各式各样的证明技巧。 维特根斯坦 2、无限!再也没有其他问题如此深刻地打动过人类的心灵。 D希尔伯特 3、读史使人明智,读诗使人灵秀,数学使人严密,物理学家使人深刻,伦理学使人庄重,逻辑学、修辞学使人善辨;凡有学者,皆成性格。 培根 4、法包含着一个民族经历多少世纪发展的故事,因而不能将它仅仅当作好象一本数学教科书里的定理公式来研究。为了知道法是什么,我们必须了解它的过去以及未来趋势。 霍姆斯 5、数学主要的目标是公众的利益和自然现象的解释。 傅立叶 6、数学指出函数的极大值往往在最不稳定的点取到,人追求极端就会失去内心的平衡。 7、当数学家导出方程式和公式,如同看到雕像、美丽的风景,听到优美的曲调等等一样而得到充分的快乐。 柯普宁 9、新的数学方法和概念,常常比解决数学问题本身更重要。 华罗庚 10、历史使人贤明,诗造成气质高雅的人,数学使人高尚,自然哲学使人深沉,道德使人稳重,而伦理学和修辞学则使人善于争论。 培根 11、数学是科学的女王,而数论是数学的女王。 高斯 12、数学的本质在於它的自由。 康扥尔 13、在数学中最令我欣喜的,是那些能够被证明的东西。 罗素 14、阅读使人充实;会谈使人敏捷;写作与笔记使人精确。史鉴使人明智;诗歌使人巧慧;数学使人精细;博物使人深沉;伦理使人庄重;逻辑与修辞使人善辩。 15、提出一个问题往往比解决一个问题更重要,因为解决问题也许仅是一个数学上或实验上的技能而已,而提出新的"问题,新的可能性,从新的角度来看旧的问题,却需要有创造性的想象力,而且标志着科学的真正进步。 16、数学中的一些美丽定理具有这样的特性:它们极易从事实中归纳出来,但证明却隐藏的极深。 高斯 17、学国文的人出洋深造,听来有些滑稽。事实上,惟有学中国文学的人非到外国留学不可。因为一切其他科目像数学物理哲学心理经济法律等等都是从外国灌输进来的,早已洋气扑鼻;只有国文是国货土产,还需要外国招牌,方可维持地位,正好像中国官吏商人在本国剥削来的钱要换外汇,才能保持国币的原来价值。 钱钟书 18、数学之所以比一切其它科学受到尊重,一个理由是因为他的命题是绝对可靠和无可争辩的,而其它的科学经常处于被新发现的事实推翻的危险。 爱因斯坦 19、阅读使人充实,会谈使人敏捷,写作与笔记使人精确史鉴使人明智;诗歌使人巧慧;数学使人精细;博物使人深沉;伦理之学使人庄重;逻辑与修辞使人善辩。 培根 20、学习专看文学书,也是不好的。先前的文学青年,往往厌恶数学、理化、史地、生物学,以为这些都无足轻重,后来变成连常识也没有。 鲁迅 21、在数学中,我们发现真理的主要工具是归纳和模拟。 拉普拉斯 22、数学不可比拟的永久性和万能性及他对时间和文化背景的独立行是其本质的直接后果。 埃博 23、这是一个可靠的规律,当数学或哲学著作的作者以模糊深奥的话写作时,他是在胡说八道。怀特海 24、第一是数学,第二是数学,第三是数学。 伦琴 26、20多岁是―个让人迷茫的年纪。20多岁的史玉柱在浙大学数学,20多岁的马云四处碰璧,2O多岁的王石在戈壁滩上当汽车兵。从来没有一种工作叫钱多、事少、离家近。在人生最有力的3个10年里,需要扎扎实实地靠自己。 27、数学对观察自然做出重要的贡献,它解释了规律结构中简单的原始元素,而天体就是用这些原始元素建立起来的。 开普勒 28、数学家本质上是个着迷者,不迷就没有数学。 努瓦列斯 29、数学的本质在于它的自由。康托尔 31、爱情的确微妙,它不是数学不能加减,也不是物理不能演算,的确令人费解。有的爱情是来自想象,结果不一定如你所想。有的爱情来自渴望,你愈想要,愈得不到。像中了邪。所以司令(人)必须保持清醒。 32、给我最大快乐的,不是已懂得知识,而是不断的学习;不是已有的东西,而是不断的获取;不是已达到的高度,而是继续不断的攀登。 高斯 33、直接向大师们而不是他们得的学生学习。 阿贝尔 34、一个没有几分诗人气的数学家永远成不了一个完全的数学家。 维尔斯特拉斯 37、一个国家的科学水平可以用它消耗的数学来度量。 拉奥 38、宇宙的伟大建筑是现在开始以纯数学家的面目出现了。 JH京斯 40、的智慧掌握着三把钥匙:一把开启数学,一把开启字母,一把开启音符。 41、数学是打开科学大门的钥匙。 培根 42、不管数学的任一分支是多么抽象,总有一天会应用在这实际世界上。 罗巴切夫斯基 43、数学,我想我只要上到初二就够了。一个人全面发展当然好,但可能越全面发展越是个庸才。说一个人学习高等数学是为了培养逻辑能力,我觉得逻辑能力是与生俱来的东西,并不是培养出来的东西。古人不学高等数学,难道就没有逻辑能力吗? 44、提出一个问题往往比解决一个问题更重要,因为解决问题也许仅是一个数学上或实验上的技能而已。而提出新的问题、新的可能性,从新的角度去看旧的问题,都需要有创造性的想象力,而且标志着科学的真正进步。 爱因斯坦 46、数理化语文英语全很好,音乐体育计算机都零分,连开机都不会,我还是一个优等生。但如果我音乐体育计算机好得让人发指,葡萄牙语说得跟母语似的,但是数学英语和化学全不及格,我也是个差生。 47、数学是研究现实生活中数量关系和空间形式的数学。 恩格斯 50、可以数是属统治着整个量的世界,而算数的四则运算则可以看作是数学家的全部装备。 麦克斯韦 【 阿拉伯数字的由来 】 小明是个喜欢提问的孩子。一天,他对0—9这几个数字产生兴趣:为什么它们被称为“阿拉伯数字”呢?于是,他就去问妈妈:“0—9既然叫‘阿拉伯数字",那肯定是阿拉伯人发明的了,对吗妈妈?” 妈妈摇摇头说:“阿拉伯数字实际上是印度人发明的。大约在1500年前,印度人就用一种特殊的字来表示数目,这些字有10个,只要一笔两笔就能写成。后来,这些数字传入阿拉伯,阿拉伯人觉得这些数字简单、实用,就在自己的国家广泛使用,并又传到了欧洲。就这样,慢慢变成了我们今天使用的数字。因为阿拉伯人在传播这些数字发挥了很大的作用,人们就习惯了称这种数字为‘阿拉伯数字"。” 小明听了说:“原来是这样。妈妈,这可不可以叫做‘将错就错"呢?”妈妈笑了。 【趣味数学笑一笑 】 减法 数学课上,教师对一位学生说:“你怎么连减法都不会?例如,你家里有十个苹果,被你吃了四个,结果是多少呢?”这个学生沮丧地说道:“结果是挨了十下屁股! 逻辑学的用处 有个学生请教爱因斯坦逻辑学有什么用。爱因斯坦问他:“两个人从烟囱里爬出去,一个满脸烟灰,一个干干净净,你认为哪一个该去洗澡?”“当然是脏的那个。”学生说。“不对。脏的那个看见对方干干净净,以为自己也不会脏,哪里会去洗澡?” 【闹经急转弯 】 有一天,数字卡片在一起吃午饭的时候,0弟弟说:“我们大家伙儿,一起拍几张合影吧,你们觉得怎么样?”0的兄弟姐妹们一口齐声的说:“好啊。”8哥哥说:“0弟弟的主意可真不错,我老8供应照相机和胶卷,好吧?”老4说话了:“好是好,就是太麻烦了一点,到不如用我的数码照相机,就这么定了吧。”于是,它们忙了起来,终于+号帮它们拍好了,就立刻把数码照相机送往店里洗照片,照片洗好了,电脑姐姐向它们要钱,可它们到底谁付钱呢?它们一个个呆呆的望着对方,这是电脑姐姐说:“一共5元钱,你们一共十一个兄弟姐妹,平均一人付多少元钱?”肖振2023-05-18 05:46:201
关于数学的资料
数学(mathematics或maths,来自希腊语,“máthēma”;经常被缩写为“math”),是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。数学家和哲学家对数学的确切范围和定义有一系列的看法。而在人类历史发展和社会生活中,数学也发挥着不可替代的作用,也是学习和研究现代科学技术必不可少的基本工具。在中国古代,数学叫作算术,又称算学,最后才改为数学.中国古代的算术是六艺之一(六艺中称为“数”).数学起源于人类早期的生产活动,古巴比伦人从远古时代开始已经积累了一定的数学知识,并能应用实际问题.从数学本身看,他们的数学知识也只是观察和经验所得,没有综合结论和证明,但也要充分肯定他们对数学所做出的贡献.基础数学的知识与运用是个人与团体生活中不可或缺的一部分.其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见.从那时开始,其发展便持续不断地有小幅度的进展.但当时的代数学和几何学长久以来仍处于独立的状态.代数学可以说是最为人们广泛接受的“数学”.可以说每一个人从小时候开始学数数起,最先接触到的数学就是代数学.而数学作为一个研究“数”的学科,代数学也是数学最重要的组成部分之一.几何学则是最早开始被人们研究的数学分支.直到16世纪的文艺复兴时期,笛卡尔创立了解析几何,将当时完全分开的代数和几何学联系到了一起.从那以后,我们终于可以用计算证明几何学的定理;同时也可以用图形来形象的表示抽象的代数方程.而其后更发展出更加精微的微积分.现时数学已包括多个分支.创立于二十世纪三十年代的法国的布尔巴基学派则认为:数学,至少纯数学,是研究抽象结构的理论.结构,就是以初始概念和公理出发的演绎系统.他们认为,数学有三种基本的母结构:代数结构(群,环,域,格??)、序结构(偏序,全序??)、拓扑结构(邻域,极限,连通性,维数??).扩展资料:数学分支一、数学史二、数理逻辑与数学基础 a:演绎逻辑学(亦称符号逻辑学)b:证明论 (亦称元数学) c:递归论 d:模型论 e:公理集合论 f:数学基础 g:数理逻辑与数学基础其他学科三、数论a:初等数论 b:解析数论 c:代数数论 d:超越数论 e:丢番图逼近 f:数的几何 g:概率数论 h:计算数论 i:数论其他学科四、代数学a:线性代数 b:群论 c:域论 d:李群 e:李代数 f:Kac-Moody代数 g:环论 (包括交换环与交换代数,结合环与结合代数,非结合环与非结 合代数等) h:模论 i:格论 j:泛代数理论 k:范畴论 l:同调代数 m:代数K理论 n:微分代数 o:代数编码理论 p:代数学其他学科五、代数几何学六、几何学a:几何学基础 b:欧氏几何学 c:非欧几何学 (包括黎曼几何学等) d:球面几何学 e:向量和张量分析 f:仿射几何学 g:射影几何学 h:微分几何学 i:分数维几何 j:计算几何学 k:几何学其他学科七、拓扑学a:点集拓扑学 b:代数拓扑学 c:同伦论 d:低维拓扑学 e:同调论 f:维数论 g:格上拓扑学 h:纤维丛论 i:几何拓扑学 j:奇点理论 k:微分拓扑学 l:拓扑学其他学科八、数学分析a:微分学 b:积分学 c:级数论 d:数学分析其他学科九、非标准分析十、函数论a:实变函数论 b:单复变函数论 c:多复变函数论 d:函数逼近论 e:调和分析 f:复流形 g:特殊函数论 h:函数论其他学科十一、常微分方程a:定性理论 b:稳定性理论 c:解析理论 d:常微分方程其他学科十二、偏微分方程a:椭圆型偏微分方程 b:双曲型偏微分方程 c:抛物型偏微分方程 d:非线性偏微分方程 e:偏微分方程其他学科十三、动力系统a:微分动力系统 b:拓扑动力系统 c:复动力系统 d:动力系统其他学科十四、积分方程十五、泛函分析a:线性算子理论 b:变分法 c:拓扑线性空间 d:希尔伯特空间 e:函数空间 f:巴拿赫空间 g:算子代数 h:测度与积分 i:广义函数论 j:非线性泛函分析 k:泛函分析其他学科十六、计算数学a:插值法与逼近论 b:常微分方程数值解 c:偏微分方程数值解 d:积分方程数值解 e:数值代数 f:连续问题离散化方法 g:随机数值实验 h:误差分析 i:计算数学其他学科十七、概率论a:几何概率 b:概率分布 c:极限理论 d:随机过程 (包括正态过程与平稳过程、点过程等) e:马尔可夫过程 f:随机分析 g:鞅论 h:应用概率论 (具体应用入有关学科) i:概率论其他学科十八、数理统计学a:抽样理论 (包括抽样分布、抽样调查等 )b:假设检验 c:非参数统计 d:方差分析 e:相关回归分析 f:统计推断 g:贝叶斯统计 (包括参数估计等) h:试验设计 i:多元分析 j:统计判决理论 k:时间序列分析 l:数理统计学其他学科十九、应用统计数学a:统计质量控制 b:可靠性数学 c:保险数学 d:统计模拟二十、应用统计数学其他学科二十一、运筹学a:线性规划 b:非线性规划 c:动态规划 d:组合最优化 e:参数规划 f:整数规划 g:随机规划 h:排队论 i:对策论 亦称博弈论 j:库存论 k:决策论 l:搜索论 m:图论 n:统筹论 o:最优化 p:运筹学其他学科二十二、组合数学 二十三、模糊数学二十四、量子数学二十五、应用数学 (具体应用入有关学科)二十六、数学其他学科参考资料:百度百科-数学苏萦2023-05-18 05:46:191
数学信息是什么
问题一:什么叫做数学信息 问题二:请问什么是数学信息? 1,小明和小红比赛踢毽子,各踢了3次。 2,小明一共踢了80下。 小红一共踢了83下。 问题三:对于小学生来说,什么是数学信息? 一般来说是常见的数字,还有平常他们自己买零食时所遇到的钱的加减乘除法。 问题四:数学是什么意思 数学数学(mathematics或maths),是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。 而在人类历史发展和社会生活中,数学也发挥着不可替代的作用,也是学习和研究现代科学技术必不可少的基本工具。 数学分支 1:数学史 2:数理逻辑与数学基础 X轴Y轴(4张) a:演绎逻辑学(亦称符号逻辑学)b:证明论 (亦称元数学) c:递归论 d:模型论 e:公理 *** 论 f:数学基础 g:数理逻辑与数学基础其他学科 3:数论 a:初等数论 b:解析数论 c:代数数论 d:超越数论 e:丢番图逼近 f:数的几何 g:概率数论 h:计算数论 i:数论其他学科 4:代数学 a:线性代数 b:群论 c:域论 d:李群 e:李代数 f:Kac-Moody代数 g:环论 (包括交换环与交换代数,结合环与结合代数,非结合环与非结 合代数等) h:模论 i:格论 j:泛代数理论 k:范畴论 l:同调代数 m:代数K理论 n:微分代数 o:代数编码理论 p:代数学其他学科 5:代数几何学 6:几何学 a:几何学基础 b:欧氏几何学 c:非欧几何学 (包括黎曼几何学等) d:球面几何学 e:向量和张量分析 f:仿射几何学 g:射影几何学 h:微分几何学 i:分数维几何 j:计算几何学 k:几何学其他学科 7:拓扑学 a:点集拓扑学 b:代数拓扑学 c:同伦论 d:低维拓扑学 e:同调论 f:维数论 g:格上拓扑学 h:纤维丛论 i:几何拓扑学 j:奇点理论 k:微分拓扑学 l:拓扑学其他学科 8:数学分析 a:微分学 b:积分学 c:级数论 d:数学分析其他学科 9:非标准分析 10:函数论 a:实变函数论 b:单复变函数论 c:多复变函数论 d:函数逼近论 e:调和分析 f:复流形 g:特殊函数论 h:函数论其他学科 11:常微分方程 a:定性理论 b:稳定性理论 c:解析理论 d:常微分方程其他学科 12:偏微分方程 a:椭圆型偏微分方程 b:双曲型偏微分方程 c:抛物型偏微分方程 d:非线性偏微分方程 e:偏微分方程其他学科 13:动力系统 a:微分动力系统 b:拓扑动力系统 c:复动力系统 d:动力系统其他学科 14:积分方程 15:泛函分析 a:线性算子理论 b:变分法 c:拓扑线性空间 d:希尔伯特空间 e:函数空间 f:巴拿赫空间 g:算子代数 h:测度与积分 i:广义函数论 j:非线性泛函分析 k:泛函分析其他学科 16:计算数学 a:插值法与逼近论 b:常微分方程数值解 c:偏微分方程数值解 d:积分方程数值解 e:数值代数 f:连续问题离散化方法 g:随机数值实验 h:误差分析 i:计算数学其他学科 17:概率论 a:几何概率 b:概率分布 c:极限理论 d:随机过程 (包括正态过程与平稳过程、点过程等) e:马尔可夫过程 f:随机分析 g:鞅论 h:应用概率论 (具体应用入有关学科) i:概率论其他学科 18:数理统计学 a:抽样理论 (包括抽样分布、抽样调查等 )b:假设检验 c:非参数统计 d:方差分析 e:相关回归分析 f:统计推断 g:贝叶斯统计 (包括参数估计等) h:试验设计 i:多元分析 j:统计判决理论 k:时间序列分析 l:数理统计学其他学科 19:应用统计数学 a:统计质量控制 b:可靠性数学 c:保险数学 d:统计模拟 20:应用统计数学其他学科 ......>> 问题五:数据有效性数学将输入信息是什么意思? 点击菜单“数据”――有效性――有效条件,允许=整数,数据=介于,最小值=0,最大值=100――输入信息――标题=“你要的信息”,输入信息=“你要的信息”――确定。 问题六:数学老师叫画数学信息是什么 描点法并不是对任何函数都适用,既然你能上网,应该有电脑,建议你下载一个几何画板 几何画板是一个数学作图工具,只要你能写出函数,它便能帮你作出图形 很方便的 可以网上下载,也可以找你数学老师下 现在的数学老师一般都用这个软件ardim2023-05-18 05:46:191
数学是什么意思
与代数,几何,组合,数论有关的学问苏萦2023-05-18 05:46:193
这麽多种数学……有什麽分别?
