方差

协方差分析适用于群体干预分析吗?

适用。协方差分析可以用来识别群体间的关系,以及群体内部的变化。它也可以用来检验干预是否对群体有显著影响,以及它是如何影响群体的。协方差分析,是关于如何调节协变量对因变量的影响效应,从而更加有效地分析实验处理效应的一种统计技术,也是对实验进行统计控制的一种综合方差分析和回归分析的方法。
左迁2023-06-12 07:20:211

stata方差分析

oneway sales color, tabulate sales (销量)是将要分析的变量, color 是分类变量,也就是水平变量, tabulate 的作用 是产生有关数据的汇总表.方差齐性检验 anova wage child rnarriage child * rnarriage anova 是进行多因素方差分析的命令语句, wage 是因变量, child 、marriage 和child* marriage 是影响因素,协方差分析将那些难以控制的因素作为协变量,从而在排除协变量影响的情况下,分析自变量、因变量的作用。当模型中只存在一个协变量时,叫做一元协方差分析,当有两个及以上的协变量时,叫做多元协方差分析。 协方差分析的基本命令语句与多因素方差分析的命令语句基本一致,这个命令语句与多因素方差分析命令语句的唯一不同是" continuous(varli st) " ,即必须指明连续变量,若不指明, Stata 默认除因变量之外的所有变量均为分类变量: anova wage child marriage child * marriage educ, continuous(educ) 通过实验原理,我们知道协方差分析是借助回归分析完成的,所以可以通过添加regress选项的形式便回归的结果得到展示,使变量间的关系得到更清晰的展现,这时的命令语句如下: anova wage ch 工ld marriage child * marriage educ , continuous(educ) regress 参考: 《stata统计分析与应用》第二版 周光肃等著
bikbok2023-06-12 07:20:201

协方差分析中交互作用显著怎么办

很正常,在俩因素以上的方差分析上,首先看交互作用,交互作用显著,就进行简单分析,交互作用不显著,才能看主效应。总之,交互作用优先考虑。
左迁2023-06-12 07:20:201

通过协方差分析来控制额外变量的方法属于

【答案】:D统计控制法。 消除法(排除法)是把额外变量从实验中排除出去;恒定法指使额外变量在实验过程中保持恒定不变;匹配法是使实验组和控制组中的被试属性相等的一种方法;统计控制法是在实验完成后通过一定的统计技术来事后减少实验中额外变量的干扰,如协方差分析、剔除极端数、分别加权法。
北有云溪2023-06-12 07:20:201

2021-06-19 单因素协方差分析(ANCOVA)在R中实现

ANCOVA要求数据服从正态分布,以及各组方差相等,同时还假定回归斜率相同。
小菜G的建站之路2023-06-12 07:20:201

sas中glm的协方差分析怎么弄

在建模时引入协变量即可,其他和普通方差分析一样
阿啵呲嘚2023-06-12 07:20:201

spss 协方差分析结果怎么看

  在进行两两比较之前,我们最后先做一个协方差分析,在前面的文章讲了如何进行协方差分析,如果写反差分析显示出来了显著的结果,然后再进行两两的事后检验,下面是具体的过程:   方法/步骤1先进行协方差分析,结果如果达到了显著水平,在进行两两比较,在菜单栏上执行analyze--general linear model--univariate      2将自变量、因变量、斜变量都放到相应的位置,这里评定得分是因变量,培训方式是自变量、家庭指数是斜变量      3点击options按钮,进入子对话框      4将培训方式,也就是自变量放到右侧的列表里,勾选下面的描述统计和方差齐性检验,点击继续按钮      5点击model按钮,选择模型      6选择full factorial,然后点击continue按钮,返回主对话框      7点击paste按钮,进入命令编辑窗口      8在这里你会看到很多代码,我们留下前三行,如图所示,然后删除其他的行      9编辑下面的六行代码,使用的是lmatrix命令,我们知道培训方式有三个水平,所以要进行三次两两比较才能将所有的水平进行比较。      10点击运行按钮,开始处理数据      11在出来的结果中,我们主要看的是定制假设检验,因为上面的命令中用了三次LMATRIX,所以会有三个定制假设检验,我们主要看下面的sig值,如图所示,这个值小于0.05就可以认为是有差异的      spss 19.0中文版下载:/ruanjian/yingyong/18741.html
tt白2023-06-12 07:20:191

协方差分析的数据文件中,至少有几个变量

至少有3列一列分组自变量,一列连续自变量用于协方差分析,一列因变量
墨然殇2023-06-12 07:20:191

最大协方差分析法是怎么实现的

协方差分析是建立在方差分析和回归分析基础之上的一种统计分析方法。 方差分析是从质量因子的角度探讨因素不同水平对实验指标影响的差异。一般说来,质量因子是可以人为控制的。 回归分析是从数量因子的角度出发,通过建立回归方程来研究实验指标与一个(或几个)因子之间的数量关系。但大多数情况下,数量因子是不可以人为加以控制的。
gitcloud2023-06-12 07:20:191

协方差分析与混合效应模型的区别

内容不同。协方差分析是建立在回归分析和方差分析基础之上的一种分析方法;混合效应模型是既包含固定效应又包括随机效应的线性多层模型。混合效应模型简称“模型Ⅲ”,其中部分因素的效应是随机的,部分因素的效应是固定的(根据实验的实际情况确定)。
豆豆staR2023-06-12 07:20:191

spss 协方差分析结果怎么看?急!!!

1、看组间效应比较,看自变量和协变量有没有显著,2、看修正均数有没有显著,即扣除X的影响后,Y值是否有统计学意义的差异;3、看修正均数的方差分析。协方差主要就是看修正均数,剩下的步骤其实用回归也可以做。只是回归省略了一些预分析,例如是否线性,是否存在协变量等。希望能帮到你。
CarieVinne 2023-06-12 07:20:191

请问,在什么情况下必须做协方差分析?

控制变量不同水平下观测变量总体方差无显著差异是方差分析的前提要求。如果没有满足这个前提要求,就不能认为各总体分布相同。因此,有必要对方差是否齐性进行检验。方差分析(AnalysisofVariance,简称ANOVA),又称“变异数分析”或“F检验”,是R.A.Fisher发明的,用于两个及两个以上样本均数差别的显著性检验。由于各种因素的影响,研究所得的数据呈现波动状。造成波动的原因可分成两类,一是不可控的随机因素,另一是研究中施加的对结果形成影响的可控因素。方差分析是从观测变量的方差入手,研究诸多控制变量中哪些变量是对观测变量有显著影响的变量。
善士六合2023-06-12 07:20:181

协方差分析和相关系数怎么作图

1)先键入:A1,B1,C1,D1,E1原始数据;//:第一行数据:1,2,3,4,5;2)再键入:A2,B2,C2,D2,E2原始数据;//:第二行数据:3,5,7,9,10;3)选中一个空格:如:A34)点击:fx出现一个对话框,点击go,点击recommended寻找statistical(统计)选中:correl(相关系数)5)出现新对话框:在数组1,键入A1:E1;在数组2,键入:A2:E2点击:OK6)在A3空格内显示:0.99388373就是要求的相关系数!7)按列输入数据也是一样。
LuckySXyd2023-06-12 07:20:181

如何使用协方差分析进行两两均值比较

option里面有选项的
Chen2023-06-12 07:20:181

方差分析中,独立样本和协方差分析有什么区别?

