群论

集合论 关系 微积分 数论 图论 组合数学 谓词逻辑 推理系统 群论 拓扑学 分形学 图形学 矩阵

都学最好,因为我计算机专业,这些课程都学过了
u投在线2023-05-23 12:58:023

关于群论

是数学的分支
可桃可挑2023-05-20 08:56:263

群论解决问题的实例有哪些?

   说起群论,就不得不提两个人,他们为这一理论的发展做出来巨大的贡献。                伽罗瓦(1811 - 1832)创立了数学里程碑式的分支,为数学史做出了巨大贡献。伽罗瓦群理论被认为是十九世纪最杰出的数学成就之一。,最重要的是,组织理论的研究开辟了一个新的领域,研究结构计算,而是沉重的变换计算研究的思维方式研究的思维方式,结构概念和分类的数学操作,使集团理论迅速发展成一个新的数学分支,施加一个伟大的影响现代代数的形成和发展。同时,这一理论对20世纪结构主义哲学的物理、化学乃至产生和发展都有很大的影响。          在1849年提出了抽象的集团,但这个概念的价值尚未意识到当时,远远超出绰金时代(绰金)1858年在有限群抽象的定义,这一组置换群的领导,1877年,他提出了一个抽象的有限阿贝尔群。克罗内克(克罗内克)也给出了亚伯尔群的等价定义,他提出了抽象元素,操作,亲密,联想,交换。随着每个元素的逆操作的存在和唯一。他还证明了关于群体的一些定理。1878年,格洛里亚提出一个团体可以被看作是一个普遍的概念。不仅需要对置换群进行排列,而且要实现比排列组更大的抽象群。      所以群论可以用来解释很多的实例。
u投在线2023-05-20 08:56:262

群论,商群的概念是什么?有什么用?

整数关于加法形成一个加法群,现在,我们考虑它们除24后的余数,就像时间一样,今天的一点钟和昨天的一点钟单单就1而言是等价的,所以我们不妨把它们看为同一类元素,也就是说,1和25是等价的,因为它们除24后都余1,这样,我们就把整个整数变成了只有24个元素的有限群,我们分别以1,2...24作为它们的代表元,这24个元素就形成了一个商群。现在让我们把这个概念抽象出来:如果在一个群上定义了一个等价关系,把诸元素分成互不相交的等价类,取其中一个元素作为代表元,则这样形成的群就是商群。再回到一般群中,与单位元等价的元素形成的群记为A,则它是一个正规子群,则商群可以写为aA,bA,cA……故,任意正规子群都能产生商群。至于商群有什么用,你看他把等价元素都弄成一个元素就知道它有什么用了,我们考虑问题时考虑的对象往往是具有某些特殊性质的集合,这些东西可以视为一个东西,商群就可以帮你把它们凝为一体,具体可参考任何一本抽象代数书。
可桃可挑2023-05-20 08:56:263

群论 | 群论在物理上的三大应用

群的概念引发自多项式方程的研究,由埃瓦里斯特·伽罗瓦在18世纪30年代开创。在数学中,群表示一个拥有满足封闭性、结合律、有单位元、有逆元的二元运算的代数结构,包括阿贝尔群、同态和共轭类。 就科学内容而言,群论属于数学范畴,在许多数学分支中都有它的应用。它还被广泛用于物理、化学及工程科学等许多领域,尤其是物理学成为受惠最多的学科。从经典物理中对称性和守恒律的研究到量子力学中角动量理论及动力学对称性的探索再到同位旋、超荷和SU(3)对称性在现代基本粒子物理中的应用等无不闪耀着群论思想的光辉。 群论是用来研究系统对称性的数学工具,这些对称性能够反映出在某种变化下的某些变化量的性质。它也跟物理方程联系在一起。基础物理中常被提到的李群,就类似与伽罗瓦群被用来解代数方程,与微分方程的解密切相关。 在物理上,置换群是很重要的一类群。置换群包括S3群,二维旋转群,三维旋转群以及和四维时空相对应的洛仑兹群。洛仑兹群加上四维变换就构成了Poincare群。 群论在物理学上的研究主要体现在以下三个方面: 群是按照某些规律相互联系的元素的集合。在晶体对称理论中,群的元素是对称操作。 DEF 1.点阵:晶体粒子所在位置的点在空间的排列。 2.点群(对称类型):晶体中所含有的全部宏观对称元素至少交于一点,这些汇聚于一点的全部对称元素的各种组合。 3.空间群:晶体内部结构中全部对称要素的集合 。 NAT 1.布拉菲空间点阵只存在14种。 2.前述旋转及旋转一反演对称操作所可能有的三维空问点群共有32种。 3.一切晶体结构中总共只能有230种不同的对称要素组合方式,即230个空间群。 自然界中晶体结构的类型很多,却只可能有14种布拉维格子。群论的引入,使得我们迅速得到一种晶体的所有对称性及这种对称性而得到的宏观物理性质。现实应用中,常从新材料具有哪些对称操作来初步得到材料的物理性质。 物理学中将运动规律的不变性称为“对称性”。在经典的物理学中,主要涉及的是与时间和空间变换相关的对称性。Jacobi等首先注意到经典力学中体系的守恒量与对称性的联系。Noether将变分原理应用到物理学中,证明了Noether定理:对于自然界中每一种对称性,必存在一个相应的守恒定律;反之,对于每一个守恒定律,必对应有一种对称性。 群论是量子力学的基础。从群论的角度解决一些量子力学问题,主要包括哈密顿算符的对称性,距阵元定理和选择定则。运用群论的方法研究量子系统的对称性,可以不通过求解运动方程得到系统许多普遍的精确的性质。 群论方法的特点在于,只要依据的对象的对称性质是严格的,则由它得出的结论必定是精确的、可靠的;特别适当研究者对研究对象不是很了解时,通过对其对称性的分析可以得出一些带普遍性的结论。[3] 参考文献: [1]马中骐, 戴安英, 马中骐,等. 群论及其在物理中的应用[J]. 理论物理室, 1988. [2]朱尧辰. 物理学中的群论[J]. 国外科技新书评介, 1998(11):3-3. [3]张强. 基于群论的对称性与守恒律的新表述[J]. 成都航空职业技术学院学报, 2003(1):11-16.
小菜G的建站之路2023-05-20 08:56:261