上述分类还不够严谨和全面,下列分类可供参考:数学 a.. 110.11 数学史 b.. 110.14 数理逻辑与数学基础 a.. 110.1410 演绎逻辑学 亦称符号逻辑学 b.. 110.1420 证明论 亦称元数学 c.. 110.1430 递归论 d.. 110.1440 模型论 e.. 110.1450 公理集合论 f.. 110.1460 数学基础 g.. 110.1499 数理逻辑与数学基础其他学科 c.. 110.17 数论 a.. 110.1710 初等数论 b.. 110.1720 解析数论 c.. 110.1730 代数数论 d.. 110.1740 超越数论 e.. 110.1750 丢番图逼近 f.. 110.1760 数的几何 g.. 110.1770 概率数论 h.. 110.1780 计算数论 i.. 110.1799 数论其他学科 d.. 110.21 代数学 a.. 110.2110 线性代数 b.. 110.2115 群论 c.. 110.2120 域论 d.. 110.2125 李群 e.. 110.2130 李代数 f.. 110.2135 Kac-Moody代数 g.. 110.2140 环论 包括交换环与交换代数,结合环与结合代数,非结合环与非结合代数等 h.. 110.2145 模论 i.. 110.2150 格论 j.. 110.2155 泛代数理论 k.. 110.2160 范畴论 l.. 110.2165 同调代数 m.. 110.2170 代数K理论 n.. 110.2175 微分代数 o.. 110.2180 代数编码理论 p.. 110.2199 代数学其他学科 e.. 110.24 代数几何学 f.. 110.27 几何学 a.. 110.2710 几何学基础 b.. 110.2715 欧氏几何学 c.. 110.2720 非欧几何学 包括黎曼几何学等 d.. 110.2725 球面几何学 e.. 110.2730 向量和张量分析 f.. 110.2735 仿射几何学 g.. 110.2740 射影几何学 h.. 110.2745 微分几何学 i.. 110.2750 分数维几何 j.. 110.2755 计算几何学 k.. 110.2799 几何学其他学科 g.. 110.31 拓扑学 a.. 110.3110 点集拓扑学 b.. 110.3115 代数拓扑学 c.. 110.3120 同伦论 d.. 110.3125 低维拓扑学 e.. 110.3130 同调论 f.. 110.3135 维数论 g.. 110.3140 格上拓扑学 h.. 110.3145 纤维丛论 i.. 110.3150 几何拓扑学 j.. 110.3155 奇点理论 k.. 110.3160 微分拓扑学 l.. 110.3199 拓扑学其他学科 h.. 110.34 数学分析 a.. 110.3410 微分学 b.. 110.3420 积分学 c.. 110.3430 级数论 d.. 110.3499 数学分析其他学科 i.. 110.37 非标准分析 j.. 110.41 函数论 a.. 110.4110 实变函数论 b.. 110.4120 单复变函数论 c.. 110.4130 多复变函数论 d.. 110.4140 函数逼近论 e.. 110.4150 调和分析 f.. 110.4160 复流形 g.. 110.4170 特殊函数论 h.. 110.4199 函数论其他学科 k.. 110.44 常微分方程 a.. 110.4410 定性理论 b.. 110.4420 稳定性理论 c.. 110.4430 解析理论 d.. 110.4499 常微分方程其他学科 l.. 110.47 偏微分方程 a.. 110.4710 椭圆型偏微分方程 b.. 110.4720 双曲型偏微分方程 c.. 110.4730 抛物型偏微分方程 d.. 110.4740 非线性偏微分方程 e.. 110.4799 偏微分方程其他学科 m.. 110.51 动力系统 a.. 110.5110 微分动力系统 b.. 110.5120 拓扑动力系统 c.. 110.5130 复动力系统 d.. 110.5199 动力系统其他学科 n.. 110.54 积分方程 o.. 110.57 泛函分析 a.. 110.5710 线性算子理论 b.. 110.5715 变分法 c.. 110.5720 拓扑线性空间 d.. 110.5725 希尔伯特空间 e.. 110.5730 函数空间 f.. 110.5735 巴拿赫空间 g.. 110.5740 算子代数 h.. 110.5745 测度与积分 i.. 110.5750 广义函数论 j.. 110.5755 非线性泛函分析 k.. 110.5799 泛函分析其他学科 p.. 110.61 计算数学 a.. 110.6110 插值法与逼近论 b.. 110.6120 常微分方程数值解 c.. 110.6130 偏微分方程数值解 d.. 110.6140 积分方程数值解 e.. 110.6150 数值代数 f.. 110.6160 连续问题离散化方法 g.. 110.6170 随机数值实验 h.. 110.6180 误差分析 i.. 110.6199 计算数学其他学科 q.. 110.64 概率论 a.. 110.6410 几何概率 b.. 110.6420 概率分布 c.. 110.6430 极限理论 d.. 110.6440 随机过程 包括正态过程与平稳过程、点过程等 e.. 110.6450 马尔可夫过程 f.. 110.6460 随机分析 g.. 110.6470 鞅论 h.. 110.6480 应用概率论 具体应用入有关学科 i.. 110.6499 概率论其他学科 r.. 110.67 数理统计学 a.. 110.6710 抽样理论 包括抽样分布、抽样调查等 b.. 110.6715 假设检验 c.. 110.6720 非参数统计 d.. 110.6725 方差分析 e.. 110.6730 相关回归分析 f.. 110.6735 统计推断 g.. 110.6740 贝叶斯统计 包括参数估计等 h.. 110.6745 试验设计 i.. 110.6750 多元分析 j.. 110.6755 统计判决理论 k.. 110.6760 时间序列分析 l.. 110.6799 数理统计学其他学科 s.. 110.71 应用统计数学 a.. 110.7110 统计质量控制 b.. 110.7120 可靠性数学 c.. 110.7130 保险数学 d.. 110.7140 统计模拟 t.. 110.7199 应用统计数学其他学科 u.. 110.74 运筹学 a.. 110.7410 线性规划 b.. 110.7415 非线性规划 c.. 110.7420 动态规划 d.. 110.7425 组合最优化 e.. 110.7430 参数规划 f.. 110.7435 整数规划 g.. 110.7440 随机规划 h.. 110.7445 排队论 i.. 110.7450 对策论 亦称博奕论 j.. 110.7455 库存论 k.. 110.7460 决策论 l.. 110.7465 搜索论 m.. 110.7470 图论 n.. 110.7475 统筹论 o.. 110.7480 最优化 p.. 110.7499 运筹学其他学科 v.. 110.77 组合数学 w.. 110.81 离散数学 x.. 110.84 模糊数学 y.. 110.87 应用数学 具体应用入有关学科 z.. 110.99 数学其他学科注:数学的内容十分广泛,它有许多分支。迄今,还没有一种公认的划分的原则。但就数学和现实生活的联系来说,大体分为两大类,即纯粹数学和应用数学。1.纯粹数学纯粹数学研究从客观世界中抽象出来的数学规律的内在联系,也可以说是研究数学本身的规律。它大体上分为三大类,即研究空间形式的几何类,研究离散系统的代数类,研究连续现象的分析类属于第一类的如微分几何、拓扑学。微分几何是研究光滑曲线、曲面等,它以数学分析、微分几何为研究工具。在力学和一些工程问题(如弹性壳结构、齿轮等方面)中有广泛的应用。拓扑学是研究几何图形在一对一的双方连续变换下不变的性质,这种性质称为“拓扑性质”。如画在橡皮膜上的图形当橡皮膜受到变形但不破裂或折叠时,曲线的闭合性、两曲线的相交性等都是保持不变的。属于第二类的如数论、近世代数。数论是研究整数性质的一门学科。按研究方法的不同,大致可分为初等数论、代数数论、几何数论、解析数论等。近世代数是把代数学的对象由数扩大为向量、矩阵等,它研究更为一般的代数运算的规律和性质,它讨论群、环、向量空间等的性质和结构。近世代数有群论、环论、伽罗华理论等分支。它在分析数学、几何、物理学等学科中有广泛的应用。属于第三类的如微分方程、函数论、泛涵分析。微分方程是含有未知函数的导数或偏导数的方程。如未知函数是一元函数,则称为常微分方程,如未知函数是多元函数,则称为偏微分方程。函数论是实函数论(研究实数范围上的实值函数)和复变函数(研究在复数平面上的函数性质)的总称。泛涵分析是综合运用函数论、几何学、代数学的观点来研究无限维向量空间(如函数空间)上的函数、算子和极限理论,它研究的不是单个函数,而是具有某种共同性质的函数集合。它在数学和物理中有广泛的应用。.应用数学应用数学是研究如何从现实问题中抽象出数学规律以及如何把已知的数学规律应用于现实问题的。数理方程是用微分方程来描述物理、工程技术及其它领域中发生的运动过程及现象,例如水面上波的扩散和物体中热的传导。运筹学用数学方法来协助人们找出解决各种问题的最优方案,例如,怎样安排工序可使工程周期最短、怎样剪裁钢板可使材料最省。概率统计学用数学方法从客观存在的偶然现象中找出必然规律,例如,根据历史资料分析发生地震的可能性,根据水文记录预测洪水汛水期,根据抽样检查判定某种产品的质量。计算数学是在某一客观事物已有确切的数学描述后,研究如何把它计算出具体结果来。它的主要任务是找出各种新的计算方法,其特点是:近似 现实生活中的大部分数学问题是不能求得精确解的,只能在计算过程中逐步接近它的精确答案,这叫近似解。快速解同一个问题,好方法和“笨”方法所需要的时间可相差几百、几千倍。甚至有这样的数学问题,用“理论上完善”的笨方法去解,一百年也算不出来。电子计算机的出现,给计算数学带来了革命性的变化,许多过去做不到的事,现在能做到了。例如在几小时内算出过去要几年才能算出的天气预报,甚至在几秒钟内算出正在飞行导弹的偏差,以便立即校准它的轨道。应用数学的作用越来越大,范围越来越广,几乎在一切领域都能看到它的踪迹。1950年,爱因斯坦曾对物理学下过这样的定义:“它的范围是我们全部知识中能够用数学语言表述的那一部分。”今天,这已可以成为应用数学疆域的极好描述了。就以研究生命的科学为例,用到的数学知识已从传统的方程、统计,扩展到运筹学、数值分析、数理逻辑、集合论、几何、数论、图论、拓扑、信息论、编码理论等。要用数学的生命科学分支已有:分类学、种系发生学、酶学、遗传学、诊断学、神经生理学、运动生理学、计算机辅助诊断、流行病学、生态学、群体生物学、人口理论等。尽管有些部分,数学的应用还比较生硬,机械,显得比较粗糙,但是积以时日,数学和其它科学的结合是终究会圆满成功的。应用数学的地位仍是不甚明确的。它往往被数学家当作纯数学的附庸,或者被其它学科当作锦上添花的装饰。实际上,应用数学有其独立存在的地位。正如美籍华裔应用数学家林家翘教授所说的那样:“应用数学介于实验科学与纯粹数学之间。它以一种态度、一种手段、一种思想方法为特征。主要论题是数学与科学的相互依赖。应用数学家和纯粹数学家一样,关心促进新数学的发展,但他首先侧重于直接地或至少很强烈地被科学问题所推动的方面。和理论科学家(指理论物理学家、理论化学家、理论生物学家等等——引者)一样,应用数学家利用数学方法去寻求对于科学事实和现实世界现象的认识和理解。……承认应用数学家活动的二重性,对掌握应用数学的精神实质很重要。强调了这种二重性,在应用数学与纯粹数学、应用数学与实验科学之间就能分明呈现出侧重点的区别。”这种看法已得到许多人的赞同。 作为这种情况的反映,国内外许多大学事实上已不存在一个统一的数学系,而是往往把应用数学单独成系。对于培养应用数学家的方法和教科书也有了很多好的尝试。如果说,现今的一些应用数学家多少还是从纯粹数学家的营垒转向应用的话,那么在这种新的教育手段下,就会培养出新一代应用数学家。这可能会导致应用数学在今后若干年内将产生深刻的变革、并获得更大的进展。CarieVinne 2023-05-18 05:46:194
数学有哪些分类?
数学可以分为:数论、代数学、代数几何学、几何学、拓扑学、数学分析、非标准分析、函数论、常微分方程、偏微分方程、动力系统、积分方程、泛函分析、计算数学、概率论数理统计学、应用统计数学、应用统计数学其他学科、运筹学、组合数学 、模糊数学、量子数学、应用数学等等。瑞瑞爱吃桃2023-05-18 05:46:191
数学有什么专业
数学类专业包括数学与应用数学、信息与计算科学、数理基础科学3个专业。数学源自于古希腊语,是研究数量、结构、变化以及空间模型等概念的一门学科。韦斯特兰2023-05-18 05:46:192
数学题,问一个三位数除以30等于多少?能写出几道符合要求的除法算式?提示没有余数,
30LuckySXyd2023-05-18 05:46:194
数学是什么
数学是什么数学,经常被缩写为math或maths],是研究数量、结构、变化、空间以及信息等概念的一门学科。数学是人类对事物的抽象结构与模式进行严格描述、推导的一种通用手段,可以应用于现实世界的任何问题,所有的数学对象本质上都是人为定义的。从这个意义上,数学属于形式科学,而不是自然科学。不同的数学家和哲学家对数学的确切范围和定义有一系列的看法。在人类历史发展和社会生活中,数学发挥着不可替代的作用,同时也是学习和研究现代科学技术必不可少的基本工具。1. 数学史2. 数理逻辑与数学基础a:演绎逻辑学(也称符号逻辑学),b:证明论(也称元数学),c:递归论,d:模型论,e:公理集合论,f:数学基础,g:数理逻辑与数学基础其他学科。3. 数论a:初等数论,b:解析数论,c:代数数论,d:超越数论,e:丢番图逼近,f:数的几何,g:概率数论,h:计算数论,i:数论其他学科。4. 代数学a:线性代数,b:群论,c:域论,d:李群,e:李代数,f:Kac-Moody代数,g:环论(包括交换环与交换代数,结合环与结合代数,非结合环与非结合代数等),h:模论,i:格论,j:泛代数理论,k:范畴论,l:同调代数,m:代数K理论,n:微分代数,o:代数编码理论,p:代数学其他学科。5. 数学分析a:微分学,b:积分学,c:级数论,d:数学分析其他学科。6. 非标准分析7. 函数论a:实变函数论,b:单复变函数论,c:多复变函数论,d:函数逼近论,e:调和分析,f:复流形,g:特殊函数论,h:函数论其他学科。8. 常微分方程a:定性理论,b:稳定性理论。c:解析理论,d:常微分方程其他学科。9. 偏微分方程a:椭圆型偏微分方程,b:双曲型偏微分方程,c:抛物型偏微分方程,d:非线性偏微分方程,e:偏微分方程其他学科。10. 动力系统a:微分动力系统,b:拓扑动力系统,c:复动力系统,d:动力系统其他学科。11. 积分方程12. 泛函分析a:线性算子理论,b:变分法,c:拓扑线性空间,d:希尔伯特空间,e:函数空间,f:巴拿赫空间,g:算子代数 h:测度与积分,i:广义函数论,j:非线性泛函分析,k:泛函分析其他学科。13. 计算数学a:插值法与逼近论,b:常微分方程数值解,c:偏微分方程数值解,d:积分方程数值解,e:数值代数,f:连续问题离散化方法,g:随机数值实验,h:误差分析,i:计算数学其他学科。14. 几何学a:几何学基础,b:欧氏几何学,c:非欧几何学(包括黎曼几何学等),d:球面几何学,e:向量和张量分析,f:仿射几何学,g:射影几何学,h:微分几何学,i:分数维几何,j:计算几何学,k:几何学其他学科。15. 代数几何学16. 拓扑学a:点集拓扑学,b:代数拓扑学,c:同伦论,d:低维拓扑学,e:同调论,f:维数论,g:格上拓扑学,h:纤维丛论,i:几何拓扑学,j:奇点理论,k:微分拓扑学,l:拓扑学其他学科。17. 图论18. 组合数学19. 概率论a:几何概率,b:概率分布,c:极限理论,d:随机过程(包括正态过程与平稳过程、点过程等),e:马尔可夫过程,f:随机分析,g:鞅论,h:应用概率论(具体应用入有关学科),i:概率论其他学科。20. 数理统计学a:抽样理论(包括抽样分布、抽样调查等 ),b:假设检验,c:非参数统计,d:方差分析,e:相关回归分析,f:统计推断,g:贝叶斯统计(包括参数估计等),h:试验设计,i:多元分析,j:统计判决理论,k:时间序列分析,l:数理统计学其他学科。Chen2023-05-18 05:46:191
大学普通数学水平能够看懂哪些数学基本理论?+30分
愿有缘人前来相助大鱼炖火锅2023-05-18 05:46:184
数学书的英文
1. 数学史2. 数理逻辑与数学基础a:演绎逻辑学(也称符号逻辑学),b:证明论(也称元数学),c:递归论,d:模型论,e:公理集合论,f:数学基础,g:数理逻辑与数学基础其他学科。3. 数论a:初等数论,b:解析数论,c:代数数论,d:超越数论,e:丢番图逼近,f:数的几何,g:概率数论,h:计算数论,i:数论其他学科。4. 代数学a:线性代数,b:群论,c:域论,d:李群,e:李代数,f:Kac-Moody代数,g:环论(包括交换环与交换代数,结合环与结合代数,非结合环与非结合代数等),h:模论,i:格论,j:泛代数理论,k:范畴论,l:同调代数,m:代数K理论,n:微分代数,o:代数编码理论,p:代数学其他学科。5. 数学分析a:微分学,b:积分学,c:级数论,d:数学分析其他学科。6. 非标准分析7. 函数论a:实变函数论,b:单复变函数论,c:多复变函数论,d:函数逼近论,e:调和分析,f:复流形,g:特殊函数论,h:函数论其他学科。8. 常微分方程a:定性理论,b:稳定性理论。c:解析理论,d:常微分方程其他学科。9. 偏微分方程a:椭圆型偏微分方程,b:双曲型偏微分方程,c:抛物型偏微分方程,d:非线性偏微分方程,e:偏微分方程其他学科。10. 动力系统a:微分动力系统,b:拓扑动力系统,c:复动力系统,d:动力系统其他学科。11. 积分方程12. 泛函分析a:线性算子理论,b:变分法,c:拓扑线性空间,d:希尔伯特空间,e:函数空间,f:巴拿赫空间,g:算子代数 h:测度与积分,i:广义函数论,j:非线性泛函分析,k:泛函分析其他学科。13. 计算数学豆豆staR2023-05-18 05:46:181
数学的分支
什么时候的分支?初中的话就代数几何,高中没有分,大学的话,数学一级学科下的五个二级学科有基础数学,应用数学,运筹学,概率论,计算数学,研究生的话更细了,比如基础数学可能就有很多个方向,像生物数学,应用偏微分等。不知道你说的什么分支,有一个数学名词叫分支,是某类方程的一类解小菜G的建站之路2023-05-18 05:46:183
数学数理是什么意思