1、独立样本T检验一般仅仅比较两组数据有没有区别,区别的显著性,如比较两组人的身高,体重等等,而这两组一般都是独立的,没有联系的,只是比较这两组数据有没有统计学上的区别或差异。2、单因素ANOVA也就是单因素方差分析,是用来研究一个控制变量的不同水平是否对观测变量产生了显著影响。说白了就是分析x的变化对y的影响的显著性,所以一般变量之间存在某种影响关系的,验证一种变量的变化对另一种变量的影响显著性的检验。一般的,方差分析都是配对的。如果从计算来看,独立样本之间不需要进行计算,只在本组中进行计算均值、标准差等,而方差分析中,要计算数据之间的组间差异和组内差异等。另外,多因素方差分析就是分析多种因素对某一变量的影响有多大的检验分析。而协方差分析是多种影响因素下,在不考虑某一种因素下,其他因素对该变量的影响有多大。比如,冰棍的销量、温度的变化、扇子的销量(例子不是很好,但大概就是这个意思,就是a对b有相应,b又对c有影响,但a对c不一定有影响),就是扇子的销量越多。那么冰棍的销量也是 越多的,所以她们之间成正比关系。显然是错的。因为扇子和冰棍的销量均和温度有关,这类问题的分析时要用协方差分析。扩展资料方差分析的基本原理是认为不同处理组的均数间的差别基本来源有两个:(1) 实验条件,即不同的处理造成的差异,称为组间差异。用变量在各组的均值与总均值之偏差平方和的总和表示,记作SSb,组间自由度dfb。(2) 随机误差,如测量误差造成的差异或个体间的差异,称为组内差异,用变量在各组的均值与该组内变量值之偏差平方和的总和表示, 记作SSw,组内自由度dfw。总偏差平方和 SSt = SSb + SSw。组内SSw、组间SSb除以各自的自由度(组内dfw =n-m,组间dfb=m-1,其中n为样本总数,m为组数),得到其均方MSw和MSb,一种情况是处理没有作用,即各组样本均来自同一总体,MSb/MSw≈1。另一种情况是处理确实有作用,组间均方是由于误差与不同处理共同导致的结果,即各样本来自不同总体。那么,MSb>>MSw(远远大于)。MSb/MSw比值构成F分布。用F值与其临界值比较,推断各样本是否来自相同的总体。参考资料:方差分析的百度百科
可桃可挑2023-06-12 07:20:181

协方差的主体间效应检验怎么分析

1.打开SPSS软件,将案例数据导入或者填写到软件中,点击“分析”-“一般线性模型”-“单变量”。2.在“单变量”窗口,将治疗后血脂数转移到因变量中,组别转移到固定因子中,年龄转移到协变量中。3.点击“EM均值”,在弹出的窗口,将组别移动到显示下列各项的平均值中,勾选中“比较主效应”,在置信区间调整中选择“邦弗伦尼”,点击“继续”按钮即可。4.点击“选项”,在“选项”窗口,选择描述统计,返回“单变量”窗口,点击“确定”按钮即可得到协方差分析结果。
西柚不是西游2023-06-12 07:20:181

协方差分析是怎么分析的

方差分析(analysis of covariance)是关于如何调节协变量对因变量的影响效应,从而更加有效地分析实验处理效应的一种统计技术,也是对实验进行统计控制的一种综合方差分析和回归分析的方法。
肖振2023-06-12 07:20:171

协方差分析的方差齐性检验怎么做?

协方差分析的大致流程和多自变量组间设计的方差分析是一样的(在spss菜单里选择分析——一般线性模型——单变量,点击选项按钮,选择方差齐性检验),只不过多加入一个协变量,其原理就是给每个因变量减去协变量的效应,然后来分析自变量的效应。方差齐性的公式是用方差最大组的方差比方差最小组的方差,差异不显著就是齐性。由于方差分析假定实验处理的效应是固定的,那么处理效应就只是给每组内的每个个案加上一个常数,也就是说处理只是让每组数据的分布平移了,形态不变,每组内的差异水平还是由本来的个体差异决定的。因此协变量的加入不会影响方差齐性检验,因为它无法影响个体差异,个体差异是固定不变的。理论上是如此,spss里我也试过,协变量的确对齐性检验无影响
可桃可挑2023-06-12 07:20:171

协方差分析法的定性定量跟定量定量分别称为什么

协方差分析法的定性定量跟定量定量分别称为协方差分析。协方差分析中既包含了定性变量(控制变量),又包含了定量变量(协变量)。协方差分析在扣除协变量的影响后再对修正后的主效应进行方差分析。
大鱼炖火锅2023-06-12 07:20:171

协方差分析的方差齐性检验怎么做

方差齐性检验是方差分析的重要前提,是方差可加性原则应用的一个条件。 方差齐性检验是对两样本方差是否相同进行的检验。 方差齐性检验和两样本平均数的差异性检验在假设检验的基本思想上是没有什么差异性的。只是所选择的抽样分布不一样。方差齐性检验所选择的抽样分布为F分布。 楼主如果是在 SPSS里操作的话,就按下面的步骤 打开分析——均值分析——单因素方差分析——Options,在Homogeneity of variance前打钩就可以了结果中看这个检验值是不是大于0.05,如果是酒说明接受原假设,可以进行方差检验。之后看方差检验的检验值,看是否大于0.05,如果是则说明不显著,反之就显著
康康map2023-06-12 07:20:171

心理学实验数据,关于协方差和重复测量方差分析,谢谢大神

统计专业,为您服务
韦斯特兰2023-06-12 07:20:173

协方差分析的方法

如果那些不能很好地进行试验控制的因素是可量测的,且又和试验结果之间存在直线回归关系,就可利用这种直线回归关系将各处理的观测值都矫正到初始条件相同时的结果,使得处理间的比较能在相同基础上进行,而得出正确结论。这一做法在统计上称为统计控制。这时所进行的协方差分析是将回归分析和方差分析结合起来的一种统计分析方法,这种协方差分析称为回归模型的协方差分析。 方差分析中根据均方MS与期望均方EMS间的关系,可获得不同变异来源的方差分量估计值;在协方差分析中,根据均积MP与期望均积EMP间的关系,可获得不同变异来源的协方差分量估计值。这种协方差分析称为相关模型的协方差分析。
gitcloud2023-06-12 07:20:161

两因素单变量方差分析在spss上怎样操作?

