数论

学解析数论需要代数拓扑和代数几何方面的基础吗

解析数论的话是不需要代数几何作基础的,但是代数拓扑还是十分必要的。另外代数表示以及李代数都是做解析数论的基础知识,一定要好好学习。另外椭圆积分内容也是基础课程,还有就是类域论内容(初等数论必备基础)。总之如果是做学问的话建议还是要博览群书的好,即便现在用不到等到以后深入研究就未必了。代数几何现在是数学的热门专业,学习一些会对你思考问题提供更多的思路,建议你多学习一些。并且代数几何跟表示理论也有很大的联系,跟数论关系也不浅(代数几乎能覆盖所有的数学分支)
北营2023-08-08 08:56:041

有关初等数论的题,自然数包括0吗

自然数指的是物体的个数,包括0
小菜G的建站之路2023-06-29 09:23:542

黎曼猜想,属于数学系的那个专业? 主要是数论吗?

数论专业。
陶小凡2023-05-26 08:18:443

从自然数到复数,最重要的数论难题,“黎曼假设”是什么?

黎曼假设就是关于函数的零点分布猜测,一个很高深的问题
Jm-R2023-05-24 12:08:265

什么是椭圆函数论

椭圆函数是定义在有限复平面上亚纯的双周期函数。它和椭圆曲线存在密切关系。所谓双周期函数是指具有两个基本周期的单复变函数 ,即存在ω1,ω2两个非0复数,而对任意整数n,m,有f(z+nω1+mω2)=f(z) ,于是{nω1+mω2|n,m为整数}构成f(z)的全部周期。在复平面上任取一点a,以a,a+ω1,a+ω1+ω2 ,a+ω2为顶点的平行四边行的内部 ,再加上两个相邻的边及其交点 ,这样构成的一个半开的区域称为f(z)的一个基本周期平行四边形,将它平行移动nω1+mω2,当n,m取遍所有整数时,即得一覆盖整个复平面的周期平行四边形网,f(z) 在每一个周期平行四边形中的性质都和它在基本周期平行四边形中的一样。如果复平面上两个点在平移到同一个基本周期四边形后重合,我们就把它们粘合成一个点, 经过这样一系列操作之后,我们就得到复平面粘合后的一个商空间, 即著名的椭圆曲线, 它也是一个亏格1的紧的闭曲面。 于是上面的椭圆函数就直接定义在椭圆曲线上。在基本周期平行四边形中,f(z)有以下性质:非常数椭圆函数一定有极点,且极点留数之和必为零 ,因而不可能只有一个一阶极点 ,有n个极点的椭圆函数称为n阶椭圆函数 ,它在基本周期平行四边形内取任一值n次,即对任意复数A,f(z)-A在基本周期平行四边形内有且仅有n个零点 ,且f(z) 的零点之和与极点之和的差必等于一个周期。
拌三丝2023-05-24 07:49:021

《三十年来的苏联数学1917-1947复变函数论》pdf下载在线阅读全文,求百度网盘云资源

《三十年来的苏联数学 1917-1947 复变函数论》(А·Ф·卞尔曼脱)电子书网盘下载免费在线阅读链接: https://pan.baidu.com/s/1HPvpKe7u5KRWKRI3_2yBDQ 提取码: 69f7     书名:三十年来的苏联数学 1917-1947 复变函数论作者:А·Ф·卞尔曼脱译者:陈建功出版社:科学出版社出版年份:1957页数:146内容简介:本书系统介绍了全纯函数的Cauchy积分理论及其应用、Weierstrass级数理论及其应用、Riemann共形映射以及函数空间等,主体内容特别是几何函数论精练清楚,可视化较好便于理解,同时面向现代化的后续研究特别是侧重于解析函数函数空间及其对信号处理的应用。
hi投2023-05-24 07:49:011

【初等数论】指数、原根与不定方程

现在我们就开始为剩余系建立“ 坐标 ”,完全剩余系是连续的,剩余类本身就是很好的坐标,所以这里我们只需讨论既约剩余系。前面已经知道 时,总存 d 在使得 ,满足条件的最小的 称为a对模m的阶或指数,也可简记为 ,我们可以看出来当模 m 确定时, 由 a 唯一的确定,d 是 a 的函数。为了得到更进一步的结论,我们先整理一下指数的一些简单性质如下: (1)若 ,则 。从而有若 ,则 ; (2) ; 。 我们来继续研究指数的性质,首先考虑 ,由 知 ,故可容易有公式(1),你可以简单停留思考下,有了(1)式后我们就可以从 求 了。其次由定义显然有:若 ,则 。所以对互质分解 (分解模数),总有 ,再根据模的性质就有公式(2)。再进一步,对任意的a1,a2,⋯,an,考虑方程组 的 唯一解 a ( 剩余定理 ),显然有 ,再根据公式(2)可得 a 满足公式(3)。     再来研究 (分解底数),令 ,则显然有 (提示:可以结合(1)式进行思考)。先看各个 互素 的情况,这时 ,令 。因为 ,又因为 互素。故 ,从而有公式(4)。如果 不互素,一般并没有 。但反过来,对任意的 ,利用公式(1)和(4)构造满足公式(5)的 a 还是很容易的。       指数在研究 循环小数 时有个有趣的结论。对既约分数 ,如果有 ,则 是循环小数的充要条件是 。如果 ,则最小循环周期为 c,并且小数点后的非循环数长度为 。特别地,如果 ,则 是纯循环小数。证明过程不是难,可以作为练习,提示:使用关系式 由指数的性质(2)可知 是 个不同的数,特别地当 时,它们遍历 m 的既约剩余系。这种关系使得既约剩余系变得特别简单,我们也由此找到了合适的 坐标 。为此,当 时称 g称为模 m的 原根 ,它便是既约剩余系的 单位元 ,负责将剩余系串成一个线性空间。先来思考如下几个问题:   • 如果 ,则 遍历m的既约剩余系时, 也遍历既约剩余系; • 若 ,或 ,都有 2 是 的原根; • 的素因子有形式 或 。 我们自然会有问题:什么样的 模数 有原根?有多少个原根?如何判定?前面已经知道 ,而除了 这5种情况外(p为 奇素数 ),容易证明其它都有 ,它们肯定没有原根,因为当模数 m 不属于上面这五种情况时,必有 m 为 或 或 ,而这里的 由 给出。这里的 由下列式子给出:   又因为我们有式子, 故可以得到 ,可自行验证。 下面就需要论证那5种情况是否有原根,直接验算可知1,2,4有原根。对于模p的情况,由公式(5)知存在g使得 ,首先当然有 。另外因为 有全解,则 。从而 ,所以p有原根 g。 由 和 的等价性,并且 ,可知 和 有相同的原根,这样一来我们就只需要讨论模 是否有原根了。当g是 原根时,因为 ,故 为 或 。要想g也是 的原根,必须 ,即满足式子(6)。而如果该条件满足,用归纳法可以验算得它对一切 都满足,即g是所有 的原根。    现在只要能证明以上条件对 成立(即 ),我们就找到了所有模 的原根,研究证明了 原根的存在性。对模 p 的原根 g,考察 和式子(7)中的变形。 中有且仅一个是 p 的倍数,取其它任何一个值都能得到了满足条件的原根,条件得证。 至此我们已经证明了原根存在的充要条件是模为 之一,但如果想要找出原根,目前还没有很简单的方法。一般只能逐个尝试每个数,然而利用公式(5)的构造法是可以加快计算的,比如如果已经知道 和 ,因为 ,故素因子 2,3 必定也是模 41 的原根的素因子,经过尝试后得 是 41 的原根。 如果原根存在,选定一个原根 g 后,它的幂次遍历整个既约剩余系。如果 ,称 k 为a 的 指标 ,记作 ,或简记为 和 。指标将既约剩余系变成了一个完全剩余系,使其结构由分散的变为线性的,由此可以更好地研究它的性质。以下为原根的一些性质,其中性质(3)中蕴含了指数为 的数有 φ(d)个,它们是 。特别地共有 个原根,它们是 。 (1) (2) ,特别地有 (3) 我们一直想把指数当做即约剩余系的“ 坐标 ”,现在就来着手做这件事。一般的,将模m进行素数分解 ,其既约剩余系的每个数 a 在各个维度都有一个值 。对 g_k gamma_k=gamma_{p_k^{e_k},g_k}(a_k)$就可以看做a 在第 k 维的坐标。 但对于 ,除 外是没有原根的, 时怎么建立坐标?通过 归纳法 你可以证明 ,并且容易知道 是它的一个既约剩余系。这样任何既约数都有唯一表达式(8), 就可以看做它的坐标。完整的就得到任何既约数的指标表达式(9)和(10)((10)中 的是(9)中的 取1、其它取0得来),使用(10)来证明威尔逊定理就简单多了。 最后再来看同余方程(11)它一般称为 二项同余方程 。如果方程有解,称a为m的n 次剩余 ,否则称为n次 非剩余 。对m进行素数分解 后,方程可以化为一个方程组,我们只需分别讨论这些方程即可。      模 (p为奇素数)有原根 g,用它来分析二项方程会很简单(下面的讨论针对有原根的模m都成立)。将原根带入原方程,得到式子(12)的左侧,它显然对应于右侧的一元一次同余方程。可以先回顾一下一次方程 的特点,令 ,则 ,且方程解的周期为 ,请先在脑子想象一下它们的布局。回到原方程,令 ,则方程有解的充要条件是 ,且共有 个n次剩余。方程的解有d个,它们的周期是 。      现在来把条件 转化为与a直接相关的。因为 ,使用公式(1)直接有式子(13)。结合条件d|γ(a),显然有 ,它又等价于公式(14)。这就是方程有解的充要条件,明显二次剩余的判定条件只是它的特例。 对模 的情景需要单独考虑,前面的讨论中说明了它的既约剩余系有两个独立的维度,故只需分别讨论两个维度就行了。令 ,可知方程有解的充要条件是 且 ,方程解的个数为 。展开说就是,当 时有且仅有1解,既约剩余系的每个值都是n次剩余。当 时有解的充要条件是 且 ,并且有2d个解,共有 个数是n次剩余。 下面把 有解的充要条件转化为与 a 相关的,首先易知必有形式 。因为 ,我们的条件 其实等价于 ,这就得到充要条件为公式(15)。当然你也可以得到与 类似的式子,但因为不如上式简洁,这里就不赘述了。 经过前面关于初等数论的基础知识的学习和理解,这里我们就可以开始不定方程的简单论述。不定方程是初等数论向前发展直接的驱动力之一。不定方程又叫丢潘图方程,它们以整数(或有理数)为变量和参数,而且有两个以上的未知数,多以多项式形式出现。不定方程既是数论的应用,也是数论理论形成的来源,对不定方程的思考可以将前面学习过的知识和内容串起来。 最简单的不定方程就是一次方程(1),它表现为一个 多元线性方程 。如果你还记得前面最大公约数的线性组合定义,就容易得到方程有整数解的充要条件是 。多元方程的第一步往往是降元,令 ,则方程等价于一次方程组(2)(想想为什么?以及为什么要先抽出最大公约数?)。如果对(2)式一直做类似处理,就会得到多个二元一次方程,这样就把问题集中到了简单的情景。 而对于二元一次方程 ,它有明显的几何意义,方程的解就是直线方程上的整数点,所有对其讨论都可以从图形中找出。容易看出,如果已知一个解 ,则方程的全部解为公式(3)。至于如何求得一个特解,一般还是用辗转相除法,对于一些简单的情况,也可以直接尝试各种值。 勾股定理 大家都熟悉,有一个自然的问题是:如何求它的所有解?这个问题一般叫商高方程或毕达哥拉斯方程。容易证明当 时方程的解两两互素,如果再限定解为正数,这样的解叫 本原解 。方程的解要么是平凡解 (0,0,0),要么是本原解的倍数,因此我们只需专注于找到所有本原解。 另外,因为素数的平方只能是 的形式,可推得 x,y 必定是一奇一偶,下面就假设 y 为偶数,原方程整理为式子(4)。容易证明 (这个性质以后会经常用),故可设 和 ,其中 。用 表示 就得到了方程的解(5),但要注意要使得它们两两互素,还需要限定 (自行证明)。 做一个简单的推广,形如(6)式的方程这么解?这就是著名的 费马大定理 (Fermat Last Theorem),当然它在1994年被彻底证明前叫费马猜想。费马发现它们并无非平凡解,并声称找到了一个绝妙的证明方法,但由于书的空白太小写不下。后来人经过了三百多年的努力,才用现代数学的方法将它攻破,大家多数倾向于认为费马的证明并不存在或并不成立。 使用类似的方法和 无穷递降法 ,你可以证明 无非平凡解,进而 无非平凡解,它就是费马大定理在 时的情况。下面可以思考一下如下几个问题: • 求解 和 ; • 求解 ;(提示: 无互质解 ) • 证明 都有无穷多组解。(提示: 构造 ) 再来看费马大定理在 的情景,欧拉证明了它没有非平凡解,采用的是 无穷递降法 。假设 是使得 最小的一组非零解,我们的目的是构造一组值更小的解。首先当然有 ,并且其中仅有一个偶数,经过调整后可以使 为偶数。这时可以令 ,则有 (总结成式(7)),这个变换的重要意义在于 降次 。 现在来研究 ,其中 ,它里面有我们熟悉的二次表达式。考察 的每个素因子 p,因为 ,故总有 (可参考下面将要介绍的平方数分解的最后一段)。使用公式(8)(使用复数证明这类等式更容易,并且体现了范数的思想),可知总有 。下面证明总能找到合适的 ,使得关系式(9)成立。 使用归纳法证明,当 时,公式(9)显然成立。若结论对 成立,则考虑 ,我们的目的是找到表达式(9)。由前面的结论可有 ,且有 和 满足类似(9)的关系式。与刚才的式子相乘并除以 得到(10),然后证明(10)式右侧的两项可以都是整数。若记 ,则由假设知存在 和 满足类似(9)的关系式。综合以上结论,可得到的相关结论(11),它们满足公式(9),定理得证。 现在回过头来看式子(7)中的 。当 时,由 必为一奇一偶且互素(想想为什么)和 为偶数,容易有 ,可以假设式子(12)左侧。而由上面的结论可知(12)的右侧成立,其中最右边三项互质,故有式子(13)。而 。当 时可以得到同样的结论,由此我们得到了一组积单调递减的解,这是不可能的,所以原方程没有非平凡解。 将商高方程在系数上进行扩展,得到一般性的 ( 且无平方因子),当然我们只需研究其本原解 。首先容易有 ,则存在 ,变换 得到式子(14),从而 是 的二次剩余。这样我们就得到了方程有解的一个必要条件: 分别是 的二次剩余。 下面来看它们是否是方程有解的充分条件,使用的是 降次法 和 构造法 。另外,利用同余方程研究不定方程也是常见方法,这里我们可以先考虑同余方程(15)。先来看降次,首先容易判断 ,则可以有式(16)。对模 也可以有类似的表达式,它们将原式表示成了两个线性表达式之积,问题也就容易转化到一次方程了。使用剩余定理
人类地板流精华2023-05-24 07:48:521

数论引理证明,欧拉函数

套用结论的话, 就是用中国剩余定理:同余方程组x ≡ a (mod n1), x ≡ b (mod n2)在mod n意义下存在唯一解x ≡ c (mod n).这样建立了{0, 1,..., n1-1}×{0, 1,..., n2-1} → {0, 1,..., n-1}的单射,比较元素个数可知这也是双射.由c ≡ a (mod n1), c ≡ b (mod n2), n = n1·n2.可验证(a, n1) = 1且(b,n2) = 1的充要条件是(c,n) = 1.因此上述映射刚好给出A×B → C的双射.用Bezout定理可以给出构造的细节.由(n1,n2) = 1, 存在整数u, v, 满足n1·u+n2·v = 1.可验证c = n1·ub+n2·va即满足c ≡ a (mod n1), c ≡ b (mod n2),且c mod n的余数不依赖u, v的选取.此外(a, n1) = 1且(b,n2) = 1的充要条件是(c,n) = 1.构造映射将(a,b)映为c mod n的余数, 可验证其为A×B → C的双射.
左迁2023-05-24 07:48:151

关于数论函数中的欧拉函数,用组合计数的方法证明的几个问题

要不是看你是女生,我才不帮你做呢。。。
tt白2023-05-24 07:48:151

关于欧拉函数的一个性质的证明 数论高手进

当n=1时候,显然成立当n=p为素数的时候,sum_{d|n}phi(d)=phi(1)+phi(p)=1+p-1=p也成立当n=p^k,可知也成立。最后证明左边的求和是一个可乘函数,即设左边是L,那么要证明如果(m,n)=1,则L(mn)=L(m)L(n)思路就是这样,一般满足可乘性质的问题都是这样证明的详细过程自己写出来吧
瑞瑞爱吃桃2023-05-24 07:48:132

数论问题求解--尽快!