问题一:数学是什么意思 数学数学(mathematics或maths),是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。 而在人类历史发展和社会生活中,数学也发挥着不可替代的作用,也是学习和研究现代科学技术必不可少的基本工具。 数学分支 1:数学史 2:数理逻辑与数学基础 X轴Y轴(4张) a:演绎逻辑学(亦称符号逻辑学)b:证明论 (亦称元数学) c:递归论 d:模型论 e:公理 *** 论 f:数学基础 g:数理逻辑与数学基础其他学科 3:数论 a:初等数论 b:解析数论 c:代数数论 d:超越数论 e:丢番图逼近 f:数的几何 g:概率数论 h:计算数论 i:数论其他学科 4:代数学 a:线性代数 b:群论 c:域论 d:李群 e:李代数 f:Kac-Moody代数 g:环论 (包括交换环与交换代数,结合环与结合代数,非结合环与非结 合代数等) h:模论 i:格论 j:泛代数理论 k:范畴论 l:同调代数 m:代数K理论 n:微分代数 o:代数编码理论 p:代数学其他学科 5:代数几何学 6:几何学 a:几何学基础 b:欧氏几何学 c:非欧几何学 (包括黎曼几何学等) d:球面几何学 e:向量和张量分析 f:仿射几何学 g:射影几何学 h:微分几何学 i:分数维几何 j:计算几何学 k:几何学其他学科 7:拓扑学 a:点集拓扑学 b:代数拓扑学 c:同伦论 d:低维拓扑学 e:同调论 f:维数论 g:格上拓扑学 h:纤维丛论 i:几何拓扑学 j:奇点理论 k:微分拓扑学 l:拓扑学其他学科 8:数学分析 a:微分学 b:积分学 c:级数论 d:数学分析其他学科 9:非标准分析 10:函数论 a:实变函数论 b:单复变函数论 c:多复变函数论 d:函数逼近论 e:调和分析 f:复流形 g:特殊函数论 h:函数论其他学科 11:常微分方程 a:定性理论 b:稳定性理论 c:解析理论 d:常微分方程其他学科 12:偏微分方程 a:椭圆型偏微分方程 b:双曲型偏微分方程 c:抛物型偏微分方程 d:非线性偏微分方程 e:偏微分方程其他学科 13:动力系统 a:微分动力系统 b:拓扑动力系统 c:复动力系统 d:动力系统其他学科 14:积分方程 15:泛函分析 a:线性算子理论 b:变分法 c:拓扑线性空间 d:希尔伯特空间 e:函数空间 f:巴拿赫空间 g:算子代数 h:测度与积分 i:广义函数论 j:非线性泛函分析 k:泛函分析其他学科 16:计算数学 a:插值法与逼近论 b:常微分方程数值解 c:偏微分方程数值解 d:积分方程数值解 e:数值代数 f:连续问题离散化方法 g:随机数值实验 h:误差分析 i:计算数学其他学科 17:概率论 a:几何概率 b:概率分布 c:极限理论 d:随机过程 (包括正态过程与平稳过程、点过程等) e:马尔可夫过程 f:随机分析 g:鞅论 h:应用概率论 (具体应用入有关学科) i:概率论其他学科 18:数理统计学 a:抽样理论 (包括抽样分布、抽样调查等 )b:假设检验 c:非参数统计 d:方差分析 e:相关回归分析 f:统计推断 g:贝叶斯统计 (包括参数估计等) h:试验设计 i:多元分析 j:统计判决理论 k:时间序列分析 l:数理统计学其他学科 19:应用统计数学 a:统计质量控制 b:可靠性数学 c:保险数学 d:统计模拟 20:应用统计数学其他学科 ......>> 问题二:数学老师说孩子数理不通什么意思 不聪明,要勤奋一点才能有好成绩。 问题三:√在数学中是什么意思? 根号 问题四:研究数学的意义是什么?数理逻辑为什么是数学分支? 任何一个学科,只有当其能用数学来表达来论证来推理的时候,才能算作一门成熟的理论。自然科学诸如物理化学生物地理天文等,其表达形式须臾不可离开数学的;社会人文科学如经济学(尤其是微观经济学),只有在引入了数学之后,才能从一种经验式的学科上升到具有严格理论的学科。因此数学是有用的,这也许是数学的重要意义之一。 数学不是自然科学,但是它的高度抽象性使它成为各个学科的最重要的工具,同时,纯数学的研究与发现,给人类精神的宝库中增添了越来越精美的财富,这是数学重要意义的另一层面。 问题五:数学及应用数学(数理金融)这样写是什么意思 数学与应用数学是本科生的的一个专业,因为数学作为基础学科,对于数学用来做应用可以向多个方向发展,其中数理金融就是其中之一,数理金融比一般金融更偏重理论(就是通过数据,用科学的思维,数学方法解释金融的现象,追求本质的原理)。当然如果你愿意用数学知识来做大数据,做统计,做计算机,做通信等等都是可以的,只要你敢去做,数学的潜力是巨大的。 问题六:在数学中“⊙O”是什么意思? A,B,C是三个固定的圆盘。A上插着两个圆盘,下面的大,上面的小。请按下面的规则把圆盘移到C上(可以借助B)。 a、每次只能移动一个圆盘; b、虎动过程中不能把大圆盘放在小圆盘的上面。! 问题七:这个数学符号代表什么意思?好像是等于一个值,数理统计和概率论里面的吧? 是组合数C(n,r) 问题八:数理逻辑是啥? 数理逻辑又称符号逻辑、理论逻辑。它是数学的一个分支,是用数学方法研究逻辑或形式逻辑的学科。其研究对象是对证明和计算这两个直观概念进行符号化以后的形式系统。数理逻辑是数学基础的一个不可缺少的组成部分。虽然名称中有逻辑两字,但并不属于单纯逻辑学范畴。 所谓数学方法就是指数学采用的一般方法,包括使用符号和公式,已有的数学成果和方法,特别是使用形式的公理方法。 用数学的方法研究逻辑的系统思想一般追溯到莱布尼茨,他认为经典的传统逻辑必须改造和发展,是之更为精确和便于演算。后人基本是沿着莱布尼茨的思想进行工作的。 简而言之,数理逻辑就是精确化、数学化的形式逻辑。它是现代计算机技术的基础。新的时代将是数学大发展的时代,而数理逻辑在其中将会起到很关键的作用。 逻辑是探索、阐述和确立有效推理原则的学科,最早由古希腊学者亚里士多德创建的。用数学的方法研究关于推理、证明等问题的学科就叫做数理逻辑。也叫做符号逻辑。 数理逻辑包括:“命题演算”和“谓词演算”。 如果我们把命题看作运算的对象,如同代数中的数字、字母或代数式,而把逻辑连接词看作运算符号,就象代数中的“加、减、乘、除”那样,那么由简单命题组成复和命题的过程,就可以当作逻辑运算的过程,也就是命题的演算。 这样的逻辑运算也同代数运算一样具有一定的性质,满足一定的运算规律。例如满足交换律、结合律、分配律,同时也满足逻辑上的同一律、吸收律、双否定律、狄摩根定律、三段论定律等等。利用这些定律,我们可以进行逻辑推理,可以简化复和命题,可以推证两个复合命题是不是等价,也就是它们的真值表是不是完全相同等等。 命题演算的一个具体模型就是逻辑代数。逻辑代数也叫做开关代数,它的基本运算是逻辑加、逻辑乘和逻辑费,也就是命题演算中的“或”、“与”、“非”,运算对象只有两个数 0和 1,相当于命题演算中的“真”和“假”。 逻辑代数的运算特点如同电路分析中的开和关、高电位和低电位、导电和截至等现象完全一样,都只有两种不同的状态,因此,它在电路分析中得到广泛的应用。 利用电子元件可以组成相当于逻辑加、逻辑成和逻辑非的门电路,就是逻辑元件。还能把简单的逻辑元件组成各种逻辑网络,这样任何复杂的逻辑关系都可以有逻辑元件经过适当的组合来实现,从而使电子元件具有逻辑判断的功能。因此,在自动控制方面有重要的应用。 谓词演算也叫做命题涵项演算。在谓词演算里,把命题的内部结构分析成具有主词和谓词的逻辑形式,由命题涵项、逻辑连接词和量词构成命题,然后研究这样的命题之间的逻辑推理关系。 命题涵项就是指除了含有常项以外还含有变项的逻辑公式。常项是指一些确定的对象或者确定的属性和关系;变项是指一定范围内的任何一个,这个范围叫做变项的变域。命题涵项和命题演算不同,它无所谓真和假。如果以一定的对象概念代替变项,那么命题涵项就成为真的或假的命题了。 命题涵项加上全程量词或者存在量词,那么它就成为全称命题或者特称命题了。 这么说你能理解吗?希望对你有帮助 ^_^ 问题九:什么是数理逻辑? 数理逻辑又称符憨逻辑、理论逻辑。它既是数学的一个分支,也是逻辑学的一个分支。是用数学方法研究逻辑或形式逻辑的学科。其研究对象是对证明和计算这两个直观概念进行符号化以后的形式系统。数理逻辑是数学基础的一个不可缺少的组成部分。虽然名称中有逻辑两字,但并不属于单纯逻辑学范畴。小白2023-05-18 05:46:181
数学分几大类
4记算几何应用题函数Chen2023-05-18 05:46:175
数学小节是什么意思
数学小节的意思如下:所谓的“小节”指的是数学课程里面一个大章节里面的小部分内容,这些内容多是以知识点的不同来进行划分,称之为“小节”。这个概念经常和数学中的“小结”弄混淆,“小结”指的是内容的总结。数学课程的内容小节:大课:代数学包含小节:线性代数、群论、域论、李群、李代数、环论(包括交换环与交换代数,结合环与结合代数,非结合环与非结合代数等)、模论、格论、泛代数理论、范畴论、同调代数、代数K理论等等。大课:几何学包含小节:几何学基础、欧氏几何学、非欧几何学(包括黎曼几何学等)、球面几何学、向量和张量分析、仿射几何学、射影几何学、微分几何学、分数维几何、计算几何学、几何学其他学科。肖振2023-05-18 05:46:171
小学数学文化有哪些
这个我觉得还可以吧,文化的话可能就是在我们的书中的一些东西吧,反正我也不是很清楚。下面是一些无关紧要的,来源于百度百科!!!数理逻辑与数学基础a:演绎逻辑学(也称符号逻辑学),b:证明论(也称元数学),c:递归论,d:模型论,e:公理集合论,f:数学基础,g:数理逻辑与数学基础其他学科。 3. 数论a:初等数论,b:解析数论,c:代数数论,d:超越数论,e:丢番图逼近,f:数的几何,g:概率数论,h:计算数论,i:数论其他学科。4. 代数学 a:线性代数,b:群论,c:域论,d:李群,e:李代数,f:Kac-Moody代数,g:环论(包括交换环与交换代数,结合环与结合代数,非结合环与非结合代数等),h:模论,i:格论,j:泛代数理论,k:范畴论,l:同调代数,m:代数K理论,n:微分代数,o:代数编码理论,p:代数学其他学科。5. 代数几何学 6. 几何学 a:几何学基础,b:欧氏几何学,c:非欧几何学(包括黎曼几何学等),d:球面几何学,e:向量和张量分析,f:仿射几何学,g:射影几何学,h:微分几何学,i:分数维几何,j:计算几何学,k:几何学其他学科。7. 拓扑学 a:点集拓扑学,b:代数拓扑学,c:同伦论,d:低维拓扑学,e:同调论,f:维数论,g:格上拓扑学,h:纤维丛论,i:几何拓扑学,j:奇点理论,k:微分拓扑学,l:拓扑学其他学科。8. 数学分析a:微分学,b:积分学,c:级数论,d:数学分析其他学科。9. 非标准分析10. 函数论 a:实变函数论,b:单复变函数论,c:多复变函数论,d:函数逼近论,e:调和分析,f:复流形,g:特殊函数论,h:函数论其他学科。 11. 常微分方程 a:定性理论,b:稳定性理论。c:解析理论,d:常微分方程其他学科。12. 偏微分方程a:椭圆型偏微分方程,b:双曲型偏微分方程,c:抛物型偏微分方程,d:非线性偏微分方程,e:偏微分方程其他学科。 13. 动力系统 a:微分动力系统,b:拓扑动力系统,c:复动力系统,d:动力系统其他学科。14. 积分方程 15. 泛函分析 a:线性算子理论,b:变分法,c:拓扑线性空间,d:希尔伯特空间,e:函数空间,f:巴拿赫空间,g:算子代数 h:测度与积分,i:广义函数论,j:非线性泛函分析,k:泛函分析其他学科。16. 计算数学a:插值法与逼近论,b:常微分方程数值解,c:偏微分方程数值解,d:积分方程数值解,e:数值代数,f:连续问题离散化方法,g:随机数值实验,h:误差分析,i:计算数学其他学科。大鱼炖火锅2023-05-18 05:46:171
代数学习题集柯斯特利金怎么样
不好学。这本书非常适合已经学过一遍高等代数,希望在代数方面进一步巩固、加深并拓展的人。对于在代数方面除初等代数以外无任何基础的初学者而言,此书无论是从思想、内容还是习题来讲都相当具有挑战性。柯斯特利金,1929年2月生于大莫雷斯。主要从事李代数、有限群、非结合代数、上同调群、群和代数的组合理论、表示论、整数格等的研究。无尘剑 2023-05-18 05:46:171
数学有哪些分支学科?
数学分支学科有:1:数学史2:数理逻辑与数学基础 a;演绎逻辑学(也称符号逻辑学)b:证明论(也称元数学)c:递归论 d:模型论 e:公理集合论 f:数学基础 g:数理逻辑与数学基础其他学科3:数论a:初等数论 b:解析数论 c:代数数论 d:超越数论 e:丢番图逼近 f:数的几何 g:概率数论 h:计算数论 i:数论其他学科4:代数学a:线性代数 b:群论 c:域论 d:李群 e:李代数 f:Kac-Moody代数 g:环论(包括交换环与交换代数,结合环与结合代数,非结合环与非结合代数等)h:模论 i:格论 j:泛代数理论 k:范畴论 l:同调代数 m:代数K理论 n:微分代数 o:代数编码理论 p:代数学其他学科5:代数几何学6:几何学a:几何学基础 b:欧氏几何学 c:非欧几何学(包括黎曼几何学等)d:球面几何学 e:向量和张量分析 f:仿射几何学 g:射影几何学 h:微分几何学 i:分数维几何 j:计算几何学 k:几何学其他学科7:拓扑学a:点集拓扑学 b:代数拓扑学 c:同伦论 d:低维拓扑学 e:同调论 f:维数论 g:格上拓扑学 h:纤维丛论 i:几何拓扑学 j:奇点理论 k:微分拓扑学 l:拓扑学其他学科8:数学分析a:微分学 b:积分学 c:级数论 d:数学分析其他学科9:非标准分析10:函数论a:实变函数论 b:单复变函数论 c:多复变函数论 d:函数逼近论 e:调和分析 f:复流形 g:特殊函数论 h:函数论其他学科11:常微分方程a:定性理论 b:稳定性理论 c:解析理论 d:常微分方程其他学科12:偏微分方程a:椭圆型偏微分方程 b:双曲型偏微分方程 c:抛物型偏微分方程 d:非线性偏微分方程 e:偏微分方程其他学科13:动力系统a:微分动力系统 b:拓扑动力系统 c:复动力系统 d:动力系统其他学科14:积分方程15:泛函分析a:线性算子理论 b:变分法 c:拓扑线性空间 d:希尔伯特空间 e:函数空间 f:巴拿赫空间 g:算子代数 h:测度与积分 i:广义函数论 j:非线性泛函分析 k:泛函分析其他学科16:计算数学a:插值法与逼近论 b:常微分方程数值解 c:偏微分方程数值解 d:积分方程数值解 e:数值代数 f:连续问题离散化方法 g:随机数值实验 h:误差分析 i:计算数学其他学科17:概率论a:几何概率 b:概率分布 c:极限理论 d:随机过程(包括正态过程与平稳过程、点过程等) e:马尔可夫过程 f:随机分析 g:鞅论 h:应用概率论(具体应用入有关学科)i:概率论其他学科18:数理统计学a:抽样理论(包括抽样分布、抽样调查等 )b:假设检验 c:非参数统计 d:方差分析 e:相关回归分析 f:统计推断 g:贝叶斯统计(包括参数估计等)h:试验设计 i:多元分析 j:统计判决理论 k:时间序列分析 l:数理统计学其他学科19:应用统计数学a:统计质量控制 b:可靠性数学 c:保险数学 d:统计模拟20:应用统计数学其他学科21:运筹学a:线性规划 b:非线性规划 c:动态规划 d:组合最优化 e:参数规划 f:整数规划 g:随机规划 h:排队论 i:对策论,也称博弈论 j:库存论 k:决策论 l:搜索论 m:图论 n:统筹论 o:最优化 p:运筹学其他学科22:组合数学 23:模糊数学24:量子数学25:应用数学(具体应用入有关学科)26:数学其他学科NerveM 2023-05-18 05:46:172
六年级比多比少的数学题怎么做
六年级数学谁比谁多谁比谁少解答技巧首先确定标准量,弄清楚是谁和谁,也就是要找好标准量找好标准量,确定标准量是已知的还是未知到用两数之差除以标准量如果求谁比谁多谁比谁少几分之几,得数用分数表示,如果求谁比谁多谁比谁多谁百分之几,得数用百分数表示数理逻辑与数学基础a:演绎逻辑学(亦称符号逻辑学)b:证明论(亦称元数学)c:递归论d:模型论e:公理集合论f:数学基础g:数理逻辑与数学基础其他学科数论a:初等数论b:解析数论c:代数数论d:超越数论e:丢番图逼近f:数的几何g:概率数论h:计算数论i:数论其他学科线性代数b:群论c:域论d:李群e:李代数f:Kac-Moody代数g:环论(包括交换环与交换代数,结合环与结合代数,非结合环与非结合代数等)h:模论i:格论j:泛代数理论k:范畴论l:同调代数m:代数K理论n:微分代数o:代数编码理论p:代数学其他学科代数几何学、几何学基础b:欧氏几何学c:非欧几何学(包括黎曼几何学等)d:球面几何学e:向量和张量分析f:仿射几何学g:射影几何学h:微分几何学i:分数维几何j:计算几何学k:几何学其他学科拓扑学a:点集拓扑学b:代数拓扑学c:同伦论d:低维拓扑学e:同调论f:维数论g:格上拓扑学h:纤维丛论i:几何拓扑学j:奇点理论k:微分拓扑学l:拓扑学其他学科苏萦2023-05-18 05:46:171
数学是科学吗?
数学是现代社会科技发展的一门重要科学。数学,是研究数量、结构、变化、空间以及信息等概念的一门学科。数学是建立在公理基础上的逻辑推演和逻辑推演结果集。数学不可被证实,也不可被证伪。判定一个数学理论是否正确,仅仅只能靠逻辑推演。 从某种角度看属于形式科学的一种,借用《数学简史》的话,数学就是研究集合上各种结构的科学,可见,数学是一门抽象的学科。而严谨的过程是数学抽象的关键,数学在人类历史发展和社会生活中发挥着不可替代的作用,也是学习和研究现代科学技术必不可少的基本工具。北营2023-05-18 05:46:173
数学高数里的无穷小什么意思?
0.0000000…01小白2023-05-18 05:43:467
"几何"(数学)是什么意思
几何,就是研究空间结构及性质的一门学科。它是数学中最基本的研究内容之一,与分析、代数等等具有同样重要的地位,并且关系极为密切。几何这个词最早来自于希腊语“γεωμετρ?α”,由“γ?α”(土地)和“μετρε ?ν”(测量)两个词合成而来,指土地的测量,即测地术。后来拉丁语化为“geometria”。中文中的“几何”一词,最早是在明代利玛窦、徐光启合译《几何原本》时,由徐光启所创。当时并未给出所依根据,后世多认为一方面几何可能是拉丁化的希腊语GEO的音译,另一方面由于《几何原本》中也有利用几何方式来阐述数论的内容,也可能是magnitude(多少)的意译,所以一般认为几何是geometria的音意并译。阿啵呲嘚2023-05-18 05:43:431
数学几何是什么意思?
几何就是图形,图形就是三角形,四边形,五边形等等由线段组成的平面图形.而立体几何就是有平面或线段组成的3维图形西柚不是西游2023-05-18 05:43:421
数学几何是什么意思
数学几何是研究空间结构及性质的一门学科。它是数学中最基本的研究内容之一,与分析、代数等等具有同样重要的地位,并且关系极为密切。几何学发展历史悠长,内容丰富。它和代数、分析、数论等等关系极其密切。几何思想是数学中最重要的一类思想。暂时的数学各分支发展都有几何化趋向,即用几何观点及思想方法去探讨各数学理论。常见定理有勾股定理,欧拉定理,斯图尔特定理等。最早的几何学当属平面几何。平面几何就是研究平面上的直线和二次曲线(即圆锥曲线,就是椭圆、双曲线和抛物线)的几何结构和度量性质(面积、长度、角度)。平面几何采用了公理化方法,在数学思想史上具有重要的意义。余辉2023-05-18 05:43:411
数学几何是什么意思?
几何就是图形,图形就是三角形,四边形,五边形等等由线段组成的平面图形.而立体几何就是有平面或线段组成的3维图形水元素sl2023-05-18 05:43:401
高中数学定积分怎么算?
具体计算公式参照如图:扩展资料:定积分是积分的一种,是函数f(x)在区间[a,b]上的积分和的极限。积分分类不定积分(Indefinite integral)即已知导数求原函数。若F′(x)=f(x),那么[F(x)+C]′=f(x).(C∈R C为常数).也就是说,把f(x)积分,不一定能得到F(x),因为F(x)+C的导数也是f(x)(C是任意常数)。所以f(x)积分的结果有无数个,是不确定的。我们一律用F(x)+C代替,这就称为不定积分。即如果一个导数有原函数,那么它就有无定积分限多个原函数。定积分 (definite integral)定积分就是求函数f(X)在区间[a,b]中的图像包围的面积。即由 y=0,x=a,x=b,y=f(X)所围成图形的面积。这个图形称为曲边梯形,特例是曲边三角形。这里应注意定积分与不定积分之间的关系:若定积分存在,则它是一个具体的数值(曲边梯形的面积),而不定积分是一个函数表达式,它们仅仅在数学上有一个计算关系(牛顿-莱布尼茨公式),其它一点关系都没有!一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而不存在不定积分。一个连续函数,一定存在定积分和不定积分;若只有有限个间断点,则定积分存在;若有跳跃间断点,则原函数一定不存在,即不定积分一定不存在。积分在实际问题中的应用 (一)经济问题 某工厂技术人员告诉他的老板某种产品的总产量关于时间的变化率为R′(t)=50+5t-0.6t2,现在老板想知道4个小时内他的工人到底能生产出多少产品。如果我们假设这段时间为[1,5],生产的产品总量为R,则总产量R在t时刻的产量,即微元dR=R′(t)dt=(50+5t-0.6t2)dt。因此,在[1,5]内总产量为 (二)压缩机做功问题 在生产生活过程中,压缩机做功问题由于关系到能源节约问题,因此备受大家关注。假设地面上有一个底半径为5 m, 高为20 m的圆柱形水池, 往里灌满了水。如果要把池中所有的水抽出,则需要压缩机做多少功?此时,由于考虑到池中的水被不间断地抽出,可将抽出的水分割成不同的水层。同时, 把每层的水被抽出时需要的功定义为功微元。这样,该问题就可通过微元法解决了。 具体操作如下: 将水面看做是原点所在的位置, 竖直向下做x轴。当水平从x处下降了dx时, 我们近似地认为厚度为dx的这层水都下降了x,因而这层水所做的功微元dw≈25πxdx(J)。当水被完全抽出, 池内的水从20 m下降为 0 m。根据微元法, 压缩机所做的功为W=25πxdx=15708(J) 。 (三)液体静压力问题 在农业生产过程中,为了保证农田的供水,常常需要建造各种储水池。因此,我们需要了解有关静压力问题。在农田中有一个宽为 4 m, 高为3 m, 且顶部在水下 5 m的闸门, 它垂直于水面放置。此闸门所受的水压力为多少?我们可以考虑将闸门分成若干个平行于水面的小长方体。此时, 闸门所受的压力可看做是小长方体所受的压力总和。 当小长方体的截面很窄的情况下, 可用其截面沿线上的压强来近似代替各个点处的压强。 任取一小长方体,其压强可表示为1・x=x, 长方体截面的面积为ΔA=4dx, 从而ΔF≈x・4dx, 利用微元法求解定积分,还可以解决很多实际工程问题,关键是要掌握好换“元” 的技巧。这就需要我们解决问题时,要特别注意思想方法。思想方法形式多种多样,如以直代曲、以均匀代不均匀、以不变代变化等。参考资料:百度百科-定积分LuckySXyd2023-05-18 05:43:391
数学中的几何是什么意思
几何,就是研究空间结构及性质的一门学科。它是数学中最基本的研究内容之一,与分析、代数等等具有同样重要的地位,并且关系极为密切。几何学发展历史悠长,内容丰富。它和代数、分析、数论等等关系极其密切。几何思想是数学中最重要的一类思想。暂时的数学各分支发展都有几何化趋向,即用几何观点及思想方法去探讨各数学理论。常见定理有勾股定理,欧拉定理,斯图尔特定理等。中文名几何外文名geometry分类数学其他代数功能研究空间结构及性质基本含义定义几何,就是研究空间结构及性质的一门学科。它是数学中最基本的研究内容之一,与分析、代数等等具有同样重要的地位,并且关系极为密切。豆豆staR2023-05-18 05:43:399
数学中函数有哪些?都是怎样定义的?
1、y=kx+b (k≠0) 一次函数2、y=kx(k≠0)正比例函数3、y=ax²+bx+c (a≠0)二次函数 4、y=ax的n次方+bx的n-1次方……(a≠0) n次函数5、y=x的a次方 (a≠0或1) 幂函数6、y=a的x次方 (a>0且a≠1) 指数函数7、y=loga底x (a>0且a≠1) 对数函数8、y=ax+b/x (ab≠0) 超越函数,耐克函数,对勾函数9、y=sinx正弦函数10、y=cosx余弦函数11、y=tanx正切函数12、y=cotx余切函数13、y=secx 正割函数14、y=cscx 余割函数暂时就想这么多了,还要就追加可桃可挑2023-05-18 05:43:131
数学函数公式有哪些?