比较均数里面,做单变量的分析
NerveM 2023-06-12 07:20:012

单因素方差分析是双变量分析吗

单因素方差分析不是双变量分析。1、单因素方差分析只涉及一个因素或自变量。2、而双因素方差分析则有两个自变量。
凡尘2023-06-12 07:19:521

标准正态分布的方差是 A 0 B 1 C 2 D 3

B 正态分布是具有两个参数μ和σ2的连续型随机变量的分布,第一参数μ是服从正态分布的随机变量的均值,第二个参数σ2是此随机变量的方差,所以正态分布记作N(μ,σ2 ). 标准正态分布是一种特殊的正态分布,标准正态分布的μ和σ2为0和1,通常用 (或Z)表示服从标准正态分布的变量,记为 N(0,1).
黑桃花2023-06-12 07:19:181

怎样证明(n-1)*样本方差与总体方差之比服从自由度为n-1的卡方分布

找一本数理统计的书应该会有详细证明的,印象中是构建正交矩阵进行证明。题主可以找一找看看。
Jm-R2023-06-12 07:19:114

标准正态分布的平方方差为什么是2

解答如下:设X~N(0,1)
bikbok2023-06-12 07:19:112

响应变量为计数型,是否会方差分析变异性的潜在问题

不存在这个问题
Ntou1232023-06-12 07:16:571

无交互作用的双因素方差分析涉及的变量有几个

无交互作用的双因素方差分析涉及的变量有几个:四个交互作用(interaction)是指一个因素各个水平之间反应量的差异随其他因素的不同水平而发生变化的现象。它的存在说明同时研究的若干因素的效应非独立。交互作用的效应可度量一个因素不同水平的效应变化依赖于另一个或几个因素的水平的程度。当交互作用存在时,单纯研究某个因素的作用没有意义,必须分别探讨另一个因素不同水平上该因素的作用模式。若所有实验设计的单元格内都只有一个影响因素时,则无法衡量自变量之间的交互作用。当存在交互作用时,单纯研究某个因素的作用是没有意义的,必须分另一个因素的不同水平研究该因素的作用大小。如果所有单元格内都至多有一个元素,则交互作用无法测量,只能不予考虑,最典型的例子就是配伍设计的方差分析。实验设计方法中交互作用表示当两种或几种因素水平同时作用时的效果较单一水平因素作用的效果加强或者减弱的作用。交互作用是研究中必须考虑的因素。正交试验设计中,有专门的列指标表达交互作用。
阿啵呲嘚2023-06-12 07:15:371

随机变量相互独立,且有相同期望和方差,是否说明同分布

你好!不能。同分布可说明有相同期望与方差,而有相同期望与方差并不能说明同分布。经济数学团队帮你解答,请及时采纳。谢谢!
墨然殇2023-06-12 07:07:441

随机变量X1 X2 ... Xn 独立同分布 同分布是不是说这些变量的方差 期望都相等?

独立同分布是说随机变量之间 相互独立 ,而且分布函数相同.既然分布函数相同,因此只要期望,方差是有限值,就必然是一样的.
hi投2023-06-12 07:07:392

若两个随机变量满足独立同分布,则它们的期望和方差都相同吗

若两个随机变量满足独立同分布,则它们的期望和方差都相同吗?答: 对的。同分布就意味着期望和方差都相同。
mlhxueli 2023-06-12 07:06:542

随机变量的数字特征 数学期望与方差

X的数学期望为∑{[(-2)的k次方]/k 乘以[1/(2的k次方)]},然后证明这个值不存在就行了,证明的方法为讨论K为奇数的情况为-K分之一,K为偶数的情况为K分之一,然后对K=1~K=无穷大做∑,不存在,所以证得
善士六合2023-06-12 07:00:453

为什么用方差和数学期望表达随机变量的数字特征?

当X,Y无关时,E(XY)=E(X)E(Y),D(X)=E(X^2)-(E(X))^2,此时,E(X(X+Y-2))=E(X^2+XY-2X)=E(X^2)+E(XY)-2E(X)。D(x)指方差,E(x)指期望。方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。在概率论和统计学中,数学期望(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。它反映随机变量平均取值的大小。扩展资料:对于连续型随机变量X,若其定义域为(a,b),概率密度函数为f(x),连续型随机变量X方差计算公式:D(X)=(x-μ)^2 f(x) dx。方差刻画了随机变量的取值对于其数学期望的离散程度。(标准差、方差越大,离散程度越大)若X的取值比较集中,则方差D(X)较小,若X的取值比较分散,则方差D(X)较大。因此,D(X)是刻画X取值分散程度的一个量,它是衡量取值分散程度的一个尺度。参考资料来源:百度百科-方差参考资料来源:百度百科-数学期望
凡尘2023-06-12 07:00:091

均值和方差刻画了随机变量的什么特征

均值和方差刻画了随机变量的什么特征?均值刻画了随机变量取值的集中趋势;方差刻画了随机变量取值相对均值的分散程度。
gitcloud2023-06-12 07:00:081

设随机变量X,Y相互独立,且X~U(0,6),Y~N(1,3),求Z=3X-2Y的期望和方差

EX=3,EY=1DX=E(X^2)-(EX)^2=∫[0→6](1/6)x^2dx-9=12-9=3DY=3EZ=E(3X-2Y)=3EX-2EY=7DZ=D(3X-2Y)=D(3X)+D(-2Y)=9DX+4DY=39
可桃可挑2023-06-12 06:59:371

完全随机设计的方差分析计算公式

完全随机设计资料的方差分析,其组内自由度的计算公式是:N-k。方差分析公式怎么求的?方程D(X)=E{[X-E(X)]^2}=E(X^2) - [ E(X)]^2,其中 E(X)表示数学期望。对于连续型随机变量X,若其定义域为(a,b),概率密度函数为f(x),连续型随机变量X方差计算公式:D(X)=(x-μ)^2 f(x) dx。在概率论和统计学中,数学期望(mean)(或均值,亦简称期望)为试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。它反映随机变量平均取值的大小。扩展资料:设C为常数,则D(C) = 0(常数无波动);D(CX )=C2D(X ) (常数平方提取,C为常数,X为随机变量);证:特别地 D(-X ) = D(X ), D(-2X ) = 4D(X )(方差无负值)若X 、Y 相互独立,则证:记则前面两项恰为 D(X)和D(Y),第三项展开后为当X、Y 相互独立时,故第三项为零。
阿啵呲嘚2023-06-12 06:59:341

超几何分布的期望和方差公式是什么?

超几何分布的期望和方差公式:E(X)=(n*M)/N[其中x是样本数,n为样本容量,M为样本总数,N为总体中的个体总数],求出均值,这就是超几何分布的数学期望值。方差公式是V(X)=X1^2*P1+X2^2*P2+...Xn^2*Pn-a^2[这里设a为期望值]。离散型随机变量与连续型随机变量都是由随机变量取值范围(取值)确定。变量取值只能取离散型的自然数,就是离散型随机变量。例如,一次掷20个硬币,k个硬币正面朝上,k是随机变量。k的取值只能是自然数0,1,2,…,20,而不能取小数3.5、无理数,因而k是离散型随机变量。如果变量可以在某个区间内取任一实数,即变量的取值可以是连续的,这随机变量就称为连续型随机变量。例如,公共汽车每15分钟一班,某人在站台等车时间x是个随机变量,x的取值范围是[0,15),它是一个区间,从理论上说在这个区间内可取任一实数3.5、无理数等,因而称这随机变量是连续型随机变量。
meira2023-06-12 06:59:201

协方差怎么算cov(x, y)= EXY- EX* EYE?