为什么学化学后来要学习群论

我们知道群论是数学的一个重要分支,它在很多学科都有重要的应用,例如在物理中的应用,群论是量子力学的基础。本课程的目的是为了使学生对群论的基本理论有感性的认识和理性的了解。本课程介绍群论的基本理论及某些应用。 主要内容有:首先介绍群、子群、 群同构的概念及有关性质,这是了解群的第一步。然后较为详细地讨论了两类最常见的群:循环群与置换群,包括一些例题和练习,可以熟悉群的运算和性质, 加深对群的理解。并且介绍置换群的某些应用。然后对群论中某些重要的概念作专题讨论。首先定义并讨论群的子集的运算;由群的子集的运算,引出并讨论了子群的陪集的概念与性质。定义并讨论了正规子群与商群的概念与性质。借助于商群的概念证明了群同态基本定理, 从而对群的同态象作出了系统的描述。这部分内容是群论中最基本的内容,是任何一个希望学习群论的读者所必须掌握的。并且给出群的直积的概念,这是研究群的结构不可缺少的工具。最后是群表示论的基本理论及应用,包括矢量空间与函数空间,矩阵的秩与直积,不变子空间与可约表示、shur 引理、正交理论、特征标、正规函数、基函数、表示的直积等的概念。在群的表示理论之后,就是它在量子力学中的应用,例如从群论的角度解决一些量子力学问题,主要包括哈密顿算符的对称性,距阵元定理和选择定则。从而达到了解群论的基础知识以及有限群的表示理论,为群论在物理学中的应用打下基础的目的。Group theory is one of the great simplifying and unifying ideas in modern mathematics, and it has important applications in many scientific fields. For example, group theory is the ground of Quantum Mechanics. It was introduced in order to understand the solutions to polynomial equations, but only in the last one hundred years has its full significance, as a mathematical formulation of symmetry, been understood. It plays a role in our understanding of fundamental particles, the structure of crystal lattices and the geometry of molecules. In this unit we will study the simple axioms satisfied by groups and begin to develop basic group theory in an axiomatic way. The aim of the course is to introduce students to the concept of groups, the notion of an axiomatic system through the example of group theory, to investigate elementary properties of groups, to illustrate these with a number of important examples, such as general linear groups and symmetric groups. We give the necessary notations and basic definitions that we use throughout the thesis. First the concept of subclass is defined and discussed, the concept of the coset, the problems group factorization, coset. intersection, and double coset member for the subclass, etc. The content of this part is the most basic content and is necessary to learn for students.An important tool for the study of groups (particularly finite groups and with compact groups) is representation theory. Broadly speaking, this asks for possible ways to view a group as a permutation group or a linear group. A number of attractive areas of representation theory link representations of a group with those of its subgroups, especially normal subgroups, algebraic subgroups, and local subgroups. Representation theory also considers images of groups in the automorphism groups of other abelian groups than simply complex vector spaces; these then are the group modules. (This is a somewhat more flexible setting than abstract group theory, since we move into an additive category); modular representation theory studies the case in which the modules are vector spaces over fields with positive characteristic. At last, the course is on the application of group theory to Quantum Mechanics. We consider a symmetry operation of the system. Symmetry operation transform to the Hamilton operator symmetry, which is associated with the representation matrix. So there is matrix element theorem, and theory choice.方程论是古典代数的中心课题。直到19世纪中叶,代数仍是一门以方程式论为中心的数学学科,代数方程的求解问题依然是代数的基本问题,特别是用根式求解方程。所谓方程有根式解(代数可解),就是这个方程的解由该方程的系数经过有限次加减乘除以及开整数次方等运算表示出来的。群论也就是起源于对代数方程的研究,它是人们对代数方程求解问题逻辑考察的结果。本文正是从方程论的发展入手,阐述伽罗瓦群论的产生过程,及其伽罗瓦理论的实质。 一. 伽罗瓦群论产生的历史背景从方程的根式解法发展过程来看,早在古巴比伦数学和印度数学的记载中,他们就能够用根式求解一元二次方程ax2+bx+c=0,给出的解相当于+,,这是对系数函数求平方根。接着古希腊人和古东方人又解决了某些特殊的三次数字方程,但没有得到三次方程的一般解法。这个问题直到文艺复兴的极盛期(即16世纪初)才由意大利人解决。他们对一般的三次方程x3+ax2+bx+c=0,由卡丹公式解出根x= +,其中p=ba2,q=a3,显然它是由系数的函数开三次方所得。同一时期,意大利人费尔拉里又求解出一般四次方程x4+ax3+bx2+cx+d=0的根是由系数的函数开四次方所得。用根式求解四次或四次以下方程的问题在16世纪已获得圆满解决,但是在以后的几个世纪里,探寻五次和五次以上方程的一般公式解法却一直没有得到结果。1770年前后,法国数学家拉格朗日转变代数的思维方法,提出方程根的排列与置换理论是解代数方程的关键所在,并利用拉格朗日预解式方法,即利用1的任意n次单位根(n=1)引进了预解式x1+x2+2x3+…+n-1xn,详细分析了二、三、四次方程的根式解法。他的工作有力地促进了代数方程论的进步。但是他的这种方法却不能对一般五次方程作根式解,于是他怀疑五次方程无根式解。并且他在寻求一般n次方程的代数解法时也遭失败,从而认识到一般的四次以上代数方程不可能有根式解。他的这种思维方法和研究根的置换方法给后人以启示。1799年,鲁菲尼证明了五次以上方程的预解式不可能是四次以下的,从而转证五次以上方程是不可用根式求解的,但他的证明不完善。同年,德国数学家高斯开辟了一个新方法,在证明代数基本理论时,他不去计算一个根,而是证明它的存在。随后,他又着手探讨高次方程的具体解法。在1801年,他解决了分圆方程xp-1=0(p为质数)可用根式求解,这表明并非所有高次方程不能用根式求解。因此,可用根式求解的是所有高次方程还是部分高次方程的问题需进一步查明。随后,挪威数学家阿贝尔开始解决这个问题。1824年到1826年,阿贝尔着手考察可用根式求解的方程的根具有什么性质,于是他修正了鲁菲尼证明中的缺陷,严格证明:如果一个方程可以根式求解,则出现在根的表达式中的每个根式都可表示成方程的根和某些单位根的有理数。并且利用这个定理又证明出了阿贝尔定理:一般高于四次的方程不可能代数地求解。接着他进一步思考哪些特殊的高次方程才可用根式解的问题。在高斯分圆方程可解性理论的基础上,他解决了任意次的一类特殊方程的可解性问题,发现这类特殊方程的特点是一个方程的全部根都是其中一个根(假设为x)的有理函数,并且任意两个根Q1(x)与Q2(x)满足Q1Q2(x)=Q2Q1(x),Q1,Q2为有理函数。现在称这种方程为阿贝尔方程。其实在对阿贝尔方程的研究中已经涉及到了群的一些思想和特殊结果,只是阿贝尔没能意识到,也没有明确地构造方程根的置换集合(因为若方程所有的根都用根x1来表示成有理函数Qj(x1),j=1,2,3,…,n,当用另一个根xI代替x1时,其中1〈I≤n ,那么Qj(xI)是以不同顺序排列的原方程的根,j=1,2,…,n。实际上应说根xI=Q1(xI),Q2(xI),…,Qn(xI)是根x1,x2,…,xn的一个置换),而仅仅考虑可交换性Q1Q2(x)=Q2Q1(x)来证明方程只要满足这种性质,便可简化为低次的辅助方程,辅助方程可依次用根式求解。阿贝尔解决了构造任意次数的代数可解的方程的问题,却没能解决判定已知方程是否可用根式求解的问题。法国数学家伽罗瓦正是处在这样的背景下,开始接手阿贝尔未竞的事业。二.伽罗瓦创建群理论的工作伽罗瓦仔细研究了前人的理论,特别是拉格朗日、鲁菲尼、高斯、阿贝尔等人的著作,开始研究多项式方程的可解性理论,他并不急于寻求解高次方程的方法,而是将重心放在判定已知的方程是否有根式解。如果有,也不去追究该方程的根究竟是怎样的,只需证明有根式解存在即可。1.伽罗瓦群论的创建伽罗瓦在证明不存在一个五次或高于五次的方程的一般根式解法时,与拉格朗日相同,也从方程根的置换入手。当他系统地研究了方程根的排列置换性质后,提出了一些确定的准则以判定一个已知方程的解是否能通过根式找到,然而这些方法恰好导致他去考虑一种称之为“群”的元素集合的抽象代数理论。在1831年的论文中,伽罗瓦首次提出了“群”这一术语,把具有封闭性的置换的集合称为群,首次定义了置换群的概念。他认为了解置换群是解决方程理论的关键,方程是一个其对称性可用群的性质描述的系统。他从此开始把方程论问题转化为群论的问题来解决,直接研究群论。他引入了不少有关群论的新概念,从而也产生了他自己的伽罗瓦群论,因此后人都称他为群论的创始人。对有理系数的n次方程x+axn-1+a2xn-2+…+an-1x+an=0 (1) ,假设它的n个根x1,x2,…,xn的每一个变换叫做一个置换,n个根共有n!个可能的置换,它们的集合关于置换的乘法构成一个群,是根的置换群。方程的可解性可以在根的置换群的某些性质中有所反映,于是伽罗瓦把代数方程可解性问题转化为与相关的置换群及其子群性质的分析问题。现在把与方程联系起的置换群(它表现了方程的对称性质)称为伽罗瓦群,它是在某方程系数域中的群。一个方程的伽罗瓦群是对于每一个其函数值为有理数的关于根的多项式函数都满足这个要求的最大置换群,也可以说成对于任一个取有理数值的关于根的多项式函数,伽罗瓦群中的每个置换都使这函数的值不变。2.伽罗瓦群论的实质我们可以从伽罗瓦的工作过程中,逐步领悟伽罗瓦理论的精髓。首先分析一下他是怎样在不知道方程根的情况下,构造伽罗瓦群的。仍然是对方程(1),设它的根x1,x2,…,xn中无重根,他构造了类似于拉格朗日预解式的关于x1,x2,…,xn的一次对称多项式 △1=A1x1+A2x2+…+Anxn,其中AI(I=1,2,3,…,n)不必是单位根,但它必是一些整数且使得n!个形如△1的一次式△1,△2,…,△n!各不相同,接着又构造了一个方程=0 (2) ,该方程的系数必定为有理数(可由对称多项式定理证明),并且能够分解为有理数域上的不可约多项式之积。设F(x)=是 的任意一个给定的m次的不可约因子,则方程(1)的伽罗瓦群是指n!个△I中的这m个排列的全体。同时他又由韦达定理知伽罗瓦群也是一个对称群,它完全体现了此方程的根的对称性。但是计算一个已知方程的伽罗瓦群是有一定困难的,因此伽罗瓦的目的并不在于计算伽罗瓦群,而是证明:恒有这样的n次方程存在,其伽罗瓦群是方程根的可能的最大置换群S(n),S(n)是由n!个元素集合构成的,S(n)中的元素乘积实际上是指两个置换之积。现在把S(n)中的元素个数称为阶,S(n)的阶是n!。伽罗瓦找出方程系数域中的伽罗瓦群G后,开始寻找它的最大子群H1,找到H1后用一套仅含有理运算的手续(即寻找预解式)来找到根的一个函数。的系数属于方程的系数域R,并且在H1的置换下不改变值,但在G的所有别的置换下改变值。再用上述方法,依次寻找H1的最大子群H2,H2的最大子群H3,…于是得到H1,H2,…,Hm,直到Hm里的元素恰好是恒等变换(即Hm为单位群I)。在得到一系列子群与逐次的预解式的同时,系数域R也随之一步步扩大为R1,R2,…,Rm,每个RI对应于群HI。当Hm=I时,Rm就是该方程的根域,其余的R1,R2,…,Rm-1是中间域。一个方程可否根式求解与根域的性质密切相关。例如,四次方程x4+px2+q=0 (3) ,p与q独立,系数域R添加字母或未知数p、q到有理数中而得到的域,先计算出它的伽罗瓦群G,G是S(4)的一个8阶子群,G={E,E1,E2,…E7},其中E=,E1=,E2=,E3=,E4=,E5=, E6=, E7=。要把R扩充到R1,需在R中构造一个预解式,则预解式的根,添加到R中得到一个新域R1,于是可证明原方程(3)关于域R1的群是H1,H1={E,E1,E2,E3},并发现预解式的次数等于子群H1在母群G中的指数8÷4=2(即指母群的阶除以子群的阶)。第二步,构造第二个预解式,解出根 ,于是在域R1中添加得到域R2,同样找出方程(3)在R2中的群H2,H2={E,E1},此时,第二个预解式的次数也等于群H2在H1中的指数4÷2=2。第三步,构造第三个预解式,得它的根 ,把添加到R2中得扩域R3,此时方程(3)在R3中的群为H3,H3={E},即H3=I,则R3是方程(3)的根域,且该预解式的次数仍等于群H3在H2中的指数2÷1=2。在这个特殊的四次方程中,系数域到根域的扩域过程中每次添加的都是根式,则方程可用根式解。这种可解理论对于一般的高次方程也同样适用,只要满足系数域到根域的扩域过程中每次都是添加根式,那么一般的高次方程也能用根式求解。现仍以四次方程(3)为例,伽罗瓦从中发现了这些预解式实质上是一个二次的二项方程,既然可解原理对高次方程也适用,那么对于能用根式求解的一般高次方程,它的预解式方程组必定存在,并且所有的预解式都应是一个素数次p的二项方程xp=A。由于高斯早已证明二项方程是可用根式求解的。因此反之,如果任一高次方程所有的逐次预解式都是二项方程,则能用根式求解原方程。于是,伽罗瓦引出了根式求解原理,并且还引入了群论中的一个重要概念“正规子群”。他是这样给正规子群下定义的:设H是G的一个子群,如果对G中的每个g都有gH=Hg,则称H为G的一个正规子群,其中gH表示先实行置换g,然后再应用H的任一元素,即用G的任意元素g乘H的所有置换而得到的一个新置换集合。定义引入后,伽罗瓦证明了当作为约化方程的群(如由G 约化到H1)的预解式是一个二项方程xp=A (p为素数)时,则H1是G的一个正规子群。反之,若H1是G的正规子群,且指数为素数p,则相应的预解式一定是p次二项方程。他还定义了极大正规子群:如果一个有限群有正规子群,则必有一个子群,其阶为这有限群中所有正规子群中的最大者,这个子群称为有限群的极大正规子群。一个极大正规子群又有它自己的极大正规子群,这种序列可以逐次继续下去。因而任何一个群都可生成一个极大正规子群序列。他还提出把一个群G生成的一个极大正规子群序列标记为G、H、I、J…, 则可以确定一系列的极大正规子群的合成因子[G/H],[H/I],[I/G]…。合成因子[G/H]=G的阶数/ H的阶数。对上面的四次方程(3),H1是G的极大正规子群, H2是H1的极大正规子群,H3又是H2的极大正规子群,即对方程(3)的群G 生成了一个极大正规子群的序列G、H1、H2、H3。 随着理论的不断深入,伽罗瓦发现对于一个给定的方程,寻找它在伽罗瓦群及其极大不变子群序列完全是群论的事。因此,他完全用群论的方法去解决方程的可解性问题。最后,伽罗瓦提出了群论的另一个重要概念“可解群”。他称具有下面条件的群为可解群:如果它所生成的全部极大正规合成因子都是质数。根据伽罗瓦理论,如果伽罗瓦群生成的全部极大正规合成因子都是质数时,方程可用根式求解。若不全为质数,则不可用根式求解。由于引入了可解群,则可说成当且仅当一个方程系数域上的群是可解群时,该方程才可用根式求解。对上面的特殊四次方程(3),它的[G/H]=8/4=2,[H1/H2]=2/1=2,2为质数,所以方程(3)是可用根式解的。再看一般的n次方程,当n=3时,有两个二次预解式t2=A和t3=B,合成序列指数为2与3,它们是质数,因此一般三次方程可根式解。同理对n=4,有四个二次预解式,合成序列指数为2,3,2,2,于是一般四次方程也可根式求解。一般n次方程的伽罗瓦群是s(n),s(n)的极大正规子群是A(n) (实际A(n)是由s(n)中的偶置换构成的一个子群。如果一个置换可表为偶数个这类置换之积,则叫偶置换。),A(n)的元素个数为s(n)中的一半,且A(n)的极大正规子群是单位群I,因此[s(n)/A(n)]=n!/(n!/2)=2,[A(n)/I]=(n!/2)/1=n!/2, 2是质数,但当n ≥5时,n!/2不是质数,所以一般的高于四次的方程是不能用根式求解的。至此,伽罗瓦完全解决了方程的可解性问题。顺带提一下,阿贝尔是从交换群入手考虑问题的,他的出发点与伽罗瓦不同,但他们的结果都是相同的,都为了证其为可解群,并且伽罗瓦还把阿贝尔方程进行了推广,构造了一种现在称之为伽罗瓦方程的方程,伽罗瓦方程的每个根都是其中两个根的带有系数域中系数的有理函数。四.伽罗瓦群论的历史贡献伽罗瓦创立群论是为了应用于方程论,但他并不局限于此,而是把群论进行了推广,作用于其他研究领域。可惜的是,伽罗瓦群论的理论毕竟太深奥,对十九世纪初的人们来说是很难理解的,连当时的数学大师都不能理解他的数学思想和他的工作的实质,以至他的论文得不到发表。更不幸的是伽罗瓦在二十一岁时便因一场愚蠢的决斗而早逝,我们不得不为这位天才感到惋惜。到十九世纪六十年代,他的理论才终于为人们所理解和接受。伽罗瓦群理论被公认为十九世纪最杰出的数学成就之一。他给方程可解性问题提供了全面而透彻的解答,解决了困扰数学家们长达数百年之久的问题。伽罗瓦群论还给出了判断几何图形能否用直尺和圆规作图的一般判别法,圆满解决了三等分任意角或倍立方体的问题都是不可解的。最重要的是,群论开辟了全新的研究领域,以结构研究代替计算,把从偏重计算研究的思维方式转变为用结构观念研究的思维方式,并把数学运算归类,使群论迅速发展成为一门崭新的数学分支,对近世代数的形成和发展产生了巨大影响。同时这种理论对于物理学、化学的发展,甚至对于二十世纪结构主义哲学的产生和发展都发生了巨大的影响。参考文献:M·克莱因.古今数学思想.北京大学数学系数学史翻译组译.上海:上海 科学技术出版社,1980.鲁又文编著.数学古今谈.天津:天津科学技术出版社,1984. 中外数学简史编写组.外国数学简史.山东:山东教育出版社,1987. 吴文俊主编.世界著名科学家传记.北京:科学出版社,1994. Tony Rothman:”伽罗瓦传”,《科学》,重庆,科学技术文献出版社重庆分社,1982年第8 期,第81~92页.
LuckySXyd2023-05-20 08:56:251