经过搜索在k=400000以下有两个: k=80519; k=107663, 故存在.80519=73×1103, 107663=23×31×151
真颛2023-05-23 22:48:042

关于素数的数论定理

基本概念:素数又称质数,是指在大于1的自然数中,除了1和它本身以外不再有其他因数的自然数。​ 唯一分解定理:一个数n肯定能被分解成 n=p1^a1 * p2^a2 . . .*pn^an(p是素因子,a是素因子的个数)​ 因为一个数肯定是由合数和质数构成的,合数又可以分解成质数和合数,最后递归下去就会变成质数的乘积最后化成了质数相乘的形式
u投在线2023-05-23 22:48:011

堆叠素数论的素数定理

若用π(n)表示不超过n的素数的个数.当n→+ 时, =+ .人们可以发现:顺着自然数的序列,越往后素数的密度 π(n)/ n就变得越小7.1.2 陈氏定理―数学皇冠上的明珠哥德巴赫猜想(1742年)每个偶数都是两个素数之和;每个奇数都是三个素数之和哥德巴赫猜想的研究进展数学家哈代和李特尔伍德(英国,1923年)在广义黎曼猜想正确的前提下,有条件地证明了每个充分大的奇数都是三个奇素数之和以及几乎所有偶数都是两个奇素数之和.维诺格拉多夫(1937年),无条件地证明了奇数哥德巴赫猜想,即每个充分大的奇数都是三个奇素数之和布朗(挪威1919年)证明了:每个大偶数都是两个素因子个数均不超过9的整数之和(记为9 + 9,记号k + l表示大偶数分解为不超过k个奇素数的积与不超过l个奇素数的积之和,下同)布赫夕塔布的4 + 4(1940),瑞尼的l+c (c为一不确定大数)(1948)和库恩的a+b (a+b≤6)(1954);王元的2+3(1957)和潘承洞的1+5(1962),到1965年,欧洲数学家邦别里等三人差不多同时证明了1 + 3;1966年,中国数学家陈景润宣布证明了1+2(1973年发表详细证明)陈景润(1933~1996)简介图7.1华罗庚(右)与陈景润(左)7.1.3费马最后定理费马猜想:对每个正整数n≥3,方程xn + yn = zn均没有正整数解(x, y, z).费马本人利用无限下降法证明了n=4时,费马猜想成立.1825年年仅20岁的德国数学家狄利克雷和年过七旬的法国数学家勒让德各自独立地证明了n = 5的情形,1839年法国数学家拉梅证明了n = 7的情形.欧拉的整数分解的定理:由a + b 形式的数所形成的数系(记为 ,a,b为任意整数)中,有唯一因子分解定理成立,即每一个整数都可唯一地分解为这个数系中数的乘积.后来才知道,对形如 的数系,唯一因子分解定理并不总是成立的,例如在数系 中,6 = 3×2 =(1+ )(1- ),就有两种分解方式.事实上,能保证唯一因子分解定理成立的数系 只有9种德国的数学家库默尔(1810~1893)利用理想数的概念,证明了对于 100以内的所有素数,都能使费马猜想成立.志村-韦伊―谷山猜想――费马猜想的等价命题怀尔斯的论文模曲线和费马最后定理 (1994年)――费马猜想终于成为定理,被称为费马大定理或费马最后定理7.1.4 让我们教猜想吧费马猜想是只会下金蛋的鹅1966年菲尔兹奖获得者,英国数学家阿蒂亚(1929~)认为:与其它自然科学的情况一样,数学中的一些发现也要经过几个阶段才能实现,而形式证明只是最后一步.最初阶段在于鉴别出一些重要的事实,将它们排列成具体含义的模式,并由此提炼出看起来很有道理的定律或公式.接着,人们用新的经验事实来检验这种公式.只是到了此时,数学家们才开始考虑证明问题.1958年菲尔兹奖获得者,突变理论的创立者,法国数学家托姆用半开玩笑的态度说:严格性是一个拉丁名词.我们会想起僵死(rigormorits),即僵化的尸体.我要把数学分为以下的三类:第一,以婴儿摇篮为标记.这是"活的数学"允许改变,澄清,完成证明,反对,反驳.第二,以十字架为标记.这是坟墓上的十字架.作者声明它已完全严格,具有不朽的正确性.这类工作将构成"坟墓数学".第三,以教堂为标记.这是外部的权威,由高级教士组成,判断哪些工作已成为"坟墓数学".推测数学家的成功范例之一是印度数学家拉马努金(1887~1920)波利亚认为,在数学教育中,证明与猜想,这两类推理即论证的与合情的都必须教给学生,在有些情况下教猜想比教证明更为重要.因此,波利亚强烈的呼吁:让我们教猜想吧!
瑞瑞爱吃桃2023-05-23 22:48:011

哪些书适合用来学数论

1·《初等数论》作 者:潘承洞,潘承彪 著,出 版 社:北京大学出版社。适合初级数论学习。2·《基础数论》,杜德利著,周仲良译,上诲科学技术出版社。适合初级数论学习。3·《哈代数论》作者:(英)哈代,(英)莱特著,人民邮电出版社出版。本书是数论领域的一部传世名著,成书于作者在牛津大学、剑桥大学等学校授课的讲义。书中从各个不同角度对数论进行了阐述,内容包括素数、无理数、同余、费马定理、连分数、不定式、二次域、算术函数、分化等。新版修订了每章末的注解,简要介绍了数论最新的发展;增加了一章讲述椭圆曲线,这是数论中最重要的突破之一。适合数学专业本科生、研究生和教师用作教材或参考书,也适合对数论感兴趣的专业人士阅读参考。
再也不做站长了2023-05-23 22:47:541

数论函数的定义

数论函数(number-theoretic function)数论函数亦称算术函数。这是一类重要的函数,指定在正整数集上的实值或复值函数。更一般地,也可把数论函数看作是在某一整数集上定义的函数。以正整数为定义域的函数ƒ(n),例如数列{αn}、阶乘n!、幂nλ等都是数论函数。
余辉2023-05-23 22:47:501

集合论 关系 微积分 数论 图论 组合数学 谓词逻辑 推理系统 群论 拓扑学 分形学 图形学 矩阵

都学最好,因为我计算机专业,这些课程都学过了
u投在线2023-05-23 12:58:023

数论--素数

由于质数有无穷多个要证 p1^r1*p2^r2*.....-1(r1...rk>=1,rk+1>=0)能够表征的质数仍为无限个观察上式 的构型为(p1*p2*..pk)n-1 n为正整数 即证 mn-1型的质数有无穷多个(m为偶数) 假设仅能表征x个质数 mnx-1=p由于质数分布的不确定性对任意一个质数p1均存在另一个质数p2使得(p1+1)|(p2+1)故存在c使得c(p+1)-1为质数 即 cmnx-1为质数 矛盾所以(p1*p2*..pk)n-1表征的质数有无穷多个又由于p1^r1*p2^r2*.....+1(r1...rk>=1,rk+1>=0)与 p1,p2....皆互素令p=p1^r1*....中的质数则可知 p有无穷多个综上命题得证
gitcloud2023-05-23 12:57:382

数学分析,实分析复分析,调和分析,泛函分析,抽象代数,拓扑,微分几何,数论,学的顺序怎样,有何区别

数学分析当然是基础了,抽象代数,微分几何,拓扑,微分方程这些是本科高年级学的,实分析复分析,泛函,李群这些应该算研究生内容。
北营2023-05-22 18:14:136

论初等数论与小学数学的关系

刚翻开人教版大学本科小学教育专业教材《初等数论》的目录,许多在校本科小学教育专业的学生,包括我都存在这样的感觉,那就是觉得这些是再简单不过的内容:整除、质数与合数、最大公约数与最小公倍数、同余等等,这些内容在我们读小学的时候都已经学习过,似乎觉得没有必要再去研究,直到接触学习了这门课程,才扭转了我们的看法。初等数论是小学教育专业,尤其是理科方向学生的必修专业课程,也是从事小学数学教学的老师的进修课程。其中包括整数的整除性、同余、同余方程、不定方程、不定方程、简单连分数几方面的知识。这些方面的内容在符合了小学数学教师应具有的教学思维外,也有利于学习者积累从事小学数学教育工作必备的能力与知识。有人说:“数学是思维的体操,科学的王冠,数论是王冠上的明珠。”这颗明珠在小学数学中早已是熠熠闪光——我们小学所学习到的数论内容主要包含以下几类:整除问题:(1)整除的性质;(2)数的整除特征 (小升初常考内容) 余数问题:(1)带余除式的运用 被除数=除数×商+余数.(余数总比除数小) (2)同余的性质和运用奇偶问题:(1)奇偶与加减运算;(2)奇偶与乘除运算 质数合数:重点是质因数的分解约数倍数:(1)最大公约最小公倍两大定理 (2)约数个数决定法则可见,初等数论的应用与小学数学教育事业是息息相关的。对于初等数论,我学到的也只是九牛一毛,谈不上有什么有建设性的问题,只能粗略地谈谈初等数论中的核心内容——同余,并通过其在初等数论在小学数学中的应用来说明两者的关系。同余是由德国数学家高斯首先提出并系统地进行研究的,它是初等数论的核心部分。其中蕴含大量的数论所特有的思想、概念和方法,它的出现使数论成为一个独立的数学分支的标志。在这一内容中包括其性质,剩余类与剩余系,欧拉定理和循环小数等几个知识点。在没接触初等数论学习之前,我们对同余这个概念很陌生,其实同余在我们小学数学学习,奥数中已经有了很深入的运用。在小学中主要体现在余数的运用上,余数是小学数学中的重要概念,也是数学竞赛的热门话题,其中有关概念多,方法性强。在小学,关于余数问题我们知道:如果整数a除以正整数m,商为q,余数为r,则a=qm+r,其中q与r都是自然数,并且0≤r<m.而现在我们学的同余知识是:如果两个正整数a,b被非零自然数m除时所得的余数相同,a=qm+r,b=pm+r,那么就说a与b关于模m同余,记为a≡b(mod m).此时a与b的差能被m整除,记为a-b ≡0(mod m).因此同余问题常常转化为整除问题求解。下面,我以一个例题来反应同余在小学数学教学中的应用:例题、a除以5余1,b除以5余4,如果3a>b,那么3a-b除以5余几? 这道题目出现在小学奥数中,小学生一般的解答方法是:方法一:凑数法。取a为6,取b为9,这样a.b满足了条件a除以5余1,b除以5余4,3a-b=9,9/5余数为4。方法二、设a=5x+1 b=5y+4 3a-b=15x-5y-1=15x-5y-5+4=5(3x-y-1)+1 3a-b除以的余数是4 a=5x+1 (x为正的整数) b=5y+4( y为正的整数 ) (3a-b)/5 =(15x+3-5y-4)/5 =3x-y-1/5 =(3x-y-1)+4/5 根据x,y均为正的整数,并且3a>b,所以余数为4。 而在初等数论中的解法: 解:∵a≡1(mod5), ∴3a≡3(mod 5), 或者3a≡8(mod 5).(1) 又∵ b≡4(mod 5),(2) ∴(1)-(2)得: 3a-b≡8-4≡4(mod 5).因此,3a-b除以5余4.在小学生解法中我们可以看出,两种方法,尤其是第二种,都是以同余知识出发去处理问题,只是在形式表达上相对于大学里初等数论练习中较为简单化。在小学的奥数思维训练中,同余思想的应用更是数不胜数,如“抽屉原理”是同余应用中最典型的例子,可以说,同余理论是近世代数中一个很重要的数学模型。除此之外,其他很多数学知识都涉及到了同余,比如像欧拉函数,它也是初等数论中的重要函数之一,在证明过程中就大量地体现了同余的思想。学过初等数论的人应该都知道,小学数学和初等数论之间最大的不同在于小学数学在于如何应用定理、法则,而初等数论则要明白为什么这么应用。显然,初等数论是更为深层次的学习,在难度上有了一个跨越。那么数论部分在小学数学考试题型中占据什么地位呢?可以说,翻开任何一本数学辅导书,数论的题型都占据了显著的位置。有专家在小学各类数学竞赛中研究发现,直接运用数论知识解题的题目分值大概占据整张试卷总分的30%左右,而在竞赛的决赛试题中,这一分值比例更高。出题老师喜欢将数论题作为区分尖子生和普通学生的依据,这一部分学习的好坏将直接决定学生在选拔性考试中成绩的好坏。综上所述,初等数论作为一门为小学教育专业的学生开设的课程,在培养学生扎实的数学基础之外,更多的是有利于师范生更好地将初等数论的理论灵活地应用于小学教育中,进一步培养科学的人生观、价值观。
CarieVinne 2023-05-22 07:48:111