协方差cov计算公式是:cov(x,y)=EXY-EX*EYEX为随机变量X的数学期望,同理,EXY是XY的数学期望,挺麻烦的,建议你看一下概率论cov(x,y)=EXY-EX*EY。协方差的定义,EX为随机变量X的数学期望,同理,EXY是XY的数学期望,挺麻烦的,建议你看一下概率论。扩展资料如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值时另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值;如果两个变量的变化趋势相反,即其中一个变量大于自身的期望值时另外一个却小于自身的期望值,那么两个变量之间的协方差就是负值。如果X与Y是统计独立的,那么二者之间的协方差就是0,因为两个独立的随机变量满足E[XY]=E[X]E[Y]。但是,反过来并不成立。即如果X与Y的协方差为0,二者并不一定是统计独立的。
北境漫步2023-06-12 06:58:071

d(x+y)协方差的系数怎么取

一. 协方差A. 定义协方差用于衡量两个变量的总体误差,方差是协方差的一种特殊情况,即当两个变量是相同的情况D(X)=Cov(X,Y)。期望值分别为E(X),E(Y)的两个实数随机变量X与Y之间的协方差定义为: Cov(X,Y) = E((X-E[X])(Y-E[Y])) = E(XY) - 2E(X)E(Y) + E(X)E(Y) = E(XY) - E(X)E(Y) (1) 如果X与Y是统计独立的,那么两者之间的协方差为0,因为两个独立的随机变量满足E(XY)=E(X)E(Y)。 但是,如果协方差为0,二者并不一定是统计独立的!协方差为0的两个随机变量称为是不相关的。于两个正态随机变量,协方差为0和两个正态随机变量相互独立是充要条件。B. 性质方协差与方差之间有如下关系: D(X+Y) = D(X)+D(Y)+2*Cov(X,Y); D(X-Y) = D(X)+D(Y)-2*Cov(X,Y); D(X) = Cov(X,X) = E(X^2) - E(X)E(X); =>E(X^2) = D(X)+E(X)E(X); 协方差性质: Cov(X,Y) = Cov(Y,X); Cov(aX,bY) = abCov(X,Y); Cov(X1+X2,Y) = Cov(X1,Y)+Cov(X2,Y);二. 相关系数A. 定义 协方差作为描述X和Y相关程度的量,在同一物理量纲之下有一定的作用,但是同样的两个量采用不同的量纲使它们的协方差在数值上表现出很大的差异。为此引入相关系数来研究变量之间线性相关程度的量。我们可以通过求Cov(X,Y)来求得相关系数。
韦斯特兰2023-06-12 06:58:061

样本自协方差函数怎么求

cov(x,y)=EXY-EX*EY 协方差的定义,EX为随机变量X的数学期望,同理,EXY是XY的数学期望,挺麻烦的,建议你看一下概率论cov(x,y)=EXY-EX*EY 协方差的定义,EX为随机变量X的数学期望,同理,EXY是XY的数学期望,挺麻烦的,建议你看一下概率论 举例: Xi 1.1 1.9 3 Yi 5.0 10.4 14.6 E(X) = (1.1+1.9+3)/3=2 E(Y) = (5.0+10.4+14.6)/3=10 E(XY)=(1.1×5.0+1.9×10.4+3×14.6)/3=23.02 Cov(X,Y)=E(XY)-E(X)E(Y)=23.02-2×10=3.02 此外:还可以计算:D(X)=E(X^2)-E^2(X)=(1.1^2+1.9^2+3^2)/3 - 4=4.60-4=0.6 σx=0.77 D(Y)=E(Y^2)-E^2(Y)=(5^2+10.4^2+14.6^2)/3-100=15.44 σy=3.93 X,Y的相关系数: r(X,Y)=Cov(X,Y)/(σxσy)=3.02/(0.77×3.93) = 0.9979 表明这组数据X,Y之间相关性很好! 扩展资料: 协方差(Covariance)在概率论和统计学中用于衡量两个变量的总体误差。而方差是协方差的一种特殊情况,即当两个变量是相同的情况。 协方差表示的是两个变量的总体的误差,这与只表示一个变量误差的方差不同。 如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值,另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值。 如果两个变量的变化趋势相反,即其中一个大于自身的期望值,另外一个却小于自身的期望值,那么两个变量之间的协方差就是负值。 若两个随机变量X和Y相互独立,则E[(X-E(X))(Y-E(Y))]=0,因而若上述数学期望不为零,则X和Y必不是相互独立的,亦即它们之间存在着一定的关系。 协方差与方差之间有如下关系: D(X+Y)=D(X)+D(Y)+2Cov(X,Y) D(X-Y)=D(X)+D(Y)-2Cov(X,Y) 协方差与期望值有如下关系: Cov(X,Y)=E(XY)-E(X)E(Y)。 协方差的性质: (1)Cov(X,Y)=Cov(Y,X); (2)Cov(aX,bY)=abCov(X,Y),(a,b是常数); (3)Cov(X1+X2,Y)=Cov(X1,Y)+Cov(X2,Y)。 由协方差定义,可以看出Cov(X,X)=D(X),Cov(Y,Y)=D(Y)。 协方差作为描述X和Y相关程度的量,在同一物理量纲之下有一定的作用,但同样的两个量采用不同的量纲使它们的协方差在数值上表现出很大的差异。为此引入如下概念: 定义 称为随机变量X和Y的(Pearson)相关系数。 方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的平均数。在许多实际问题中,研究方差即偏离程度有着重要意义。 方差是衡量源数据和期望值相差的度量值。 方差在统计描述和概率分布中各有不同的定义,并有不同的公式。 在统计描述中,方差用来计算每一个变量(观察值)与总体均数之间的差异。为避免出现离均差总和为零,离均差平方和受样本含量的影响,统计学采用平均离均差平方和来描述变量的变异程度。总体方差计算公式: 为总体方差, 为变量, 为总体均值, 为总体例数。 实际工作中,总体均数难以得到时,应用样本统计量代替总体参数,经校正后,样本方差计算公式:S^2= ∑(X- ) ^2 / (n-1) S^2为样本方差,X为变量, 为样本均值,n为样本例数。
tt白2023-06-12 06:58:061

协方差计算公式 公式讲解

1、公式:cov(x,y)=EXY-EX*EY 协方差的定义,EX为随机变量X的数学期望,同理,EXY是XY的数学期望。 2、协方差(Covariance)在概率论和统计学中用于衡量两个变量的总体误差。而方差是协方差的一种特殊情况,即当两个变量是相同的情况。 3、协方差表示的是两个变量的总体的误差,这与只表示一个变量误差的方差不同。 如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值,另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值。
人类地板流精华2023-06-12 06:58:061

如何证明协方差为零的两个随机变量并不独立

不是一回事.协方差为0则不相关独立一定不相关,但是不相关不一定独立.a为0到2pi上的随机值,x=cosa,y=sina,则x和y的协方差为0,但是x,y两者不独立.
小菜G的建站之路2023-06-12 06:58:052

请问协方差公式,什么是协方差?

