傅里叶级数的性质

傅里叶级数的性质

傅里叶级数的收敛性:满足狄利赫里条件的周期函数表示成的傅里叶级数都收敛。狄利赫里条件如下:在任何周期内,x(t)须绝对可积;在任一有限区间中,x(t)只能取有限个最大值或最小值;在任何有限区间上,x(t)只能有有限个第一类间断点。吉布斯现象:在x(t)的不可导点上,如果我们只取(1)式右边的无穷级数中的有限项作和x(t),那么x(t)在这些点上会有起伏。一个简单的例子是方波信号。 所谓的两个不同向量正交是指它们的内积为0,这也就意味着这两个向量之间没有任何相关性,例如,在三维欧氏空间中,互相垂直的向量之间是正交的。事实上,正交是垂直在数学上的的一种抽象化和一般化。一组n个互相正交的向量必然是线形无关的,所以必然可以张成一个n维空间,也就是说,空间中的任何一个向量可以用它们来线性表出。三角函数族的正交性用公式表示出来就是: 奇函数;可以表示为正弦级数,而偶函数;则可以表示成余弦级数:只要注意到欧拉公式:,这些公式便可以很容易从上面傅里叶级数的公式中导出。 任何正交函数系,如果定义在[a,b]上的函数f(x)只具有有限个第一类间断点,那么如果f(x)满足封闭性方程:(4),那么级数(5) 必然收敛于f(x),其中:(6)。事实上,无论(5)时是否收敛,我们总有:成立,这称作贝塞尔(Bessel)不等式。此外,式(6)是很容易由正交性推出的,因为对于任意的单位正交基,向量x在上的投影总为。
九万里风9 2023-05-23 19:24:251