初等数论初步中大衍求一术的介绍中的k1,k2…kn代表什么,又是怎样得出的

AAA 百度可以搜到大衍求一术、乘率等相关内容。乘率,同余逆,同余倒数,模逆,都是说的同一概念。例如,ax==1 mod m其中的 a与x互称为基于(关于、对于)模m的乘率,简称乘率。若已知a求x, 就说求a关于模m的乘率,或简单地说求a的乘率.这个同余式也相当于ax+my=1,于是my==1 mod a, 此时m与y也互为关于模a的乘率。其中为打字方便,用双等号==取代三线等号≡表示同余。BBB 注意事项:一、求乘率,就是求解同余式,该同余式有一侧为定值1;或者是求解含有常数1作为和项的二元一次三项不定方程。否则一般不称为求乘率。二、利用中国剩余定理同余式组,利用到乘率。但是,不利用乘率也可以直接解同余式组的,就像解多元方程组的矩阵方法,并不是一定要求逆矩阵一样。中国剩余定理解同余式,与解多元一次方程组或矩阵方程中用到的线性叠加方法原理是一样的,我们应当利用线性叠加原理而灵活变化。CCC 求乘率的例子CCC 例1(求乘率): 13x==1 mod 23方法1-1:13x==1 mod 23两边乘2得26x==2 mod 233x==-21 mod 23x==-7==16 mod 23用洪伯阳同余记法,可用分数形式表示同余,再转换为整数形式,如下:x==1/13==2/26==-21/3==-7==16 mod 23方法1-2:13x==1 mod 23-10x==1 mod 23-10x==70x==-7==16用洪伯阳同余记法,即x==1/13==1/-10==70/-10==-7==16 mod 23方法2-1:使用不定方程。对于较复杂的情况,很适用。下面是经我改写了的一种解不定方程的方法,较常规教科书思路略有不同,计算较为方便。后文有略微复杂的几个例子,作了详细说明。13x==1 mod 2313x=1+23y 将13的倍数合并到13x这一项上并使用新的变量,得13z=1-3y 易见可取特值y=-4,代入即得 x=-7。于是x==-7==16 mod 23.DDD 注意对mod的一个重要认识:由13z==1-3y 也可直接解出 y=-4 mod 13,或写成 y=-4+13t 代入13x=1+23y 立即得 x= -7+ 23t == -7 mod 23  事实上,我们应当认为 mod 13 与 +13t 地位相当本质相同。(mod 13) 本质上即是 +13 的任意倍数,我常常写成 +13**或13**+(放在左边时用13**+), 表明不使用具体的符号来表示出这个任意的倍数。将mod13看作成+13**,于是立即知道它可以在同余式的代数和项或乘积的因数项上任意加减、滑移(包括等式左右两边移项)而不影响式子的性质。任意加减与滑移,只是这个任意倍数**发生了变值(包括改变正负号),而我们不关心因子**的值,故不需要去管它的形式,照样用**代替即是。使用 (mod 13)这种形式,就已经不再注意这个任意倍数了,其加减与滑移特性赋予了它极大的自由;使得它成为一个平台,相当于物理学中的“以太”一样了;而同时让我们将着眼点更好的放在其他变量的分析上。而使用 (+13 t )这样的形式,则便于对变量进行称名引用。这种形式下,同余式即是不定方程,,方便于对模13的倍数进行定量跟踪分析,还可以在转换到(即重定位到)其它模与变量时不致混淆关注点(视点)。而转换模与变量,在解复杂的、难于计算的不定方程(包括同余式转化来的不定方程)是很好的方便的手段之一。方法2-213x==1 mod 2313x=1+23y13z=1+10y易见可取z=7, y=9,代入得x=16 mod 23这个代入计算的过程略微不便计算,可以这样简化:将两式比较,得x-z=y, 故 x=z+y=16 mod 23CCC例2(求乘率):103x==1(mod211)解:206x==2 -5x==2*1-5x==2*-210x==84洪伯阳表示法:x==1/103==2/206==2*1/-5==2*-210/-5==84CCC例3(求乘率)开譆历上元积年377873x≡1(mod499067)的乘率解:用洪伯阳记号解,由于不便于重定位模对象,故此在不做为首选方法,见后文。先用我改写了的不定方程解法来解。这种不定方程解法的要点:要点1,其中使用双等号==取代等号=,以保证在使用同余关系时的扩展,从而使用了连等式,连等式各项使用同余关系相关联。一个连等式系列之中,取最前与最后二者,可改用等号连接形成等式,以此为依据进行变量的定量化分析。要点2,辗转相除法求最大公约数或求乘率、大衍求一术求乘率均可以用我这种思路改写成为不定方程。要点3,使用连等式,可保留中间计算过程,利于辅助记忆。如果笔算或口算或心算,记忆起来轻松一些,下面的过程主体是我一边打字一边心算完成的。要点4,其中变量便于称名引用,过程中的对象位置能够方便的对应,思路很为连续方便。要点5,在不定方程中使用了具体的变量名,因而转换到(即重定位到)其它模与变量时不致混淆关注点(视点)。而转换模与变量,在解复杂的、难于计算的不定方程(包括同余式转化来的不定方程)是很好的方便的手段之一。这一点前文也讲到过了。要点6,开始步骤与中间步骤都是对上一个不定方程式按较小的模进行并项得到下一个不定方程,并使用新的变量而不使用累次的代换关系,也不涉及复杂的分式,简洁明快。要点7,最后反推步骤,利用到了最后一个显然易解的不定方程,及所得到的所有相邻不定方程之间相比较得到的关系式,使计算涉及到的数值总体减小。在求值时,可以使用具体值参予计算,也可以继续使用变量,很自由方便。377873x==1+499067y 377873z==1+121194y 注:即将377873的倍数集中到原来的377873x这一项上并改用新变量。014291z==1+121194a014291b==1-021716a==1+6866a 注意,与前一式相比,14291的因子变量被改写。注意,此处使用了连等式,连等式对模14291构成同余等价关系。在连等式中以最前与最后二者以等号连接构成等式而进行定量分析。559b==1+6866c 559d==1+1276c==1+158c 注意,此处连等式对模559构成同余等价关系。-73d==1+158e-73f==1+12e取e=6, 逆求之可得解。过程可以如下:{将保留下来的各个算式,相邻两式两两比较,顺次得到:x-z=y3z=y-az-b=8a2b=a-cb-d=12c4d=c-e-d+f=2e 将e=6,f=-1代入,逆求。原先发文曾略去计算过程。此次补充,逆求如下:d=-13,c=-46,b=d+12c,a=2b+c=2d+25cz=b+8a=17d+212cy=3z+a=53d+661c,x=z+y=70d+873c=(-910+873*(-46))将上面的项复制到windows计算器(在windows操作系统开始菜单-运行:calc.exe-科学型),算得x==-41068 mod 499067x==457999}用计算器检验,457999*377873 mod 499067 ==1检验正确.一般取正数为乘率,取负数也是不影响计算的,故二者均均可做为乘率。CCC例3续:以下用洪伯阳记号来解377873x==1(mod499067)用洪伯阳记号来解,可以有一个相当于下面的过程:-121194x==1-484776x==414291x==4(#1#)142910x==4021716x==41(#2#)(#1#)*-3+(#2#)*2得 (这在洪伯阳表示式,即分数形式的同余表示中,相当于对分数连等式使合比定理,以下类似。)559x==70(#3#)由(#2,3#)得 注:21716=559*39-85 -85x==41-70*39==-2689 (#4#)由 (#4,3#)得 注:559=85*6+4949x==70+-2689*6=-16064 (#4#)由 (#4,5#)得-36x==-18753故12x==6251==-492816x==-41068x==457999用洪伯阳表示,写作:x==1/377873 ==1/-121194==4/-484776==4/14291==41/21716==70/559==-2689/-85==-16064/49==-18753/-36=6251/12==-492816/12==-41068==457999注:用洪伯阳记号解,由于不便于重定位模与变量对象,中途利用合比定理略嫌复杂,故此在不做为首选方法,以不定方程法为最佳。CCC例4(求乘率)907X≡2107(mod731)的两个乘率注:后文将另行求解同余式907X≡2107(mod731),使用不定方程 907x+731y=2107来解。由前面讲过的乘率的概念,我们认为此题求乘率即是求解两个同余式: 907x==1 mod 731 及 731y==1 mod 907,这两个同余式是等价的,可互相转换的,仅是着眼点不同。同时也相当于不定方程 907x+731y=1.解:907x+731y=1176x+731z=1176a+27z=114a+27b=1取a=2,反推即可求出x,y。下面采用另一种方式以简捷计算。比较上述各式之两邻相式,分别得x+y-z=0x-a+4z=06a+z-b=0下面已知a=2,b=-1,故z=-13,x=54,y=-67也可以这样: 907x+731y=1176x+731z=1176a+27z=1-13a+27b=1,由a=2反推。比较上述各式之两邻两式分别得x+y-z=0, x-a+4z=0,7a+z-b=0, 由a=2,b=1得z=-13,x=54,y=67CCC例5(求乘率)3800k≡1(mod27)注:转化为解不定方程3800x+27y=120x+27z=1易见或取z=3,x=-4; 两式比较得140x+y-z=0,故y=-140x+z=563EEE 非求乘率型的同余式的求解EEE 例6 方法1103x==57(mod211)x==57/103==114/-5==325/-5==-65 mod 211方法2:不定方程法:103x=57+211y 将103x的倍数集中到103x上并使用新的变量:103z=57+5y易见可取z=-1, y=-32,这时可以代入计算出x,也可以用下面的思路简化计算。上述两式比较,易见 x-z=2y, 故x=z+2y=-65. 即原同余式解为 x==-65 mod 211.EEE 例7 解同余式 907X≡2107(mod731)相当于求解不定方程 907x+731y=2107解:176x+731z=-86176a+27z=-86-13a+27b=-5(-13c+b=-5)取b=-5,c=0逆求即可。当然也可以由-13a+27b=-5这一步直接看出可取b=-5,a=-10进行逆求。但引入-13c+b=-5会减轻心算之记忆负担。比较上述各式之两两相邻式子,得x+y-z=3x-a+4z=07a+z-b=-3(-a+c+2b=0)于是由c=0,b=-5,a=-10得 z=-7a+b-3=62,x=a-4z=-258,y=-x+z+3=258+62+3=323
hi投2023-05-22 07:48:091

数论中的阿列夫零,是否可以看作是可数个可数集的直积?

楼下那个阿列夫零×阿列夫零不是可数个可数集的直积,是可数个可数集的并。可数个可数集的并可数不用选择公理也行。把它横竖两排,分别标A1A2……集合也标A1A2……于是A1A1,A1A2,A2A1,A3A1,A2A2,A1A3,A1A4,A2A3,A3A2,A4A1,A5A1,A4A2,A3A3……这样的顺序便就能把可数个可数集的并数完。类似有理数可数的证法。当然,可数个可数集的直积,这实际上不是可数集,而是不可数的。可数个可数集的直积不是将它对应到唯一分解。而是把可数个可数集乘起来。将它对应到唯一分解只是对应到它的有限支撑,不是对应到可数个可数集的直积,肯定可数。事实上,可数个可数集的直积是不可数的。A={自然数集}={0,1,2,3,4,5,6,7,8,9,10,……}B=A×A×A×A×A×……(可数个A乘起来)然后得到集合B=({0,0,0,0,0,……},{0,0,0,0,0,……}……)集合B里面的元素就是可数个可数集的笛卡尔积。假设可数个可数集的直积可数,则该集合B里面所有集合能与自然数全体一一对应。0 {0,0,0,0,0,0,0,……}1 {0,0,0,1,0,1,1,……}2 {1,2,3,4,5,6,7,……}3 {2,5,2,1,3,4,5,……}4 {5,1,0,11,2,5,4,……}5 {3,0,0,5,7,5,5,……}……于是我们能创造一个集合,里面第一个数与0的不同,第二个数与1的不同……于是有集合x={1,1,2,3,8,6,……},该集合与0不同,与1不同,与2也不同……,但是属于集合B里面的一个元素。矛盾,所以可数个可数集的直积是不可数的。(注:证明类似证实数集是不可数集,因为实数的小数部分位数是可数的,而且每位上有不同的选择,可数个可数集的直积跟这一点很相似。)
北有云溪2023-05-21 22:10:421

有关实变函数论的问题:证明〔0,1〕上的全体无理数作成的集合其基数为C.

首先[0,1]的基数为C,其次[0,1]上的有理数是可数的.所以[0,1]/Q[0,1]的基数=[0,1]的基数,所以就是C了
墨然殇2023-05-20 08:57:441

《实变函数论》求上极限和下极限

有上极限定义可得上极限为R按下极限定义可得下极限为∅还可以用上下极限等价公式:由A(2k-1)∪A(2k)=(0,k)当n为奇数2p-1时:当n为偶数2p时,所以由A(2k-1)∩A(2k)=(0,1/k)得:当n为奇数2p-1时:当n为偶数2p时,所以
可桃可挑2023-05-20 08:57:441

实变函数论与实变函数与泛函分析的区别

实变函数以实数作为自变量的函数就做实变函数,以实变函数作为研究对象的数学分支就叫做实变函数论.它是微积分学的进一步发展,它的基础是点集论.什么是点集论呢?点集论是专门研究点所成的集合的性质的理论.也可以说实变函数论是在点集论的基础上研究分析数学中的一些最基本的概念和性质的.比如,点集函数、序列、极限、连续性、可微性、积分等.实变函数论还要研究实变函数的分类问题、结构问题.实变函数论的内容包括实值函数的连续性质、微分理论、积分理论和测度论等.这里我们只对它的一些重要的基本概念作简要的介绍.实变函数论的积分理论研究各种积分的推广方法和它们的运算规则.由于积分归根到底是数的运算,所以在进行积分的时候,必须给各种点集以一个数量的概念,这个概念叫做测度.什么实测度呢?简单地说,一条线段的长度就是它的测度.测度的概念对于实变函数论十分重要.集合的测度这个概念实由法国数学家勒贝格提出来的.为了推广积分概念,1893年,约当在他所写的《分析教程》中,提出了“约当容度”的概念并用来讨论积分.1898年,法国数学家波莱尔把容度的概念作了改进,并把它叫做测度.波莱尔的学生勒贝格后来发表《积分、长度、面积》的论文,提出了“勒贝格测度”、“勒贝格积分”的概念.勒贝格还在他的论文《积分和圆函数的研究》中,证明了有界函数黎曼可积的充分必要条件是不连续点构成一个零测度集,这就完全解决了黎曼可积性的问题.勒贝格积分可以推广到无界函数的情形,这个时候所得积分是绝对收敛的,后来由推广到积分可以不是绝对收敛的.从这些就可以看出,勒贝格积分比起由柯西给出后来又由黎曼发扬的老积分定义广大多了.也可以看出,实变函数论所研究的是更为广泛的函数类.自从维尔斯特拉斯证明连续函数必定可以表示成一致收敛的多项式级数,人们就认清连续函数必定可以解析地表达出来,连续函数也必定可以用多项式来逼近.这样,在实变函数论的领域里又出现了逼近论的理论.什么是逼近理论呢?举例来说,如果能把 A类函数表示成 B类函数的极限,就说 A类函数能以 B类函数来逼近.如果已经掌握了 B类函数的某些性质,那么往往可以由此推出 A类函数的相应性质.逼近论就是研究那一类函数可以用另一类函数来逼近、逼近的方法、逼近的程度和在逼近中出现的各种情况.和逼近理论密切相关的有正交级数理论,三角级数就是一种正交级数.和逼近理论相关的还有一种理论,就是从某一类已知函数出发构造出新的函数类型的理论,这种理论叫做函数构造论.总之,实变函数论和古典数学分析不同,它是一种比较高深精细的理论,是数学的一个重要分支,它的应用广泛,它在数学各个分支的应用是现代数学的特征.实变函数论不仅应用广泛,是某些数学分支的基本工具,而且它的观念和方法以及它在各个数学分支的应用,对形成近代数学的一般拓扑学和泛涵分析两个重要分支有着极为重要的影响.泛函分析的产生十九世纪以来,数学的发展进入了一个新的阶段.这就是,由于对欧几里得第五公设的研究,引出了非欧几何这门新的学科;对于代数方程求解的一般思考,最后建立并发展了群论;对数学分析的研究又建立了集合论.这些新的理论都为用统一的观点把古典分析的基本概念和方法一般化准备了条件.本世纪初,瑞典数学家弗列特荷姆和法国数学家阿达玛发表的著作中,出现了把分析学一般化的萌芽.随后,希尔伯特和海令哲来创了“希尔伯特空间”的研究.到了二十年代,在数学界已经逐渐形成了一般分析学,也就是泛函分析的基本概念.由于分析学中许多新部门的形成,揭示出分析、代数、集合的许多概念和方法常常存在相似的地方.比如,代数方程求根和微分方程求解都可以应用逐次逼近法,并且解的存在和唯一性条件也极其相似.这种相似在积分方程论中表现得就更为突出了.泛函分析的产生正是和这种情况有关,有些乍看起来很不相干的东西,都存在着类似的地方.因此它启发人们从这些类似的东西中探寻一般的真正属于本质的东西.非欧几何的确立拓广了人们对空间的认知,n维空间几何的产生允许我们把多变函数用几何学的语言解释成多维空间的影响.这样,就显示出了分析和几何之间的相似的地方,同时存在着把分析几何化的一种可能性.这种可能性要求把几何概念进一步推广,以至最后把欧氏空间扩充成无穷维数的空间.这时候,函数概念被赋予了更为一般的意义,古典分析中的函数概念是指两个数集之间所建立的一种对应关系.现代数学的发展却是要求建立两个任意集合之间的某种对应关系.这里我们先介绍一下算子的概念.算子也叫算符,在数学上,把无限维空间到无限维空间的变换叫做算子.研究无限维线性空间上的泛函数和算子理论,就产生了一门新的分析数学,叫做泛函分析.在二十世纪三十年代,泛函分析就已经成为数学中一门独立的学科了.泛函分析的特点和内容泛函分析的特点是它不但把古典分析的基本概念和方法一般化了,而且还把这些概念和方法几何化了.比如,不同类型的函数可以看作是“函数空间”的点或矢量,这样最后得到了“抽象空间”这个一般的概念.它既包含了以前讨论过的几何对象,也包括了不同的函数空间.泛函分析对于研究现代物理学是一个有力的工具.n维空间可以用来描述具有n个自由度的力学系统的运动,实际上需要有新的数学工具来描述具有无穷多自由度的力学系统.比如梁的震动问题就是无穷多自由度力学系统的例子.一般来说,从质点力学过渡到连续介质力学,就要由有穷自由度系统过渡到无穷自由度系统.现代物理学中的量子场理论就属于无穷自由度系统.正如研究有穷自由度系统要求 n维空间的几何学和微积分学作为工具一样,研究无穷自由度的系统需要无穷维空间的几何学和分析学,这正是泛函分析的基本内容.因袭,泛函分析也可以通俗的叫做无穷维空间的几何学和微积分学.古典分析中的基本方法,也就是用线性的对象去逼近非线性的对象,完全可以运用到泛函分析这门学科中.泛函分析是分析数学中最“年轻”的分支,它是古典分析观点的推广,它综合函数论、几何和代数的观点研究无穷维向量空间上的函数、算子、和极限理论.他在二十世纪四十到五十年代就已经成为一门理论完备、内容丰富的数学学科了.半个多世纪来,泛函分析一方面以其他众多学科所提供的素材来提取自己研究的对象,和某些研究手段,并形成了自己的许多重要分支,例如算子谱理论、巴拿赫代数、拓扑线性空间理论、广义函数论等等;另一方面,它也强有力地推动着其他不少分析学科的发展.它在微分方程、概率论、函数论、连续介质力学、量子物理、计算数学、控制论、最优化理论等学科中都有重要的应用,还是建立群上调和分析理论的基本工具,也是研究无限个自由度物理系统的重要而自然的工具之一.今天,它的观点和方法已经渗入到不少工程技术性的学科之中,已成为近代分析的基础之一.泛函分析在数学物理方程、概率论、计算数学、连续介质力学、量子物理学等学科有着广泛的应用.近十几年来,泛函分析在工程技术方面有获得更为有效的应用.它还渗透到数学内部的各个分支中去,起着重要的作用.1年前4发大财了 幼苗共回答了20个问题 举报实变函数:测度空间,积分.泛函分析:抽象空间.
北有云溪2023-05-20 08:57:411