1、cov(x,y)=EXY-EX*EY。2、协方差的定义,EX为随机变量X的数学期望,同理,EXY是XY的数学期望,挺麻烦的,建议你看一下概率论cov(x,y)=EXY-EX*EY。3、协方差(Covariance)在概率论和统计学中用于衡量两个变量的总体误差。而方差是协方差的一种特殊情况,即当两个变量是相同的情况。4、协方差表示的是两个变量的总体的误差,这与只表示一个变量误差的方差不同。如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值,另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值。如果两个变量的变化趋势相反,即其中一个大于自身的期望值,另外一个却小于自身的期望值,那么两个变量之间的协方差就是负值。更多关于协方差公式,什么是协方差,进入:https://m.abcgonglue.com/ask/9a369a1615839195.html?zd查看更多内容
黑桃花2023-06-12 06:58:041

协方差怎么算呀?

您好,你的问题,我之前好像也遇到过,以下是我原来的解决思路和方法,希望能帮助到你,若有错误,还望见谅!展开全部1、列联系数,简称c系数,主要用于大于2×2列联表的情况。当列联表中的两个变量相互独立时,系数c=0,但它不可能大于1,这一点从式(9.7)中也可以反映出来。c系数的特点是,其可能的最大值依赖于列联表的行数和列数,且随着R和C的增大而增大。例如,当两个变量完全相关时,对于2×2表,c=0.7071;对于3×3表,c=0.8165;而对于4×4表,c=0.87。2、协方差,在概率论和统计学中用于衡量两个变量的总体误差。而方差是协方差的一种特殊情况,即当两个变量是相同的情况。协方差表示的是两个变量的总体的误差,这与只表示一个变量误差的方差不同。 如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值,另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值。 3、Cramer V系数,是线性代数中一个关于求解线性方程组的定理。它适用于变量和方程数目相等的线性方程组,是瑞士数学家克莱姆(1704-1752)于1750年,在他的《线性代数分析导言》中发表的。其实莱布尼兹〔1693〕,以及马克劳林〔1748〕亦知道这个法则,但他们的记法不如克莱姆。对于多于两个或三个方程的系统,克莱姆的规则在计算上非常低效;与具有多项式时间复杂度的消除方法相比,其渐近的复杂度为O(n·n!)。非常感谢您的耐心观看,如有帮助请采纳,祝生活愉快!谢谢!
大鱼炖火锅2023-06-12 06:58:041

协方差公式怎么求的?

协方差cov计算公式是:cov(x,y)=EXY-EX*EYEX为随机变量X的数学期望,同理,EXY是XY的数学期望,挺麻烦的,建议你看一下概率论cov(x,y)=EXY-EX*EY。协方差的定义,EX为随机变量X的数学期望,同理,EXY是XY的数学期望,挺麻烦的,建议你看一下概率论。扩展资料如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值时另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值;如果两个变量的变化趋势相反,即其中一个变量大于自身的期望值时另外一个却小于自身的期望值,那么两个变量之间的协方差就是负值。如果X与Y是统计独立的,那么二者之间的协方差就是0,因为两个独立的随机变量满足E[XY]=E[X]E[Y]。但是,反过来并不成立。即如果X与Y的协方差为0,二者并不一定是统计独立的。
NerveM 2023-06-12 06:58:031

两个随机变量的协方差cov=0,则ξ与η什么关系

摘要:协方差Cov(X,Y)是描述二维随机变量两个分量间相互关联程度的一个特征数,如果将协方差相应标准化变量就得到相关系数Corr(X,Y)。从而可以引进相关系数Corr(X,Y)去刻画二维随机变量两个分量间相互关联程度。且事实表明,相关系数明显被广泛应用。本文的目的在于从协方差与相关系数的关系的角度去探讨协方差与相关系数的优缺点,并具体介绍协方差和相关系数这两个描述二维随机变量间相关性的特征数。 关键字:协方差Cov(X,Y) 相关系数Corr(X,Y) 相互关联程度1 协方差、相关系数的定义及性质设(X ,Y)是一个二维随机变量,若E{ [ X-E(X) ] [ Y-E(Y) ] }存在,则称此数学期望为X与Y的协方差,并记为Cov(X,Y)=E{ [ X-E(X) ] [ Y-E(Y) ] },特别有Cov(X,X)=Var(X)。从协方差的定义可以看出,它是X的偏差“X-E(X) ”与Y的偏差“Y-E(Y)”的乘积的数学期望。由于偏差可正可负,故协方差也可正可负,也可为零,其具体表现如下:·当Cov(X,Y)>0时,称X与Y正相关,这时两个偏差 [ X-E(X) ] 与[ Y-E(Y) ] 同时增加或同时减少,由于E(X)与E(Y)都是常数,故等价于X与Y同时增加或同时减少,这就是正相关的含义。
再也不做站长了2023-06-12 06:58:011

请问两个随机变量XY不独立,他们的协方差cov(X,Y)已知,请问怎么计算两者乘积的期望E(XY)?

cov(x,y)=E(x*y)-E(x)*E(y)E(x*y)=cov(x,y)+E(x)*E(y)
Chen2023-06-12 06:58:013

协方差反映的是什么数字特征?

两个不同参数之间的方差就是协方差 定义 E[(X-E(X))(Y-E(Y))]称为随机变量X和Y的协方差,记作COV(X,Y),即COV(X,Y)=E[(X-E(X))(Y-E(Y))]. 协方差为描述X和Y相关程度的量
bikbok2023-06-12 06:58:001

我想问一下协方差公式,什么是协方差

1、cov(x,y)=EXY-EX*EY。2、协方差的定义,EX为随机变量X的数学期望,同理,EXY是XY的数学期望,挺麻烦的,建议你看一下概率论cov(x,y)=EXY-EX*EY。3、协方差(Covariance)在概率论和统计学中用于衡量两个变量的总体误差。而方差是协方差的一种特殊情况,即当两个变量是相同的情况。4、协方差表示的是两个变量的总体的误差,这与只表示一个变量误差的方差不同。如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值,另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值。如果两个变量的变化趋势相反,即其中一个大于自身的期望值,另外一个却小于自身的期望值,那么两个变量之间的协方差就是负值。更多关于协方差公式,什么是协方差,进入:https://m.abcgonglue.com/ask/9a369a1615839195.html?zd查看更多内容
瑞瑞爱吃桃2023-06-12 06:58:001