数学函数公式有如下:1、sin(A+B) = sinAcosB+cosAsinB。2、sin(A-B) = sinAcosB-cosAsinB。3、cos(A+B) = cosAcosB-sinAsinB。4、cos(A-B) = cosAcosB+sinAsinB。5、tan(A+B) = (tanA+tanB)/(1-tanAtanB)。6、tan(A-B) = (tanA-tanB)/(1+tanAtanB)。7、cot(A+B) = (cotAcotB-1)/(cotB+cotA)。8、cot(A-B) = (cotAcotB+1)/(cotB-cotA)。北营2023-05-18 05:43:111
高斯定理数学公式是什么?
表达式:∮F·dS=∫(▽·F)dV。在静电学中,表明在闭合曲面内的电荷之和与产生的电场在该闭合曲面上的电通量积分之间的关系。 高斯定律(Gauss" law)表明在闭合曲面内的电荷分布与产生的电场之间的关系。高斯定律在静电场情况下类比于应用在磁场学的安培定律,而二者都被集中在麦克斯韦方程组中。因为数学上的相似性,高斯定律也可以应用于其它由平方反比律决定的物理量,例如引力或者辐照度。静电场与磁场两者有着本质上的区别。在静电场中,由于自然界中存在着独立的电荷,所以电场线有起点和终点,只要闭合面内有净余的正(或负)电荷,穿过闭合面的电通量就不等于零,即静电场是有源场。而在磁场中,由于自然界中没有磁单极子存在,N极和S极是不能分离的,磁感线都是无头无尾的闭合线,所以通过任何闭合面的磁通量必等于零。陶小凡2023-05-17 16:59:321
数学家高斯的故事。
我非常喜欢高斯与正十七边形的故事,讲的是他在不知情的情况下,解决了千年数学难题,仅用一把没有刻度的直尺和圆规做出了一个正十七边形,详情可以上网搜到。人类地板流精华2023-05-17 16:59:325
数学家高斯的故事
高斯是德国数学家 ,也是科学家,他和牛顿、阿基米德,被誉为有史以来的三大数学家。高斯是近代数学奠基者之一,在历史上影响之大, 可以和阿基米德、牛顿、欧拉并列,有“数学王子”之称。 他幼年时就表现出超人的数学天才。1795年进入格丁根大学学习。第二年他就发现正十七边形的尺规作图法。并给出可用尺规作出的正多边形的条件,解决了欧几里得以来悬而未决的问题。 高斯的数学研究几乎遍及所有领域,在数论、代数学、非欧几何、复变函数和微分几何等方面都做出了开创性的贡献。他还把数学应用于天文学、大地测量学和磁学的研究,发明了最小二乘法原理。高理的数论研究 总结 在《算术研究》(1801)中,这本书奠定了近代数论的基础,它不仅是数论方面的划时代之作,也是数学史上不可多得的经典著作之一。高斯对代数学的重要贡献是证明了代数基本定理,他的存在性证明开创了数学研究的新途径。高斯在1816年左右就得到非欧几何的原理。他还深入研究复变函数,建立了一些基本概念发现了著名的柯西积分定理。他还发现椭圆函数的双周期性,但这些工作在他生前都没发表出来。1828年高斯出版了《关于曲面的一般研究》,全面系统地阐述了空间曲面的微分几何学,并提出内蕴曲面理论。高斯的曲面理论后来由黎曼发展。 高斯一生共发表155篇论文,他对待学问十分严谨,只是把他自己认为是十分成熟的作品发表出来。其著作还有《地磁概念》和《论与距离平方成反比的引力和斥力的普遍定律》等。 1801年高斯有机会戏剧性地施展他的优势的计算技巧。那年的元旦,有一个后来被证认为小行星并被命名为谷神星的天体被发现当时它好像在向太阳靠近,天文学家虽然有40天的时间可以观察它,但还不能计算出它的轨道。高斯只作了3次观测就提出了一种计算轨道参数的方法,而且达到的精确度使得天文学家在1801年末和1802年初能够毫无困难地再确定谷神星的位置。高斯在这一计算方法中用到了他大约在1794年创造的最小二乘法(一种可从特定计算得到最小的方差和中求出最佳估值的方法在天文学中这一成就立即得到公认。他在《天体运动理论》中叙述的方法今天仍在使用,只要稍作修改就能适应现代计算机的要求。高斯在小行星“智神星”方面也获得类似的成功。 由于高斯在数学、天文学、大地测量学和物理学中的杰出研究成果,他被选为许多科学院和学术团体的成员。“数学之王”的称号是对他一生恰如其分的赞颂。余辉2023-05-17 16:59:321
数学家高斯的故事
用很短的时间计算出了小学老师布置的任务:对自然数从1到100的求和。他所使用的方法是:对50对构造成和101的数列求和(1+100,2+99,3+98??),同时得到结果:5050。这一年,高斯9岁。小时候高斯家里很穷,且他父亲不认为学问有何用,但高斯依旧喜欢看书,话说在小时候,冬天吃完饭后他父亲就会要他上床睡觉,以节省燃油,但当他上床睡觉时,他会将芜菁的内部挖空,里面塞入棉布卷,当成灯来使用,以继续读书。当高斯12岁时,已经开始怀疑元素几何学中的基础证明。当他16岁时,预测在欧氏几何之外必然会产生一门完全不同的几何学,即非欧几里德几何学。他导出了二项式定理的一般形式,将其成功的运用在无穷级数,并发展了数学分析的理论。扩展资料:重大成就:19世纪30年代,高斯发明了磁强计。他辞去了天文台的工作,而转向物理的研究。他与韦伯(1804-1891)在电磁学领域共同工作。他比韦伯年长27岁,以亦师亦友的身份与其合作。1833年,通过受电磁影响的罗盘指针,他向韦伯发送出电报。这不仅是从韦伯的实验室与天文台之间的第一个电话电报系统,也是世界首创的第一个电话电报系统。尽管线路才8千米长。1840年,他和韦伯画出了世界第一张地球磁场图,并且定出了地球磁南极和磁北极的位置。次年,这些位置得到美国科学家的证实。高斯在数个领域进行研究,但只把他认为已经成熟的理论发表出来。他经常对他的同事表示,该同事的结论已经被自己以前证明过了,只是因为基础理论的不完备而没有发表。批评者说他这样做是因为喜欢抢出风头。事实上高斯把他的研究结果都记录起来了。他死后,他的20部纪录着他的研究结果和想法的笔记被发现,证明高斯所说的是事实。一般人认为,20部笔记并非高斯笔记的全部。下萨克森州和哥廷根大学图书馆已经将高斯的全部著作数位化,并放置于互联网上。高斯的肖像曾被印刷在从1989年至2001年流通的10元德国马克纸币上。参考资料来源:百度百科-约翰·卡尔·弗里德里希·高斯bikbok2023-05-17 16:59:321
高斯定理数学公式是什么?
高斯定理数学公式是:∮F·dS=∫(▽·F)dV。高斯定律表明在闭合曲面内的电荷分布与产生的电场之间的关系。高斯定理也称为高斯公式,或称作散度定理、高斯散度定理、高斯-奥斯特罗格拉德斯基公式、奥氏定理或高-奥公式。静电场和磁场的关系两者有着本质上的区别。在静电场中,由于自然界中存在着独立的电荷,所以电场线有起点和终点,只要闭合面内有净余的正(或负)电荷,穿过闭合面的电通量就不等于零,即静电场是有源场。高斯定律表明在闭合曲面内的电荷分布与产生的电场之间的关系。而在磁场中,由于自然界中没有磁单极子存在,N极和S极是不能分离的,磁感线都是无头无尾的闭合线,所以通过任何闭合面的磁通量必等于零。在静电学中,表明在闭合曲面内的电荷之和与产生的电场在该闭合曲面上的电通量积分之间的关系。高斯定律在静电场情况下类比于应用在磁场学的安培定律,而二者都被集中在麦克斯韦方程组中。NerveM 2023-05-17 16:59:321
什么是高斯数学
1、高斯数学是“北京?广州超常儿童教育研究中心”在小学数学领域的重点研发和推广课题,该课题起步于上世纪90年代,于2001年在的带领下形成体系,开创了国内超常儿童教育向公立体制外拓展的先河。自那时起,高斯数学一直引领国内数学课外教育的发展潮流和方向。2、课题简介:高斯数学是将小学课内课外数学囊括其中,并形成横向7大板块、纵向6个年级的知识树体系的小学尖端数学课程。3、7大板块包括:计数树、计算树、组合数学树、应用题树、几何树、数字谜树、数论树。4、6个年级即小学1-6年级。5、教育理念:通过学习数学发展脑区功能,培养终身受用的思维。事事皆数学建模。数学思维的本质是建模,把日常生活中遇到的问题,翻译为数学问题,并用数学方法推导出决策模型,然后把数学模型还原为日常生活的解决方法。小至每天上下班走哪条路,大至制定年度规划考虑投入产出,都是数学建模。6、从小学好数学,培养思维能力。很多人会说,把数学学好,竞赛获奖,冲击华附省实执信等重点公校重点班。其实,学好数学不是为了做题考试,名校也不是招考试竞赛厉害的学生。学好数学是为了培养良好的思维能力,只是顺便把竞赛、考试、名校拿下罢了。很多数学知识,虽然日常生活中并无应用,但却在锻炼着孩子的逻辑推理、归纳分析、空间想象、数字敏感度、统筹决策等等思维能力瑞瑞爱吃桃2023-05-17 16:59:311
数学天才高斯的故事
高斯(Gauss 1777~1855)生于Brunswick,位于现在德国中北部。他的祖父是农民,父亲是泥水匠,母亲是一个石匠的女儿,有一个很聪明的弟弟,高斯这位舅舅,对小高斯很照顾,偶而会给他一些指导,而父亲可以说是一名「大老粗」,认为只有力气能挣钱,学问这种劳什子对穷人是没有用的。 高斯很早就展现过人才华,三岁时就能指出父亲帐册上的错误。七岁时进了小学,在破旧的教室里上课,老师对学生并不好,常认为自己在穷乡僻壤教书是怀才不遇。高斯十岁时,老师考了那道著名的「从一加到一百」,终于发现了高斯的才华,他知道自己的能力不足以教高斯,就从汉堡买了一本较深的数学书给高斯读。同时,高斯和大他差不多十岁的助教Bartels变得很熟,而Bartels的能力也比老师高得多,后来成为大学教授,他教了高斯更多更深的数学。 老师和助教去拜访高斯的父亲,要他让高斯接受更高的教育,但高斯的父亲认为儿子应该像他一样,作个泥水匠,而且也没有钱让高斯继续读书,最后的结论是--去找有钱有势的人当高斯的赞助人,虽然他们不知道要到哪里找。经过这次的访问,高斯免除了每天晚上织布的工作,每天和Bartels讨论数学,但不久之后,Bartels也没有什么东西可以教高斯了。 1788年高斯不顾父亲的反对进了高等学校。数学老师看了高斯的作业后就要他不必再上数学课,而他的拉丁文不久也凌驾全班之上。 华罗庚(1910——1982)出生于江苏太湖畔的金坛县,因出生时被父亲华老祥放于箩筐以图吉利,“进箩避邪,同庚百岁“,故取名罗庚。 华罗庚从小便贪玩,也喜欢凑热闹,只是功课平平,有时还不及格。勉强上完小学,进了家乡的金坛中学,但仍贪玩,字又写得歪歪扭扭,做数学作业时倒时满认真地画来画去,但像涂鸦一般,所以上初中时的华罗庚仍不被老师喜欢的学生而且还常常挨戒尺。 金坛中学的一位名叫王维克的教员却独有慧眼,他研究了华罗庚涂鸦的本子才发现这许多涂改的地方正反映他解题时探索的多种路子。一次王维克老师给学生讲[孙子算经]出了这样一道题:”今有物不知其数,三三数之剩其二,五五数剩其三,七七数剩其二,问物几何?“正在大家沉默之际,有个学生站起来,大家一看,原来是向来为人瞧不起的华罗庚,当时他才十四岁,你猜一猜华罗庚他说出是多少? 1.陈景润不爱玩公园,不爱逛马路,就爱学习。学习起来,常常忘记了吃饭睡觉。有一天,陈景润吃中饭的时候,摸摸脑袋,哎呀,头发太长了,应该快去理一理,要不,人家看见了,还当他是个姑娘呢。于是,他放下饭碗,就跑到理发店去了。理发店里人很多,大家挨着次序理发。陈景润拿的牌子是三十八号的小牌子。他想:轮到我还早着哩。时间是多么宝贵啊,我可不能白白浪费掉。他赶忙走出理发店,找了个安静的地方坐下来,然后从口袋里掏出个小本子,背起外文生字来。他背了一会,忽然想起上午读外文的时候,有个地方没看懂。不懂的东西,一定要把它弄懂,这是陈景润的脾气。他看了看手表,才十二点半。他想:先到图书馆去查一查,再回来理发还来得及,站起来就走了。谁知道,他走了不多久,就轮到他理发了。理发员叔叔大声地叫:“三十八号!谁是三十八号?快来理发!”你想想,陈景润正在图书馆里看书,他能听见理发员叔叔喊三十八号吗?过了好些时间,陈景润在图书馆里,把不懂的东西弄懂了,这才高高兴兴地往理发店走去。可是他路过外文阅览室,有各式各样的新书,可好看啦。又跑进去看起书来了,一直看到太阳下山了,他才想起理发的事儿来。他一摸口袋,那张三十八号的小牌子还好好地躺着哩。但是他来到理发店还有啥用呢,这个号码早已过时了。2. 阿基米德叙拉古的亥厄洛王叫金匠造一顶纯金的皇冠,因怀疑里面掺有银,便请阿基米德鉴定。当他进入浴盆洗澡时,水漫溢到盆外,于是悟得不同质料的物体,虽然重量相同,但因体积不同,排去的水也必不相等。根据这一道理,就可以判断皇冠是否掺假。.1966年屈居于六平方米小屋的陈景润,借一盏昏暗的煤油灯,伏在床板上,用一支笔,耗去了几麻袋的草稿纸,居然攻克了世界著名数学难题“哥德巴赫猜想”中的(1+2),创造了距摘取这颗数论皇冠上的明珠(1+ 1)只是一步之遥的辉煌。他证明了“每个大偶数都是一个素数及一个不超过两个素数的乘积之和”,使他在哥德巴赫猜想的研究上居世界领先地位。这一结果国际上誉为“陈氏定理”,受到广泛征引。这项工作还使他与王元、潘承洞在1978年共同获得中国自然科学奖一等奖。他研究哥德巴赫猜想和其他数论问题的成就,至今,仍然在世界上遥遥领先。世界级的数学大师、美国学者阿 ·威尔(A?Weil)曾这样称赞他:“陈景润的每一项工作,都好像是在喜马拉雅山山巅上行走。FinCloud2023-05-17 16:59:311
【德国数学家高斯详细资料】
1.C.F.Gauss是德国著名数学家、物理学家、天文学家、大地测量学家。他有数学王子的美誉,并被誉为历史上最伟大的数学家之一,和阿基米德、牛顿、欧拉同享盛名。JohannCarlFriedrichGauss)(1777年4月30日-1855年2月23日),生于不伦瑞克,卒于哥廷根,德国著名数学家、物理学家、天文学家、大地测量学家。高斯的成就遍及数学的各个领域,在数论、非欧几何、微分几何、超几何级数、复变函数论以及椭圆函数论等方面均有开创性贡献。他十分注重数学的应用,并且在对天文学、大地测量学和磁学的研究中也偏重于用数学方法进行研究。高斯幼时家境贫困,但聪敏异常,1792年,在当地公爵的资助下,不满15岁的高斯进入了卡罗琳学院学习。在那里,高斯开始对高等数学作研究。独立发现了二项式定理的一般形式、数论上的“二次互反律”(LawofQuadraticReciprocity)、“质数分布定理”(primenumertheorem)、及“算术几何平均”(arithmetic-geometricmean)。1795年高斯进入哥廷根大学。1796年,19岁的高斯得到了一个数学史上极重要的结果,就是《正十七边形尺规作图之理论与方法》。1798年转入黑尔姆施泰特大学,翌年因证明代数基本定理获博士学位。1801年,高斯又证明了形如"Fermat素数"边数的正多边形可以由尺规作出。从1807年起担任格丁根大学教授兼格丁根天文台台长。hi投2023-05-17 16:59:311
高斯的数学故事?