群论讲什么通俗一点

群论研究的是集合的对称性。任意一个抽象群都对应一个置换群。群论最早是数学天才伽罗瓦解决高次方程不可解问题创立的。
gitcloud2023-05-20 08:56:252

群论是什么数学

在数学和抽象代数中,群论研究名为群的代数结构。[群]在抽象代数中具有基本的重要地位:许多代数结构,包括环、域和向量空间等可以看作是在群的基础上添加新的运算和公理而形成的。群的概念在数学的许多分支都有出现,而且群论的研究方法也对抽象代数的其它分支有重要影响。线性代数群(linear algebraic groups)和李群(Lie groups)作为群论的分支,在经历了重大的发展之后,已经形成相对独立的研究领域。群论的重要性还体现在物理学和化学的研究中,因为许多不同的物理结构,如晶体结构和氢原子结构可以用群论方法来进行建模。于是群论和相关的群表示论在物理学和化学中有大量的应用。 群论在数学上被广泛地运用,通常以自同构群的形式体现某些结构的内部对称性。结构的内部对称性常常和一种不变式性质同时存在。如果在一类操作中存在不变式,那这些操作转换的组合和不变式统称为一个对称群。阿贝尔群概括了另外几种抽象集合研究的结构,例如环、域、模。在代数拓扑中,群用于描述拓扑空间转换中不变的性质,例如基本群和透射群。李群的概念在微分方程和流形中都有很重要的角色,因其结合了群论和分析数学,李群能很好的描述分析数学结构中的对称性。对这类群的分析又叫调和分析。在组合数学中,交换群和群作用常用来简化在某些集合内的元素的计算。后来群论广泛应用于各个科学领域。凡是有对称性出现的地方,就会有它的影子,例如物理学的超弦理论。希望对你有帮助哦,亲~
NerveM 2023-05-20 08:56:251

群论有什么用啊?