指数模型两个证券之间的协方差

一、首先要明白这2个的定义 1、相关系数是协方差与两个投资方案投资收益标准差之积的比值,其计算公式为:相关系数总是在-1到+1之间的范围内变动,-1代表完全负相关,+1代表完全正相关,0则表示不相关。 2、协方差是一个用于测量投资组合中某一具体投资项目相对于另一投资项目风险的统计指标。其计算公式为:当协方差为正值时,表示两种资产的收益率呈同方向变动;协方差为负值时,表示两种资产的收益率呈反方向变动。二、要辨清两者的关系 1、相关系数与协方差一定是在投资组合中出现的,只有组合才有相关系数和协方差。单个资产是没有相关系数和协方差之说的。 2、相关系数和协方差的变动方向是一致的,相关系数的负的,协方差一定是负的。 3、(1)协方差表示两种证劵之间共同变动的程度:相关系数是变量之间相关程度的指标根据协方差的公式可知,协方差与相关系数的正负号相同,但是协方差是相关系数和两证券的标准差的乘积,所以协方差表示两种证劵之间共同变动的程度。(2)相关系数是变量之间相关程度的指标,相关系数在0到1之间,表示两种报酬率的增长是同向的;相关系数在0到-1之间,表示两种报酬率的增长是反向的,所以说相关系数是变量之间相关程度的指标。总体来说,两项资产收益率的协方差,反映的是收益率之间共同变动的程度;而相关系数反映的是两项资产的收益率之间相对运动的状态。两项资产收益率的协方差等于两项资产的相关系数乘以各自的标准差。
西柚不是西游2023-06-12 06:57:591

如何计算二维分布的协方差系数?

如果有联合分布律的话,E(XY)=(X1)* (Y1)*(P1)+ (X2)*( Y2)*(P2)+…以此联合分布表为例:扩展资料:若两个随机变量X和Y相互独立,则E[(X-E(X))(Y-E(Y))]=0,因而若上述数学期望不为零,则X和Y必不是相互独立的,亦即它们之间存在着一定的关系。协方差与方差之间有如下关系:D(X+Y)=D(X)+D(Y)+2Cov(X,Y)D(X-Y)=D(X)+D(Y)-2Cov(X,Y)协方差与期望值有如下关系:Cov(X,Y)=E(XY)-E(X)E(Y)。协方差的性质:(1)Cov(X,Y)=Cov(Y,X);(2)Cov(aX,bY)=abCov(X,Y),(a,b是常数);(3)Cov(X1+X2,Y)=Cov(X1,Y)+Cov(X2,Y)。由协方差定义,可以看出Cov(X,X)=D(X),Cov(Y,Y)=D(Y)。
九万里风9 2023-06-12 06:57:581

数学高手在哪里?协方差与相关系数之间有什么关系?它们对二维随机变量的反映有什么不同?希望解释的准确

摘要:协方差Cov(X,Y)是描述二维随机变量两个分量间相互关联程度的一个特征数,如果将协方差相应标准化变量就得到相关系数Corr(X,Y)。从而可以引进相关系数Corr(X,Y)去刻画二维随机变量两个分量间相互关联程度。且事实表明,相关系数明显被广泛应用。本文的目的在于从协方差与相关系数的关系的角度去探讨协方差与相关系数的优缺点,并具体介绍协方差和相关系数这两个描述二维随机变量间相关性的特征数。 关键字:协方差Cov(X,Y) 相关系数Corr(X,Y) 相互关联程度1 协方差、相关系数的定义及性质设(X ,Y)是一个二维随机变量,若E{ [ X-E(X) ] [ Y-E(Y) ] }存在,则称此数学期望为X与Y的协方差,并记为Cov(X,Y)=E{ [ X-E(X) ] [ Y-E(Y) ] },特别有Cov(X,X)=Var(X)。从协方差的定义可以看出,它是X的偏差“X-E(X) ”与Y的偏差“Y-E(Y)”的乘积的数学期望。由于偏差可正可负,故协方差也可正可负,也可为零,其具体表现如下:·当Cov(X,Y)>0时,称X与Y正相关,这时两个偏差 [ X-E(X) ] 与[ Y-E(Y) ] 同时增加或同时减少,由于E(X)与E(Y)都是常数,故等价于X与Y同时增加或同时减少,这就是正相关的含义。
真颛2023-06-12 06:57:581

请教:怎么求n个变量两两间的协方差

随机变量X,Y协方差cov(X,Y)=ρ*√D(X)√D(Y),其中ρ是X,Y的相关系数,D(X),D(Y)是X,Y的方差.或者还可以由定义式来求:cov(X,Y)=E[(X-EX)(Y-EY)]=EXY-EXEY,其中E是数学期望.
ardim2023-06-12 06:57:571

如何通过一个协方差函数求另一个

在概率论和统计学中,协方差用于衡量两个变量的总体误差。2.期望值分别为E(X) = μ 与 E(Y) = ν 的两个实数随机变量X与Y之间的协方差定义为:COV(X,Y)=E[(X-E(X))(Y-E(Y))]等价计算式为COV(X,Y)=E(XY)-E(X)E(Y)
黑桃花2023-06-12 06:57:571

知道两个变量的方差,如何求它们的协方差?

如果你还知道它们的相关系数r,那么协方差=r*2次根号下方差*2次根号下另一个方差
再也不做站长了2023-06-12 06:57:563

协方差的定义?

定义 E[(X-E(X))(Y-E(Y))]称为随机变量X和Y的协方差,记作COV(X,Y),即COV(X,Y)=E[(X-E(X))(Y-E(Y))]。注意 E[(X-E(X))(Y-E(Y))]= E(XY)-E(X)E(Y) 。一:举例(1)Xi 1.1 1.9 3Yi 5.0 10.4 14.6E(X) = (1.1+1.9+3)/3=2E(Y) = (5.0+10.4+14.6)/3=10E(XY)=(1.1×5.0+1.9×10.4+3×14.6)/3=23.02Cov(X,Y)=E(XY)-E(X)E(Y)=23.02-2×10=3.02。二:(1)协方差表示的是两个变量的总体的误差,这与只表示一个变量误差的方差不同。 如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值,另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值。(2) 如果两个变量的变化趋势相反,即其中一个大于自身的期望值,另外一个却小于自身的期望值,那么两个变量之间的协方差就是负值。(3)如果X与Y是统计独立的,那么二者之间的协方差就是0,因为两个独立的随机变量满足E[XY]=E[X]E[Y]。(4)反过来并不成立。即如果X与Y的协方差为0,二者并不一定是统计独立的。(5)协方差Cov(X,Y)的度量单位是X的协方差乘以Y的协方差。而取决于协方差的相关性,是一个衡量线性独立的无量纲的数。协方差为0的两个随机变量称为是不相关的。三:性质若两个随机变量X和Y相互独立,则E[(X-E(X))(Y-E(Y))]=0,因而若上述数学期望不为零,则X和Y必不是相互独立的,亦即它们之间存在着一定的关系。协方差与方差之间有如下关系D(X+Y)=D(X)+D(Y)+2Cov(X,Y)D(X-Y)=D(X)+D(Y)-2Cov(X,Y)协方差与期望值有如下关系:Cov(X,Y)=E(XY)-E(X)E(Y)。
小白2023-06-12 06:57:541

协方差为什么可以表示出两变量之间的相关程度?