高斯最著名的故事莫过于小学时计算1+2+3+...+100的值。当时高斯上小学,老师在班上出了这样一道题,叫大家算。那个老师以为至少要20分钟以后才会有答案,正想休息一下,谁知屁股还没坐稳高斯就说算出来了。老师很惊讶,问他怎么算的,他就说先算1+100=101,2+99=101,。。。这样一共有50个101,因此结果是5050。还有一个故事,是高斯19岁的时候,本来他打算学法律的,结果不经意间解决了一个2000年的数学难题,那就是只用直尺和圆规17等分圆周。高斯还证明了当且仅当N=2^(2^n)+1时,能够用尺规N等分圆周。从此高斯对数学的兴趣大增,并走上了数学研究的道路,成了一名伟大的数学家。九万里风9 2023-05-17 16:59:313
数学家高斯的故事
数学家高斯的故事 篇1 高斯是德国数学家,也是科学家,他和牛顿、阿基米德,被誉为有史以来的三大数学家。高斯是近代数学奠基者之一,在历史上影响之大,能够和阿基米德、牛顿、欧拉并列,有数学王子之称。 他幼年时就表现出超人的数学天才。1795年进入格丁根大学学习。第二年他就发现正十七边形的尺规作图法。并给出可用尺规作出的正多边形的条件,解决了欧几里得以来悬而未决的问题。 高斯的数学研究几乎遍及所有领域,在数论、代数学、非欧几何、复变函数和微分几何等方面都做出了开创性的贡献。他还把数学应用于天文学、大地测量学和磁学的研究,发明了最小二乘法原理。高理的数论研究总结在《算术研究》(1801)中,这本书奠定了近代数论的基础,它不仅仅是数论方面的划时代之作,也是数学史上不可多得的经典著作之一。高斯对代数学的重要贡献是证明了代数基本定理,他的存在性证明开创了数学研究的新途径。高斯在1816年左右就得到非欧几何的原理。他还深入研究复变函数,建立了一些基本概念发现了著名的柯西积分定理。他还发现椭圆函数的双周期性,但这些工作在他生前都没发表出来。1828年高斯出版了《关于曲面的一般研究》,全面系统地阐述了空间曲面的微分几何学,并提出内蕴曲面理论。高斯的曲面理论之后由黎曼发展。高斯一生共发表155篇论文,他对待学问十分严谨,只是把他自己认为是十分成熟的作品发表出来。其著作还有《地磁概念》和《论与距离平方成反比的引力和斥力的普遍定律》等。 1801年高斯有机会戏剧性地施展他的优势的计算技巧。那年的元旦,有一个之后被证认为小行星并被命名为谷神星的天体被发现当时它好像在向太阳靠近,天文学家虽然有40天的时间能够观察它,但还不能计算出它的轨道。高斯只作了3次观测就提出了一种计算轨道参数的方法,而且到达的精确度使得天文学家在1801年末和1802年初能够毫无困难地再确定谷神星的位置。高斯在这一计算方法中用到了他大约在1794年创造的最小二乘法(一种可从特定计算得到最小的方差和中求出最佳估值的方法在天文学中这一成就立即得到公认。他在《天体运动理论》中叙述的方法这天仍在使用,只要稍作修改就能适应现代计算机的要求。高斯在小行星智神星方面也获得类似的成功。 由于高斯在数学、天文学、大地测量学和物理学中的杰出研究成果,他被选为许多科学院和学术团体的成员。数学之王的称号是对他一生恰如其分的赞颂。 在古今中外的著名数学家当中,像高斯那样从小就具有高度数学才华的,恐怕极为少见。 高斯于1777年4月30日出生于德国一个农民家庭。他从小就酷爱数学,据说在他还不满三岁的时候,有一天,他观看父亲算帐,计算结束后,父亲念出了钱数准备写下时,身边传来细小的声音:爸爸,算错了,总数就应是。父亲惊讶不止,复算结果,发现孩子的答案是正确的。高斯读小学的时候,有一次,老师出了一道难题,要他们从1加起,加2,加3,加4,一向加到100,满以为这下准能把学生们难住。没想到高斯一会儿就算了出来。老师一看,答数是5050,一点不错,大吃一惊。高斯是这样算的:1与100、2与99、3与98每一对的和都是101,而100以内这样的数共有50对,101×50=5050,他的这种计算方法,代数上称为等差级数求和公式。那时高斯才10岁。 高斯对数学的兴趣越来越浓,数学上的定理、公式和求证方法一个又一个地被他发现和证实。 11岁时,他发现了X+Yn的展开式。 17岁时,他发现了数论中的二次互反律。 1796年3月30日,年仅18岁的高斯,又有了堪称数学史上最惊人的发现,他用代数方法解决两千年来的几何难题,而且找到了只使用直尺和圆规作圆,内接正17边形的方法也称17边形直尺圆规画法。为了纪念他少年时的这一最重要的发现,高斯表示期望死后在他的墓碑上能刻上一个正17边形。1799年,高斯又证明了一个重要的定理:任何一元代数方程都有一个根,这一结果数学上称为代数基本定理,也被称做高斯定理。1801年,高斯出版了他的《算术论文集》。高斯在23岁的时候开始研究天文,并解决了测量星球椭圆轨道的方法,也称椭圆函数。 高斯所取得的成就,一方面来自天赋,一方面来自勤奋。他家里很穷,冬天,爸爸为了节省灯油,吃完晚饭就要他上床睡觉,高斯自己做了个油灯,在微弱的灯光下全神贯注地读书到深夜。15岁时,他就读了牛顿、欧拉、拉格朗日等著名数学家的数学著作,并熟练地掌握了微积分理论。高斯的成功,不是天上掉下来的,而是刻苦学习得来的。他把科学研究工作看得高于一切。妻子病重时,高斯正在钻研一个深奥的数学问题。仆人几次来叫他:如果您不立刻过去,就不能见她最后一面了!高斯却说:叫她等一下,等到我过去。直到他把手头的研究告一段落,这才勿勿跑去看望妻子。 高斯就是这样,天资聪明,更勤奋好学,最后成为著名的数学家,被誉为数学王子。1855年2月23日,高斯逝世,终年78岁。 数学家高斯的故事 篇2 高斯(Gauss1777~1855)生于Brunswick,位于此刻德国中北部。他的祖父是农民,父亲是泥水匠,母亲是一个石匠的女儿,有一个很聪明的弟弟,高斯这位舅舅,对小高斯很照顾,偶而会给他一些指导,而父亲能够说是一名「大老粗」,认为只有力气能挣钱,学问这种劳什子对穷人是没有用的。 高斯很早就展现过人才华,三岁时就能指出父亲帐册上的错误。七岁时进了小学,在破旧的教室里上课,老师对学生并不好,常认为自己在穷乡僻壤教书是怀才不遇。高斯十岁时,老师考了那道著名的「从一加到一百」,最后发现了高斯的才华,他明白自己的潜力不足以教高斯,就从汉堡买了一本较深的数学书给高斯读。同时,高斯和大他差不多十岁的助教Bartels变得很熟,而Bartels的潜力也比老师高得多,之后成为大学教授,他教了高斯更多更深的数学。 老师和助教去拜访高斯的父亲,要他让高斯理解更高的教育,但高斯的父亲认为儿子就应像他一样,作个泥水匠,而且也没有钱让高斯继续读书,最后的结论是去找有钱有势的人当高斯的赞助人,虽然他们不明白要到哪里找。经过这次的访问,高斯免除了每一天晚上织布的工作,每一天和Bartels讨论数学,但不久之后,Bartels也没有什么东西能够教高斯了。 1788年高斯不顾父亲的反对进了高等学校。数学老师看了高斯的作业后就要他不必再上数学课,而他的拉丁文不久也凌驾全班之上。 1791年高斯最后找到了资助人布伦斯维克公爵费迪南(Braunschweig),答应尽一切可能帮忙他,高斯的父亲再也没有反对的理由。隔年,高斯进入Braunschweig学院。这年,高斯十五岁。在那里,高斯开始对高等数学作研究。并且独立发现了二项式定理的一般形式、数论上的「二次互逆定理」(LawofQuadraticReciprocity)、质数分布定理(primenumertheorem)、及算术几何平均(arithmeticgeometricmean)。 1795年高斯进入哥廷根(Gttingen)大学,因为他在语言和数学上都极有天分,为了将来是要专攻古典语文或数学苦恼了一阵子。到了1796年,十七岁的高斯得到了一个数学史上极重要的结果。最为人所知,也使得他走上数学之路的,就是正十七边形尺规作图之理论与方法。希腊时代的数学家已经明白如何用尺规作出正2m×3n×5p边形,其中m是正整数,而n和p只能是0或1。但是对于正七、九、十一边形的尺规作图法,两千年来都没有人明白。而高斯证明了: 一个正n边形能够尺规作图若且唯若n是以下两种形式之一: 1、n=2k,k=2,3, 2、n=2k×(几个不同「费马质数」的乘积),k=0,1,2, 费马质数是形如Fk=22k的质数。像F0=3,F1=5,F2=17,F3=257,F4=65537,都是质数。高斯用代数的方法解决二千多年来的几何难题,他也视此为生平得意之作,还交待要把正十七边形刻在他的墓碑上,但之后他的墓碑上并没有刻上十七边形,而是十七角星,因为负责刻碑的雕刻家认为,正十七边形和圆太像了,大家必须分辨不出来。 1799年高斯提出了他的博士论文,这论文证明了代数一个重要的定理: 任一多项式都有(复数)根。这结果称为「代数学基本定理」(FundamentalTheoremofAlgebra)。 事实上在高斯之前有许多数学家认为已给出了这个结果的证明,但是没有一个证明是严密的。高斯把前人证明的缺失一一指出来,然后提出自己的见解,他一生中一共给出了四个不同的证明。小菜G的建站之路2023-05-17 16:59:311
数学家高斯的资料?
可以在百度上杳呀!小菜G的建站之路2023-05-17 16:59:313
数学家高斯简介中文的
他回答得这么全 我还能说什么?人类地板流精华2023-05-17 16:59:307
名人数学故事高斯
⑴ 数学名人故事 1、阿基米德 公元前287年,阿基米德诞生于希腊西西里岛叙拉古附近的一个小村庄,他出生于贵族,与叙拉古的赫农王有亲戚关系,家庭十分富有。 阿基米德的父亲是天文学家兼数学家,学识渊博,为人谦逊。阿基米德的意思是大思想家,阿基米德受家庭的影响,从小就对数学、天文学特别是古希腊的几何学产生了浓厚的兴趣。 阿基米德出生时,在当时古希腊的辉煌文化已经逐渐衰退,经济、文化中心逐渐转移到埃及的亚历山大城;但是另一方面,意大利半岛上新兴的罗马共和国,也正不断的扩张势力;北非也有新的国家迦太基兴起。阿基米德就是生长在这种新旧势力交替的时代,而叙拉古城也就成为许多势力的角斗场所。 2、泰勒斯 泰勒斯是一个商人,可是他不好好经商,不好好赚钱,他老去探索些没用事情,所以他很穷,赚不到钱,他有一点钱就去旅行就花掉了,所以有人说哲学家是那些没用的人,赚不到钱的人,很穷的人。 泰勒斯有一年运用他掌握的知识赚了一笔钱,当然这个说法可能有杜撰的意思,他知道那一年雅典人的橄榄会丰收,然后租下了全村所有的榨橄榄的机器,于是乘机抬高垄断了价格就赚了一把钱。 以此来证明哲学家,有智慧的人,有更重要的事情要做,他有更乐于追求的东西要去追求,赚钱,如果他想赚的话,他是可以比别人赚得多的,不过他有更重要的事情要做。 3、约翰·卡尔·弗里德里希·高斯 高斯是一对普通夫妇的儿子。他的母亲是一个贫穷石匠的女儿,虽然十分聪明,但却没有接受过教育,近似于文盲。在她成为高斯父亲的第二个妻子之前,她从事女佣工作。 他的父亲曾做过园丁,工头,商人的助手和一个小保险公司的评估师。当高斯三岁时便能够纠正他父亲的借债帐目的事情,已经成为一个轶事流传至今。他曾说,他能够在脑袋中进行复杂的计算。 高斯有一个很出名的故事:用很短的时间计算出了小学老师布置的任务:对自然数从1到100的求和。他所使用的方法是:对50对构造成和101的数列求和(1+100,2+99,3+98……),同时得到结果:5050。这一年,高斯9岁。 4、艾萨克·牛顿 1643年1月4日,艾萨克·牛顿出生于英格兰林肯郡乡下的一个小村落伍尔索普村的伍尔索普庄园。在牛顿出生之时,英格兰并没有采用教皇的最新历法,因此他的生日被记载为1642年的圣诞节。牛顿出生前三个月,他同样名为艾萨克的父亲才刚去世。 由于早产的缘故,新生的牛顿十分瘦小;据传闻,他的母亲汉娜·艾斯库曾说过,牛顿刚出生时小得可以把他装进一夸脱的马克杯中。 当牛顿3岁时,他的母亲改嫁并住进了新丈夫巴纳巴斯·史密斯牧师的家,而把牛顿托付给了他的外祖母玛杰里·艾斯库。年幼的牛顿不喜欢他的继父,并因母亲改嫁的事而对母亲持有一些敌意,牛顿甚至曾经写下:“威胁我的继父与生母,要把他们连同房子一齐烧掉。” 5、麦克劳林 麦克劳林是一位牧师的儿子,半岁丧父,9岁丧母。由其叔父抚养成人。叔父也是一位牧师。麦克劳林是一个“神童”,为了当牧师,他11岁考入格拉斯哥大学学习神学,但入校不久却对数学发生了浓厚的兴趣,一年后转攻数学。 17岁取得了硕士学位并为自己关于重力作功的论文作了精彩的公开答辩;19岁担任阿伯丁大学的数学教授并主持该校马里歇尔学院数学第工作;两年后被选为英国皇家学会会员;1722-1726年在巴黎从事研究工作,并在1724年因写了物体碰撞的杰出论文而荣获法国科学院资金,回国后任爱丁堡大学教授。 ⑵ 数学家高斯的故事 用很短的时间计算出了小学老师布置的任务:对自然数从1到100的求和。他所使用的方法是:对50对构造成和101的数列求和(1+100,2+99,3+98……),同时得到结果:5050。这一年,高斯9岁。 小时候高斯家里很穷,且他父亲不认为学问有何用,但高斯依旧喜欢看书,话说在小时候,冬天吃完饭后他父亲就会要他上床睡觉,以节省燃油,但当他上床睡觉时,他会将芜菁的内部挖空,里面塞入棉布卷,当成灯来使用,以继续读书。 当高斯12岁时,已经开始怀疑元素几何学中的基础证明。当他16岁时,预测在欧氏几何之外必然会产生一门完全不同的几何学,即非欧几里德几何学。他导出了二项式定理的一般形式,将其成功的运用在无穷级数,并发展了数学分析的理论。 (2)名人数学故事高斯扩展阅读: 重大成就: 19世纪30年代,高斯发明了磁强计。他辞去了天文台的工作,而转向物理的研究。他与韦伯(1804-1891)在电磁学领域共同工作。 他比韦伯年长27岁,以亦师亦友的身份与其合作。1833年,通过受电磁影响的罗盘指针,他向韦伯发送出电报。这不仅是从韦伯的实验室与天文台之间的第一个电话电报系统,也是世界首创的第一个电话电报系统。尽管线路才8千米长。 1840年,他和韦伯画出了世界第一张地球磁场图,并且定出了地球磁南极和磁北极的位置。次年,这些位置得到美国科学家的证实。 高斯在数个领域进行研究,但只把他认为已经成熟的理论发表出来。他经常对他的同事表示,该同事的结论已经被自己以前证明过了,只是因为基础理论的不完备而没有发表。批评者说他这样做是因为喜欢抢出风头。事实上高斯把他的研究结果都记录起来了。 他死后,他的20部纪录着他的研究结果和想法的笔记被发现,证明高斯所说的是事实。一般人认为,20部笔记并非高斯笔记的全部。 下萨克森州和哥廷根大学图书馆已经将高斯的全部著作数位化,并放置于互联网上。 高斯的肖像曾被印刷在从1989年至2001年流通的10元德国马克纸币上。 ⑶ 关于数学家高斯的故事有哪些 关于数学家高斯的故事有: 1、高斯7岁那年开始上学,一天,数学老师布置了一道题,1+2+3······这样从1一直加到100等于多少。高斯很快就算出了答案,起初高斯的老师布特纳并不相信高斯算出了正确答案。高斯非常坚定,说出答案就是5050,布特纳对他刮目相看。 2、11岁的高斯进入了文科学校,他在新的学校里,所有的功课都极好。他的教师们把他推荐给伯伦瑞克公爵,这位朴实、聪明的孩子赢得了公爵的同情,公爵慷慨地提出愿意作高斯的资助人。 3、1806年,卡尔·威廉·斐迪南公爵在抵抗拿破仑统帅的法军时不幸在耶拿战役阵亡,这给高斯带来了经济上的拮据,1807年,高斯赴哥廷根就职哥廷根天文台台长。 4、1833年高斯从他的天文台拉了一条长八千尺的电线,跨过许多人家的屋顶,一直到韦伯的实验室,以伏特电池为电源,构造了世界第一个电报机。 5、1849年举办了高斯获博士学位50周年庆祝会,为此高斯准备了他早期对代数基本定理证明的一个新版本。由于健康状况愈来愈差,这成了他最后的著作。给他带来最大欢乐和荣誉的还是哥廷根市赠与他的荣誉公民头衔。 (3)名人数学故事高斯扩展阅读: 约翰·卡尔·弗里德里希·高斯,犹太人,德国著名数学家、物理学家、天文学家、大地测量学家,近代数学奠基者之一。高斯被认为是历史上最重要的数学家之一,并享有“数学王子”之称。 高斯和阿基米德、牛顿、欧拉并列为世界四大数学家。一生成就极为丰硕,以他名字“高斯”命名的成果达110个,属数学家中之最。他对代数、统计、微分几何、力学、天文学、矩阵理论和光学皆有贡献。 ⑷ 高斯的数学故事 约翰·卡尔·弗里德里希·高斯(德语:Johann Carl Friedrich Gauß; ,英语:Gauss,拉丁语:Carolus Fridericus Gauss,1777年4月30日-1855年2月23日),生于布伦瑞克,卒于哥廷根。 德国著名数学家、物理学家、天文学家、几何学家,大地测量学家。 享有“数学王子”的美誉。 高斯有一个很出名的故事:用很短的时间计算出了小学老师布置的任务:对自然数从1到100的求和。他所使用的方法是:对50对构造成和101的数列求和(1+100,2+99,3+98……),同时得到结果:5050。这一年,高斯9岁。 高斯12岁时,已经开始怀疑元素几何学中的基础证明。当他16岁时,预测在欧氏几何之外必然会产生一门完全不同的几何学,即非欧几里得几何学。他导出了二项式定理的一般形式,将其成功的运用在无穷级数,并发展了数学分析的理论。 1840年,他和韦伯画出了世界第一张地球磁场图,并且定出了地球磁南极和磁北极的位置。 次年,这些位置得到美国科学家的证实。 高斯在数个领域进行研究,但只把他认为已经成熟的理论发表出来。 他经常对他的同事表示,该同事的结论已经被自己以前证明过了,只是因为基础理论的不完备而没有发表。 批评者说他这样做是因为喜欢抢出风头。 事实上高斯把他的研究结果都记录起来了。他死后,他的20部纪录着他的研究结果和想法的笔记被发现,证明高斯所说的是事实。 一般人认为,20部笔记并非高斯笔记的全部。 下萨克森州和哥廷根大学图书馆已经将高斯的全部著作数位化,并放置于互联网上。 高斯的肖像曾被印刷在从1989年至2001年流通的10元德国马克纸币上。 ⑸ 数学家高斯的小故事 从一加到一百 高斯有许多有趣的故事,故事的第一手资料常来自高斯本人,因为他在晚年时总喜欢谈他小时后的事,我们也许会怀疑故事的真实性,但许多人都证实了他所谈的故事。 高斯的父亲作泥瓦厂的工头,每星期六他总是要发薪水给工人。在高斯三岁夏天时,有一次当他正要发薪水的时候,小高斯站了起来说:「爸爸,你弄错了。」然后他说了另外一个数目。原来三岁的小高斯趴在地板上,一直暗地里跟着他爸爸计算该给谁多少工钱。重算的结果证明小高斯是对的,这把站在那里的大人都吓的目瞪口呆。 高斯常常带笑说,他在学讲话之前就已经学会计算了,还常说他问了大人字母如何发音后,就自己学着读起书来。 七岁时高斯进了 St. Catherine小学。大约在十岁时,老师在算数课上出了一道难题:「把 1到 100的整数写下来,然后把它们加起来!」每当有考试时他们有如下的习惯:第一个做完的就把石板〔当时通行,写字用〕面朝下地放在老师的桌子上,第二个做完的就把石板摆在第一张石板上,就这样一个一个落起来。这个难题当然难不倒学过算数级数的人,但这些孩子才刚开始学算数呢!老师心想他可以休息一下了。但他错了,因为还不到几秒钟,高斯已经把石板放在讲桌上了,同时说道:「答案在这儿!」其他的学生把数字一个个加起来,额头都出了汗水,但高斯却静静坐着,对老师投来的,轻蔑的、怀疑的眼光毫不在意。考完后,老师一张张地检查着石板。大部分都做错了,学生就吃了一顿鞭打。最后,高斯的石板被翻了过来,只见上面只有一个数字:5050(用不着说,这是正确的答案。)老师吃了一惊,高斯就解释他如何找到答案:1+100=101,2+99=101,3+98=101,……,49+52=101,50+51=101,一共有50对和为 101的数目,所以答案是 50×101=5050。由此可见高斯找到了算术级数的对称性,然后就像求得一般算术级数合的过程一样,把数目一对对地凑在一起。 更多信息可以关注科学高分网数学家高斯的故事 ⑹ 数学名人故事 1.古希腊学者阿基米德死于进攻西西里岛的罗马敌兵之手,死前他还在主:“不要弄坏我的圆”。人们为纪念他便在其墓碑上刻上球内切于圆柱的图形,以纪念他发现球的体积和表面积均为其外切圆柱体积和表面积的三分之二。 2.伽罗华生于离巴黎不远的一个小城镇,父亲是学校校长,还当过多年市长。家庭的影响使伽罗华一向勇往直前,无所畏惧。1823年,12岁的伽罗华离开双亲到巴黎求学,他不满足呆板的课堂灌输,自己去找最难的数学原著研究,一些老师也给他很大帮助。老师们对他的评价是“只宜在数学的尖端领域里工作”。 3.德国著名大科学家高斯(1777~1855)出生在一个贫穷的家庭。高斯在还不会讲话就自己学计算,在三岁时有一天晚上他看着父亲在算工钱时,还纠正父亲计算的错误。 长大后他成为当代最杰出的天文学家、数学家。他在物理的电磁学方面有一些贡献,现在电磁学的一个单位就是用他的名字命名。数学家们则称呼他为“数学王子”。 4.16世纪德国数学家鲁道夫,花了毕生精力,把圆周率算到小数后35位,后人称之为鲁道夫数,他死后别人便把这个数刻到他的墓碑上。 5.瑞士数学家雅谷·伯努利,生前对螺线(被誉为生命之线)有研究,他死之后,墓碑上 就刻着一条对数螺线,同时碑文上还写着:“我虽然改变了,但却和原来一样”。这是一句既刻划螺线性质又象征他对数学热爱的双关语。 6.20世纪最杰出的数学家之一的冯·诺依曼众所周知,1946年由他发明的电子计算机,大大促进了科学技术和社会生活的进步.鉴于冯·诺依曼在发明电子计算机中所起到关键性作用,他被西方人誉为"计算机之父"。1911年一1921年,冯·诺依曼在布达佩斯的卢瑟伦中学读书期间,就崭露头角而深受老师的器重.在费克特老师的个别指导下并合作发表了第一篇数学论文,此时冯·诺依曼还不到18岁。 ⑺ 高斯数学家的小故事50字 1、高斯三岁时便能够纠正他父亲的借债账目的事情,已经成为一个轶事流传至今。他曾说,他在麦仙翁堆上学会计算。能够在头脑中进行复杂的计算,是上帝赐予他一生的天赋。 2、高斯7岁那年开始上学。10岁的时候,他进入了学习数学的班级,这是一个首次创办的班,孩子们在这之前都没有听说过算术这么一门课程。数学教师是布特纳,他对高斯的成长也起了一定作用。 3、1796年高斯19岁,发现了正十七边形的尺规作图法, 解决了自欧几里德以来悬而未决的一个难题。 同年,发表并证明了二次互反律。这是他的得意杰作,一生曾用八种方法证明,称之为“黄金律” 。 4、1799年,高斯完成了博士论文,获黑尔姆施泰特大学的博士学位,回到家乡布伦兹维克,虽然他的博士论文顺利通过了,被授予博士学位,同时获得了讲师职位,但他没有能成功地吸引学生,因此只能回老家-又是公爵伸手救援他。 5、1833年高斯从他的天文台拉了一条长八千尺的电线,跨过许多人家的屋顶,一直到韦伯的实验室,以伏特电池为电源,构造了世界第一个电报机。 (7)名人数学故事高斯扩展阅读: 高斯个人的生活因为他的第一任妻子Johanna Osthoff在1809年早逝,以及他的孩子Louis也相继死去而显得黯然失色。高斯跌入一个他从来没有完全恢复的忧郁深渊。他后来再婚,对象是他第一任妻子的朋友,名叫Friederica Wilhelmine Waldeck,但通常称作Minna。 当他的第二任妻子在长期的病痛后死于1831年时,他的其中一个女儿Therese接手了整个家庭并且照顾高斯直到他的生命结束。他的母亲则从1817年居住在他家直到1839年她死去。 高斯有六个小孩。高斯的所有小孩当中,据说Wilhelmina最接近他的天赋,但她年轻时就去世了。高斯与Minna Waldeck也有3个小孩:Eugene (1811–1896), Wilhelm (1813–1879) and Therese (1816–1864)。Therese照顾著整个家庭直到高斯去世,而她结婚。 高斯最后与他的儿子发生了冲突。他不希望他的任何一个儿子进入数学或科学的"怕玷污了家人的名字"的想法或担心里。高斯希望Eugene成为一名律师,但Eugene想学习语言类别的。而Eugene与高斯的另一个争执是-高斯拒绝支付由Eugene所举办的派对的费用。 Eugene很生气,所以在大约1832年时移居美国,而他在那里是相当成功的。Wilhelm也定居在密苏里州,从一开始的农民工作成为了在圣路易斯相当富有的制鞋企业。Eugene花了很多年得来的成功,抵消了他在高斯的朋友与同事间不好的声誉。也在9月3日看到了罗伯特高斯给菲莉克斯克莱因的信。阿啵呲嘚2023-05-17 16:59:301
高斯的数学故事
高斯是德国数学家 ,也是科学家,他和牛顿、阿基米德,被誉为有史以来的三大数学家.高斯是近代数学奠基者之一,在历史上影响之大,可以和阿基米德、牛顿、欧拉并列,有“数学王子”之称. 他幼年时就表现出超人的数学天才.1795年进入格丁根大学学习.第二年他就发现正十七边形的尺规作图法.并给出可用尺规作出的正多边形的条件,解决了欧几里得以来悬而未决的问题. 高斯的数学研究几乎遍及所有领域,在数论、代数学、非欧几何、复变函数和微分几何等方面都做出了开创性的贡献.他还把数学应用于天文学、大地测量学和磁学的研究,发明了最小二乘法原理.高理的数论研究 总结 在《算术研究》(1801)中,这本书奠定了近代数论的基础,它不仅是数论方面的划时代之作,也是数学史上不可多得的经典著作之一.高斯对代数学的重要贡献是证明了代数基本定理,他的存在性证明开创了数学研究的新途径.高斯在1816年左右就得到非欧几何的原理.他还深入研究复变函数,建立了一些基本概念发现了著名的柯西积分定理.他还发现椭圆函数的双周期性,但这些工作在他生前都没发表出来.1828年高斯出版了《关于曲面的一般研究》,全面系统地阐述了空间曲面的微分几何学,并提出内蕴曲面理论.高斯的曲面理论后来由黎曼发展.高斯一生共发表155篇论文,他对待学问十分严谨,只是把他自己认为是十分成熟的作品发表出来.其著作还有《地磁概念》和《论与距离平方成反比的引力和斥力的普遍定律》等. 1801年高斯有机会戏剧性地施展他的优势的计算技巧.那年的元旦,有一个后来被证认为小行星并被命名为谷神星的天体被发现当时它好像在向太阳靠近,天文学家虽然有40天的时间可以观察它,但还不能计算出它的轨道.高斯只作了3次观测就提出了一种计算轨道参数的方法,而且达到的精确度使得天文学家在1801年末和1802年初能够毫无困难地再确定谷神星的位置.高斯在这一计算方法中用到了他大约在1794年创造的最小二乘法(一种可从特定计算得到最小的方差和中求出最佳估值的方法在天文学中这一成就立即得到公认.他在《天体运动理论》中叙述的方法今天仍在使用,只要稍作修改就能适应现代计算机的要求.高斯在小行星“智神星”方面也获得类似的成功. 由于高斯在数学、天文学、大地测量学和物理学中的杰出研究成果,他被选为许多科学院和学术团体的成员.“数学之王”的称号是对他一生恰如其分的赞颂. 以上回答你满意么?陶小凡2023-05-17 16:59:301
数学家高斯有什么成就
数论、非欧几何、微分几何、超几何级数、复变函数论以及椭圆函数论等方面均有开创性贡献NerveM 2023-05-17 16:59:302
数学家高斯的故事 关于数学家高斯的故事
1、高斯在很小的时候就有过人的才华,在他还不到三岁的时候,有一天他观看父亲在计算受他管辖的工人们的周薪。父亲在喃喃的计数,最后长叹的一声表示总算把钱算出来。父亲念出钱数,准备写下时,身边传来微小的声音:“爸爸!算错了,钱应该是这样”。父亲惊异地再算一次,果然小高斯讲的数是正确的,奇特的地方是没有人教过高斯怎么样计算,而小高斯平日靠观察,在大人不知不觉时,他自己学会了计算。 2、高斯的数学老师对学生的态度其实并不好,但当他发现神童高斯的时候心里很是欣慰,而且觉得自己懂的数学不多,教不了高斯更多东西了。并自掏腰包为高斯购买数学书籍。 3、约翰·卡尔·弗里德里希·高斯,1777年4月30日—1855年2月23日),德国著名数学家、物理学家、天文学家、几何学家,大地测量学家,毕业于Carolinum学院(现布伦瑞克工业大学)。阿啵呲嘚2023-05-17 16:59:301
高斯定理数学公式是什么?