我们知道群论是数学的一个重要分支,它在很多学科都有重要的应用,例如在物理中的应用,群论是量子力学的基础。本课程的目的是为了使学生对群论的基本理论有感性的认识和理性的了解。本课程介绍群论的基本理论及某些应用。 主要内容有:首先介绍群、子群、 群同构的概念及有关性质,这是了解群的第一步。然后较为详细地讨论了两类最常见的群:循环群与置换群,包括一些例题和练习,可以熟悉群的运算和性质, 加深对群的理解。并且介绍置换群的某些应用。 然后对群论中某些重要的概念作专题讨论。首先定义并讨论群的子集的运算;由群的子集的运算,引出并讨论了子群的陪集的概念与性质。定义并讨论了正规子群与商群的概念与性质。借助于商群的概念证明了群同态基本定理, 从而对群的同态象作出了系统的描述。这部分内容是群论中最基本的内容,是任何一个希望学习群论的读者所必须掌握的。并且给出群的直积的概念,这是研究群的结构不可缺少的工具。 最后是群表示论的基本理论及应用,包括矢量空间与函数空间,矩阵的秩与直积,不变子空间与可约表示、shur 引理、正交理论、特征标、正规函数、基函数、表示的直积等的概念。 在群的表示理论之后,就是它在量子力学中的应用,例如从群论的角度解决一些量子力学问题,主要包括哈密顿算符的对称性,距阵元定理和选择定则。从而达到了解群论的基础知识以及有限群的表示理论,为群论在物理学中的应用打下基础的目的。 Group theory is one of the great simplifying and unifying ideas in modern mathematics, and it has important applications in many scientific fields. For example, group theory is the ground of Quantum Mechanics. It was introduced in order to understand the solutions to polynomial equations, but only in the last one hundred years has its full significance, as a mathematical formulation of symmetry, been understood. It plays a role in our understanding of fundamental particles, the structure of crystal lattices and the geometry of molecules. In this unit we will study the simple axioms satisfied by groups and begin to develop basic group theory in an axiomatic way. The aim of the course is to introduce students to the concept of groups, the notion of an axiomatic system through the example of group theory, to investigate elementary properties of groups, to illustrate these with a number of important examples, such as general linear groups and symmetric groups. We give the necessary notations and basic definitions that we use throughout the thesis. First the concept of subclass is defined and discussed, the concept of the coset, the problems group factorization, coset. intersection, and double coset member for the subclass, etc. The content of this part is the most basic content and is necessary to learn for students. An important tool for the study of groups (particularly finite groups and with compact groups) is representation theory. Broadly speaking, this asks for possible ways to view a group as a permutation group or a linear group. A number of attractive areas of representation theory link representations of a group with those of its subgroups, especially normal subgroups, algebraic subgroups, and local subgroups. Representation theory also considers images of groups in the automorphism groups of other abelian groups than simply complex vector spaces; these then are the group modules. (This is a somewhat more flexible setting than abstract group theory, since we move into an additive category); modular representation theory studies the case in which the modules are vector spaces over fields with positive characteristic. At last, the course is on the application of group theory to Quantum Mechanics. We consider a symmetry operation of the system. Symmetry operation transform to the Hamilton operator symmetry, which is associated with the representation matrix. So there is matrix element theorem, and theory choice.方程论是古典代数的中心课题。直到19世纪中叶,代数仍是一门以方程式论为中心的数学学科,代数方程的求解问题依然是代数的基本问题,特别是用根式求解方程。所谓方程有根式解(代数可解),就是这个方程的解由该方程的系数经过有限次加减乘除以及开整数次方等运算表示出来的。群论也就是起源于对代数方程的研究,它是人们对代数方程求解问题逻辑考察的结果。本文正是从方程论的发展入手,阐述伽罗瓦群论的产生过程,及其伽罗瓦理论的实质。 一. 伽罗瓦群论产生的历史背景 从方程的根式解法发展过程来看,早在古巴比伦数学和印度数学的记载中,他们就能够用根式求解一元二次方程ax2+bx+c=0,给出的解相当于+,,这是对系数函数求平方根。接着古希腊人和古东方人又解决了某些特殊的三次数字方程,但没有得到三次方程的一般解法。这个问题直到文艺复兴的极盛期(即16世纪初)才由意大利人解决。他们对一般的三次方程x3+ax2+bx+c=0,由卡丹公式解出根x= +,其中p=ba2,q=a3,显然它是由系数的函数开三次方所得。同一时期,意大利人费尔拉里又求解出一般四次方程x4+ax3+bx2+cx+d=0的根是由系数的函数开四次方所得。 用根式求解四次或四次以下方程的问题在16世纪已获得圆满解决,但是在以后的几个世纪里,探寻五次和五次以上方程的一般公式解法却一直没有得到结果。1770年前后,法国数学家拉格朗日转变代数的思维方法,提出方程根的排列与置换理论是解代数方程的关键所在,并利用拉格朗日预解式方法,即利用1的任意n次单位根(n=1)引进了预解式x1+x2+2x3+…+n-1xn,详细分析了二、三、四次方程的根式解法。他的工作有力地促进了代数方程论的进步。但是他的这种方法却不能对一般五次方程作根式解,于是他怀疑五次方程无根式解。并且他在寻求一般n次方程的代数解法时也遭失败,从而认识到一般的四次以上代数方程不可能有根式解。他的这种思维方法和研究根的置换方法给后人以启示。 1799年,鲁菲尼证明了五次以上方程的预解式不可能是四次以下的,从而转证五次以上方程是不可用根式求解的,但他的证明不完善。同年,德国数学家高斯开辟了一个新方法,在证明代数基本理论时,他不去计算一个根,而是证明它的存在。随后,他又着手探讨高次方程的具体解法。在1801年,他解决了分圆方程xp-1=0(p为质数)可用根式求解,这表明并非所有高次方程不能用根式求解。因此,可用根式求解的是所有高次方程还是部分高次方程的问题需进一步查明。 随后,挪威数学家阿贝尔开始解决这个问题。1824年到1826年,阿贝尔着手考察可用根式求解的方程的根具有什么性质,于是他修正了鲁菲尼证明中的缺陷,严格证明:如果一个方程可以根式求解,则出现在根的表达式中的每个根式都可表示成方程的根和某些单位根的有理数。并且利用这个定理又证明出了阿贝尔定理:一般高于四次的方程不可能代数地求解。接着他进一步思考哪些特殊的高次方程才可用根式解的问题。在高斯分圆方程可解性理论的基础上,他解决了任意次的一类特殊方程的可解性问题,发现这类特殊方程的特点是一个方程的全部根都是其中一个根(假设为x)的有理函数,并且任意两个根Q1(x)与Q2(x)满足Q1Q2(x)=Q2Q1(x),Q1,Q2为有理函数。现在称这种方程为阿贝尔方程。其实在对阿贝尔方程的研究中已经涉及到了群的一些思想和特殊结果,只是阿贝尔没能意识到,也没有明确地构造方程根的置换集合(因为若方程所有的根都用根x1来表示成有理函数Qj(x1),j=1,2,3,…,n,当用另一个根xI代替x1时,其中1〈I≤n ,那么Qj(xI)是以不同顺序排列的原方程的根,j=1,2,…,n。