什么是实变函数论

http://baike.baidu.com/view/44515.htm去这看看,很详细。
wpBeta2023-05-20 08:57:414

实变函数论的产生

实变函数论的产生 微积分产生于十七世纪,到了十八世纪末十九世纪初,微积分学已经基本上成熟了。数学家广泛地研究并建立起它的许多分支,是它很快就形成了数学中的一大部门,也就是数学分析。也正是在那个时候,数学家逐渐发现分析基础本身还存在着很多问题。比如,什么是函数这个看上去简单而且十分重要的问题,数学界并没有形成一致的见解。以至长期争论者问题的这样和那样的解答,这样和那样的数学结果,弄不清究竟谁是正确的。又如,对于什么是连续性和连续函数的性质是什么,数学界也没有足够清晰的理解。十九世纪初,曾经有人试图证明任何连续函数除个别点外总是可微的。后来,德国数学家维尔斯特拉斯提出了一个由级数定义的函数,这个函数是连续函数,但是维尔斯特拉斯证明了这个函数在任何点上都不可导。这个发现使许多数学家大为吃惊。由于发现了某些函数的奇特性质,数学家对函数的研究更加深入了。人们又陆续发现了有些函数是连续的但处处不可微,有的函数的有限导数并不黎曼可积;还发现了连续但是不分段单调的函数等等。这些都促使数学家考虑,人们要处理的函数,仅仅依靠直观观察和猜测是不行的,必须深入研究各种函数的性质。比如,连续函数必定可积,但是具有什么性质的不连续函数也可积呢?如果改变积分的定义,可积分条件又是什么样的?连续函数不一定可导,那么可导的充分必要条件由是什么样的?……上面这些函数性质问题的研究,逐渐产生了新的理论,并形成了一门新的学科,这就是实变函数。
韦斯特兰2023-05-20 08:57:411

实变函数论的介绍

实变函数论(real function theory)19世纪末20世纪初形成的数学分支。起源于古典分析,主要研究对象是自变量(包括多变量)取实数值的函数,研究的问题包括函数的连续性、可微性、可积性、收敛性等方面的基本理论,是微积分的深入和发展。因为它不仅研究微积分中的函数,而且还研究更为一般的函数,并且得到了较微积分中相应理论更为深刻、更为一般从而应用更为广泛的结论,所以实变函数论是现代分析数学各个分支的基础。
铁血嘟嘟2023-05-20 08:57:411

有关实变函数论的问题:证明〔0,1〕上的全体无理数作成的集合其基数为C.谢谢了。

首先[0,1]的基数为C,其次[0,1]上的有理数是可数的。所以[0,1]/Q[0,1]的基数=[0,1]的基数,所以就是C了
苏萦2023-05-20 08:57:412

求复分析和解析数论的教材推荐,最好中文

复分析中文版华章数学译丛:《复分析基础及工程应用》E.B.Saff,A.D.Snider著华章数学译丛: 《复分析》 Ahlfors著华章数学译丛:《实分析与复分析》Rudin著俄罗斯数学教材选译:《复分析导论》沙巴特 著,第一卷、第二卷,图灵数学 统计学丛书:《复分析·可视化方法》尼达姆 著中国科学技术大学精品教材:《简明复分析》龚升北京大学数学教学系列丛书:《复分析导引》李忠另外可参考:方企勤、Conway、stein、小平邦彦的相关著作,这里不列举了。解析数论中文版图灵数学 统计学丛书:《哈代数论》哈代,本书有部分内容是解析数论《数论导引》华罗庚,这个就不必介绍了《初等数论》陈景润,共三卷,哈工大出版社,挺不错,可以作为参考,《解析数论基础》[俄] 卡拉楚巴 著 潘承彪,张南岳 译,哈工大出版社《解析数论引论》[美] 阿普斯托 著 赵宏量,唐太明 译,哈工大出版社国内的其他教材就不推荐了,如果愿意,可以随便看看。要想学好数学,还是要下功夫看英文版的。某些知识点的译文不怎么样,估计译者完全没弄明白原文。以上教材除了华罗庚的《数论导引》其他都是从网上可以可以买到的,一些经典书籍可以到图书馆找。更多内容可以参考一下下面的文章,挺不错,只是有些书不好找。http://wenku.baidu.com/link?url=G6IJbEt8AD32RVwETAdlnOapxOXCA6Eff9j5_sw5JR1AAgg2WY9pb6R2_6saaAuYrk8LbeV0e3DICObFieR431bIKq0wPpcGaXnwFPQDlwm
mlhxueli 2023-05-20 08:57:281

拉格朗日定理的数论

数论中的拉格朗日定理1、拉格朗日四平方和定理(费马多边形数定理特例)每个自然数均可表示成4个平方数之和。3个平方数之和不能表示形式如4^k(8n+ 7)的数。 如果在一个正整数的因数分解式中,没有一个数有形式如4k+3的质数次方,该正整数可以表示成两个平方数之和。2、设p是一个素数,f(x)是整系数多项式,模p的次数为n,则同余方程f(x)≡0(modp)至多有n个互不相同(即模p互不同余)的解。
Chen2023-05-20 08:56:431

十九世纪的数论(三+)

克罗内克(Leopold Kronecker,1823-1891)是库默尔的得意门生,他接替了库默尔在柏林大学的教职,继续研究代数数问题,并沿着类似戴德金的路线发展了代数数。他在该课题上的首个工作是其博士论文《论复可逆元素》,尽管写于1845年,但很晚发表。论文讨论在高斯所创立的代数数域中可能存在的所有可逆元素。 克罗内克创造了另一种域论(有理性域),他考虑任意个变量(未定量)的有理函数域,域的概念比戴德金的更为一般,特别地,1881年克罗内克引入了添加于域的未定量的概念,未定量是是一个新的抽象量,用增加未定量推广域的思想是克罗内克代数数理论的基石。他用了刘维尔、康托尔等人建立的关于代数数与超越数差别的知识,注意到如果x是域K上的一个超越数(x是未定量),则由添加x于K得到的域K(x)即包含K与x的最小域,同构于系数在K中的一个变量的有理函数生成的域K[x],他强调这个未定量仅是一个代数元素,而不是分析意义下的变量。1887年他证明对每个普通素数p,在具有有理系数的多项式环Q(x)中存在一个相应的素多项式p(x),它在有理域Q中是不可约的。两个多项式若以给定素多项式p(x)为模同余,认为两多项式相等,在Q(x)中一切多项式的环就变成了同余类的域,这个域与由添加p(x)=0的一个根δ于域K产生的代数数域K(δ)具有相同的代数性质。这里他用了柯西之前用过的思想,即用多项式关于模x^2+1同余而引入虚数。同时他说明,代数数理论独立于代数基本定理和完备的实数系理论。 在他的域论中,元素是从域K出发然后添加未定量x1,x2,...,xn而形成的。克罗内克引入模系的概念(相当于戴德金理论的理想),对克罗内克来说,一个模系是n个变量x1,x2,...,xn的多项式的一个集合M,如果P1和P2属于集合M,则P1+P2也属于该集合,如果P属于该集合,而Q是x1,x2,...,xn的任一多项式,则QP也属于这个集合。 模系M的一组基是指M的多项式B1,B2,..的任何一个集合,使M的每个多项式可表示为R1B1+R2B2+...其中R1,R2,...是常数或多项式(不必属于M),在克罗内克的一般域中,可除性理论是依据模系定义的,类似戴德金的理想。 19世纪代数数论发展的顶峰是1897年希尔伯特论代数数的著名报告,记述了19世纪的主要工作,希尔伯特重新整理了这些早期理论,并给出了获得这些结果的新方法,报告也包含了1892年他在代数数论中创立的新概念以及关于伽罗瓦数域的一个新创造。之后希尔伯特等人大大扩展了代数数论,这些发展又刺激了20世纪的工作。 代数数论本来是研究古老数论问题的一种求解方案,但自身又变成了一个研究对象,它在数论和抽象代数之间占据了一席之地。现在数论和近世高等代数也被吸收到代数数论中了。代数数论在普通数论中也产生了新的定理。
Chen2023-05-20 08:56:331

数论中最具创新和美丽的证明之一,等差级数的狄利克雷定理

研究质数最有力的工具之一是 狄利克雷特征理论 。1805年,一位天才在法国诞生。他的名字叫彼得·古斯塔夫·列琼·狄利克雷。狄利克雷12岁时就对数学感兴趣,1822年他去巴黎学习。几年后,他证明了费马大定理的一个特殊情况,即n = 5的情况。这使他在数学界名声大噪。1832年,狄利克雷成为普鲁士科学院最年轻的成员,只有27岁。 1837年,狄利克雷开始思考一个问题,它彻底改变了我们研究整数的方法。数学家们知道素数有无限多(公元前300年欧几里得证明了这一点),但在当时,研究自然数子集中的素数似乎是遥不可及的。但后来狄利克雷有了一个好的想法。当时的先驱们正在积极地发展复变分析,创造出了许多分析工具。他利用这些工具来研究整数,从而将复分析和数论结合起来。 他想要解决的问题是: 对于任意两个互质整数a和m,有无穷多个a + nm形式的质数,其中n是一个正整数。 狄利克雷证明了这个命题,现在这个定理以他的名字命名,叫做 等差级数的狄利克雷定理 。为了证明这一点,狄利克雷发明了一类完全乘性函数,现在称为 狄利克雷特征( Dirichlet characters ) 。 狄利克雷特征 设m为自然数。模m的狄利克雷特征是函数χ:ℤ→ℂ,从整数到复数,满足以下条件。 从这些性质,还可以推导出其他一些性质。例如,根据上面的第二个性质:χ(1)≠0,因此,我们可以除以它,得到χ(1)χ(1) = χ(1)⋅1 = χ(1),这意味着,对所有特征都有χ(1) = 1。所以我们有 我们称这个符号为特征的奇偶校验;如果χ(-1) = 1,则称其为偶,如果χ(-1) = -1,则称其为奇。注意,对于任何模m,有一个特殊的特征称为 主特征 χ0 mod m。它由以下方法定义 其他一些属性是可派生的。其最重要的性质之一是它们都是 乘法群之间的同态 ,因此在复平面的单位圆上取值。我们在这里不讨论特征的群方面,开始之前,有两个知识需要知道。 第一个是 欧拉函数 ϕ。我们定义ϕ (n)为小于n的正整数中与n互质的数的数目。即自然数k<n使gcd(k, n) = 1。例如,ϕ(10) = 4,因为有4个小于10的自然数与10互质。 我们需要知道的第二个知识是关于狄利克雷特征的一个事实叫做正交关系, 这里求和是所有模为m的特征,第一个特征上的横杠是这个特征的复共轭。 从欧拉函数到L-函数 欧拉研究了ζ函数,发现素数和自然数之间有一个美丽的联系,称为 欧拉乘积 。令s>1,那么 s实际上可以是复数(由黎曼推广),但在欧拉的时代,复数分析还处于初级阶段,他只考虑s为实值。 这实际上给出了“有无限多个素数”的另一个证明。欧拉注意到如果对方程两边取对数会发生一些有趣的事情, 现在回想一下对数的泰勒级数展开 因此我们得到, 当s向右趋近于1。 我们看到,log ζ(s) =∑1/p^s加上某个有界函数。有很多方法来证明这个 渐近界O(1) 。一种方法是回到对数的和。我们可以用微积分的各种方法证明,如果0 < x ≤ 1/2 ,那么 -log(1 - x) < x + x²。 因为对于所有质数p和s > 1,1/p^s ≤ 1/2,我们可以用这个引理代入得到 这显示了一个显式的边界和 欧拉著名的巴塞尔问题解 的一个很好的应用。通过这种方法,我们不仅确定了有无限多个质数,而且知道∑1/p是发散的。这样,我们就可以有把握地说, 质数在自然数中比平方数的密度大。 尽管质数倒数的和发散的速度很慢。实际上,我们可以从上面看到它的发散近似于 loglogx 。这是一个增长极其缓慢的函数。例如,这个函数要超过数字4,需要x大于 这是一个有24位的数字。狄利克雷的想法是试图将这个结果推广到素数的子集即等差数列中的素数。注意下面的等差数列 可以表示为 换句话说,狄利克雷想要证明,如果gcd(a, m) = 1,我们得到的结果 是发散的。 为了做到这一点,狄利克雷有了第二个奇迹般的洞察。结果是ζ函数有很多“表亲” , 它们显示出和ζ函数相同的性质包括 欧拉乘积 。这类函数是狄利克雷的第二大发现。 由于狄利克雷特征是完全乘性的,因此它们对应的狄利克雷级数也有欧拉积。具体地说,我们有关于χ的狄利克雷L-级数的定义: 我们假设s > 1。 这也可以定义为复数s。通过解析延拓,这个函数可以扩展为整个复平面上的亚纯函数,称为 狄利克雷L-函数。 在复平面上定义ζ函数时,称为黎曼ζ函数。 因为所有的狄利克雷特征都是完全乘性的,这个级数也有一个欧拉积, 注意,对于具有平凡特征的狄利克雷L-级数的定义,即χ(n) = 1对于所有n,给出了通常的带有欧拉乘积的ζ函数。这使得 狄利克雷L-函数成为了ζ函数的推广 。 事实上,这些函数与黎曼ζ函数非常相似,它们不仅具有等价的欧拉乘积,而且在Re(s) = 1/2这条线周围有一个漂亮的对称关系。此外,它们被期望满足一个与黎曼假设等价的命题,但这尚未得到证明。 狄利克雷的证明 一旦狄利克雷建立了特征的欧拉积,接下来的逻辑步骤是对两边取对数,得到质数的和 再一次,通过类似于上面的论证,我们可以用渐近函数来重写它 这仅仅意味着,当s→1时,右边的和的增长近似于左边。从这里,狄利克雷有了一个伟大的想法。他用正交关系把它变成了他想要的形式。具体地说,如果我们在上面的方程两边乘以χ (a)的复共轭,然后用模m对所有的特征求和,我们得到如下结果 这太神奇了。狄利克雷用他的特征定义了一个(全纯)函数,它是等差数列 中所有素数的和。 现在,狄利克雷“只”需要证明左边在s→1时发散。 证明这一点的策略是,通过将特征分组到三个不相交的集合, 这样做的原因之一是,对于任何非主特征的χ,结果表明级数L(s,χ)对于s>0是收敛的。 其策略是证明L(s,χ0)在s = 1处有一个简单的极,即对应的L级数是发散的,如果χ是一个非主特征,则L(1,χ)≠0。 第二个原因是,我们需要确保L(s,χ0)的极点不会被“log(0)”这样形式的负无穷吞噬。 第一个(主特征),很简单,可以用很多方法证明。例如,我们可以检验, 观察一下,右边除模m的质数的乘积总是有限的——事实上,当s = 1时,你可以检查它等于ϕ(m)/m。所以左边的级数从ζ (s = 1)继承了极点。 因此,最重要的是证明L(1,χ)对任何非主特征都不等于0。 复数的情况比较简单,因为如果我们对相应的L级数的所有特征取一个乘积, 那么首先,可以证明 我们可以把L-级数的对数写成另一个级数,在这种情况下更容易处理。 第二(复特征),由于主特征的L-级数在s→1时发散,乘积中最多只能有一个零因子,否则,它将是0,与它大于1相矛盾。但如果χ是一个复数,那么它的共轭复数也是不同的,但如果一个是0,另一个也是不同的。因此,对于复χ, L(1,χ)≠0。 二次特征的情况更加微妙,超出了本文的范围。 狄利克雷发明了一个新的数学领域和许多新的抽象方法。在这个证明中,他使用了一些现代的抽象方法。需要注意的是,狄利克雷在他的证明中使用的符号与我们现代的符号非常不同。 我认为这是最具创新和美丽的证明之一。
阿啵呲嘚2023-05-20 08:55:271