高斯定理数学公式是:∮F·dS=∫(▽·F)dV。在静电学中,表明在闭合曲面内的电荷之和与产生的电场在该闭合曲面上的电通量积分之间的关系。 高斯定律(Gauss" law)表明在闭合曲面内的电荷分布与产生的电场之间的关系。高斯定律在静电场情况下类比于应用在磁场学的安培定律,而二者都被集中在麦克斯韦方程组中。因为数学上的相似性,高斯定律也可以应用于其它由平方反比律决定的物理量,例如引力或者辐照度。静电场与磁场两者有着本质上的区别。在静电场中,由于自然界中存在着独立的电荷,所以电场线有起点和终点,只要闭合面内有净余的正(或负)电荷,穿过闭合面的电通量就不等于零,即静电场是有源场。而在磁场中,由于自然界中没有磁单极子存在,N极和S极是不能分离的,磁感线都是无头无尾的闭合线,所以通过任何闭合面的磁通量必等于零。肖振2023-05-17 16:59:301
数学王子高斯的简介
.〉鹿NerveM 2023-05-17 16:59:292
高斯是哪国的数学家
德国。约翰·卡尔·弗里德里希·高斯(德语:JohannCarlFriedrichGau_;_,英语:Gauss,拉丁语:CarolusFridericusGauss,1777年4月30日—1855年2月23日),德国著名数学家、物理学家、天文学家、几何学家,大地测量学家,毕业于Carolinum学院(现布伦瑞克工业大学)。凡尘2023-05-17 16:59:291
高斯是哪国数学家,被人名尊称为什么
高斯全名-约翰·卡尔·弗里德里希·高斯(JohannCarlFriedrichGauss,1777年4月30日-1855年2月23日)德国著名数学家、物理学家、天文学家、大地测量学家。是近代数学奠基者之一,高斯被认为是历史上最重要的数学家之一,并享有“数学王子”之称。约翰·卡尔·弗里德里希·高斯一生成就极为丰硕,以他名字“高斯”命名的成果达110个,属数学家中之最。他对数论、代数、统计、分析、微分几何、大地测量学、地球物理学、力学、静电学、天文学、矩阵理论和光学皆有贡献。瑞瑞爱吃桃2023-05-17 16:59:291
数学家高斯的故事
就是上面那个人回答的故事啦~~凡尘2023-05-17 16:59:297
数学家高斯的故事
哦阿啵呲嘚2023-05-17 16:59:297
数学家高斯的故事。
1、高斯是德国著名的大科学家,他最出名的故事就是在他10岁时,小学老师出了一道算术难题:计算1+2+3+……+100=?这下可难倒了刚学数学的小朋友们,他们按照题目的要求,正把数字一个一个地相加.可这时,却传来了高斯的声音:“老师,我已经算好了!”老师很吃惊,高斯解释道:因为1+100=101,2+99=101,3+98=101,……,49+52=101,50+51=101,而像这样的等于101的组合一共有50组,所以答案很快就可以求出:101×50=50502、在高斯三岁夏天时,有一次当他正要发薪水的时候,小高斯站了起来说:「爸爸,你弄错了。」然后他说了另外一个数目。原来三岁的小高斯趴在地板上,一直暗地里跟着他爸爸计算该给谁多少工钱。重算的结果证明小高斯是对的,这把站在那里的大人都吓的目瞪口呆。ardim2023-05-17 16:59:292
关于数学家高斯的故事有哪些? 字数中等!最好5个!
生平事迹 童年时期 高斯是一对普通夫妇的儿子.他的母亲是一个贫穷石匠的女儿,虽然十分聪明 ,但却没有接受过教育,近似于文盲.在她成为高斯父亲的第二个妻子之前,从事女佣工作.他的父亲曾做过园丁,工头,商人的助手和一个小保险公司的评估师. 高斯3岁时便能够纠正他父亲的借债账目的事情,已经成为一个轶事流传至今.他曾说,他在麦仙翁堆上学会计算.能够在头脑中进行复杂的计算,是上帝赐予他一生的天赋. 当高斯9岁时候,高斯用很短的时间计算出了小学老师布置的任务:对自然数从1到100的求和.他所使用的方法是:对50对构造成和101的数列求和为(1+100,2+99,3+98……),同时得到结果:5050.但是据更为精细的数学史书记载,高斯所解的并不止1加到100那么简单,而是81297+81495+.+100899(公差198,项数100)的一个等差数列. 青少年时期 当高斯12岁时,已经开始怀疑元素几何学中的基础证明.当他16岁时,预测在欧氏几何之外必然会产生一门完全不同的几何学.他导出了二项式定理的一般形式,将其成功地运用在无穷级数,并发展了数学分析的理论. 高斯的老师Bruettner与他助手 Martin Bartels 很早就认识到了高斯在数学上异乎寻常的天赋,同时Herzog Carl Wilhelm Ferdinand von Braunschweig也对这个天才儿童留下了深刻印象.于是他们从高斯14岁起,便资助其学习与生活.这也使高斯能够在公元1792-1795年在Carolinum学院(今天Braunschweig学院的前身)学习.18岁时,高斯转入哥廷根大学学习.在他19岁时,第一个成功地用尺规构造出了规则的17角形. 成年时期 高斯于公元1805年10月5日与来自Braunschweig的Johanna Elisabeth Rosina Osthoff小姐(1780-1809)结婚.在公元1806年8月21日迎来了他生命中的第一个孩子约瑟.此后,他又有两个孩子.Wilhelmine(1809-1840)和Louis(1809-1810).1807年高斯成为哥廷根大学的教授和当地天文台的台长. 虽然高斯作为一个数学家而闻名于世,但这并不意味着他热爱教书.尽管如此,他越来越多的学生成为有影响的数学家,如后来闻名于世的Richard Dedekind和黎曼,黎曼创立了黎曼几何学. 19世纪40年代初期开始,高斯几乎完全退出了物理学的创新研究,只从事例行的天文观测,计算汉诺威测地工作中遗留下的问题,对老的研究课题、发表过的评论或报告作些修饰,解决一些小的数学问题.此后的出版物正反映了他的这种状态.他对E.E.库默尔(Kummer)新创立的理想论(1845)没有强烈的反应,对海王星的发现(1846)亦很漠然.C.G.雅可比(Jacobi)在参加纪念高斯获博士学位50周年大会后说,跟高斯谈数学问题时,他总是把话题叉开而谈些无聊的事.在40年代,高斯对格丁根大学的事务有了较多关注,担任过教授会的负责人;花了几年时间,将大学丧偶者基金会的财务预算奠基于可靠的统计规律之上;他对教学的兴趣也比以前浓厚了.(我们注意到,高斯在大学开的课,大部分是天文学方面的,唯有在当教授的第一年讲过一次数论,他最常讲的课是最小二乘法及其在科学中的应用.) 晚年的高斯在学术圈子以外的人眼里是位科学奇人,而高斯本人却极端热衷于从报纸、书本和日常生活中收集各种统计资料.在1848年革命时期,他几乎每天到学校守旧派成立的文学会(高斯是会员)附属的阅览室寻觅各种数据.如果某个学生正在看的报是他所寻找的,高斯会一直瞪着他直到对方递过来这份报纸.他因而被学生戏称为“阅览室之霸”.据说这一习惯对他从事投资活动(主要是买债券,包括德国以外发行的债券)大有裨益,他身后留下的财产几乎等于其年薪的200倍,说明他是个理财的好手. 高斯生命的最后几年仍保持学者风度,没有间断过阅读和参加力所能及的学术活动: 1850年,心脏病加重,行动受到限制. 1851年7月1日有日蚀,高斯作了他最后一次天文观测. 1851年,核准 G.F.B.黎曼(Riemann)的博士论文,给予高度评价. 1852年,改进傅科摆,解决一些小的数学问题. 1853年,为黎曼选定为获讲师资格需作的答辩题目(几何基础). 1854年1月,全面体检诊断高斯心脏已扩大,将不久于人世.但病情奇迹般地得到缓解. 1854年6月,听了黎曼关于几何基础的答辩报告,出席格丁根到汉诺威间铁路的开通仪式. 1854年8月,病情恶化,下肢水肿. 1855年2月3日清晨,高斯在睡眠中故去. 高斯的葬礼有政府和大学的高级官员出席,他的女婿在悼词中赞扬高斯是难得的、无与伦比的天才.送葬抬棺者中有24岁的J.W.R.戴德金(Dedekind),他曾选修高斯的最小二乘法课. 高斯的大脑有深而多的脑回,作为解剖标本收藏于格丁根大学. 《高斯全集》(Carl Friedrich Gauss"Werke)的出版历时67年(1863—1929),由众多著名数学家参与,最后在 F.克莱因(Klein)指导下完成.全集共分12卷.前7卷基本按学科编辑:第1,2卷,数论;第3卷,分析;第4卷,概率论和几何;第5卷,数学物理;第6,7卷,天文.其他各卷的内容如下:第8卷,算术、分析、概率、天文方面的补遗;第9卷是第6卷的续篇,包括测地学;第10卷分两部分:Ⅰ,算术、代数、分析、几何方面的文章及日记,Ⅱ,其他作家对高斯的数学和力学工作的评论;第11卷也分两部分:Ⅰ,若干物理学、天文学文章,Ⅱ,其他作家对高斯测地学、物理学和天文学工作的评论;第12卷,杂录及《地磁图》. 离世 高斯墓地:高斯非常信教且保守.他的父亲死于1808年4月14日,晚些时候的1809年10月11日,他的第一位妻子Johanna也离开人世.次年8月4日高斯迎娶第二位妻子Friederica Wilhelmine (1788-1831).他们又有三个孩子:Eugen (1811-1896), Wilhelm (1813-1883) 和 Therese (1816-1864). 1831年9月12日他的第二位妻子也死去,1837年高斯开始学习俄语.1839年4月18日,他的母亲在哥廷根逝世,享年95岁.高斯于1855年2月23日凌晨1点在哥廷根去世.他的很多散布在给朋友的书信或笔记中的发现于1898年被发现. 高斯的一生是不平凡的一生,几乎在数学的每个领域都有他的足迹,无怪后人常用他的事迹和格言鞭策自己.100多年来,不少有才华的青年在高斯的影响下成长为杰出的数学家,并为人类的文化做出了巨大的贡献.高斯的墓碑朴实无华,仅镌刻“高斯”二字.为纪念高斯,其故乡布伦瑞克改名为高斯堡.哥廷根大学立了一个正十七棱柱为底座的纪念像.在慕尼黑博物馆悬挂的高斯画像上有这样一首题诗:他的思想深入数学、空间、大自然的奥秘,他测量了星星的路径、地球的形状和自然力,他推动了数学的进展,直到下个世纪.陶小凡2023-05-17 16:59:291
数学家高斯的故事
关于数学家高斯的故事 高斯(Gauss 1777~1855)生于Brunswick,位于现在德国中北部。他的祖父是农民,父亲是泥水匠,母亲是一个石匠的女儿,有一个很聪明的弟弟,高斯这位舅舅,对小高斯很照顾,偶而会给他一些指导,而父亲可以说是一名「大老粗」,认为只有力气能挣钱,学问这种劳什子对穷人是没有用的。 高斯很早就展现过人才华,三岁时就能指出父亲帐册上的错误。七岁时进了小学,在破旧的教室里上课,老师对学生并不好,常认为自己在穷乡僻壤教书是怀才不遇。高斯十岁时,老师考了那道著名的「从一加到一百」,终于发现了高斯的才华,他知道自己的能力不足以教高斯,就从汉堡买了一本较深的数学书给高斯读。同时,高斯和大他差不多十岁的助教Bartels变得很熟,而Bartels的能力也比老师高得多,后来成为大学教授,他教了高斯更多更深的数学。 老师和助教去拜访高斯的父亲,要他让高斯接受更高的教育,但高斯的父亲认为儿子应该像他一样,作个泥水匠,而且也没有钱让高斯继续读书,最后的结论是--去找有钱有势的人当高斯的赞助人,虽然他们不知道要到哪里找。经过这次的访问,高斯免除了每天晚上织布的工作,每天和Bartels讨论数学,但不久之后,Bartels也没有什么东西可以教高斯了。 1788年高斯不顾父亲的反对进了高等学校。数学老师看了高斯的作业后就要他不必再上数学课,而他的拉丁文不久也凌驾全班之上。 1791年高斯终于找到了资助人--布伦斯维克公爵费迪南(Braunschweig),答应尽一切可能帮助他,高斯的父亲再也没有反对的理由。隔年,高斯进入Braunschweig学院。这年,高斯十五岁。在那里,高斯开始对高等数学作研究。并且独立发现了二项式定理的一般形式、数论上的「二次互逆定理」(Law of Quadratic Reciprocity)、质数分布定理(prime numer theorem)、及算术几何平均(arithmetic-geometric mean)。 1795年高斯进入哥廷根(G?ttingen)大学,因为他在语言和数学上都极有天分,为了将来是要专攻古典语文或数学苦恼了一阵子。到了1796年,十七岁的高斯得到了一个数学史上极重要的结果。最为人所知,也使得他走上数学之路的,就是正十七边形尺规作图之理论与方法。希腊时代的数学家已经知道如何用尺规作出正 2m×3n×5p 边形,其中 m 是正整数,而 n 和 p 只能是0或1。但是对于正七、九、十一边形的尺规作图法,两千年来都没有人知道。而高斯证明了: 一个正 n 边形可以尺规作图若且唯若 n 是以下两种形式之一: 1、n = 2k,k = 2, 3,… 2、n = 2k × (几个不同「费马质数」的乘积),k = 0,1,2,… 费马质数是形如 Fk = 22k 的质数。像 F0 = 3,F1 = 5,F2 = 17,F3 = 257, F4 = 65537,都是质数。高斯用代数的方法解决二千多年来的几何难题,他也视此为生平得意之作,还交待要把正十七边形刻在他的墓碑上,但后来他的墓碑上并没有刻上十七边形,而是十七角星,因为负责刻碑的雕刻家认为,正十七边形和圆太像了,大家一定分辨不出来。 1799年高斯提出了他的博士论文,这论文证明了代数一个重要的定理: 任一多项式都有(复数)根。这结果称为「代数学基本定理」(Fundamental Theorem of Algebra)。 事实上在高斯之前有许多数学家认为已给出了这个结果的证明,可是没有一个证明是严密的。高斯把前人证明的缺失一一指出来,然后提出自己的见解,他一生中一共给出了四个不同的证明。 在1801年,高斯二十四岁时出版了《算学研究》(Disquesitiones Arithmeticae),这本书以拉丁文写成,原来有八章,由于钱不够,只好印七章。 这本书除了第七章介绍代数基本定理外,其余都是数论,可以说是数论第一本有系统的着作,高斯第一次介绍「同余」(Congruent)的概念。「二次互逆定理」也在其中。 二十四岁开始,高斯放弃在纯数学的研究,作了几年天文学的研究。 当时的天文界正在为火星和木星间庞大的间隙烦恼不已,认为火星和木星间应该还有行星未被发现。在1801年,意大利的天文学家Piazzi,发现在火星和木星间有一颗新星。它被命名为「谷神星」(Cere)。现在我们知道它是火星和木星的小行星带中的一个,但当时天文学界争论不休,有人说这是行星,有人说这是彗星。必须继续观察才能判决,但是Piazzi只能观察到它9度的轨道,再来,它便隐身到太阳后面去了。因此无法知道它的轨道,也无法判定它是行星或彗星。 高斯这时对这个问是产生兴趣,他决定解决这个捉摸不到的星体轨迹的问题。高斯自己独创了只要三次观察,就可以来计算星球轨道的方法。他可以极准确地预测行星的位置。果然,谷神星准确无误的在高斯预测的地方出现。这个方法--虽然他当时没有公布--就是「最小平方法」 (Method of Least Square)。 1802年,他又准确预测了小行星二号--智神星(Pallas)的位置,这时他的声名远播,荣誉滚滚而来,俄国圣彼得堡科学院选他为会员,发现Pallas的天文学家Olbers请他当哥廷根天文台主任,他没有立刻答应,到了1807年才前往哥廷根就任。 1809年他写了《天体运动理论》二册,第一册包含了微分方程、圆椎截痕和椭圆轨道,第二册他展示了如何估计行星的轨道。高斯在天文学上的贡献大多在1817年以前,但他仍一直做着观察的工作到他七十岁为止。虽然做着天文台的工作,他仍抽空做其他研究。为了用积分解天体运动的微分力程,他考虑无穷级数,并研究级数的收敛问题,在1812年,他研究了超几何级数(Hypergeometric Series),并且把研究结果写成专题论文,呈给哥廷根皇家科学院。 1820到1830年间,高斯为了测绘汗诺华(Hanover)公国(高斯住的地方)的地图,开始做测地的工作,他写了关于测地学的书,由于测地上的需要,他发明了日观测仪(Heliotrope)。为了要对地球表面作研究,他开始对一些曲面的.几何性质作研究。 1827年他发表了《曲面的一般研究》 (Disquisitiones generales circa superficies curva),涵盖一部分现在大学念的「微分几何」。 在1830到1840年间,高斯和一个比他小廿七岁的年轻物理学家-韦伯(Withelm Weber)一起从事磁的研究,他们的合作是很理想的:韦伯作实验,高斯研究理论,韦伯引起高斯对物理问题的兴趣,而高斯用数学工具处理物理问题,影响韦伯的思考工作方法。 1833年高斯从他的天文台拉了一条长八千尺的电线,跨过许多人家的屋顶,一直到韦伯的实验室,以伏特电池为电源,构造了世界第一个电报机。 1835年高斯在天文台里设立磁观测站,并且组织「磁协会」发表研究结果,引起世界广大地区对地磁作研究和测量。 高斯已经得到了地磁的准确理,他为了要获得实验数据的证明,他的书《地磁的一般理论》拖到1839年才发表。 1840年他和韦伯画出了世界第一张地球磁场图,而且定出了地球磁南极和磁北极的位置。 1841年美国科学家证实了高斯的理论,找到了磁南极和磁北极的确实位置。 高斯对自己的工作态度是精益求精,非常严格地要求自己的研究成果。他自己曾说:「宁可发表少,但发表的东西是成熟的成果。」许多当代的数学家要求他,不要太认真,把结果写出来发表,这对数学的发展是很有帮助的。 其中一个有名的例子是关于非欧几何的发展。非欧几何的的开山祖师有三人,高斯、 Lobatchevsky(罗巴切乌斯基,1793~1856), Bolyai(波埃伊,1802~1860)。其中Bolyai的父亲是高斯大学的同学,他曾想试着证明平行公理,虽然父亲反对他继续从事这种看起来毫无希望的研究,小Bolyai还是沉溺于平行公理。最后发展出了非欧几何,并且在1832~1833年发表了研究结果,老Bolyai把儿子的成果寄给老同学高斯,想不到高斯却回信道: to praise it would mean to praise myself.我无法夸赞他,因为夸赞他就等于夸奖我自己。 早在几十年前,高斯就已经得到了相同的结果,只是怕不能为世人所接受而没有公布而已。 美国的着名数学家贝尔(E.T.Bell),在他着的《数学工作者》(Men of Mathematics) 一书里曾经这样批评高斯: 在高斯死后,人们才知道他早就预见一些十九世的数学,而且在1800年之前已经期待它们的出现。如果他能把他所知道的一些东西泄漏,很可能现在数学早比目前还要先进半个世纪或更多的时间。阿贝尔(Abel)和雅可比(Jacobi)可以从高斯所停留的地方开始工作,而不是把他们最好的努力花在发现高斯早在他们出生时就知道的东西。而那些非欧几何学的创造者,可以把他们的天才用到其他力面去。 在1855年二月23日清晨,高斯在他的睡梦中安详的去世了。 ;余辉2023-05-17 16:59:281