简单分析一下,详情如图所示
meira2023-06-12 06:57:542

对于两个实数随机变量X 与Y,其协方差是否存在以下关系: 〖cov〗^2 (X,Y)=cov (X^2 )*cov(Y^2 )

你的cov(X^2)是cov(X,X)吧?根据协方差的定义公式cov(X,Y)=E[X-E(X)][Y-E(Y)],所以cov(X,X)=E[X-E(X)][X-E(X)]==E[X-E(X)]^2=var(X)。同事可证cov(Y,Y)=var(Y)
北营2023-06-12 06:57:531

请问怎么计算协方差和相关系数啊?

x与y的相关系数可以通过公式Cov(X,Y)/根号(Var[X]*Var[Y]),其中Cov(X,Y)为X与Y的协方差,Var[X]为X的方差,Var[Y]为Y的方差。x与y的相关系数:1、当相关系数为0时,X和Y两变量无关系。2、当X的值增大(减小),Y值增大(减小),两个变量为正相关,相关系数在0.00与1.00之间。3、当X的值增大(减小),Y值减小(增大),两个变量为负相关,相关系数在-1.00与0.00之间。相关系数的绝对值越大,相关性越强,相关系数越接近于1或-1,相关度越强,相关系数越接近于0,相关度越弱。
豆豆staR2023-06-12 06:57:531

方差 标准差 协方差 有什么区别

方差是各个数据与其算术平均数的离差平方和的平均数标准差是各数据偏离平均数的距离的平均数,它是离均差平方和平均后的方根协方差用于衡量两个变量的总体误差
ardim2023-06-12 06:57:532

不相互独立的两个随机变量的协方差怎么求

Jm-R2023-06-12 06:57:522

协方差cov(X,X)是不是就等于X的方差?为什么?

XY独立,那么E(XY)=E(X)E(Y),于是baiCOV(XY)=E[(X-E(X))(Y-E(Y))]=E(XY)-E(X)E(Y)=0。至于为什么XY独立E(XY)=E(X)E(Y),这是因为XY的两个分布pxy(xy)=px(x)py(y)。协方差是两个变量的总体误差,它不同于一个变量误差的方差。如果两个变量具有相同的趋势,即一个大于其期望值,另一个大于其期望值,则两个变量之间的协方差为正。如果两个变量的变化方向相反,即一个大于其期望值,另一个小于其期望值,则两个变量之间的协方差为负。扩展资料:如果两个变量有相同的趋势,即如果其中一个大于它的期望值另一个也大于它的期望值,那么两个变量之间的协方差将会是正的;如果两个变量的变化方向相反,即一个大于其期望值,另一个小于其期望值,则两个变量之间的协方差为负。如果X和Y是统计独立的,那么它们之间的协方差为0,因为这两个独立的随机变量满足E[XY]=E[X]E[Y]。但事实并非如此。如果X和Y的协方差是0,它们不一定是统计独立的。协方差(X,Y)的协方差等于(X)的协方差乘以(Y)的协方差根据协方差的不同,它是一个无量纲的数字它度量的是线性无关。参考资料来源:百度百科-协方差
再也不做站长了2023-06-12 06:57:522

协方差与相关系数

如下,在测量5个肝细胞gene x 转录本表达情况的基础上,同时也测量这5个肝细胞gene y转录本表达量。对来自同一细胞(sample)的两个数据进行配对,利用其在X轴(green)和Y轴(red)上的数据在二维平面组成一个新的点(蓝色的点)并用直线对其进行拟合。 1)如果斜率为正,gene x与gene y在细胞中表达成正相关。gene x表达水平随gene Y表达水平的增加而增加。利用拟合的直线,可以根据gene x的表达量预测gene y表达水平,也可以基于gene y的表达量预测gene x的表达水平。 2)如果斜率为负,Gene x与gene y的表达呈现负相关趋势。较低的gene x表达水平对应较高的gene y表达水平,较高的gene x水平对应较低的gene y表达水平。注意!!!协方差本身并不容易被阐释,它不能告诉我们相关性直线的斜率(陡峭或平坦),也不能告诉我们样本是否靠近相关性直线,它仅仅告诉我们两变量之间的相关性直线的斜率是正还是负。 「协方差对数据的scale敏感,使其不能揭示数据间的相关性程度。」协方差值并不能告诉我们关系强弱,只能告诉我们是正/负相关。 协方差值的具体大小没有意义 协方差值对数据的波动(方差)较为敏感 当数据波动变大后,数据的协方差也会变大,但是我们想用一个不会受数据波动影响的系数来反映数据之间的相关性。那么最简单的办法就是把这个波动给去除掉就好,我们可以通过除以数据的SD(波动程度值)来去除,这样就得到了我们的pearson相关系数的计算公式: 为什么要除以SD:假设有一组数据 X1:1,2,3,4,5 Y1:1,2,3,4,5 根据协方差公式,可以计算出两个变量的协方差为2,SD分别为√2,√2 根据pearson相关系数的计算公式:相关系数为1 现在将X1,Y1同时扩大2倍 X1:2,4,6,8,10 Y1:2,4,6,8,10 根据协方差公式,可以计算出两个变量的协方差为8,SD分别为2√2,2√2 根据pearson相关系数的计算公式:相关系数为1 可以看出,当数据扩大2倍的是时候,协方差与标准差都发生了变化,但相关系数并没有发生改变。「(左图)强相关」:如果基于gene x的表达量能够无偏差地预测gene y的表达量,说明二者之间有很强的联系; 「(右图)弱相关」:如果基于gene x的表达量不能较准确地预测gene y的表达量,说明二者之间仅有较弱的联系。 以上涉及的是直线相关,相关系数的取值为【-1,1】: 散点完全在同一条直线上,预测的准确性最高,相关系数的正负号表示相关性的正负。若x与y是同向变化,相关系数等于1,为完全正相关;若x与y是反向变化,相关系数等于-1,为完全负相关。 散点不完全在同一直线上,沿直线分布越集中,相关系数越接近1,预测准确性逐渐增加。相反,沿直线分布越分散,相关系数越接近0,预测的准确性逐渐减弱。1.r 的取值范围在 [0,1] |r|>=0.8:高度相关 0.5<=|r|<0.8:中度相关 0.3<=|r|<0.5:低度相关 |r|<0.3:不相关 2.r 具有对称性,x与y的相关性系数和y与x的相关性系数相等 3.r 的数值与x和y的原点及尺度无关 4.r 仅仅表示线性关系的度量,不能用于非线性关系。例如,当r=0时只能表示两个变量之间没有线性相关关系,但是它们之间可能存着非线性相关关系 皮尔森相关性系数对数据是有比较高的要求的: 第一, 实验数据通常假设是成对的来自于正态分布的总体。为啥通常会假设为正态分布呢?因为我们在求皮尔森相关性系数以后,通常还会用t检验之类的方法来进行皮尔森相关性系数检验,而 t检验是基于数据呈正态分布的假设的。 第二, 实验数据之间的差距不能太大,或者说皮尔森相关性系数受异常值的影响比较大。比如刚才心跳与跑步的例子,万一这个人的心脏不太好,跑到一定速度后承受不了,突发心脏病,那这时候我们会测到一个偏离正常值的心跳(过快或者过慢,甚至为0),如果我们把这个值也放进去进行相关性分析,它的存在会大大干扰计算的结果的。 第三,两个变量之间是线性关系,都是连续数据。 「相同点」:二者符号的正负代表两变量变化趋势是同向还是反向; 「差异点」:相关系数的取值与数据的scale无关,不论数据的多少,只要数据完全在同一条直线上(陡峭或者平缓),相关系数就为1或者-1;而协方差取值对数据的scale敏感。这个原因使得协方差本身的意义难以阐释。皮尔森相关性系数是协方差与标准差的比值。 假设我们有一组数据,每一列代表一个样本,每一行代表一个基因在不同样本中的表达量 斯皮尔曼相关性系数,通常也叫斯皮尔曼秩相关系数,这是一种无参数(与分布无关)检验方法,要求数据具有同升或同降变化趋势,但明显不具有线性相关关系。 “秩”,可以理解成就是一种顺序或者排序,那么它就是根据原始数据的排序位置进行求解,这种表征形式就没有了求皮尔森相关性系数时那些限制。 也就是说,我们不用管X和Y这两个变量具体的值到底差了多少,只需要算一下它们每个值所处的排列位置的差值,就可以求出相关性系数了。 另外,即使出现异常值,由于异常值的秩次通常不会有明显的变化(比如过大或者过小,那要么排第一,要么排最后),所以对斯皮尔曼相关性系数的影响也非常小! 用“秩”的概念,一方面可以解决异常值的问题,但是有好就有坏,这在另外一方面,也说明,这种方法的检验效力没有pearson相关系数强,因为它忽略了相关性的具体大小,而只保留了大小关系。
NerveM 2023-06-12 06:57:511