实际上应说根xI=Q1(xI),Q2(xI),…,Qn(xI)是根x1,x2,…,xn的一个置换),而仅仅考虑可交换性Q1Q2(x)=Q2Q1(x)来证明方程只要满足这种性质,便可简化为低次的辅助方程,辅助方程可依次用根式求解。 阿贝尔解决了构造任意次数的代数可解的方程的问题,却没能解决判定已知方程是否可用根式求解的问题。法国数学家伽罗瓦正是处在这样的背景下,开始接手阿贝尔未竞的事业。二.伽罗瓦创建群理论的工作 伽罗瓦仔细研究了前人的理论,特别是拉格朗日、鲁菲尼、高斯、阿贝尔等人的著作,开始研究多项式方程的可解性理论,他并不急于寻求解高次方程的方法,而是将重心放在判定已知的方程是否有根式解。如果有,也不去追究该方程的根究竟是怎样的,只需证明有根式解存在即可。1.伽罗瓦群论的创建 伽罗瓦在证明不存在一个五次或高于五次的方程的一般根式解法时,与拉格朗日相同,也从方程根的置换入手。当他系统地研究了方程根的排列置换性质后,提出了一些确定的准则以判定一个已知方程的解是否能通过根式找到,然而这些方法恰好导致他去考虑一种称之为“群”的元素集合的抽象代数理论。在1831年的论文中,伽罗瓦首次提出了“群”这一术语,把具有封闭性的置换的集合称为群,首次定义了置换群的概念。他认为了解置换群是解决方程理论的关键,方程是一个其对称性可用群的性质描述的系统。他从此开始把方程论问题转化为群论的问题来解决,直接研究群论。他引入了不少有关群论的新概念,从而也产生了他自己的伽罗瓦群论,因此后人都称他为群论的创始人。 对有理系数的n次方程 x+axn-1+a2xn-2+…+an-1x+an=0 (1) ,假设它的n个根x1,x2,…,xn的每一个变换叫做一个置换,n个根共有n!个可能的置换,它们的集合关于置换的乘法构成一个群,是根的置换群。方程的可解性可以在根的置换群的某些性质中有所反映,于是伽罗瓦把代数方程可解性问题转化为与相关的置换群及其子群性质的分析问题。现在把与方程联系起的置换群(它表现了方程的对称性质)称为伽罗瓦群,它是在某方程系数域中的群。一个方程的伽罗瓦群是对于每一个其函数值为有理数的关于根的多项式函数都满足这个要求的最大置换群,也可以说成对于任一个取有理数值的关于根的多项式函数,伽罗瓦群中的每个置换都使这函数的值不变。2.伽罗瓦群论的实质 我们可以从伽罗瓦的工作过程中,逐步领悟伽罗瓦理论的精髓。首先分析一下他是怎样在不知道方程根的情况下,构造伽罗瓦群的。仍然是对方程(1),设它的根x1,x2,…,xn中无重根,他构造了类似于拉格朗日预解式的关于x1,x2,…,xn的一次对称多项式 △1=A1x1+A2x2+…+Anxn,其中AI(I=1,2,3,…,n)不必是单位根,但它必是一些整数且使得n!个形如△1的一次式△1,△2,…,△n!各不相同,接着又构造了一个方程=0 (2) ,该方程的系数必定为有理数(可由对称多项式定理证明),并且能够分解为有理数域上的不可约多项式之积。设F(x)=是 的任意一个给定的m次的不可约因子,则方程(1)的伽罗瓦群是指n!个△I中的这m个排列的全体。同时他又由韦达定理知伽罗瓦群也是一个对称群,它完全体现了此方程的根的对称性。但是计算一个已知方程的伽罗瓦群是有一定困难的,因此伽罗瓦的目的并不在于计算伽罗瓦群,而是证明:恒有这样的n次方程存在,其伽罗瓦群是方程根的可能的最大置换群S(n),S(n)是由n!个元素集合构成的,S(n)中的元素乘积实际上是指两个置换之积。现在把S(n)中的元素个数称为阶,S(n)的阶是n!。 伽罗瓦找出方程系数域中的伽罗瓦群G后,开始寻找它的最大子群H1,找到H1后用一套仅含有理运算的手续(即寻找预解式)来找到根的一个函数。的系数属于方程的系数域R,并且在H1的置换下不改变值,但在G的所有别的置换下改变值。再用上述方法,依次寻找H1的最大子群H2,H2的最大子群H3,…于是得到H1,H2,…,Hm,直到Hm里的元素恰好是恒等变换(即Hm为单位群I)。在得到一系列子群与逐次的预解式的同时,系数域R也随之一步步扩大为R1,R2,…,Rm,每个RI对应于群HI。当Hm=I时,Rm就是该方程的根域,其余的R1,R2,…,Rm-1是中间域。一个方程可否根式求解与根域的性质密切相关。例如,四次方程 x4+px2+q=0 (3) ,p与q独立,系数域R添加字母或未知数p、q到有理数中而得到的域,先计算出它的伽罗瓦群G,G是S(4)的一个8阶子群,G={E,E1,E2,…E7},其中E=,E1=,E2=,E3=,E4=,E5=, E6=, E7=。要把R扩充到R1,需在R中构造一个预解式,则预解式的根,添加到R中得到一个新域R1,于是可证明原方程(3)关于域R1的群是H1,H1={E,E1,E2,E3},并发现预解式的次数等于子群H1在母群G中的指数8÷4=2(即指母群的阶除以子群的阶)。第二步,构造第二个预解式,解出根 ,于是在域R1中添加得到域R2,同样找出方程(3)在R2中的群H2,H2={E,E1},此时,第二个预解式的次数也等于群H2在H1中的指数4÷2=2。第三步,构造第三个预解式,得它的根 ,把添加到R2中得扩域R3,此时方程(3)在R3中的群为H3,H3={E},即H3=I,则R3是方程(3)的根域,且该预解式的次数仍等于群H3在H2中的指数2÷1=2。在这个特殊的四次方程中,系数域到根域的扩域过程中每次添加的都是根式,则方程可用根式解。这种可解理论对于一般的高次方程也同样适用,只要满足系数域到根域的扩域过程中每次都是添加根式,那么一般的高次方程也能用根式求解。 现仍以四次方程(3)为例,伽罗瓦从中发现了这些预解式实质上是一个二次的二项方程,既然可解原理对高次方程也适用,那么对于能用根式求解的一般高次方程,它的预解式方程组必定存在,并且所有的预解式都应是一个素数次p的二项方程xp=A。由于高斯早已证明二项方程是可用根式求解的。因此反之,如果任一高次方程所有的逐次预解式都是二项方程,则能用根式求解原方程。于是,伽罗瓦引出了根式求解原理,并且还引入了群论中的一个重要概念“正规子群”。 他是这样给正规子群下定义的:设H是G的一个子群,如果对G中的每个g都有gH=Hg,则称H为G的一个正规子群,其中gH表示先实行置换g,然后再应用H的任一元素,即用G的任意元素g乘H的所有置换而得到的一个新置换集合。定义引入后,伽罗瓦证明了当作为约化方程的群(如由G 约化到H1)的预解式是一个二项方程xp=A (p为素数)时,则H1是G的一个正规子群。反之,若H1是G的正规子群,且指数为素数p,则相应的预解式一定是p次二项方程。他还定义了极大正规子群:如果一个有限群有正规子群,则必有一个子群,其阶为这有限群中所有正规子群中的最大者,这个子群称为有限群的极大正规子群。一个极大正规子群又有它自己的极大正规子群,这种序列可以逐次继续下去。因而任何一个群都可生成一个极大正规子群序列。他还提出把一个群G生成的一个极大正规子群序列标记为G、H、I、J…, 则可以确定一系列的极大正规子群的合成因子[G/H],[H/I],[I/G]…。合成因子[G/H]=G的阶数/ H的阶数。对上面的四次方程(3),H1是G的极大正规子群, H2是H1的极大正规子群,H3又是H2的极大正规子群,即对方程(3)的群G 生成了一个极大正规子群的序列G、H1、H2、H3。 随着理论的不断深入,伽罗瓦发现对于一个给定的方程,寻找它在伽罗瓦群及其极大不变子群序列完全是群论的事。因此,他完全用群论的方法去解决方程的可解性问题。最后,伽罗瓦提出了群论的另一个重要概念“可解群”。他称具有下面条件的群为可解群:如果它所生成的全部极大正规合成因子都是质数。 根据伽罗瓦理论,如果伽罗瓦群生成的全部极大正规合成因子都是质数时,方程可用根式求解。若不全为质数,则不可用根式求解。由于引入了可解群,则可说成当且仅当一个方程系数域上的群是可解群时,该方程才可用根式求解。对上面的特殊四次方程(3),它的[G/H]=8/4=2,[H1/H2]=2/1=2,2为质数,所以方程(3)是可用根式解的。再看一般的n次方程,当n=3时,有两个二次预解式t2=A和t3=B,合成序列指数为2与3,它们是质数,因此一般三次方程可根式解。同理对n=4,有四个二次预解式,合成序列指数为2,3,2,2,于是一般四次方程也可根式求解。一般n次方程的伽罗瓦群是s(n),s(n)的极大正规子群是A(n) (实际A(n)是由s(n)中的偶置换构成的一个子群。如果一个置换可表为偶数个这类置换之积,则叫偶置换。),A(n)的元素个数为s(n)中的一半,且A(n)的极大正规子群是单位群I,因此[s(n)/A(n)]=n!/(n!/2)=2,[A(n)/I]=(n!/2)/1=n!/2, 2是质数,但当n ≥5时,n!/2不是质数,所以一般的高于四次的方程是不能用根式求解的。至此,伽罗瓦完全解决了方程的可解性问题。 顺带提一下,阿贝尔是从交换群入手考虑问题的,他的出发点与伽罗瓦不同,但他们的结果都是相同的,都为了证其为可解群,并且伽罗瓦还把阿贝尔方程进行了推广,构造了一种现在称之为伽罗瓦方程的方程,伽罗瓦方程的每个根都是其中两个根的带有系数域中系数的有理函数。四.伽罗瓦群论的历史贡献 伽罗瓦创立群论是为了应用于方程论,但他并不局限于此,而是把群论进行了推广,作用于其他研究领域。可惜的是,伽罗瓦群论的理论毕竟太深奥,对十九世纪初的人们来说是很难理解的,连当时的数学大师都不能理解他的数学思想和他的工作的实质,以至他的论文得不到发表。更不幸的是伽罗瓦在二十一岁时便因一场愚蠢的决斗而早逝,我们不得不为这位天才感到惋惜。到十九世纪六十年代,他的理论才终于为人们所理解和接受。 伽罗瓦群理论被公认为十九世纪最杰出的数学成就之一。他给方程可解性问题提供了全面而透彻的解答,解决了困扰数学家们长达数百年之久的问题。伽罗瓦群论还给出了判断几何图形能否用直尺和圆规作图的一般判别法,圆满解决了三等分任意角或倍立方体的问题都是不可解的。最重要的是,群论开辟了全新的研究领域,以结构研究代替计算,把从偏重计算研究的思维方式转变为用结构观念研究的思维方式,并把数学运算归类,使群论迅速发展成为一门崭新的数学分支,对近世代数的形成和发展产生了巨大影响。同时这种理论对于物理学、化学的发展,甚至对于二十世纪结构主义哲学的产生和发展都发生了巨大的影响。参考文献:M·克莱因.古今数学思想.北京大学数学系数学史翻译组译.上海:上海 科学技术出版社,1980.鲁又文编著.数学古今谈.天津:天津科学技术出版社,1984. 中外数学简史编写组.外国数学简史.山东:山东教育出版社,1987. 吴文俊主编.世界著名科学家传记.北京:科学出版社,1994. Tony Rothman:”伽罗瓦传”,《科学》,重庆,科学技术文献出版社重庆分社,1982年第8 期,第81~92页.
北有云溪2023-05-20 08:56:242