伟大的数学天才高斯名人故事
从古至今,名人很多,那么他们的故事你都了解吗?下面是我为大家收集的伟大的数学天才高斯名人故事,仅供参考,希望能够帮助到大家。 伟大的数学天才高斯名人故事 篇1 高斯(1777~1855)是德国数学家、物理学家和天文学家,英国皇家学会会员。 高斯是一个农民的儿子,幼年时,他在数学方面就显示出了非凡的才华。3岁能纠正父亲计算中的错误;10岁便独立发现了算术级数的求和公式;11岁发现了二项式定理。 少年高斯的聪颖早慧,得到了很有名望的布瑞克公爵的垂青与资助,使他得以不断深造。19岁的高斯在进大学不久,就发明了只用圆规和直尺作出正17边形的方法,解决了两千年来悬而未决的几何难题。 1801年,他发表的《算术研究》,阐述了数论和高等代数的某些问题。他对超几何级数、复变函数、统计数学、椭圆函数论都有重大贡献。 同时作为一个物理学家,他与威廉。韦伯合作研究电磁学,并发明了电极。为了进行实验,高斯还发明了双线磁力计,这是他对电磁学问题研究的一个很有实际意义的成果。 高斯30岁时担任了德国着名高等学府天文台台长,并一直在天文台工作到逝世。他平生还喜欢文学和语言学,懂得十几门外语。他一生共发表323篇(种)着作,提出了404项科学创见,完成了4项重要发明。 高斯去世后,人们在他出生的城市竖起了他的雕像。为了纪念他发现做出17边形的方法,雕像的底座修成17边形。世人公认他是一位和牛顿、阿基米德、欧拉齐名的数学家。 伟大的数学天才高斯名人故事 篇2 高斯,著名数学家,1777年生,德国人,先后有155种数学专著出版,有“数学家之王”的.称号。 高斯的父亲是泥瓦匠的工头,每星期六他总是要发薪水给工人。有一次,当他计算着给工人发薪水的时候,小高斯站了起来告诉爸爸错了。原来,3岁的小高斯趴在地板上,一直暗地里跟着父亲计算,父亲惊异地复核了一次,果然孩子说的是正确的。高斯后来回忆自己的童年时说,他在学会说话之前,已经学会计算了。 高斯上三年级时,有一次老师给学生们出了一道求1至100之和的算术题。不料,老师叙述完题目不过几秒钟,高斯就第一个把写有答案的小石板交了上去,老师起初并不注意这一举动,心想这个小家伙不知道写了些什么。但当他检查完全班学生的石板,发现唯一正确的答案是属于高斯时,才大吃一惊。而更令人吃惊的是,高斯用了教师未曾教过的计算等差级数的办法。即将一头一尾挨次两个数相加,这样,和都是一样的:1加100是101;2加99是101;直到50加51和也是101;一共有50个101;用50乘101,最后得出了正确答案:5050。 高斯的才华使老师彪特耐尔十分激动,并感到内疚。原来,他不安心在乡村小学工作,看不起农民的孩子。这件事发生以后,他认真备课,努力教学。 高斯特别愿意和舅舅本茨在一起玩,舅舅也十分疼爱小高斯。他每次来到家中,总是给小高斯讲故事,做游戏,有时还带他出去捉蝴蝶、钓鱼、采蘑菇。 四月的一天,天气晴朗,风和日丽。小高斯跟着舅舅到野外玩耍,他骑在舅的肩上学骑术,手里拿一根小树枝,嘴里高声叫着:“嘎!嘎!”俨然是一位威武的骑兵将军。 突然,奔跑着的“马”停了下来。原来从河的上游漂来一根木头。舅舅为了开发小高斯的智力,便问: “小高斯,你说木头为什么不沉到水下去呢?” “木头轻呗!”小高斯不假思索地回答道。 舅舅又弯腰拾起一个石头投到河中,石头“扑通”一声就掉进河里去了。他又问: “是那根大木头重,还是小石头重?” “大木头比小石头重得多呀!” 比大木头轻的小石头为什么能沉到水下去,而比小石头重得多的大木头却浮在水面上,舅舅故意不给小外甥做解释,让小高斯自己去思考。于是,这个“为什么”长久地留在小高斯的脑海中,他一直在苦苦地思索着。 舅舅本茨是个有心人,他为了让小外甥更好地成长,他省吃俭用,买来不少好书送给小高斯。这一本本很有趣的书,使小高斯爱不释手。小高斯的智力得到了很好开发,他的数学奇才一发而不可收,最后成为数学大王。 边读边想:一个人的成长除了本身的爱好之外,与周围的环境是密不可分的。家长要善于引导和帮助孩子,调动孩子对知识的渴望。 伟大的数学天才高斯名人故事 篇3 前几天,我看了一本注音读物,叫《中国名人小故事集》。 其中有一个故事叫 七岁时高斯进了 st。 catherine小学。大约在十岁时,老师在算数课上出了一道难题:「把 1到 100的整数写下来,然后把它们加起来!」 每当有考试时他们有个习惯:第一个做完的就把石板面朝下地放在老师的桌子上,第二个做完的就把石板摆在第一张石板上,就这样一个一个落起来。 这个难题当然难不倒学过算数级数的人,但这些孩子才刚开始学算数呢!老师心想他可以休息一下了。 但他错了,因为还不到几秒钟,高斯已经把石板放在讲桌上了,同时说道:「答案在这儿!」 其他的学生把数字一个个加起来,额头都出了汗水,但高斯却静静坐着,对老师投来的,轻蔑的、怀疑的眼光毫不在意。 考完后,老师一张张地检查着石板。大部分都做错了,学生就吃了一顿鞭打。 最后,高斯的石板被翻了过来,只见上面只有一个数字:5050(用不着说,这是正确的答案。) 老师吃了一惊,高斯就解释他如何找到答案:1+100=101,2+99=101,3+98=101,……,49+52=101,50+51=101,一共有50对和为101的数目,所以答案是 50×101=5050。 由此可见高斯找到了算术级数的对称性,然後就像求得一般算术级数合的过程一样,把数目一对对地凑在一起。 伟大的数学天才高斯名人故事 篇4 德国著名大科学家高斯出生在一个贫穷的家庭。他还不会讲话,就自己学计算了,三岁时有一天晚上他看着父亲在算工钱时,还纠正父亲计算的错误。 高斯八岁时进入乡村小学读书。一天,数学老师出了这样一道题目: “你们今天替我算从1加2加3一直到100的和。” 教室里的小朋友们拿起石板开始计算:“1加2等于3,3加3等于6,6加4等于10……”一些小朋友加到一个数后就擦掉石板上的结果,再加下去,数越来越大,很不好算。有些孩子的小脸孔涨红了,有些手心、额上渗出了汗来。 还不到半个小时,小高斯拿起了他的石板走上前去。“老师,答案是不是这样?” 老师头也不抬,说:“去,回去再算!错了。”他想不可能这么快就会有答案了。 可是高斯却站着不动,把石板伸向老师面前:“老师!我想这个答案是对的。” 数学老师本来想怒吼起来,可是一看石板上整整齐齐写了这样的数:5050,他惊奇起来,因为他自己曾经算过,得到的数也是5050,这个8岁的小鬼怎么这样快就得到了这个数值呢? 高斯解释他发现的一个方法,这个方法就是古时希腊人和中国人用来计算级数1+2+3+…+n的方法。高斯的发现使老师觉得很惊奇。以后,他常从城里买些数学书自己进修并借给高斯看。在他的鼓励下,高斯以后在数学上作了一些重要的研究了。 著名的数学家小欧拉的故事 大数学家欧拉是一个被学校除了名的小学生。 回家后无事,他就帮助爸爸放羊,成了一个牧童。他一面放羊,一面读书。他读的书中,有不少数学书。 爸爸的羊群渐渐增多了,达到了100只。原来的羊圈有点小了,爸爸决定建造一个新的羊圈。他用尺量出了一块长方形的土地,长40米,宽15米,他一算,面积正好是600平方米,平均每一头羊占地6平方米。正打算动工的时候,他发现他的材料只够围100米的篱笆,不够用。若要围成长40米,宽15米的羊圈,其周长将是110米(15+15+40+40=110)父亲感到很为难,若要按原计划建造,就要再添10米长的材料;要是缩小面积,每头羊的面积就会小于6平方米。 小欧拉却向父亲说,不用缩小羊圈,也不用担心每头羊的领地会小于原来的计划。他有办法。父亲不相信小欧拉会有办法,听了没有理他。小欧拉急了,大声说,只有稍稍移动一下羊圈的桩子就行了。 父亲听了直摇头,心想:"世界上哪有这样便宜的事情?"但是,小欧拉却坚持说,他一定能两全齐美。父亲终于同意让儿子试试看。 小欧拉见父亲同意了,站起身来,跑到准备动工的羊圈旁。他以一个木桩为中心,将原来的40米边长截短,缩短到25米。父亲着急了,说:"那怎么成呢?那怎么成呢?这个羊圈太小了,太小了。"小欧拉也不回答,跑到另一条边上,将原来15米的边长延长,又增加了10米,变成了25米。经这样一改,原来计划中的羊圈变成了一个25米边长的正方形。然后,小欧拉很自信地对爸爸说:"现在,篱笆也够了,面积也够了。" 父亲照着小欧拉设计的羊圈扎上了篱笆,100米长的篱笆真的够了,不多不少,全部用光。面积也足够了,而且还稍稍大了一些。父亲心里感到非常高兴。孩子比自己聪明,真会动脑筋,将来一定大有出息。 父亲感到,让这么聪明的孩子放羊实在是及可惜了。后来,他想办法让小欧拉认识了一个大数学家伯努利。通过这位数学家的推荐,1720年,小欧拉成了巴塞尔大学的大学生。这一年,小欧拉13岁,是这所大学最年轻的大学生。大鱼炖火锅2023-05-17 16:59:281
数学家高斯的故事
⑴ 数学家高斯的小故事 从一加到一百 高斯有许多有趣的故事,故事的第一手资料常来自高斯本人,因为他在晚年时总喜欢谈他小时后的事,我们也许会怀疑故事的真实性,但许多人都证实了他所谈的故事。 高斯的父亲作泥瓦厂的工头,每星期六他总是要发薪水给工人。在高斯三岁夏天时,有一次当他正要发薪水的时候,小高斯站了起来说:「爸爸,你弄错了。」然后他说了另外一个数目。原来三岁的小高斯趴在地板上,一直暗地里跟着他爸爸计算该给谁多少工钱。重算的结果证明小高斯是对的,这把站在那里的大人都吓的目瞪口呆。 高斯常常带笑说,他在学讲话之前就已经学会计算了,还常说他问了大人字母如何发音后,就自己学着读起书来。 七岁时高斯进了 St. Catherine小学。大约在十岁时,老师在算数课上出了一道难题:「把 1到 100的整数写下来,然后把它们加起来!」每当有考试时他们有如下的习惯:第一个做完的就把石板〔当时通行,写字用〕面朝下地放在老师的桌子上,第二个做完的就把石板摆在第一张石板上,就这样一个一个落起来。这个难题当然难不倒学过算数级数的人,但这些孩子才刚开始学算数呢!老师心想他可以休息一下了。但他错了,因为还不到几秒钟,高斯已经把石板放在讲桌上了,同时说道:「答案在这儿!」其他的学生把数字一个个加起来,额头都出了汗水,但高斯却静静坐着,对老师投来的,轻蔑的、怀疑的眼光毫不在意。考完后,老师一张张地检查着石板。大部分都做错了,学生就吃了一顿鞭打。最后,高斯的石板被翻了过来,只见上面只有一个数字:5050(用不着说,这是正确的答案。)老师吃了一惊,高斯就解释他如何找到答案:1+100=101,2+99=101,3+98=101,……,49+52=101,50+51=101,一共有50对和为 101的数目,所以答案是 50×101=5050。由此可见高斯找到了算术级数的对称性,然后就像求得一般算术级数合的过程一样,把数目一对对地凑在一起。 更多信息可以关注科学高分网数学家高斯的故事 ⑵ 数学家高斯的一个小故事 德国著名大科学家高斯(1777~1855)出生在一个贫穷的家庭。高斯在还不会讲话就自己学计算,在三岁时有一天晚上他看着父亲在算工钱时,还纠正父亲计算的错误。 长大后他成为当代最杰出的天文学家、数学家。他在物理的电磁学方面有一些贡献,现在电磁学的一个单位就是用他的名字命名。数学家们则称呼他为“数学王子”。 他八岁时进入乡村小学读书。教数学的老师是一个从城里来的人,觉得在一个穷乡僻壤教几个小猢狲读书,真是大材小用。而他又有些偏见:穷人的孩子天生都是笨蛋,教这些蠢笨的孩子念书不必认真,如果有机会还应该处罚他们,使自己在这枯燥的生活里添一些乐趣。 这一天正是数学教师情绪低落的一天。同学们看到老师那抑郁的脸孔,心里畏缩起来,知道老师又会在今天捉这些学生处罚了。 “你们今天替我算从1加2加3一直到100的和。谁算不出来就罚他不能回家吃午饭。”老师讲了这句话后就一言不发的拿起一本小说坐在椅子上看去了。 教室里的小朋友们拿起石板开始计算:“1加2等于3,3加3等于6,6加4等于10……”一些小朋友加到一个数后就擦掉石板上的结果,再加下去,数越来越大,很不好算。有些孩子的小脸孔涨红了,有些手心、额上渗出了汗来。 还不到半个小时,小高斯拿起了他的石板走上前去。“老师,答案是不是这样?” 老师头也不抬,挥着那肥厚的手,说:“去,回去再算!错了。”他想不可能这么快就会有答案了。 可是高斯却站着不动,把石板伸向老师面前:“老师!我想这个答案是对的。” 数学老师本来想怒吼起来,可是一看石板上整整齐齐写了这样的数:5050,他惊奇起来,因为他自己曾经算过,得到的数也是5050,这个8岁的小鬼怎么这样快就得到了这个数值呢? 高斯解释他发现的一个方法,这个方法就是古时希腊人和中国人用来计算级数1+2+3+…+n的方法。高斯的发现使老师觉得羞愧,觉得自己以前目空一切和轻视穷人家的孩子的观点是不对的。他以后也认真教起书来,并且还常从城里买些数学书自己进修并借给高斯看。在他的鼓励下,高斯以后便在数学上作了一些重要的研究了。 ⑶ 数学家高斯的故事 用很短的时间计算出了小学老师布置的任务:对自然数从1到100的求和。他所使用的方法是:对50对构造成和101的数列求和(1+100,2+99,3+98……),同时得到结果:5050。这一年,高斯9岁。 小时候高斯家里很穷,且他父亲不认为学问有何用,但高斯依旧喜欢看书,话说在小时候,冬天吃完饭后他父亲就会要他上床睡觉,以节省燃油,但当他上床睡觉时,他会将芜菁的内部挖空,里面塞入棉布卷,当成灯来使用,以继续读书。 当高斯12岁时,已经开始怀疑元素几何学中的基础证明。当他16岁时,预测在欧氏几何之外必然会产生一门完全不同的几何学,即非欧几里德几何学。他导出了二项式定理的一般形式,将其成功的运用在无穷级数,并发展了数学分析的理论。 (3)数学家高斯的故事扩展阅读: 重大成就: 19世纪30年代,高斯发明了磁强计。他辞去了天文台的工作,而转向物理的研究。他与韦伯(1804-1891)在电磁学领域共同工作。 他比韦伯年长27岁,以亦师亦友的身份与其合作。1833年,通过受电磁影响的罗盘指针,他向韦伯发送出电报。这不仅是从韦伯的实验室与天文台之间的第一个电话电报系统,也是世界首创的第一个电话电报系统。尽管线路才8千米长。 1840年,他和韦伯画出了世界第一张地球磁场图,并且定出了地球磁南极和磁北极的位置。次年,这些位置得到美国科学家的证实。 高斯在数个领域进行研究,但只把他认为已经成熟的理论发表出来。他经常对他的同事表示,该同事的结论已经被自己以前证明过了,只是因为基础理论的不完备而没有发表。批评者说他这样做是因为喜欢抢出风头。事实上高斯把他的研究结果都记录起来了。 他死后,他的20部纪录着他的研究结果和想法的笔记被发现,证明高斯所说的是事实。一般人认为,20部笔记并非高斯笔记的全部。 下萨克森州和哥廷根大学图书馆已经将高斯的全部著作数位化,并放置于互联网上。 高斯的肖像曾被印刷在从1989年至2001年流通的10元德国马克纸币上。 ⑷ 高斯数学家的小故事50字 1、高斯三岁时便能够纠正他父亲的借债账目的事情,已经成为一个轶事流传至今。他曾说,他在麦仙翁堆上学会计算。能够在头脑中进行复杂的计算,是上帝赐予他一生的天赋。 2、高斯7岁那年开始上学。10岁的时候,他进入了学习数学的班级,这是一个首次创办的班,孩子们在这之前都没有听说过算术这么一门课程。数学教师是布特纳,他对高斯的成长也起了一定作用。 3、1796年高斯19岁,发现了正十七边形的尺规作图法, 解决了自欧几里德以来悬而未决的一个难题。 同年,发表并证明了二次互反律。这是他的得意杰作,一生曾用八种方法证明,称之为“黄金律” 。 4、1799年,高斯完成了博士论文,获黑尔姆施泰特大学的博士学位,回到家乡布伦兹维克,虽然他的博士论文顺利通过了,被授予博士学位,同时获得了讲师职位,但他没有能成功地吸引学生,因此只能回老家-又是公爵伸手救援他。 5、1833年高斯从他的天文台拉了一条长八千尺的电线,跨过许多人家的屋顶,一直到韦伯的实验室,以伏特电池为电源,构造了世界第一个电报机。 (4)数学家高斯的故事扩展阅读: 高斯个人的生活因为他的第一任妻子Johanna Osthoff在1809年早逝,以及他的孩子Louis也相继死去而显得黯然失色。高斯跌入一个他从来没有完全恢复的忧郁深渊。他后来再婚,对象是他第一任妻子的朋友,名叫Friederica Wilhelmine Waldeck,但通常称作Minna。 当他的第二任妻子在长期的病痛后死于1831年时,他的其中一个女儿Therese接手了整个家庭并且照顾高斯直到他的生命结束。他的母亲则从1817年居住在他家直到1839年她死去。 高斯有六个小孩。高斯的所有小孩当中,据说Wilhelmina最接近他的天赋,但她年轻时就去世了。高斯与Minna Waldeck也有3个小孩:Eugene (1811–1896), Wilhelm (1813–1879) and Therese (1816–1864)。Therese照顾著整个家庭直到高斯去世,而她结婚。 高斯最后与他的儿子发生了冲突。他不希望他的任何一个儿子进入数学或科学的"怕玷污了家人的名字"的想法或担心里。高斯希望Eugene成为一名律师,但Eugene想学习语言类别的。而Eugene与高斯的另一个争执是-高斯拒绝支付由Eugene所举办的派对的费用。 Eugene很生气,所以在大约1832年时移居美国,而他在那里是相当成功的。Wilhelm也定居在密苏里州,从一开始的农民工作成为了在圣路易斯相当富有的制鞋企业。Eugene花了很多年得来的成功,抵消了他在高斯的朋友与同事间不好的声誉。也在9月3日看到了罗伯特高斯给菲莉克斯克莱因的信。 ⑸ 关于数学家高斯的故事有哪些 生平事迹 童年时期 高斯是一对普通夫妇的儿子。他的母亲是一个贫穷石匠的女儿,虽然十分聪明 ,但却没有接受过教育,近似于文盲。在她成为高斯父亲的第二个妻子之前,从事女佣工作。他的父亲曾做过园丁,工头,商人的助手和一个小保险公司的评估师。 高斯3岁时便能够纠正他父亲的借债账目的事情,已经成为一个轶事流传至今。他曾说,他在麦仙翁堆上学会计算。能够在头脑中进行复杂的计算,是上帝赐予他一生的天赋。 当高斯9岁时候,高斯用很短的时间计算出了小学老师布置的任务:对自然数从1到100的求和。他所使用的方法是:对50对构造成和101的数列求和为(1+100,2+99,3+98……),同时得到结果:5050。但是据更为精细的数学史书记载,高斯所解的并不止1加到100那么简单,而是81297+81495+......+100899(公差198,项数100)的一个等差数列。 青少年时期 当高斯12岁时,已经开始怀疑元素几何学中的基础证明。当他16岁时,预测在欧氏几何之外必然会产生一门完全不同的几何学。他导出了二项式定理的一般形式,将其成功地运用在无穷级数,并发展了数学分析的理论。 高斯的老师Bruettner与他助手 Martin Bartels 很早就认识到了高斯在数学上异乎寻常的天赋,同时Herzog Carl Wilhelm Ferdinand von Braunschweig也对这个天才儿童留下了深刻印象。于是他们从高斯14岁起,便资助其学习与生活。这也使高斯能够在公元1792-1795年在Carolinum学院(今天Braunschweig学院的前身)学习。