解析数论前景怎么样

楼主是学数学的吧,能不能认识一下,以后有机会向你请教.以下是复制的. 中国数论研究的历史最早是从什么开始的?在中国早在20世纪30年代,华罗庚就开始研究数论问题了.他的老师杨武之就是研究数论问题的.华罗庚是中国学派——这个数论研究团队的领军人物,除了他自己的三角和估计与《堆垒素数论》等重要贡献外,华罗庚还对中国数论研究的方向与具体问题以及长期研究的后备人才的培养等均做出了重要的部署.同时他组织一批年轻的数学家冲击“哥德巴赫猜想”这个世界难题,并取得了重要的进展.中国近代数论的研究是由杨武之开始的.他在1928年获得美国芝加哥大学博士学位,曾师从狄克逊(L.E. Dickson).他曾经证明了,“每个正整数都是由九个形如(x-1)x(x+1)/6的非负整数之和”,这是最早的中国近代数论的结果. 1929年杨武之受聘到清华大学数学系执教.1931年华罗庚来清华大学数学系先任图书管理员、后任助理员,边工作,边学习.系里的华罗庚与柯召对数论比较感兴趣,杨武之就指导他们进行数论研究.1936年,华罗庚与柯召去英国,分别进入了剑桥大学和曼彻斯特大学,师从哈代(G.H.Hardy)与莫德尔(L.J.Mordell)研究数论.华罗庚在去英国前,就已经开始研究当时的主流数论,即哈代-李特伍德-拉马努金圆法与维诺格拉朵夫指数与估计方法方面的工作,这使他掌握了数论的制高点,所以他的数论工作,无论是在广度与深度上,在中国都是最为突出的,他的数论工作在解析数论中有着持久的影响力,同时也受到国际同行的尊敬.另外华罗庚广招学生,撰写“数论导引”等入门书,所以在中国的数论发展中,他起到了领军的作用.解放后,华罗庚、闵嗣鹤在这一研究上奠定了基础.华罗庚到剑桥大学世界数论研究中心学习进修1936年,在著名数学家维纳推荐下华罗庚以访问学者身份去英国剑桥大学进修.那里有著名解析数论专家哈代,还有其他的数论专家.他在剑桥大学听了许多课,参加讨论班,得到著名学家哈代等人的指导.而华罗庚的刻苦努力以及取得的发表的文章也得到大家的赞许与认可.40年代他本人在美国作过不少杰出的数论工作.他终于登上了数学研究的世界舞台.在云南联大开设初等数论的课程华先生很重视做学问需要有“看家工夫”.所谓看家工夫指的是作科研时必不可少的最基本而有用的本事.据他的学生回忆,说华罗庚在青年时期阅读兰道(E.Landau)的《数论教程》三大卷时候,共作了6大本笔记,可见他下的功夫之深.而这本《数论教程》使他获得了从事数学研究的分析功底.据华罗庚的学生徐利志回忆,1940年华罗庚在云南联大开设过“初等数论”的课,他选修了这门课.华先生讲课姿态很灵活,喜欢在黑板前面走来走去,边走边讲.他在黑板上写字不多,只写出那些最必要的算式,而很注重讲问题的来龙去脉和论证思想,有时也穿插讲点小故事.所以听他讲课我感到是一种愉快的享受.1941年华罗庚完成了数论巨著《堆垒素数论》1941年,华罗庚曾把手稿寄给苏联的维诺格拉多夫,维诺格拉多夫立即以电报回复:“我们收到了你的优秀专著,待战争结束后,立即付印.”因此,这本书最早是1947年以苏联科学院“斯捷克洛夫数学研究所”第22号专著出版的.中国数学界对华罗庚的专著给予崇高的评价.而当时的教育部几乎无人能够评审此书.老一辈数学家何鲁冒着灼人的炎热,曾在重庆的一幢小楼上挥汗审勘,阅稿时不时地击案叫绝,一再对人说:“此天才也!”他爱不释手,居然亲笔将《堆垒素数论》抄了一遍,何氏的手抄本曾存于中国科学院数学研究所图书馆中,不幸在“文革”劫难中散失.华罗庚的《推垒素数论》荣获教育部的一等奖.据报载,华罗庚在西南联大曾讲授过他的《堆垒素数论》,开始慕名而来的学生将教室挤得水泄不通,后来一天天减少,减到4个,一星期后,只剩下2个,即后来成为著名数学家的闵嗣鹤和钟开莱.教室里只剩下师徒三人,因昆明天天空袭不绝,华罗庚干脆把教室搬到华家附近,租屋而居,进行讲授.华氏的这本书实在是太深了.1946年华罗庚接受了访问苏联的邀请,在这几个月里,他与维诺格拉朵一起进行研究,并取得了很大的成果.他们对三角和方法的发展改变了解析数论的中心主题.1946年,华罗庚赴美国访问,先在普林斯顿高等研究所搞研究并讲授数论,1948年转入依利诺大学,也对维诺格拉朵的中值公式做了重要的简化、改进与应用.1952年组织“数论”与“哥德巴赫猜想”两个讨论班1953年冬中国科学院数学研究所数论组成立后,华罗庚亲自组织并领导了两个讨论班,一个是“数论导引”,一个是“哥德巴赫猜想”讨论班,每周一次,这两个讨论班一直坚持到了1956年.虽然数学研究所成立时还没有图书馆,但是华罗庚从美国带回不会少书,杂志与单印本,数学所的人可以去自由借阅,只要在他办公室的小本上签个名就行了.这对数论组的人来说就更占便宜了.因为华罗庚的大部分书是跟数论有直接或间接的关系的.特别他有一个《解析数论》未发表的部分手稿,其中赛尔贝格的方法和素数定理初等证明的最新成果等.当时能够读到这些东西,在全世界来说都是相当早的. 按照华罗庚计划与安排,哥德巴赫猜想讨论班分为四个单元来进行:1、史尼尔曼密率,曼恩定理与赛尔贝格方法.2、布伦筛法、布赫夕踏布方法.3、林尼克大筛法,瑞尼定理.4、素变数的三角和的估计方法、西革尔定理、维诺格拉朵三素数定理.华罗庚计划在讨论班进行完了之后,将这四个方面的材料写成综合性论文,在数学所的数学进展上发表.那时在世界上的数论著作中,还只有包含了这四个方面成就的某些著作,所以这确实是一个颇吸引人的计划. 讨论班是由一个人主讲,华罗庚等则不停地提问题,务必使得每一个点都完全弄清楚为止.华罗庚这种打破沙锅问到底的搞法,常常使主讲人讲不下去,长时间在讲台上思考,这叫做“挂黑板”.有些报告材料往往在讨论班上就得到了简化,所以讨论班进行得很慢,但参加者得益很大.这是培养人才的好形式.既可以集思广益,又可以活跃学术空气.当时,他经常参加讨论班,经常不断地提出问题和疑点,把大家的思想推向一个更为积极、活跃的境界. 哥德巴赫猜想讨论班的计划并没有完成,只进行了一、二、四单元,就因“反右斗争”的到来而中断了.华罗庚选择“哥德巴赫猜想”作为数论组讨论班的主题是很有眼光的.十几年后,华罗庚回忆他的这个决定时仍然流露出满意的神情.他说:“我不是要你们在这个问题上作出成果来,我的着眼点是哥德巴赫猜想跟解析数论中所有的重要方法都有联系.以哥德巴赫猜想为主题来学习,将可以学到解析数论中所有的重要的方法.”,他说“ 哥德巴赫猜想真是美极了,现在还没有一个方法可以解决它.”他还指出:“你们弄懂了解析数论,再学一点代数数论,就可以将解析数论的结果推广到代数数域上去.关于代数数论,除了《数论导引》的第十六章外,再学两条定理,狄里赫雷定理与戴德金定理就可以边学习边工作了.”华罗庚教授组织研究“哥德巴赫猜想”这个难题,是非常具有长远的战略眼光的,它也带动解析数论的研究,不仅推动了数学的发展,同时在国内也培养中国的数论研究人才.之后这个讨论班的三个成员都在数论研究中作出了重要的贡献与《哥德巴赫猜想》的研究也取得了重要的进展.从1954年开始,闵嗣鹤在北大开设了“数论专门化”,共有四个学生.他开这门数论课,指导他们做毕业论文,引导他们从事解析数论的研究.闵嗣鹤鼓励他的学生多与数学所的数论组的人交流,多向华罗庚学习.数学所数论组的年青人也常向闵嗣鹤老师请教,彼此间的关系很密切.北大数论专门化的学生潘成洞、尹文霖与邵品琮也来数学所参加过哥德巴赫猜想讨论班. 1957年,华罗庚的《数论导引》出版,书中包括了不少未发表的结果及关于三角和、丢番图方程、模变换及华林与他利问题的基本材料.后来华罗庚发现了陈景润,并将其调入数学所.陈景润经过多年的努力,最后终于证明了1+2,取得了世界上关于证明哥德巴赫猜想的最好成果. 吴文俊曾说过:“陈景润同志本来是一个无名小卒,华罗庚同志知道了他的某些工作,就把他引到数学所来.在数学所这样一个环境里,在华罗庚先生亲自指导之下,陈景润同志做出了许多重要的工作.其中最突出的就是大家都知道的,所谓哥德巴赫猜想(1+2)的证明.这出现于1965年.我相信如果当年陈景润同志没有被华罗庚同志引到数学所来,他的成长奇迹是不可能的.1962年华罗庚科大开设数论与代数专业培养后备人才华罗庚的学生冯克勤教授回忆说,1962年华罗庚想在我们年级开设数论与代数专业,由于我从中学就喜欢数论,就报了名,于是包括我在内的15位学生从四年级起进入该专业,由华罗庚亲自讲授“典型群”,王元讲“数论导引”,万哲先和曾肯成讲“抽象代数”,吴方讲解析数论,这集中了当时国内最强大的数论和代数教师阵营.大学五年级,吴方指导我作了一篇论文,内容是把当时陈景润关于圆内整点问题余项估计的最新成果作到椭圆上去,这是我所写的第一篇论文.华罗庚1963年来科大任副校长,并把他在科学院数学所的研究生带到科大,连王元的关系也临时转到科大,准备以科大为基地集中力量培养学生从事科学研究.他给我的任务是学习代数数论,这是20世纪40年代他在美国做教授的一个数论研究领域,回国后,组织了解析数论的队伍,但由于种种原因,代数数论的研究未能充分开展.此外,华罗庚和王元这时也正把数论用于积分近似计算,其中也用到代数数论工具,所以他这时希望在科大的三届共十一位研究生中有人能研究代数数论.这是一个用代数方法研究数论的一门学问,很合我的胃口.中国的数论研究取得了丰硕的成果1973年,陈景润关于哥德巴赫猜想的著名论文发表后,潘承洞又开始了解析数学论研究.这一时期工作的代表性论文是“一个新的均值定理及其应用”.他的主要贡献是提出并证明了一类新的素数分布的均值定理,给出了这一定理对包括哥德巴赫猜想在内的许多著名数论问题的重要应用.1979年7月,在英国达勒姆举行的国际解析数论会议上,潘承洞应邀以此作了一小时的报告,受到华罗庚和与会者的高度评价.1982年,潘承洞发表了论文“研究哥德巴赫猜想的一个新尝试”,提出了与已有研究截然不同的方法,对哥德巴赫猜想作了有益的探索.在1988到1990年间,华罗庚与潘承彪以“小区间上的素变数三角和估计”为题发表了三篇论文,提出了用纯分析方法估计小区间上的素变数三角和,第一次严格地证明了小区间上的三素数定理,这是他对论文“堆垒素数论的一些新结果”的进一步完善和改进.华罗庚与他的学生在数论方面的工作展示中国数学家在数论方面具有的很高的水平与才华,被世界数学界称为“以华为首的中国学派”,这是中国数学家研究团体在世界数学发展的过程中第一次得到的肯定与赞扬.而这个结果是数学家们通过几十年的努力才获得的.华罗庚系统地研究了华林问题——哥德巴赫问题.在19世纪40年代,懂得堆垒素数论的圆法与维诺格拉朵夫的两个指数和估计方法的人还很少.华罗庚撰写的专著《堆垒素数论》,包含了数论领域所有重要的研究成果,其中有华罗庚用一个很优美的方法证明了一般三角和定理.这本书不仅结果是当时最新的,而且写得十分通俗易懂,除了西革尔关于 L- 函数的实零点估计外,所有定理都给出了证明,所以该书是自给自足的,是一本很好的数论专著.就像哈贝斯坦在悼念华罗庚时说的:“几代数论学家都从华罗庚的至今仍有影响的1947年的专著《堆垒素数论》中学到了圆法的知识.”华罗庚在1958年改进与简化了维诺格拉朵夫关于魏尔(H.Weyl)和的估计,华罗庚关于华林问题研究成果与“华氏不等式”等都是数论十分重要的成果,被很多人引用.华罗庚的学生王元在1956年先证明了(3+4),在1957年又证明了(3+3),(2+3).1962年潘承洞证明了(1+5),之后潘承洞与王元又合作证明了(1+4).1966年,陈景润运用庞比尼中值公式,非常出色地证明了(1+2).中国数学家在探索哥德巴赫猜想过程中,取得了重要的进展,但是最后谁能摘下这个明珠,攻克这个世界难题,会不会是中国人?这些仍旧还是未知的谜,等待有人来回答.
陶小凡2023-05-20 08:55:261

求文档: 求潘承洞,潘承彪主编初等数论的课后习题答案

http://ishare.iask.sina.com.cn/f/8342456.html
wpBeta2023-05-20 08:55:251

跪求初等数论第三版(潘承洞,潘承彪)课后习题答案

第一题:第二题:第三题:扩展资料这部分内容主要考察的是初等数论的知识点:研究数的规律,特别是整数性质的数学分支。它是数论的一个最古老的分支。它以算术方法为主要研究方法,主要内容有整数的整除理论、同余理论、连分数理论和某些特殊不定方程。 换言之,初等数论就是用初等、朴素的方法去研究数论。另外还有解析数论(用解析的方法研究数论)、代数数论(用代数结构的方法研究数论)。用程序方法求素数。“若一个自然数n,判断n/k是否整除,先判断其能否整除2,若不能再判断其能否整除3,依次向下判断,当k>(n/k)时,判断结束。”如果所有判断都不能整除,则自然数N为素数。例如:k=1时,N=2m+1,解得N=3,5,7。求得了(3,32)区间的全部素数。k=2时,N=2m+1=3m+1,解得N=7,13,19;N=2m+1=3m+2,解得N=5,11,17,23。如此,求得了(5,52 )区间的全部素数。
无尘剑 2023-05-20 08:55:241

潘承洞,潘承彪著的《简明数论》的答案哪里可以买到?

自个作一套,就行了,还要买?
tt白2023-05-20 08:55:242

高中数学竞赛学习数论组合要看哪一本

一试全国高中数学联赛的一试竞赛大纲,完全按照全日制中学《数学教学大纲》中所规定的教学要求和内容,即高考所规定的知识范围和方法,在方法的要求上略有提高,其中概率和微积分初步不考。二试1、平面几何基本要求:掌握初中数学竞赛大纲所确定的所有内容。补充要求:面积和面积方法。几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。几个重要的极值:到三角形三顶点距离之和最小的点--费马点。到三角形三顶点距离的平方和最小的点--重心。三角形内到三边距离之积最大的点--重心。几何不等式。简单的等周问题。了解下述定理:在周长一定的n边形的集合中,正n边形的面积最大。在周长一定的简单闭曲线的集合中,圆的面积最大。在面积一定的n边形的集合中,正n边形的周长最小。在面积一定的简单闭曲线的集合中,圆的周长最小。几何中的运动:反射、平移、旋转。复数方法、向量方法。平面凸集、凸包及应用。2、代数在一试大纲的基础上另外要求的内容:周期函数与周期,带绝对值的函数的图像。三倍角公式,三角形的一些简单的恒等式,三角不等式。第二数学归纳法。递归,一阶、二阶递归,特征方程法。函数迭代,求n次迭代,简单的函数方程。n个变元的平均不等式,柯西不等式,排序不等式及应用。复数的指数形式,欧拉公式,棣美弗定理,单位根,单位根的应用。圆排列,有重复的排列与组合,简单的组合恒等式。一元n次方程(多项式)根的个数,根与系数的关系,实系数方程虚根成对定理。简单的初等数论问题,除初中大纲中所包括的内容外,还应包括无穷递降法,同余,欧几里得除法,非负最小完全剩余类,高斯函数,费马小定理,欧拉函数,孙子定理,格点及其性质。3、立体几何多面角,多面角的性质。三面角、直三面角的基本性质。正多面体,欧拉定理。体积证法。截面,会作截面、表面展开图。4、平面解析几何直线的法线式,直线的极坐标方程,直线束及其应用。二元一次不等式表示的区域。三角形的面积公式。圆锥曲线的切线和法线。圆的幂和根轴。5、其它抽屉原理。容斤原理。极端原理。集合的划分。覆盖。
西柚不是西游2023-05-20 08:55:243

从自然数到复数是最重要的数论难题,“黎曼假设”究竟是什么?