如果想学伽罗瓦群论,要掌握哪些知识?

在高中数学知识的基础上,再学习<<高等代数>>就可以了.
u投在线2023-05-20 08:56:241

群论和群理论有区别吗?群论的主要内容是什么?

一般说来,群指的是对于某一种运算*,满足以下四个条件的集合G: (1)封闭性 若a,b∈G,则存在唯一确定的c∈G,使得a*b=c; (2)结合律成立 任意a,b,c∈G,有(a*b)*c=a*(b*c); (3)单位元存在 存在e∈G,对任意a∈G,满足a*e=e*a=a,称e为单位元,也称幺元; (4)逆元存在 任意a∈G,存在唯一确定的b∈G, a*b=b*a=e(单位元),则称a与b互为逆元素,简称逆元,记作a^(-1)=b. 通常称G上的二元运算*为“乘法”,称a*b为a与b的积,并简写为ab. 若群G中元素个数是有限的,则G称为有限群。否则称为无限群。有限群的元素个数称为有限群的阶。 定义运算* 对于g∈G,H包含于G,g*H={gh|h∈H},简写为gH;H*g={hg|h∈H},简写为Hg. A,B包含于G,A*B={ab|a∈A,b∈B},简写为AB. 群的替换定理 G对*是群,则对于任一g∈G,gG=Gg=G. 定义记法 G对*是群,集合H包含于G,记H^(-1)={h^(-1)|h∈H} 子群的定义 如果G对于运算*为一个群,H包含于G并且H对*构成一个群,那么称H为G的子群。 这条定理可以判定G的子集是否为一个子群: HH=H且H^(-1)=H <=> H是G的子群历史 群论是法国传奇式人物伽罗瓦( Galois,1811~1832年)的发明。他用该理论,具体来说是伽罗瓦群,解决了五次方程问题。在此之后柯西(Augustin-Louis Cauchy,1789~1857年),阿贝尔(Niels Henrik Abel,1802~1829年)等人也对群论作出了发展。 最先产生的是n个文字的一些置换所构成的置换群,它是在研究当时代数学的中心问题即五次以上的一元多项式方程是否可用根式求解的问题时,经由J.-L.拉格朗日、P.鲁菲尼、N.H.阿贝尔和E.伽罗瓦引入和发展,并有成效地用它彻底解决了这个中心问题。某个数域上一元n次多项式方程,它的根之间的某些置换所构成的置换群被定义作该方程的伽罗瓦群,1832年伽罗瓦证明了:一元 n次多项式方程能用根式求解的一个充分必要条件是该方程的伽罗瓦群为“可解群”(见有限群)。由于一般的一元n次方程的伽罗瓦群是n个文字的对称群Sn,而当n≥5时Sn不是可解群,所以一般的五次以上一元方程不能用根式求解。伽罗瓦还引入了置换群的同构、正规子群等重要概念。应当指出,A.-L.柯西早在1815年就发表了有关置换群的第一篇论文,并在1844~1846年间对置换群又做了很多工作。至于置换群的系统知识和伽罗瓦用于方程理论的研究,由于伽罗瓦的原稿是他在决斗致死前夕赶写成的,直到后来才在C.若尔当的名著“置换和代数方程专论”中得到很好的介绍和进一步的发展。置换群是最终产生和形成抽象群的第一个最主要的来源。 在数论中,拉格朗日和C.F.高斯研究过由具有同一判别式D的二次型类,即f=ax^2+2bxy+cy^2,其中a、b、с为整数,x、y 取整数值,且D=b^2-aс为固定值,对于两个型的"复合"乘法,构成一个交换群。J.W.R.戴德金于1858年和L.克罗内克于1870年在其代数数论的研究中也引进了有限交换群以至有限群。这些是导致抽象群论产生的第二个主要来源。 在若尔当的专著影响下,(C.)F.克莱因于1872年在其著名的埃尔朗根纲领中指出,几何的分类可以通过无限连续变换群来进行。克莱因和(J.-)H.庞加莱在对 "自守函数”的研究中曾用到其他类型的无限群(即离散群或不连续群)。在1870年前后,M.S.李开始研究连续变换群即解析变换李群,用来阐明微分方程的解,并将它们分类。这无限变换群的理论成为导致抽象群论产生的第三个主要来源。 A.凯莱于1849年、 1854年和 1878年发表的论文中已然提到接近有限抽象群的概念。F.G.弗罗贝尼乌斯于1879年和E.内托于1882年以及W.F.A.von迪克于 1882~1883年的工作也推进了这方面认识。19世纪80年代,综合上述三个主要来源,数学家们终于成功地概括出抽象群论的公理系统,大约在1890年已得到公认。20世纪初,E.V.亨廷顿,E.H.莫尔,L.E.迪克森等都给出过抽象群的种种独立公理系统,这些公理系统和现代的定义一致。 在1896~1911年期间,W.伯恩赛德的“有限群论”先后两版,颇多增益。G.弗罗贝尼乌斯、W.伯恩赛德、I.舒尔建立起有限群的矩阵表示论后,有限群论已然形成。无限群论在20世纪初,也有专著,如1916年Ο.ю.施米特的著作。群论的发展导致20世纪30年代抽象代数学的兴起。尤其是近30年来,有限群论取得了巨大的进展,1981年初,有限单群分类问题的完全解决是一个突出的成果。与此同时,无限群论也有快速的进展。 时至今日,群的概念已经普遍地被认为是数学及其许多应用中最基本的概念之一。它不但渗透到诸如几何学、代数拓扑学、函数论、泛函分析及其他许多数学分支中而起着重要的作用,还形成了一些新学科如拓扑群、李群、代数群、算术群等,它们还具有与群结构相联系的其他结构如拓扑、解析流形、代数簇等,并在结晶学、理论物理、量子化学以至(代数)编码学、自动机理论等方面,都有重要的应用。作为推广“群”的概念的产物:半群和幺半群理论及其近年来对计算机科学和对算子理论的应用,也有很大的发展。群论的计算机方法和程序的研究,已在迅速地发展。 今天,群论经常应用于物理领域。粗略地说,我们经常用群论来研究对称性,这些对称性能够反映出在某种变化下的某些变化量的性质。它也跟物理方程联系在一起。基础物理中常被提到的李群,就类似与伽罗瓦群被用来解代数方程,与微分方程的解密切相关。 在物理上,置换群是很重要的一类群。置换群包括S3群,二维旋转群,三维旋转群以及和反应四维时空相对应的洛仑兹群。洛仑兹群加上四维变换就构成了Poincare群。 另外,晶体学中早期的关于晶体的各种结构的问题中,也是靠群论中的费得洛夫群的研究给出了答案。群论指出,空间中互不相同的晶体结构只有确定的230种。 在研究群时,使用表象而非群元是较方便的,因为群元一般来说都是抽象的事物。表象可以看成矩阵,而矩阵具有和群元相同的性质。不可约表象和单位表象是表象理论中的重要概念。 在许多研究群论的数学家眼中,也即指在抽象群论中,数学家关心的是各元素间的运算关系,也即群的结构,而不管一个群的元素的具体含义是什么。举一个具体的例子,群论研究表明,任何一个群都同构于由群的元素组成的置换群。于是,特别是对研究有限群来说,研究置换群就是一个重要的问题了。群的例子 全体整数的加法构成一个群 全体非零实数的乘法构成一个群 对三个互不相同的有序对象的6种不同顺序间的改变(包括不变的情况)构成一个六阶的群(这是一个有限的置换群的例子) ,它由此被标记为S3
tt白2023-05-20 08:56:242