18岁时,高斯转入哥廷根大学学习。在他19岁时,第一个成功地用尺规构造出了规则的17角形。 成年时期 高斯于公元1805年10月5日与来自Braunschweig的Johanna Elisabeth Rosina Osthoff小姐(1780-1809)结婚。在公元1806年8月21日迎来了他生命中的第一个孩子约瑟。此后,他又有两个孩子。Wilhelmine(1809-1840)和Louis(1809-1810)。1807年高斯成为哥廷根大学的教授和当地天文台的台长。 虽然高斯作为一个数学家而闻名于世,但这并不意味着他热爱教书。尽管如此,他越来越多的学生成为有影响的数学家,如后来闻名于世的Richard Dedekind和黎曼,黎曼创立了黎曼几何学。 19世纪40年代初期开始,高斯几乎完全退出了物理学的创新研究,只从事例行的天文观测,计算汉诺威测地工作中遗留下的问题,对老的研究课题、发表过的评论或报告作些修饰,解决一些小的数学问题.此后的出版物正反映了他的这种状态.他对E.E.库默尔(Kummer)新创立的理想论(1845)没有强烈的反应,对海王星的发现(1846)亦很漠然.C.G.雅可比(Jacobi)在参加纪念高斯获博士学位50周年大会后说,跟高斯谈数学问题时,他总是把话题叉开而谈些无聊的事.在40年代,高斯对格丁根大学的事务有了较多关注,担任过教授会的负责人;花了几年时间,将大学丧偶者基金会的财务预算奠基于可靠的统计规律之上;他对教学的兴趣也比以前浓厚了.(我们注意到,高斯在大学开的课,大部分是天文学方面的,唯有在当教授的第一年讲过一次数论,他最常讲的课是最小二乘法及其在科学中的应用.) 晚年的高斯在学术圈子以外的人眼里是位科学奇人,而高斯本人却极端热衷于从报纸、书本和日常生活中收集各种统计资料.在1848年革命时期,他几乎每天到学校守旧派成立的文学会(高斯是会员)附属的阅览室寻觅各种数据.如果某个学生正在看的报是他所寻找的,高斯会一直瞪着他直到对方递过来这份报纸.他因而被学生戏称为“阅览室之霸”.据说这一习惯对他从事投资活动(主要是买债券,包括德国以外发行的债券)大有裨益,他身后留下的财产几乎等于其年薪的200倍,说明他是个理财的好手. 高斯生命的最后几年仍保持学者风度,没有间断过阅读和参加力所能及的学术活动: 1850年,心脏病加重,行动受到限制. 1851年7月1日有日蚀,高斯作了他最后一次天文观测. 1851年,核准 G.F.B.黎曼(Riemann)的博士论文,给予高度评价. 1852年,改进傅科摆,解决一些小的数学问题. 1853年,为黎曼选定为获讲师资格需作的答辩题目(几何基础). 1854年1月,全面体检诊断高斯心脏已扩大,将不久于人世.但病情奇迹般地得到缓解. 1854年6月,听了黎曼关于几何基础的答辩报告,出席格丁根到汉诺威间铁路的开通仪式. 1854年8月,病情恶化,下肢水肿. 1855年2月3日清晨,高斯在睡眠中故去. 高斯的葬礼有 *** 和大学的高级官员出席,他的女婿在悼词中赞扬高斯是难得的、无与伦比的天才.送葬抬棺者中有24岁的J.W.R.戴德金(Dedekind),他曾选修高斯的最小二乘法课. 高斯的大脑有深而多的脑回,作为解剖标本收藏于格丁根大学. 《高斯全集》(Carl Friedrich Gauss"Werke)的出版历时67年(1863—1929),由众多著名数学家参与,最后在 F.克莱因(Klein)指导下完成.全集共分12卷.前7卷基本按学科编辑:第1,2卷,数论;第3卷,分析;第4卷,概率论和几何;第5卷,数学物理;第6,7卷,天文.其他各卷的内容如下:第8卷,算术、分析、概率、天文方面的补遗;第9卷是第6卷的续篇,包括测地学;第10卷分两部分:Ⅰ,算术、代数、分析、几何方面的文章及日记,Ⅱ,其他作家对高斯的数学和力学工作的评论;第11卷也分两部分:Ⅰ,若干物理学、天文学文章,Ⅱ,其他作家对高斯测地学、物理学和天文学工作的评论;第12卷,杂录及《地磁图》. 离世 高斯墓地:高斯非常信教且保守。他的父亲死于1808年4月14日,晚些时候的1809年10月11日,他的第一位妻子Johanna也离开人世。次年8月4日高斯迎娶第二位妻子Friederica Wilhelmine (1788-1831)。他们又有三个孩子:Eugen (1811-1896), Wilhelm (1813-1883) 和 Therese (1816-1864)。 1831年9月12日他的第二位妻子也死去,1837年高斯开始学习俄语。1839年4月18日,他的母亲在哥廷根逝世,享年95岁。高斯于1855年2月23日凌晨1点在哥廷根去世。他的很多散布在给朋友的书信或笔记中的发现于1898年被发现。 高斯的一生是不平凡的一生,几乎在数学的每个领域都有他的足迹,无怪后人常用他的事迹和格言鞭策自己。100多年来,不少有才华的青年在高斯的影响下成长为杰出的数学家,并为人类的文化做出了巨大的贡献。高斯的墓碑朴实无华,仅镌刻“高斯”二字。为纪念高斯,其故乡布伦瑞克改名为高斯堡。哥廷根大学立了一个正十七棱柱为底座的纪念像。在慕尼黑博物馆悬挂的高斯画像上有这样一首题诗:他的思想深入数学、空间、大自然的奥秘,他测量了星星的路径、地球的形状和自然力,他推动了数学的进展,直到下个世纪。 ⑹ 数学家高斯的故事。 高斯念小学的时候,有一次在老师教完加法后,因为老师想要休息,所以便出了一回道题目要同学们算算看,题答目是: 1+2+3+ ..... +97+98+99+100 = ? 老师心里正想,这下子小朋友一定要算到下课了吧!正要借口出去时,却被 高斯叫住了!! 原来呀,高斯已经算出来了,小朋友你可知道他是如何算的吗? 高斯告诉大家他是如何算出的:把 1加 至 100 与 100 加至 1 排成两排相加,也就是说: 1+2+3+4+ ..... +96+97+98+99+100 100+99+98+97+96+ ..... +4+3+2+1 =101+101+101+ ..... +101+101+101+101 共有一百个101相加,但算式重复了两次,所以把10100 除以 2便得到答案等于 <5050> 从此以后高斯小学的学习过程早已经超越了其它的同学,也因此奠定了他以后的数学基础,更让他成为——数学天才 ⑺ 关于数学家高斯的故事320字 关键是修高速的故事,伤害别人是320次,这个我也不清楚,你找个专业人士了解一下吧。 ⑻ 数学家高斯的故事(是他计算1+2+3+4。。。。。。+99+100的故事)! 高斯最出名的故事就是他十岁时,小学老师出了一道算术难题:“计算1+2+3…+100=?”。 这可难为初学算术的学生,但是高斯却在几秒后将答案解了出来,他利用算术级数(等差级数)的对称性,然后就像求得一般算术级数和的过程一样,把数目一对对的凑在一起:1+100,2+ 99,3+98,……49+52,50+51 而这样的组合有50组,所以答案很快的就可以求出是: 101×50=5050。 ⑼ 数学天才高斯的故事 C.F. Gauss是 德国著名数学家、物理学家、天文学家、大地测量学家。他有数学王子的美誉,并被誉为历史上最伟大的数学家之一,和阿基米德、牛顿、欧拉同享盛名。 高斯[1](Johann Carl Friedrich Gauss)(1777年4月30日—1855年2月23日),生于不伦瑞克,卒于哥廷根,德国著名数学家、物理学家、天文学家、大地测量学家。 高斯1777年4月30日生于不伦瑞克的一个工匠家庭,1855年2月23日卒于哥廷根。幼时家境贫困,但聪敏异常,受一贵族资助才进学校受教育。1795~1798年在哥廷根大学学习,1798年转入黑尔姆施泰特大学,翌年因证明代数基本定理获博士学位。从1807年起担任格丁根大学教授兼格丁根天文台台长直至逝世。 高斯的成就遍及数学的各个领域,在数论、非欧几何、微分几何、超几何级数、复变函数论以及椭圆函数论等方面均有开创性贡献。他十分注重数学的应用,并且在对天文学、大地测量学和磁学的研究中也偏重于用数学方法进行研究。 1792年,15岁的高斯进入Braunschweig学院。在那里,高斯开始对高等数学作研究。独立发现了二项式定理的一般形式、数论上的“二次互反律”(Law of Quadratic Reciprocity)、“质数分布定理”(prime numer theorem)、及“算术几何平均”(arithmetic-geometric mean)。 1795年高斯进入哥廷根大学。1796年,19岁的高斯得到了一个数学史上极重要的结果,就是《正十七边形尺规作图之理论与方法》。5年以后,高斯又证明了形如"Fermat素数"边数的正多边形可以由尺规作出。 1855年2月23日清晨,高斯于睡梦中去世。 ⑽ 高斯的故事 1、高斯是位犹太人,德国著名数学家、物理学家、天文学家、大地测量学家,近代数学奠基者之一。高斯被认为是历史上最重要的数学家之一,并享有“数学王子”之称。 2、高斯三岁时便能够纠正他父亲的借债账目的事情,已经成为一个轶事流传至今。他曾说,他在麦仙翁堆上学会计算。能够在头脑中进行复杂的计算,是上帝赐予他一生的天赋。 3、在成长过程中,幼年的高斯主要得力于他的母亲罗捷雅和舅舅弗利德里希。弗利德里希富有智慧,为人热情而又聪明能干投身于纺织贸易颇有成就。 4、高斯7岁那年开始上学。10岁的时候,他进入了学习数学的班级,这是一个首次创办的班,孩子们在这之前都没有听说过算术这么一门课程。数学教师是布特纳,他对高斯的成长也起了一定作用。 5、1796年高斯19岁,发现了正十七边形的尺规作图法, 解决了自欧几里德以来悬而未决的一个难题。 同年,发表并证明了二次互反律。这是他的得意杰作,一生曾用八种方法证明,称之为“黄金律” 。 6、1799年,高斯完成了博士论文,获黑尔姆施泰特大学的博士学位,回到家乡布伦兹维克,虽然他的博士论文顺利通过了,被授予博士学位,同时获得了讲师职位,但他没有能成功地吸引学生,因此只能回老家-又是公爵伸手救援他。 7、1833年高斯从他的天文台拉了一条长八千尺的电线,跨过许多人家的屋顶,一直到韦伯的实验室,以伏特电池为电源,构造了世界第一个电报机。 8、1837年高斯开始学习俄语。1839年4月18日,他的母亲在哥廷根逝世,享年95岁。高斯于1855年2月23日凌晨1点在哥廷根去世。他的很多散布在给朋友的书信或笔记发现于1898年。 9、高斯具有浓厚的宗教感情、贵族的举止和保守的倾向。他一直远离他那个时代的进步政治潮流。在高斯身上表现出的矛盾是与他实际上的和谐结合在一起的。高斯身为才气横溢的算术家,对于数具有非凡的记忆力。他既是一个深刻的理论家,又是一个杰出的数学实践家。 (10)数学家高斯的故事扩展阅读: 1、高斯已经指出,正三边形、正四边形、正五边形、正十五边形和边数是上述边数两倍的正多边形的几何作图是能够用圆规和直尺实现的,但从那时起关于这个问题的研究没有多大进展。高斯在数论的基础上提出了判断一给定边数的正多边形是否可以几何作图的准则。 2、高斯是最早怀疑欧几里得几何学是自然界和思想中所固有的那些人之一。欧几里得是建立系统性几何学的第一人。他模型中的一些基本思想被称作公理,它们是透过纯粹逻辑构造整个系统的出发点。在这些公理中,平行线公理一开始就显得很突出。 3、高斯具有浓厚的宗教感情、贵族的举止和保守的倾向。他一直远离他那个时代的进步政治潮流。在高斯身上表现出的矛盾是与他实际上的和谐结合在一起的。高斯身为才气横溢的算术家,对于数具有非凡的记忆力。他既是一个深刻的理论家,又是一个杰出的数学实践家。再也不做站长了2023-05-17 16:59:271
数学等腰三角形公式大全
至少有两边相等的三角形叫等腰三角形。下面是我整理的初中数学等腰三角形公式,供大家参考。 等腰三角形公式 1、已知三角形底a,高h,则S=ah/2。 2、已知三角形三边a,b,c,则(海伦公式)(p=(a+b+c)/2), S=sqrt[p(p-a)(p-b)(p-c)] =sqrt[(1/16)(a+b+c)(a+b-c)(a+c-b)(b+c-a)] =1/4sqrt[(a+b+c)(a+b-c)(a+c-b)(b+c-a)] 3、已知三角形两边a,b,这两边夹角C,则S=1/2absinC,即两夹边之积乘夹角的正弦值。 4、设三角形三边分别为a、b、c,内切圆半径为r,则三角形面积=(a+b+c)r/2。 5、设三角形三边分别为a、b、c,外接圆半径为R,则三角形面积=abc/4R。 6、记住直角三角形的勾股定理:a*a+b*b=c*c,其中c是斜边长:c=a/sin(45)=a/(sqrt(2)/2)=sqrt(2)*a约=1.414*a 等腰三角形判定的方式 定义法:在同一三角形中,有两条边相等的三角形是等腰三角形。 判定定理:在同一三角形中,如果两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。 除了以上两种基本方法以外,还有如下判定的方式: 在一个三角形中,如果一个角的平分线与该角对边上的中线重合,那么这个三角形是等腰三角形,且该角为顶角。 在一个三角形中,如果一个角的平分线与该角对边上的高重合,那么这个三角形是等腰三角形,且该角为顶角。 在一个三角形中,如果一条边上的中线与该边上的高重合,那么这个三角形是等腰三角形,且该边为底边。mlhxueli 2023-05-17 16:58:451
数学因式分解法解方程详细过程
拿起一支笔,写上答案,完啦大鱼炖火锅2023-05-17 16:58:287
数学因式分解的方法
你好,很高兴为你解答:因式分解的十二种方法 把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解.因式分解的方法多种多样,现总结如下:1、 提公因法 如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式.例1、 分解因式x -2x -x(2003淮安市中考题) x -2x -x=x(x -2x-1) 2、 应用公式法 由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式.例2、分解因式a +4ab+4b (2003南通市中考题) a +4ab+4b =(a+2b) 3、 分组分解法 要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n) 例3、分解因式m +5n-mn-5m m +5n-mn-5m= m -5m -mn+5n = (m -5m )+(-mn+5n) =m(m-5)-n(m-5) =(m-5)(m-n) 4、 十字相乘法 对于mx +px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c) 例4、分解因式7x -19x-6 分析:1 -3 7 2 2-21=-19 7x -19x-6=(7x+2)(x-3) 5、配方法 对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解.例5、分解因式x +3x-40 解x +3x-40=x +3x+( ) -( ) -40 =(x+ ) -( ) =(x+ + )(x+ - ) =(x+8)(x-5) 6、拆、添项法 可以把多项式拆成若干部分,再用进行因式分解.例6、分解因式bc(b+c)+ca(c-a)-ab(a+b) bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b) =bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b) =c(c-a)(b+a)+b(a+b)(c-a) =(c+b)(c-a)(a+b) 7、 换元法 有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来.例7、分解因式2x -x -6x -x+2 2x -x -6x -x+2=2(x +1)-x(x +1)-6x =x [2(x + )-(x+ )-6 令y=x+ ,x [2(x + )-(x+ )-6 = x [2(y -2)-y-6] = x (2y -y-10) =x (y+2)(2y-5) =x (x+ +2)(2x+ -5) = (x +2x+1) (2x -5x+2) =(x+1) (2x-1)(x-2) 8、 求根法 令多项式f(x)=0,求出其根为x ,x ,x ,……x ,则多项式可因式分解为f(x)=(x-x )(x-x )(x-x )……(x-x ) 例8、分解因式2x +7x -2x -13x+6 令f(x)=2x +7x -2x -13x+6=0 通过综合除法可知,f(x)=0根为 ,-3,-2,1 则2x +7x -2x -13x+6=(2x-1)(x+3)(x+2)(x-1) 9、 图象法 令y=f(x),做出函数y=f(x)的图象,找到函数图象与X轴的交点x ,x ,x ,……x ,则多项式可因式分解为f(x)= f(x)=(x-x )(x-x )(x-x )……(x-x ) 例9、因式分解x +2x -5x-6 令y= x +2x -5x-6 作出其图象,见右图,与x轴交点为-3,-1,2 则x +2x -5x-6=(x+1)(x+3)(x-2) 10、 主元法 先选定一个字母为主元,然后把各项按这个字母次数从高到低排列,再进行因式分解.例10、分解因式a (b-c)+b (c-a)+c (a-b) 分析:此题可选定a为主元,将其按次数从高到低排列 a (b-c)+b (c-a)+c (a-b)=a (b-c)-a(b -c )+(b c-c b) =(b-c) [a -a(b+c)+bc] =(b-c)(a-b)(a-c) 11、 利用特殊值法 将2或10代入x,求出数P,将数P分解质因数,将质因数适当的组合,并将组合后的每一个因数写成2或10的和与差的形式,将2或10还原成x,即得因式分解式.例11、分解因式x +9x +23x+15 令x=2,则x +9x +23x+15=8+36+46+15=105 将105分解成3个质因数的积,即105=3×5×7 注意到多项式中最高项的系数为1,而3、5、7分别为x+1,x+3,x+5,在x=2时的值 则x +9x +23x+15=(x+1)(x+3)(x+5) 12、待定系数法 首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解.例12、分解因式x -x -5x -6x-4 分析:易知这个多项式没有一次因式,因而只能分解为两个二次因式.设x -x -5x -6x-4=(x +ax+b)(x +cx+d) = x +(a+c)x +(ac+b+d)x +(ad+bc)x+bd 所以 解得 则x -x -5x -6x-4 =(x +x+1)(x -2x-4)左迁2023-05-17 16:58:262