其实就是对于任意一个黎曼群,如果它的顶点不在黎曼空间里,那么在任何很小的正整数范围之内,这个函数就等于零。
u投在线2023-05-19 20:20:004

又一个数论问题

这个命题成立简单证明:预备定理 1: 如果 p 是素数,那么 C(p,k) 一定能被 p整除。C(p,k)表示从p个对象中取出 k个对象的组合数。预备定理2:当一个定理对n成立时,如果对n+1也成立,则定理对所有自然数成立。此为数学归纳法。预备定理3:二项式展开定理展开(n+1)^p。既然你有水平出这样的题目,这个预备定理我就不需要细说了吧。你应该不是小学生了。
Chen2023-05-19 20:19:162

数论四大定理

“威尔逊定理、欧拉定理、孙子定理(中国剩余定理)、费马小定理并称数论四大定理。” 数论是纯粹数学的分支之一,主要研究整数的性质。整数可以是方程式的解(丢番图方程)。有些解析函数(像黎曼ζ函数)中包括了一些整数、质数的性质,透过这些函数也可以了解一些数论的问题。透过数论也可以建立实数和有理数之间的关系,并且用有理数来逼近实数(丢番图逼近)。按研究方法来看,数论大致可分为初等数论和高等数论。初等数论是用初等方法研究的数论,它的研究方法本质上说,就是利用整数环的整除性质,主要包括整除理论、同余理论、连分数理论。高等数论则包括了更为深刻的数学研究工具。它大致包括代数数论、解析数论、计算数论等等。
黑桃花2023-05-19 20:19:151

费马小定理,欧拉定理,中国剩余定理等相关数论定理什么时候学

费马小定理,欧拉定理,中国剩余定理等相关数论定理是小学生学的。在数论中,欧拉定理是一个关于同余的性质。欧拉定理得名于瑞士数学家莱昂哈德·欧拉,该定理被认为是数学世界中最美妙的定理之一。
左迁2023-05-19 20:19:151

数论四大定理的介绍

威尔逊定理、欧拉定理、孙子定理、费马小定理并称数论四大定理。
小白2023-05-19 20:19:151

简单数论问题:证明对于任何自然数a和质数p,(a^p)^(p-1)=a mod p

额,被你打的东西误导了....(1).由Fermat小定理:a^p=a mod p.于是:a^(p^(p-1))=(a^p)^(p^(p-2))=a^(p^(p-2)) mod p。这个地方看见了吧.细节自己补充,如此一直下去便有a^(p^(p-1))=a mod p(2).提示呀.你试着去算一下C(p.a)/p mod p得多少?(3).计算问题...试着放大指数最下面的数,或应用Fermat小定理..不难.(4).求和,然后还是Fermat小定理.
阿啵呲嘚2023-05-19 20:19:152

怎么用抽象代数里的拉格朗日定理,剩余类证明费马小定理,不要用数论的

先证明Zn里满足(a,n)=1的所有元素的集合在乘法下构成一个群G。不妨设a,b∈G,由(a,n)=1,(b,n)=1推出(ab,n)=1,即ab∈G,乘法是闭的。剩余类乘法是结合的。显然1是单位元。又(a,n)=1,所以存在整数s,t使as+nt=1,则as=1(n),且(s,n)=1故a-1=s∈G,这样G是一个群,且o(G)=φ(n)。根据Lagrange定理,当(a,n)=1时有a^φ(n)=1(mod n)。特别地,n为素数p时,φ(p)=p-1,所以a^(p-1)=1(mod p),两边同时乘以a得a^p=a(mod p) (1)若p整除a,则(1)显然成立。证毕。
左迁2023-05-19 20:17:441

数论四大定理的费马小定理

任何一个质数总能除尽任何几何级数中的某一项减1,且该项的指数是这个给定的质数减1的因子。设 a 是任意一个整数,考虑以它为底的几何级数即 a 的各次方幂构成的数列:a, a2, a3, a4, a5, a6, a7,  .....费马断言,给定任何一个质数 p ,在上述数列中一定能找到一个数 an,它减去 1 后是 p 的倍数,并且 n 是 p - 1 的因子。
善士六合2023-05-19 20:17:392

初等数论的初等数论内容

初等数论有以下几部分内容:1.整除理论。引入整除、因数、倍数、质数与合数等基本概念。这一理论的主要成果有:唯一分解定理、裴蜀定理、欧几里德的辗转相除法、算术基本定理、素数个数无限证明。2.同余理论。主要出自于高斯的《算术研究》内容。定义了同余、原根、指数、平方剩余、同余方程等概念。主要成果:二次互反律、欧拉定理、费马小定理、威尔逊定理、孙子定理(即中国剩余定理)等等。3.连分数理论。引入了连分数概念和算法等等。特别是研究了整数平方根的连分数展开。主要成果:循环连分数展开、最佳逼近问题、佩尔方程求解。4.不定方程。主要研究了低次代数曲线对应的不定方程,比如勾股方程的商高定理、佩尔方程的连分数求解。也包括了四次费马方程的求解问题等等。5.数论函数。比如欧拉函数、莫比乌斯变换等等。6.高斯函数。 第一个层次叫做数学概念,是反映对象的本质属性的思维形式。人类在认识过程中,从感性认识上升到理性认识,把所感知的事物的共同本质特点抽象出来,加以概括,就成为概念。表达概念的语言形式是词或词组。科学概念,特别是数学概念要求更加严格,至少必须具备三个条件:专一性,精确性,可以检验。例如:”孪生素数“就是一个数学概念。第二个层次叫做数学命题,数学命题是对一系列数学概念之间的关系作出判断的句子。一个命题要么真,要么不真(这由逻辑中的排中律保证)。真命题包含定理,引理,推论,事实等。命题既可以是存在性命题(表述为”存在......."),也可以是全称命题(表述为“对于一切.....")。  第三个层次叫做数学理论,把方法,公式,公理,定理,原理,组合成为一个体系叫做数学理论。例如“初等数论”,由公理(例如等量公理),定理(例如费马小定理),原理(例如抽屉原理,一一对应原理),公式等组成。  在数学证明时,全称命题常常不能通过枚举法来判断真伪,这是因为数学有时面对的是无穷多个对象,永远不可能一一枚举出每一种情况。不完全归纳法在数学中是不可行的,数学只承认演绎逻辑(数学归纳法,超限归纳法等均属于演绎逻辑)。
hi投2023-05-19 20:17:361

数论要怎么学才能学好?

初等数论的话,勤思考、多锻炼思维,把一些非常基础有用的内容掌握(比如整除、带余数除法、同余、剩余类、原根和指标)、一些基础重要的定理、方法掌握(比如辗转相除法、算术基本定理、欧拉定理、费马定理、孙子定理(也叫中国剩余定理)、二次互反律)再进一步可以接触质数分布定理,不过这个继续深入会需要你进入非初等的数论的一个分支数论的话,主要是解析数论和代数数论两个初等数论只要中学的知识作预备知识而学习解析数论和代数数论之前,你需要学完数学系本科到研究生的大部分专业课代数数论的话,可能需要 本科的高等代数、抽象代数 研究生的交换代数 以及拓扑、代数拓扑、代数几何方向的内容,这些掌握之后就能开始看懂 费马大定理的证明(因为跟代数几何的椭圆模曲线有很大的关系) 了解析数论的话,需要 本科的 数学分析微积分、实变函数、复变函数、Fourier分析、和一些代数基础,还需要研究生的 (单)复分析(关系非常密切) 可能也需要一点点实分析的内容做铺垫掌握之后就能看懂 黎曼猜想 的意思,并且能看懂 素数分布定理 的高等证明(因为跟复变函数的解析延拓概念有很大的关系)
拌三丝2023-05-19 20:17:361

初等数论网课听谁的

初等数论网课听北京师范大学张秀平的。初等数论是研究整数性质的基础课,主要内容有整数的整除理论、同余理论、连分数理论和某些特殊不定方程。第一章整数的可除性1、整除的概念、带余数除法2、最大公约数与辗转相除法3、整除的进一步性质及最小公倍数4、质数、算术基本定理5、函数[x】,{x}及其在数论中的一个应用第二章不定方程1、二元一次不定方程2、多元一次不定方程3、勾股数与费马问题介绍第三章同余1、同余的概念及其基本性质2、剩余类及完全剩余系3、简化剩余系与欧拉函数4、欧拉定理、费马定理及对循环小数的应用第四章同余式1、基本概念及一次同余式2、孙子定理3、高次同余式的解数及解法4、质数模的同余式第五章二次同余式与平方剩余1、一般二次同余式2、单质数的平方剩余与平方非剩余3、勒让德符号4、前节定理的证明5、雅可比符号6、合数模的情形
u投在线2023-05-19 20:17:351