群论的历史

群论是法国数学家伽罗瓦(Galois)的发明。他用该理论,具体来说是伽罗瓦群,解决了五次方程问题。在此之前柯西(Augustin-Louis Cauchy),阿贝尔(Niels Henrik Abel)等人也对群论作出了贡献。最先产生的是n个文字的一些置换所构成的置换群,它是在研究当时代数学的中心问题即五次以上的一元多项式方程是否可用根式求解的问题时,经由J.-L.拉格朗日、P.鲁菲尼、N.H.阿贝尔和E.伽罗瓦引入和发展,并有成效地用它彻底解决了这个中心问题。某个数域上一元n次多项式方程,它的根之间的某些置换所构成的置换群被定义作该方程的伽罗瓦群,1832年伽罗瓦证明了:一元 n次多项式方程能用根式求解的一个充分必要条件是该方程的伽罗瓦群为“可解群”(见有限群)。由于一般的一元n次方程的伽罗瓦群是n个文字的对称群Sn,而当n≥5时Sn不是可解群,所以一般的五次以上一元方程不能用根式求解。伽罗瓦还引入了置换群的同构、正规子群等重要概念。应当指出,A.-L.柯西早在1815年就发表了有关置换群的第一篇论文,并在1844~1846年间对置换群又做了很多工作。至于置换群的系统知识和伽罗瓦用于方程理论的研究,由于伽罗瓦的原稿是他在决斗致死前夕赶写成的,直到后来才在C.若尔当的名著“置换和代数方程专论”中得到很好的介绍和进一步的发展。置换群是最终产生和形成抽象群的第一个最主要的来源。在数论中,拉格朗日和C.F.高斯研究过由具有同一判别式D的二次型类,即f=ax^2+2bxy+cy^2,其中a、b、с为整数,x、y 取整数值,且D=b^2-aс为固定值,对于两个型的"复合"乘法,构成一个交换群。J.W.R.戴德金于1858年和L.克罗内克于1870年在其代数数论的研究中也引进了有限交换群以至有限群。这些是导致抽象群论产生的第二个主要来源。在若尔当的专著影响下,(C.)F.克莱因于1872年在其著名的埃尔朗根纲领中指出,几何的分类可以通过无限连续变换群来进行。克莱因和(J.-)H.庞加莱在对 "自守函数”的研究中曾用到其他类型的无限群(即离散群或不连续群)。在1870年前后,索菲斯·李开始研究连续变换群即解析变换李群,用来阐明微分方程的解,并将它们分类。这无限变换群的理论成为导致抽象群论产生的第三个主要来源。A.凯莱于1849年、 1854年和 1878年发表的论文中已然提到接近有限抽象群的概念。F.G.弗罗贝尼乌斯于1879年和E.内托于1882年以及W.F.A.von迪克于 1882~1883年的工作也推进了这方面认识。19世纪80年代,综合上述三个主要来源,数学家们终于成功地概括出抽象群论的公理系统,大约在1890年已得到公认。20世纪初,E.V.亨廷顿,E.H.莫尔,L.E.迪克森等都给出过抽象群的种种独立公理系统,这些公理系统和现代的定义一致。在1896~1911年期间,W.伯恩赛德的“有限群论”先后两版,颇多增益。G.弗罗贝尼乌斯、W.伯恩赛德、I.舒尔建立起有限群的矩阵表示论后,有限群论已然形成。无限群论在20世纪初,也有专著,如1916年Ο.ю.施米特的著作。群论的发展导致20世纪30年代抽象代数学的兴起。尤其是近30年来,有限群论取得了巨大的进展,1981年初,有限单群分类问题的完全解决是一个突出的成果。与此同时,无限群论也有快速的进展。时至今日,群的概念已经普遍地被认为是数学及其许多应用中最基本的概念之一。它不但渗透到诸如几何学、代数拓扑学、函数论、泛函分析及其他许多数学分支中而起着重要的作用,还形成了一些新学科如拓扑群、李群、代数群、算术群等,它们还具有与群结构相联系的其他结构如拓扑、解析流形、代数簇等,并在结晶学、理论物理、量子化学以至(代数)编码学、自动机理论等方面,都有重要的应用。作为推广“群”的概念的产物:半群和幺半群理论及对计算机科学和对算子理论的应用,也有很大的发展。群论的计算机方法和程序的研究,已在迅速地发展。就科学内容而言,群论属于数学范畴,在许多数学分支中都有它的应用。它还被广泛用于物理、化学及工程科学等许多领域,尤其是物理学成为受惠最多的学科。从经典物理中对称性和守恒律的研究到量子力学中角动量理论及动力学对称性的探索再到同位旋、超荷和SU(3)对称性在现代基本粒子物理中的应用等无不闪耀着群论思想的光辉。 粗略地说,我们经常用群论来研究对称性,这些对称性能够反映出在某种变化下的某些变化量的性质。它也跟物理方程联系在一起。基础物理中常被提到的李群,就类似与伽罗瓦群被用来解代数方程,与微分方程的解密切相关。在物理上,置换群是很重要的一类群。置换群包括S3群,二维旋转群,三维旋转群以及和四维时空相对应的洛仑兹群。洛仑兹群加上四维变换就构成了Poincare群。另外,晶体学中早期的关于晶体的各种结构的问题中,也是靠群论中的费得洛夫群的研究给出了答案。群论指出,空间中互不相同的晶体结构只有确定的230种。在研究群时,使用表象而非群元是较方便的,因为群元一般来说都是抽象的事物。表象可以看成矩阵,而矩阵具有和群元相同的性质。不可约表象和单位表象是表象理论中的重要概念。在许多研究群论的数学家眼中,也即指在抽象群论中,数学家关心的是各元素间的运算关系,也即群的结构,而不管一个群的元素的具体含义是什么。举一个具体的例子,根据凯莱定理,任何一个群都同构于由群的元素组成的置换群。于是,特别是对研究有限群来说,研究置换群就是一个重要的问题了。
kikcik2023-05-20 08:56:241