【初等数论】整除、公约数、同余与剩余系

从本文开始,我们将正式开始介绍有关初等数论的相关知识与概念,我们争取用通俗的语言去把握和描述理论的精髓所在。而不拘泥于具体概念的束缚,以窥探初等数论巧妙的一些思想方法。从这里开始你的行囊里不需要太多的东西,只要会整数的加减乘除即可。东西多了不仅帮不了你,反而会成为前进的负担。你需要首先抛开一切固有思维,清空大脑,带着孩童般的好奇心重新认识这个世界。由于数论经常出现于奥数和智力题中,它往往被当成一种锻炼思维的智力游戏,但随着研究的深入,我们需要建立一套理论才能看清本质。我们可以从最简单的定义出发,利用理性思维建立这些理论。但通过做题与不断地思考是学习数论的必经途径,这样才能有更深刻的理解,这一部分笔者不能代劳,这里只能力图尽力而为,将其中的思想和方法展现在各位面前。 数论研究整数本身(或自然数,语境自明),初等数论主要研究整数之间的关系。整数的运算中,加减是最平凡的,得不出什么深入的结论,从而乘除法是唯一可以着手的地方。考虑一个简单的等式 ma=b(以后若不作特殊说明,所有符号表示整数),任何两个整数之间都可以有像 m,a 这样的乘法运算,但却并不是所有整数都有等式中类似a与b这样的关系。为此,当 a≠0 时,定义满足等式的 a 能整除 b,或b被a整除,a称为b的约数,b称为a的倍数,记作a∣b,否则记为a∤b。 仅从定义出发可以得到整除的许多基本性质,这里就不一一列举了,只给出一个最具代表性的:式子(1),即 a 的倍数的线性组合仍是 a 的倍数。整数集线性组合的这一性质体现了元素之间的共性,后面还会继续深究,这里先举一例来感受其意义。若a∣n,b∣n,则有 ab∣nb,ab∣na,进而有 ab∣n(ax+by),所以如果有 ax+by=1,则有 ab∣n。 考虑n的所有 倍数 的集合 kn,它的元素有无穷多个,且性质是 平凡的 ,不多阐述。现在来考虑 n 的所有 约数 ,显然它们是有限的,但我们似乎还得不出更多的结论。不妨先考察一类特殊的数:如果 p>1 除了±1和±p外没有其它约数,p称为 质数 或 素数 ,反之叫合数,今后我们会约定俗成地用 p, q 表示素数。直观上素数是不能再分解的数,它们是整数的 基本因子 ,任何整数都可以通过有限步分解为素数的乘积。 一个自然的问题是,这样的分解唯一吗?你固有的知识可能使你对这个问题相当地自信,但如果冷静思考地一番,就会发现这种自信其实是没有根据的。它的证明并不十分显然,这里通过反证法来推导。假设有某些 整数的素数分解不唯一,则存在最小的这样的数,并设它有两个分解式a=p1p2⋯pn=q1q2⋯qm,其中m,n>1,并且素数按大小排列。由a的最小性知pi≠qj,假设p1>q1,考察式(2)。容易证明后一分解式中不含q1,从而b<a有两个不同的分解式。这与a的最小性矛盾,故所有整数都存在唯一的的素数分解式,即表达式(3)唯一,此方法被叫做无穷递降法。这个证明最早由高斯给出,被称为 算术基本定理 ,它使得整数可以被完全解析。 现在来看数a的所有约数,容易知道它们的分解式必定是式子(4)。若记a共有 个约数,且它们的和为 ,则有公式(5)(6)。 这里可以尝试来思考如下几个问题:     • 求满足 的最小整数;   • 求 的值。 有了 算术基本定理 ,整数之间的倍数关系就基本清楚了。而对于两个任意的整数(不一定有倍数关系),只能通过它们共同的 约数 或 倍数 来取得联系。两个数a,b共同的约数称为它们的 公约数 ,最大的那个叫 最大公约数 ,记作(a,b),类似还有公倍数和 最小公倍数 [a,b]的概念,最大公约数为1的两个数称为 互素 或 既约 的。这些概念都有一些比较简单的性质,可以通过算术基本定理去证明,后面会罗列。公约(倍)数为研究 整数之间的关系 提供了便利,但它们的定义并不依赖于算术基本定理,你完全可以仅从定义出发得到那些常用结论,算术基本定理只是提供了一种方法而已。 公约数一定程度上体现了整数之间的相关程度, 互素 则表现了整数之间的 无关性 。这个观念为我们分析整数集的结构提供了一个好的思想,不大于m的所有数可以按照和m的相关程度分类,这个话题我们会在后面展开。现在来考虑一下 与 m 无关的(互素)数的个数 <font color=red> φ(m)(欧拉函数) ,对素数 p 显然有 和 ,利用 容斥原理 排除掉不互素的数之后可以得到公式(7)。    关于这个计算式的证明可参见: 欧拉函数的计算式 算术基本定理虽然很强大,但用它来求公约数或进行整数关系分析的代价太大,并且也很难得到进一步的结论,这时必须引入别的工具。在不做素数分解的情况下,分析整数关系最直观的方法就是带余除法,对任意整数 a≠0, b,存在唯一数对 m, r 满足式子(8)。由 知 a,b 的公约数必定是 r 的约数,并且 r 更小。如果继续对 a, r 做这样的运算,我们一定可以得到a,b的最大公约数。这便是辗转相除法的基本思想,早在欧几里得的《几何原本》中就有记载(故又称Euclid算法),熟悉算法的你一定也不陌生,这里就不展开细节了。 带余除法 为整数的分析提供了一个简单有效的方法。比如我们再回头考虑一下式(1)中的所有线性组合,首先(b1,b2,⋯,bn)显然也是每个线性组合的约数。考察线性组合中的最小正数 c,如果它不是 bk 的约数,使用带余除法 也是线性组合但却更小。所以c是b1,b2,⋯,bn的公约数,结合刚才的结论可知c=(b1,b2,⋯,bn)。 最大公约数 可以看做是整数间的一个 基本代数运算 ,我们已经看到有很多不同的途径来得到它,而这些途径并不依赖于最大公约数的定义。这就让我们想到,其实可以将它们看成是最大公约数的等价定义,在不同的场合灵活使用,可以得到更简洁的方法。以下便列举了这些等价定义,你可以尝试证明它们的等价性。   (1)原始定义:最大的公约数;   (2)约数的公倍数:是所有公约数的最小公倍数;   (3)素数基本定理:素数分解式的公共部分;   (4)线性组合:线性组合的最小正数;   (5)辗转相除法:辗转相除法得到的最小正数。 作为一个 基本运算 ,需要稍微研究一下 最大公约数的基本性质 ,你可以尝试通过不同途径证明下面的基本性质:   (1)   (2)   (3)若 ,则有   (4)若 则   (5)若 则   (6) 公约数虽然定义简单,但却变化多端,当和其它知识结合起来时,问题会变得很困难。你需要熟练掌握初等数学中各种变形技巧,并需要足够的想象力和创造力。必要的练习是最好的锻炼场所,你不能绕过那一步,如下只列几例供参考。    • 已知 求证   • a为奇数,则必有 使得 设这样数最小为 ,则 成立的充要条件是   • 证明梅森(Mersenne)数 两两互素;   • 求证 不是整数;(提示:构造一个整数与之相乘后不为整数)   • 若(a,b)=1,则对任意 中有无数个与m互质的数。(提示:无穷递降) 话说素数的确非常重要,后面我们还会看到它更多的性质,这里再多说两句。首先,欧几里得在《几何原本》回答了素数的个数问题,假设仅有有限个素数 ,考察表达式 。它不以任何 为约数,从而它也是素数,与假设矛盾,这就证明了素数有无穷多个。该证明使用了 构造法和反证法 ,它的美妙是数学史上惊艳的一笔,你不妨可以用同样的方法解决以下问题。     • 相邻素数之间的间隔可以有任意大;   • 证明费马数 的素因子互不相同,从而素数有无穷多个;   • 使用数列 ,证明素数有无穷多个;   • 求证形如 的素数有无穷多个;   • 如果 则n必为素数。 根据算术基本原理,并使用 级数 理论,容易有以下著名的 欧拉公式 (式子(9))。这个神奇的公式将 调和级数 与 所有素数 扯上了关系,这也成为了研究素数的一个突破口,巍峨耸立的 黎曼猜想 就是对它的扩展研究。顺便提一句,因为 调和级数是发散的,故由此此也可以证明素数有无穷多个。    关于素数,还有一些自然的问题是:如何判定一个数是否为素数?如何找出一定范围内的所有素数?它们的分布是怎样的?是否有素数的通项公式?这些问题是很难回答的,它们也是数论的难点,很多问题都还没有被解决。古希腊时期的 Eratosthenes筛法 是目前仍在使用的筛选素数的方法,它逐步划去每个素数的倍数,从而仅余下素数,这在一般的算法教材里都有介绍。另外一般用 π(x) 表示不大于x的素数的个数,公式(10)是就是著名的 素数定理 ,它表明了素数的平均密度。该定理最早由勒让德和高斯作为猜想提出,将近一百年后才被人用复变函数的理论所证明,再过了50年才有了初等证法。关于素数的问题我们就不深究了,它们也不是这里能回答得了的。    公约数 是我们要讨论的主要 整数关系 ,对整数m而言,其它整数与它的关系以 m 为周期出现着重复,具体讲就是 任何整数 和 带余除法中的余数 是等价的。为此我们可以在整数中建立另一种 等价关系 ,如果 即 ,则称 a, b 在模 m 下<font color=red> 同余 </font> 或 a 同余于 b 模 m, b 是 a 对模 m 的剩余,记做 ,该关系式称为模 m 的同余式。比较容易证明同余关系是一个等价关系, 它将整数限定在一个有限的空间里 ,大大方便了讨论。<font color=purple> 同余理论由高斯提出,它是数论的基础语言 </font>。由于 同余继承自整除 的概念,它的性质一般还是用整除来证明,但作为一个强大的语言,它有着自己简洁清晰的特点。以下是一些同余的基础性质,各位可以自行证明或者查看网络资料,这些都是较常用的基本性质(重要):   (1)若 ,则有 和 ;   (2)若 ,则 ;   (3) 等价于   (4)若 ,则 ;   (5) 等价于 。 性质(1)比较平凡,(2)(3)是对操作数进行缩放时的性质,(3)中包含了两种极端情况 d∣m 和(d,m)=1 的性质。(4)(5)是对模数进行缩放时的性质,性质(5)可以将问题互相转化,把大模数分解为几个小模数,或者反过来将多个等式合并为一个。性质(2)中没有除法,那是因为“倒数”还没有被定义。当(a,m)=1时,使用线性组合的定义容易证明,一定存在d使得 , 称为a的 逆 。有了逆就可以两边同时“除以”一个数了,但需要注意逆仅对与 模互素的数 存在。 既然同余是个等价关系,那它的等价类就可以看做是一个整体,所有满足 的整数组成的集合称为一个 剩余类 ,记作 ,模m的所有剩余类组成的集合记作 。当 (r,m)=1 时,即与 m 互素的数 r , 又称为 既约剩余类 ,模m的所有既约剩余类的个数显然共有 φ(m) 个,φ(m) 又称为欧拉函数。在一个只有加减乘除的同余式里,任何数都可以等价地看成它的同余类,故以上性质对同余类也是成立的。同余类中同样可以定义 逆 ,容易证明逆存在则必是唯一的,且有 。 下面有一个思考题,你可以尝试利用同余的性质来解决: • 求 的末两位数。 主要区分上面在同余理论下的 剩余类 与我们这里要讨论的 剩余系 。 虽然剩余类和它的元素是等价的,但元素本身更容易被直接讨论。于是从每个剩余类中取一个元素组成的 集合 称为一个 完全剩余系 ,它的 定义 是:一组数 称为模 m 的完全剩余系,如果对任意的 a 有且仅有一个 是 a 对模 m 的剩余,即 a 同余于 模 m 。同时还应注意类似 称为模 m 的 最小非负(完全)剩余系 ; 为 绝对最小(完全)剩余系 ; 最大非正(完全)剩余系 。 相应地还有 既约剩余系 的概念。定义是:一组数 称为模 m 的既约(互素)剩余系,如果 ,以及对任意的 a, (a, m)=1, 有且仅有一个 是 a 对模 m 的剩余,即 a 同余于 模 m 。剩余系的元素可以根据需求来选取,而且它们有以下基本性质(关于具体证明可参考推荐书籍) : (1)若 是一个完全剩余系,则对任何整数c, 仍然是一个完全剩余系; (2)若 是一个完全(既约)剩余系,且 ,则 仍然是一个完全(既约)剩余系。 性质(2)告诉我们,如果 是n的既约剩余系,且 ,则 也是既约剩余系。那它们的乘积应该是模n同余的,即式子(1),这样就得到了著名的 欧拉定理 (公式(2))。取n为素数 p 时,则又有了 费马小定理 (公式(3))。欧拉定理给出了一个求元素逆的方法,即 。另外,欧拉定理还给出了既约剩余系的元素与“单位元”的关系,这里是我们首次讨论既约剩余系元素之间的关系,后面还会继续研究。 简单考虑一个的习题: • 求m的 最小正既约剩余系的所有元素之和。 剩余系的提出,最终还是为了研究同余意义下的整数空间,在这里就是要弄清完全(既约)剩余系的 结构 。既然整数 m 可以进行素数分解,想必把模m的剩余系按其素数分解分割会是个不错的想法。具体来说,对于 m 的互质分解 ,我们想看到的是 m 的剩余系和 的剩余系之间的关系。 先从简单的 看起,参考进制数的方法并考察 ,其中 是 的完全剩余系, 是 的完全剩余系。容易证明当 遍历 的完全剩余系,则 遍历m的完全剩余系。使用归纳法可以将这个结论推广到 的情形,但由于其形式不对称,推广的结论并无太大理论价值。由于 ,可知将上式中的 换成 结论任然成立。 另外,当 遍历 的既约剩余系时,首先由刚才的结论, 两两不同余,其次也容易证明它们与 m 互素。综合起来我们就有结论:当 遍历 的既约剩余系时, 正好遍历m的既约剩余系。使用对应的证明方法(两类剩余系方法不同),这个结论可以轻易地推广到 的情景,甚至为每一项再乘上任意与 互素的数,结论任然成立。即当 两两互素,且有 ,则当 遍历 的完全(既约)剩余系时,表达式(4)和(5)都正好遍历 m 的完全(既约)剩余系。     表达式中的 就像 x 的坐标一样,剩余系被分解到了个互相独立的维度,各个维度可以被单独地研究。值得提醒的是,以上表达式的每一项其实刚好是 的剩余系,它们可以相加得到m的剩余系 。有一个自然的问题是,有没有表示为乘法的表达式 ,同样满足这样的要求呢?结合前面结论,容易构造出公式(6)中的分解( 的 意义同上 ),它的每一项是 的剩余系,各项相乘后是m的剩余系。有趣的是,表达式中各项之和任然遍历完全剩余系,而这对既约剩余系是不成立的(见下面练习)。 尝试解决以下问题:   • 求13的一个完全剩余系 ,满足 和 ;   • 若 是m的既约剩余系,则对任何满足 的整数, 都不可能是既约剩余系。   • 不可能有 的既约剩余系 ,使得 和 都是m的既约剩余系; 以上分解方法从另一方面给出了欧拉函数的性质:如果 ,则 。利用这个性质可以得到公式(7),另外,这个公式还可以这样解释:将 按照与n的最大公约数d划分为不同的集合,容易知道每个集合有 个元素,所以共有 个元素,这样就得到公式(8)。换句话说,一个完全剩余系被划分成了若干个既约剩余系,不得不说是一个很新颖的划分方法。 剩余系分解 的一个典型应用就是 解一次同余方程组 ,下篇我们会专门研究同余方程,这里只介绍这类方程组(式子(9)的左侧)。当 两两互素时,根据前面的分解定理可知,在模 下方程有且仅有一解 。该结论历史上称为 孙子定理 (又称 中国剩余定理 ),因为《孙子算经》中“物不知数”的问题其实就是一次同余方程组。 以上定理限定 两两互素,且x系数为1,对于不满足条件的方程组,可以通过前面的结论进行等价变换。其中 意义同上 , 是 对模 的逆。即 。关于中国剩余定理其实还有很多中方法求解,更多解法,可参见, 中国剩余定理的五种解法    你可以尝试如下练习:   • 求解“物不知数”问题:今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?   • 求的7一个完全剩余系,每个数模2,3,5的余数都是1;   • 解方程 ;   • 解方程组  虽然我们还没有完全弄清既约剩余系的结构,但还是可以再做一些有趣的讨论的。既约剩余系中的任何数都有逆,尝试将它们两两配对,所有这样的数的乘积为 1,如果再将那些逆为自身的数单独研究,也许可以得到既约剩余系的整体性质。先从模 p 看起,对逆为自身的数有 ,从而,满足条件的只有两个数 ±1。这样便有了著名的 威尔逊(Wilson)定理 (公式(10)),它给出了既约剩余系 积的整体性质。 以上讨论过程对奇素数的幂 仍然成立,对 独立讨论也可知模为 1,2,4 时结果为 −1,其它模 的结果为 1。对一般的模 ,考虑公式(6)表示的既约剩余系的积 ,因为除了 外都有 ,故除了模为 外都有 。总结以上可以有威尔逊定理的扩展定理:模为 (p为奇素数)的既约剩余系的乘积模m余为 −1,其它形式模的既约剩余数之积模m余为1。这个既约剩余系的整体性质在一些问题中很有作用,你可以尝试者解决以下问题: • 若 和 是奇素数p的两个完全剩余系,证明 一定不是完全剩余系。再证明该结论对任意模m也成立; • 求证 。    以上证明中的配对思想非常重要,请考虑以下问题: • 求证存在 的充要条件是 ,并由此证明格式为 ,的素数有无穷多个。
小白2023-05-19 20:17:311

素数在数论中有什么作用?

质数又称素数。指在一个大于1的自然数中,除了1和此整数自身外,不能被其他自然数整除的数。质数是与合数相对立的两个概念,二者构成了数论当中最基础的定义之一。基于质数定义的基础之上而建立的问题有很多世界级的难题,如哥德巴赫猜想等。截至2012年6月底,质数尚未完全找到通项公式。 质数的无穷性的证明   质数的个数是无穷的。最经典的证明由欧几里得证得,在他的《几何原本》中就有记载。它使用了现在证明常用的方法:反证法。具体的证明如下:   ●假设质数只有有限的n个,从小到大依次排列为p1,p2,……,pn,设 N = p1 × p2 × …… × pn,那么,N+1是素数或者不是素数。   ●如果N+1为素数,则N+1要大于p1,p2,……,pn,所以它不在那些假设的素数集合中。   ●如果N+1为合数,因为任何一个合数都可以分解为几个素数的积;而N和N+1的最大公约数是1,所以N+1不可能被p1,p2,……,pn整除,所以该合数分解得到的素因数肯定不在假设的素数集合中。   ●因此无论该数是素数还是合数,都意味着在假设的有限个素数之外还存在着其他素数。   ●对任何有限个素数的集合来说,用上述的方法永远可以得到有一个素数不在假设的素数集合中的结论。   ●所以原先的假设不成立。也就是说,素数有无穷多个。   其他数学家也给出了他们自己的证明。欧拉利用黎曼ζ函数证明了全部素数的倒数之和是发散的,恩斯特·库默的证明更为简洁,Hillel Furstenberg则用拓扑学加以了证明。 对于一定范围内的素数数目的计算   尽管整个素数是无穷的,仍然有人会问“100000以下有多少个素数?”,“一个随机的100位数多大可能是素数?”。素数定理可以回答此问题。 编辑本段著名问题哥德巴赫猜想   在1742年给欧拉的信中哥德巴赫提出了以下猜想:任一大于2的整数都可写成三个质数之和。因现今数学界已经不使用“1也是素数”这个约定,原初猜想的现代陈述为:任一大于5的整数都可写成三个质数之和。欧拉在回信中也提出另一等价版本,即任一大于2的偶数都可写成两个质数之和。今日常见的猜想陈述为欧拉的版本。把命题"任一充分大的偶数都可以表示成为一个素因子个数不超过a个的数与另一个素因子不超过b个的数之和"记作"a+b"。1966年陈景润证明了"1+2"成立,即"任一充分大的偶数都可以表示成二个素数的和,或是一个素数和一个半素数的和"。 今日常见的猜想陈述为欧拉的版本,即任一大于2的偶数都可写成两个素数之和,亦称为“强哥德巴赫猜想”或“关于偶数的哥德巴赫猜想”。   从关于偶数的哥德巴赫猜想,可推出任一大于7的奇数都可写成三个质数之和的猜想。后者称为“弱哥德巴赫猜想”或“关于奇数的哥德巴赫猜想”。   若关于偶数的哥德巴赫猜想是对的,则关于奇数的哥德巴赫猜想也会是对的。弱哥德巴赫猜想尚未完全解决,但1937年时前苏联数学家维诺格拉多夫已经证明充分大的奇质数都能写成三个质数的和,也称为“哥德巴赫-维诺格拉朵夫定理”或“三素数定理”,数学家认为弱哥德巴赫猜想已基本解决。 黎曼猜想   黎曼猜想是关于黎曼ζ函数ζ(s)的零点分布的猜想,由数学家波恩哈德·黎曼(1826--1866)于1859年提出。德国数学家希尔伯特列出23个数学问题.其中第8问题中便有黎曼假设。素数在自然数中的分布并没有简单的规律。黎曼发现素数出现的频率与黎曼ζ函数紧密相关。黎曼猜想提出:黎曼ζ函数ζ(s)非平凡零点(在此情况下是指s不为-2、-4、-6等点的值)的实数部份是1/2。即所有非平凡零点都应该位于直线1/2 + ti(“临界线”(critical line))上。t为一实数,而i为虚数的基本单位。至今尚无人给出一个令人信服的关于黎曼猜想的合理证明。   在黎曼猜想的研究中,数学家们把复平面上 Re(s)=1/2 的直线称为 critical line。 运用这一术语,黎曼猜想也可以表述为:黎曼ζ 函数的所有非平凡零点都位于 critical line 上。   黎曼猜想是黎曼在 1859 年提出的。在证明素数定理的过程中,黎曼提出了一个论断:Zeta函数的零点都在直线Res(s) = 1/2上。他在作了一番努力而未能证明后便放弃了,因为这对他证明素数定理影响不大。但这一问题至今仍然未能解决,甚至于比此假设简单的猜想也未能获证。而函数论和解析数论中的很多问题都依赖于黎曼假设。在代数数论中的广义黎曼假设更是影响深远。若能证明黎曼假设,则可带动许多问题的解决。 孪生质数猜想   1849年,波林那克提出孪生质数猜想(the conjecture of twin primes),即猜测存在无穷多对孪生质数。   猜想中的“孪生质数”是指一对质数,它们之间相差2。例如3和5,5和7,11和13,10016957和10016959等等都是孪生质数。   100以内的质数有2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,在100内共有25个质数。 费马数2^(2^n)+1   被称为“17世纪最伟大的法国数学家”的费马,也研究过质数的性质。他发现,设Fn=2^(2^n)+1,则当n分别等于0、1、2、3、4时,Fn分别给出3、5、17、257、65537,都是质数,由于F5太大(F5=4294967297),他没有再往下检测就直接猜测:对于一切自然数,Fn都是质数。这便是费马数。费马死后67年,25岁的瑞士数学家欧拉证明:F5是一个合数。   以后的Fn值,数学家再也没有找到哪个Fn值是质数,全部都是合数。目前由于平方开得较大,因而能够证明的也很少。现在数学家们取得Fn的最大值为:n=1495,其位数多达10^10584位,当然它尽管非常之大,但也不是个质数。 梅森质数   17世纪还有位法国数学家叫梅森,他曾经做过一个猜想:2^p-1 ,当p是质数时,2^p-1是质数。他验算出了:当p=2、3、5、7、17、19时,所得代数式的值都是质数,后来,欧拉证明p=31时,2^p-1是质数。 p=2,3,5,7时,2^p-1都是素数,但p=11时,所得2047=23×89却不是素数。   还剩下p=67、127、257三个梅森数,由于太大,长期没有人去验证。梅森去世250年后,美国数学家科勒证明,2^67-1=193707721×761838257287,是一个合数。这是第九个梅森数。20世纪,人们先后证明:第10个梅森数是质数,第11个梅森数是合数。质数排列得杂乱无章,也给人们寻找质数规律造成了困难。   现在,数学家找到的最大的梅森质数是2^43112609-1。 编辑本段相关定理素数定理   素数定理描述素数素数的大致分布情况。 素数的出现规律一直困惑著数学家。一个个地看,素数在正整数中的出现没有什么规律。可是总体地看,素数的个数竟然有规可循。对正实数x,定义π(x)为不大于x的素数个数。数学家找到了一些函数来估计π(x)的增长。以下是第一个这样的估计。 π(x)≈x/ln x 其中ln x为x的自然对数。上式的意思是当x趋近∞,π(x) 和x/ln x的比趋 近1(注:该结果为高斯所发现)。但这不表示它们的数值随着x增大而接近。 下面是对π(x)更好的估计: π(x)=Li (x) + O (x e^(-(ln x)^(1/2)/15),当 x 趋近∞。 其中 Li(x) = ∫(dt/ln x2,x),而关系式右边第二项是误差估计。    素数定理可以给出第n个素数p(n)的渐近估计:p(n)~n/ln n. 它也给出从整数中抽到素数的概率。从不大于n的自然数随机选一个,它是素数的概率大约是1/ln n。 这定理的式子於1798年法国数学家勒让德提出。1896年法国数学家哈达玛(Jacques Hadamard)和比利时数学家普森(Charles Jean de la Vallée-Poussin)先後独立给出证明。证明用到了复分析,尤其是黎曼ζ函数。 因为黎曼ζ函数与π(x)关系密切,关于黎曼ζ函数的黎曼猜想对数论很重要。一旦猜想获证,便能大大改进素数定理误差的估计。1901年瑞典数学家Helge von Koch证明出,假设黎曼猜想成立,以上关系式误差项的估计可改进为 :π(x)=Li (x) + O (x^(1/2) ln x) 至於大O项的常数则还未知道。 素数定理有些初等证明只需用数论的方法。第一个初等证明於1949年由匈牙利数学家保罗·艾狄胥(“爱尔多斯”,或“爱尔多希”)和挪威数学家阿特利·西尔伯格合作得出。 在此之前一些数学家不相信能找出不需借助艰深数学的初等证明。像英国数学家哈代便说过素数定理必须以复分析证明,显出定理结果的「深度」。他认为只用到实数不足以解决某些问题,必须引进复数来解决。这是凭感觉说出来的,觉得一些方法比别的更高等也更厉害,而素数定理的初等证明动摇了这论调。Selberg-艾狄胥的证明正好表示,看似初等的组合数学,威力也可以很大。 但是,有必要指出的是,虽然该初等证明只用到初等的办法,其难度甚至要比用到复分析的证明远为困难。 算术基本定理   任何一个大于1的自然数N,都可以唯一分解成有限个质数的乘积 N=(P_1^a1)*(P_2^a2)......(P_n^an) , 这里P_1<P_2<...<P_n是质数,其诸方幂 ai 是正整数。    这样的分解称为N 的标准分解式。   算术基本定理的内容由两部分构成:分解的存在性、分解的唯一性(即若不考虑排列的顺序,正整数分解为素数乘积的方式是唯一的)。   算术基本定理是初等数论中一个基本的定理,也是许多其他定理的逻辑支撑点和出发点。   此定理可推广至更一般的交换代数和代数数论。高斯证明复整数环Z[i]也有唯一分解定理。它也诱导了诸如唯一分解整环,欧几里得整环等等概念。 更一般的还有戴德金理想分解定理。 素数等差数列   等差数列是数列的一种。在等差数列中,任何相邻两项的差相等。该差值称为公差。类似7、37、67、97、107、137、167、197。这样由素数组成的数列叫做等差素数数列。2004年,格林和陶哲轩证明存在任意长的素数等差数列。2004年4月18日,两人宣布:他们证明了“存在任意长度的素数等差数列”,也就是说,对于任意值K,存在K个成等差级数的素数。例如 K=3,有素数序列3, 5, 7 (每两个差2)……K=10,有素数序列 199, 409, 619, 829, 1039, 1249, 1459, 1669, 1879, 2089 (每两个差210)[1]。 参考资料 1. 格林和陶哲轩的成果-证明存在任意长的素数等差数列
瑞瑞爱吃桃2023-05-19 20:17:281