“群论”讲的是什么

  群论  一般说来,群指的是满足以下四个条件的一组元素的集合:(1)封闭性 (2)结合律成立 (3)单位元存在 (4)逆元存在。群论是法国传奇式人物Golois的发明。他用该理论解决了五次方程问题。今天,群论经常应用于物理领域。粗略地说,我们经常用群论来研究对称性,这些对称性能够反映出在某种变化下的某些变化量的性质。  在物理上,置换群是很重要的一类群。置换群包括S3群,二维旋转群,三维旋转群以及和反应四维时空相对应的洛仑兹群。洛仑兹群加上四维变换就构成了Poincare群。  在研究群时,使用表象而非群元是较方便的,因为群元一般来说都是抽象的事物。表象可以看成矩阵,而矩阵具有和群元相同的性质。不可约表象和单位表象是表象理论中的重要概念。  人们在寻找五次方程的解法中,一个新的数学分支--群论诞生了!  伽罗瓦是第一个使用群的系统地研究群的数学家。他在19岁时,就使用群的思想解次了五次方程的问题。  伽罗瓦1811年10月26日出生在法国巴黎一个小市镇上,他小时候和高斯正好相反,根本没有人认为他是"神童"。他的教师曾说伽罗瓦"没有智慧,不然就是把智慧藏得太深了,我没法去发现。"有的教师干脆说:"伽罗瓦什么也不懂。"其实伽罗瓦在中学时代就对数学表现了非凡的天赋。他从16岁起就致力于五次方程各五次以上方程的根式解法的研究。教科书满足不了人求知的欲望,他就直接深入学习和了解数学专著。前辈数学家勒让德的《几何原理》,拉格朗日的《论方程的代数解法》、《解析函数论》,欧拉和高斯等数学大师的著作使他乐而忘返。尤其是对同辈挪威数学家阿贝尔成果的研究,更直接影响了伽罗瓦群论思想的产生。阿贝尔是一位富于创造才能的数学家,当他还是中学生时就开始着手探讨高次方程的可解性问题。但命运不济,他写的关于椭圆函数的论文被巴黎科学院打入了冷宫,阿贝尔并没有放弃,终于又在不久以后发表论文证明了一般五次以上的代数方程,它们的根式解法是不存在的,只有某些特殊的五次以上的方程,可以用根式解法。阿贝尔的成果轰动了世界,使延续了3个世纪的五次方程难题解决了。但由于过于劳累,年仅278岁的阿贝尔就在贫病交加中逝世了。同时,也留下了问题给世人,究竟哪些方程可用根式解,哪些不能?完成这个艰巨任务的就是伽罗瓦。  伽罗瓦17岁开始研究方程可解性问题,提出群的用于处理可解性问题,获得了重大成果。但他性格倔强,比阿贝尔更加生不逢时,3次把研究论文交法国科学院审查,都未能得到及时的肯定。不仅如此,由于伽罗致词热烈支持和参与法国"七月革命",人在进入巴黎高等师范学校的第一年就被开除学籍;之后又两次被抓进监狱,获释后的一个月,1832年5月31日,在和反动军官的决斗中,伽罗瓦被击中要害,第二天--1832年5月31日早晨,一颗数学新星殒落了。死时还不满21岁,决斗前夕,伽罗瓦把他的研究工作写成信件,托朋友转交《百科评论》杂志。  然而不幸的是,伽罗瓦的群论思想由于超越时代太远而未及时地被人们理解和接受,以致埋没了10年多,幸好手稿保存下来。1843年9月,法国数学家刘维尔重新整理了伽罗瓦的数学手稿,向法国科学院作了报告,并于1846年,在他自己办的数学杂志上发表了它,这才引起了数学界的注意。  数学家们在伽罗瓦群论思想的基础上,开始追踪、研究和发展,逐渐开创了一个新的数学分支--抽象代数学。它包括群论、环论域论、布尔代数等。  伽罗瓦是不幸的,生前他没有得到他应有的荣誉和地位。但人那颗被冷遇的倍爱创伤的心,却始终充满着对未来的热情、期待和对追求。
九万里风9 2023-05-20 08:56:231

伽罗瓦群论原文?

群论是法国数学家伽罗瓦(Galois)的发明。伽罗瓦是一个极具传奇性的人物他用该理论,具体来说是伽罗瓦群,解决了五次方程问题。在此之前柯西(Augustin-Louis Cauchy),阿贝尔(Niels Henrik Abel)等人也对群论作出了贡献。最先产生的是n个文字的一些置换所构成的置换群,它是在研究当时代数学的中心问题即五次以上的一元多项式方程是否可用根式求解的问题时,经由J.-L.拉格朗日、P.鲁菲尼、N.H.阿贝尔和E.伽罗瓦引入和发展,并有成效地用它彻底解决了这个中心问题。某个数域上一元n次多项式方程,它的根之间的某些置换所构成的置换群被定义作该方程的伽罗瓦群,1832年伽罗瓦证明了:一元 n次多项式方程能用根式求解的一个充分必要条件是该方程的伽罗瓦群为“可解群”(见有限群)。由于一般的一元n次方程的伽罗瓦群是n个文字的对称群Sn,而当时Sn不是可解群,所以一般的五次以上一元方程不能用根式求解。伽罗瓦还引入了置换群的同构、正规子群等重要概念。应当指出,A.-L.柯西早在1815年就发表了有关置换群的第一篇论文,并在1844~1846年间对置换群又做了很多工作。至于置换群的系统知识和伽罗瓦用于方程理论的研究,由于伽罗瓦的原稿是他在决斗致死前夕赶写成的,直到后来才在C.若尔当的名著“置换和代数方程专论”中得到很好的介绍和进一步的发展。置换群是最终产生和形成抽象群的第一个最主要的来源。在数论中,拉格朗日和C.F.高斯研究过由具有同一判别式D的二次型类,即,其中a、b、с为整数,x、y 取整数值,且为固定值,对于两个型的"复合"乘法,构成一个交换群。J.W.R.戴德金于1858年和L.克罗内克于1870年在其代数数论的研究中也引进了有限交换群以至有限群。这些是导致抽象群论产生的第二个主要来源。
bikbok2023-05-20 08:56:221

现代数学的分支有哪些?泛函,群论,几何代数,解析数论,黎曼几何,环论,非线性?

1..数学史 2..数理逻辑与数学基础 a..演绎逻辑学 亦称符号逻辑学 b..证明论 亦称元数学 c..递归论 d..模型论 e..公理集合论 f..数学基础 g..数理逻辑与数学基础其他学科 3..数论 a..初等数论 b..解析数论 c..代数数论 d..超越数论 e..丢番图逼近 f..数的几何 g..概率数论 h..计算数论 i..数论其他学科 4..代数学 a..线性代数 b..群论 c..域论 d..李群 e..李代数 f..Kac-Moody代数 g..环论 包括交换环与交换代数,结合环与结合代数,非结合环与非结 合代数等 h..模论 i..格论 j..泛代数理论 k..范畴论 l..同调代数 m..代数K理论 n..微分代数 o..代数编码理论 p..代数学其他学科 5..代数几何学 6..几何学 a..几何学基础 b..欧氏几何学 c..非欧几何学 包括黎曼几何学等 d..球面几何学 e..向量和张量分析 f..仿射几何学 g..射影几何学 h..微分几何学 i..分数维几何 j..计算几何学 k..几何学其他学科 7..拓扑学 a..点集拓扑学 b..代数拓扑学 c..同伦论 d..低维拓扑学 e..同调论 f..维数论 g..格上拓扑学 h..纤维丛论 i..几何拓扑学 j..奇点理论 k..微分拓扑学 l..拓扑学其他学科 8..数学分析 a..微分学 b..积分学 c..级数论 d..数学分析其他学科 9..非标准分析 10..函数论 a..实变函数论 b..单复变函数论 c..多复变函数论 d..函数逼近论 e..调和分析 f..复流形 g..特殊函数论 h..函数论其他学科 11..常微分方程 a..定性理论 b..稳定性理论 c..解析理论 d..常微分方程其他学科 12..偏微分方程 a..椭圆型偏微分方程 b..双曲型偏微分方程 c..抛物型偏微分方程 d..非线性偏微分方程 e..偏微分方程其他学科 13..动力系统 a..微分动力系统 b..拓扑动力系统 c..复动力系统 d..动力系统其他学科 14..积分方程 15..泛函分析 a..线性算子理论 b..变分法 c..拓扑线性空间 d..希尔伯特空间 e..函数空间 f..巴拿赫空间 g..算子代数 h..测度与积分 i..广义函数论 j..非线性泛函分析 k..泛函分析其他学科 16..计算数学 a..插值法与逼近论 b..常微分方程数值解 c..偏微分方程数值解 d..积分方程数值解 e..数值代数 f..连续问题离散化方法 g..随机数值实验 h..误差分析 i..计算数学其他学科 17..概率论 a..几何概率 b..概率分布 c..极限理论 d..包括正态过程与平稳过程、点过程等 e..马尔可夫过程 f..随机分析 g..鞅论 h..应用概率论 具体应用入有关学科 i..概率论其他学科 18..数理统计学 a..抽样理论 包括抽样分布、抽样调查等b..假设检验 c..非参数统计 d..方差分析 e..相关回归分析 f..统计推断 g..贝叶斯统计 包括参数估计等 h..试验设计 i..多元分析 j..统计判决理论 k..时间序列分析 l..数理统计学其他学科 19..应用统计数学 a..统计质量控制 b..可靠性数学 c..保险数学 d..统计模拟 20..应用统计数学其他学科 21..运筹学 a..线性规划 b..非线性规划 c..动态规划 d..组合最优化 e..参数规划 f..整数规划 g..随机规划 h..排队论 i..对策论 亦称博弈论 j..库存论 k..决策论 l..搜索论 m..图论 n..统筹论 o..最优化 p..运筹学其他学科 22..组合数学 23..模糊数学 24..应用数学 具体应用入有关学科 25..数学其他学科就这些,其他的太偏或者是不讨论
Jm-R2023-05-18 05:46:201