数论的发展历史

数论早期称为算术。到20世纪初,才开始使用数论的名称,而算术一词则表示“基本运算”,不过在20世纪的后半,有部份数学家仍会用“算术”一词来表示数论。1952年时数学家Harold Davenport仍用“高等算术”一词来表示数论,戈弗雷·哈罗德·哈代和爱德华·梅特兰·赖特在1938年写《数论介绍》简介时曾提到“我们曾考虑过将书名改为《算术介绍》,某方面而言是更合适的书名,但也容易让读者误会其中的内容”。公元前300年,古希腊数学家欧几里德证明了有无穷多个素数,公元前250年古希腊数学家埃拉托塞尼发明了一种寻找素数的埃拉托斯特尼筛法。寻找一个表示所有素数的素数通项公式,或者叫素数普遍公式,是古典数论最主要的问题之一。数论从早期到中期跨越了1000—2000年,在接近2000年时间,数论几乎是空白。中期主要指15-16世纪到19世纪,是由费马,梅森、欧拉、高斯、勒让德、黎曼、希尔伯特等人发展的。内容是寻找素数通项公式为主线的思想,开始由初等数论向解析数论和代数数论转变,产生了越来越多的猜想无法解决,遗留到20世纪,许许多多的困难还是依赖素数通项公式,例如黎曼猜想。如果找到一个素数通项公式,一些困难问题就可以由解析数论转回到初等数论范围。到了十八世纪末,历代数学家积累的关于整数性质零散的知识已经十分丰富了,但是仍然没有找到素数产生的模式。德国数学家高斯集中前人的大成,写了一本书叫做《算术研究》,1800年寄给了法国科学院,但是法国科学院拒绝了高斯的这部杰作,高斯只好在1801年自己发表了这部著作。这部书开始了现代数论的新纪元。在《算术研究》中,高斯把过去研究整数性质所用的符号标准化了,把当时现存的定理系统化并进行了推广,把要研究的问题和已知的方法进行了分类,还引进了新的方法。高斯在这一著作中主要提出了同余理论, 并发现了著名的二次互反律, 被其誉之为“数论之酵母”。黎曼在研究ζ函数时,发现了复变函数的解析性质和素数分布之间的深刻联系, 由此将数论领进了分析的领域。这方面主要的代表人物还有英国著名数论学家哈代、李特伍德、拉马努金等等。在国内,则有华罗庚、陈景润、王元等等。另一方面, 由于此前人们一直关注费马大定理的证明, 所以又发展出了代数数论的研究课题。比如库默尔提出了理想数的概念--可惜他当时忽略了代数扩环的唯一分解定理不一定成立)。高斯研究了复整数环的理论--即高斯整数。他在3次情形的费马猜想中也用了扩环的代数数论性质。代数数论发展的一个里程碑,则是希尔伯特的《数论报告》。随着数学工具的不断深化, 数论开始和代数几何深刻联系起来, 最终发展称为当今最深刻的数学理论,诸如算术代数几何, 它们将许多此前的研究方法和研究观点最终统一起来, 从更加高的观点出发,进行研究和探讨。由于近代计算机科学和应用数学的发展,数论得到了广泛的应用。比如在计算方法、代数编码、组合论等方面都广泛使用了初等数论范围内的许多研究成果;又文献报道,有些国家应用“孙子定理”来进行测距,用原根和指数来计算离散傅立叶变换等。此外,数论的许多比较深刻的研究成果也在近似分析、差集合、快速变换等方面得到了应用。特别是由于计算机的发展,用离散量的计算去逼近连续量而达到所要求的精度已成为可能。
余辉2023-05-19 20:16:511

有学过数论,高等几何,近世代数或者离散数学的学霸没

数论导引线性代数及其应用高等代数与解析几何数值分析运筹学数学模型引论应用概率统计概率论及试验统计数学实验泛函分析微积分(上,下)计算方法引论数学物理方法数学物理方程与特殊函数PASCAL语言程序设计常微分方程动力系统基础近世代数初步离散数学复变函数与积分变换微分几何数学建模方法实分析与泛函分析数学史概论初等几何研究抽象代数基础高等几何数学方法论与解题研究随机过程及应用矩阵理论微积分和数学分析引论数学——它的内容,方法和意义代数特征值问题代数几何常微分方程数学与猜想数学中的归纳和类比(第一卷)数学与猜想合情理模式(第二卷)数学概观拓扑空间论《现代数学基础丛书》数理统计引论Geifond-Baker方法在丢番图议程中的应用多元统计分析引论概率论基础微分动力系统原理二阶椭圆议程与椭圆议程组分析概率论非线性发展方程黎曼曲面傅里叶积分算子理论及其应用微分方程定性理论概率论基础和随机过程复解析动力系统模型论基础环与代数仿微分算子引论辛几何引论同调代数巴拿赫空间引论近代调和分析方法及其应用递归论拓扑群引论公理集合论引导丢番图逼近引论Banach代数紧黎曼曲面引论线性整数规划的数学基础对称性分岔理论基础复变函数逼近论线性微分议程的非线性扰动组合矩陈论随机点过程及其应用实分析导论Banach空间中的非线性逼近理论广义哈密顿系统理论及其应用解析数论基础算子代数Geifond-Baker方法在丢番图议程中的应用半群的S-系理论以上书目均由科学出版社出版
hi投2023-05-19 20:16:401

丢番图方程x+y+2z=n有多少个非负整数解?(初等数论)

(n+1)+(n-1)+(n-3)+…+1(当n是偶数)或2(当n是奇数时)。
北有云溪2023-05-19 20:16:381

数论:丢番图方程:x^3+1=Dy^2 当D=1时无整数解吗?如果是的话求证明。

数论:丢番图方程:x^3+1=Dy^2 当D=1时的整数解 x^3 + 1 = y^22^3 + 1 = 3^2, ...
黑桃花2023-05-19 20:16:352

欧拉定理的数论定理

  在数论中,欧拉定理,(也称费马-欧拉定理)是一个关于同余的性质。欧拉定理表明,若n,a为正整数,且n,a互质,则:  证明  将1~n中与n互质的数按顺序排布:x1,x2……xφ(n) (显然,共有φ(n)个数)  我们考虑这么一些数:  m1=a*x1;m2=a*x2;m3=a*x3……mφ(n)=a*xφ(n)  1)这些数中的任意两个都不模n同余,因为如果有mS≡mR (mod n) (这里假定mS更大一些),就有:  mS-mR=a(xS-xR)=qn,即n能整除a(xS-xR)。但是a与n互质,a与n的最大公因子是1,而xS-xR<n,因而左式不可能被n整除。也就是说这些数中的任意两个都不模n同余,φ(n)个数有φ(n)种余数。  2)这些数除n的余数都与n互质,因为如果余数与n有公因子r,那么a*xi=pn+qr=r(……),a*xi与n不互质,而这是不可能的。那么这些数除n的余数,都在x1,x2,x3……xφ(n)中,因为这是1~n中与n互质的所有数,而余数又小于n.  由1)和2)可知,数m1,m2,m3……mφ(n)(如果将其次序重新排列)必须相应地同余于x1,x2,x3……xφ(n).  故得出:m1*m2*m3……mφ(n)≡x1*x2*x3……xφ(n) (mod n)  或者说a^[φ(n)]*(x1*x2*x3……xφ(n))≡x1*x2*x3……xφ(n)  或者为了方便:K{a^[φ(n)]-1}≡0 ( mod n ) 这里K=x1*x2*x3……xφ(n)。  可知K{a^[φ(n)]-1}被n整除。但K中的因子x1,x2……都与n互质,所以K与n互质。那么a^[φ(n)]-1必须能被n整除,即a^[φ(n)]-1≡0 (mod n),即a^[φ(n)]≡1 (mod n),得证。  费马小定理:  a是不能被质数p整除的正整数,则有a^(p-1) ≡ 1 (mod p)  证明这个定理非常简单,由于p是质数,所以有φ(p) = p-1,代入欧拉定理即可证明。推论:对于任意正整数a,有a^p ≡ a (mod p),因为a能被p整除时结论显然成立。  应用  首先看一个基本的例子。令a = 3,n = 5,这两个数是互素的。比5小的正整数中与5互素的数有1、2、3和4,所以φ(5)=4(详情见[欧拉函数])。计算:a^{φ(n)} = 3^4 =81,而81= 80 + 1 Ξ 1 (mod 5)。与定理结果相符。  这个定理可以用来简化幂的模运算。比如计算7^{222}的个位数,实际是求7^{222}被10除的余数。7和10[[互素]],且φ(10)=4。由欧拉定理知7^4Ξ1(mod 10)。所以7^{222}=(7^4)^55*(7^2)Ξ1^{55}*7^2Ξ49Ξ9 (mod 10)。
再也不做站长了2023-05-18 13:55:352

数论四大定理之欧拉定理

本文分为两个部分,第一部分介绍欧拉定理的证明,第二部分介绍欧拉函数的求法。 欧拉函数 欧拉定理 记小于 n 且与 n 互质的正整数集合为 令 由最大公约数的性质可得 所以 S 中所有元素都与 n 互质,且都小于 n。 又 S 中无重复元素 假设 ,矛盾!
豆豆staR2023-05-18 13:55:341

数论四大定理的欧拉定理

欧拉定理,也称费马-欧拉定理。若n,a为正整数,且n,a互素,即gcd(a,n) = 1,则a^φ(n) ≡ 1 (mod n)
苏萦2023-05-18 13:55:342

现代数学的分支有哪些?泛函,群论,几何代数,解析数论,黎曼几何,环论,非线性?

1..数学史 2..数理逻辑与数学基础 a..演绎逻辑学 亦称符号逻辑学 b..证明论 亦称元数学 c..递归论 d..模型论 e..公理集合论 f..数学基础 g..数理逻辑与数学基础其他学科 3..数论 a..初等数论 b..解析数论 c..代数数论 d..超越数论 e..丢番图逼近 f..数的几何 g..概率数论 h..计算数论 i..数论其他学科 4..代数学 a..线性代数 b..群论 c..域论 d..李群 e..李代数 f..Kac-Moody代数 g..环论 包括交换环与交换代数,结合环与结合代数,非结合环与非结 合代数等 h..模论 i..格论 j..泛代数理论 k..范畴论 l..同调代数 m..代数K理论 n..微分代数 o..代数编码理论 p..代数学其他学科 5..代数几何学 6..几何学 a..几何学基础 b..欧氏几何学 c..非欧几何学 包括黎曼几何学等 d..球面几何学 e..向量和张量分析 f..仿射几何学 g..射影几何学 h..微分几何学 i..分数维几何 j..计算几何学 k..几何学其他学科 7..拓扑学 a..点集拓扑学 b..代数拓扑学 c..同伦论 d..低维拓扑学 e..同调论 f..维数论 g..格上拓扑学 h..纤维丛论 i..几何拓扑学 j..奇点理论 k..微分拓扑学 l..拓扑学其他学科 8..数学分析 a..微分学 b..积分学 c..级数论 d..数学分析其他学科 9..非标准分析 10..函数论 a..实变函数论 b..单复变函数论 c..多复变函数论 d..函数逼近论 e..调和分析 f..复流形 g..特殊函数论 h..函数论其他学科 11..常微分方程 a..定性理论 b..稳定性理论 c..解析理论 d..常微分方程其他学科 12..偏微分方程 a..椭圆型偏微分方程 b..双曲型偏微分方程 c..抛物型偏微分方程 d..非线性偏微分方程 e..偏微分方程其他学科 13..动力系统 a..微分动力系统 b..拓扑动力系统 c..复动力系统 d..动力系统其他学科 14..积分方程 15..泛函分析 a..线性算子理论 b..变分法 c..拓扑线性空间 d..希尔伯特空间 e..函数空间 f..巴拿赫空间 g..算子代数 h..测度与积分 i..广义函数论 j..非线性泛函分析 k..泛函分析其他学科 16..计算数学 a..插值法与逼近论 b..常微分方程数值解 c..偏微分方程数值解 d..积分方程数值解 e..数值代数 f..连续问题离散化方法 g..随机数值实验 h..误差分析 i..计算数学其他学科 17..概率论 a..几何概率 b..概率分布 c..极限理论 d..包括正态过程与平稳过程、点过程等 e..马尔可夫过程 f..随机分析 g..鞅论 h..应用概率论 具体应用入有关学科 i..概率论其他学科 18..数理统计学 a..抽样理论 包括抽样分布、抽样调查等b..假设检验 c..非参数统计 d..方差分析 e..相关回归分析 f..统计推断 g..贝叶斯统计 包括参数估计等 h..试验设计 i..多元分析 j..统计判决理论 k..时间序列分析 l..数理统计学其他学科 19..应用统计数学 a..统计质量控制 b..可靠性数学 c..保险数学 d..统计模拟 20..应用统计数学其他学科 21..运筹学 a..线性规划 b..非线性规划 c..动态规划 d..组合最优化 e..参数规划 f..整数规划 g..随机规划 h..排队论 i..对策论 亦称博弈论 j..库存论 k..决策论 l..搜索论 m..图论 n..统筹论 o..最优化 p..运筹学其他学科 22..组合数学 23..模糊数学 24..应用数学 具体应用入有关学科 25..数学其他学科就这些,其他的太偏或者是不讨论
Jm-R2023-05-18 05:46:201