二维度有两个变量 X Y,协方差计算出来是一个值,还是一个矩阵?

一般来说,协方差cov(X,Y)是一个数值。如果把两个变量写成向量形式Z=(X,Y)^T,则Var(Z)是协方差矩阵(2阶方阵,主对角元是方差,另外两个元素相等,是cov(X,Y))。
铁血嘟嘟2023-06-12 06:57:501

协方差的公式是什么? 有什么性质?

定义1:变量xk和xl如果均取n个样本,则它们的协方差定义为 ,这里 分别表示两变量系列的平均值。协方差可记为两个变量距平向量的内积,它反映两气象要素异常关系的平均状况。 定义2:度量两个随机变量协同变化程度的方差。协方差分析是建立在方差分析和回归分析基础之上的一种统计分析方法。 E[(X-E(X))(Y-E(Y))]称为随机变量X和Y的协方差,记作COV(X,Y),即COV(X,Y)=E[(X-E(X))(Y-E(Y))]。 协方差与方差之间有如下关系: D(X+Y)=D(X)+D(Y)+2COV(X,Y) D(X-Y)=D(X)+D(Y)-2COV(X,Y) 因此,COV(X,Y)=E(XY)-E(X)E(Y)。协方差的性质:(1)COV(X,Y)=COV(Y,X); (2)COV(aX,bY)=abCOV(X,Y),(a,b是常数); (3)COV(X1+X2,Y)=COV(X1,Y)+COV(X2,Y)。 由协方差定义,可以看出COV(X,X)=D(X),COV(Y,Y)=D(Y)。
小菜G的建站之路2023-06-12 06:57:502

用R语言怎么计算两个连续变量的协方差

从数据集 mtcars 中创建一个包含字段 “mpg”,“hp” 和 “am” 的数据帧。在这里,我们以“mpg”作为响应变量,“hp”作为预测变量以及 “am” 作为分类变量。input <- mtcars[,c("am","mpg","hp")]print(head(input))
瑞瑞爱吃桃2023-06-12 06:57:491

协方差与方差计算关系

1、期望收益率计算公式HPR=(期末价格 -期初价格+现金股息)/期初价格例:A股票过去三年的收益率为3%、5%、4%,B股票在下一年有30%的概率收益率为10%,40%的概率收益率为5%,另30%的概率收益率为8%。计算A、B两只股票下一年的预期收益率。解:A股票的预期收益率 =(3%+5%+4%)/3u2002= 4%u2002B股票的预期收益率u2002=10%×30%+5%×40%+8%×30% = 7.4%2、方差计算公式例:求43,45,44,42,41,43的方差。解:平均数=(43+45+44+42+41+43)/6=43S^2=【(43-43)^2+(45-43)^2+(44-43)^2+(42-43)^2+(41-43)^2+(43-43)^2】/6=(0+4+1+1+4+0)/6=10/63、协方差计算公式例:Xi 1.1 1.9 3,Yi 5.0 10.4 14.6解:E(X) = (1.1+1.9+3)/3=2E(Y) = (5.0+10.4+14.6)/3=10E(XY)=(1.1×5.0+1.9×10.4+3×14.6)/3=23.02Cov(X,Y)=E(XY)-E(X)E(Y)=23.02-2×10=3.024、相关系数计算公式解:由上面的解题可求X、Y的相关系数为r(X,Y)=Cov(X,Y)/(σxσy)=3.02/(0.77×3.93) = 0.9979表明这组数据X,Y之间相关性很好!扩展资料:1、期望收益率,又称为持有期收益率(HPR)指投资者持有一种理财产品或投资组合期望在下一个时期所能获得的收益率。期望收益率是投资者在投资时期望获得的报酬率,收益率就是未来现金流折算成现值的折现率,换句话说,期望收益率是投资者将预期能获得的未来现金流折现成一个现在能获得的金额的折现率。。2、方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的平均数。3、协方差(Covariance)在概率论和统计学中用于衡量两个变量的总体误差。而方差是协方差的一种特殊情况,即当两个变量是相同的情况。协方差表示的是两个变量的总体的误差,这与只表示一个变量误差的方差不同。4、相关系数是最早由统计学家卡尔·皮尔逊设计的统计指标,是研究变量之间线性相关程度的量,一般用字母 r 表示。由于研究对象的不同,相关系数有多种定义方式,较为常用的是皮尔逊相关系数。
苏萦2023-06-12 06:57:482

两个非独立随机变量乘积的协方差怎么求?

首先你的定义要弄懂,协方差永远是相对于至少两个以上变量的,比如cov(x,y)。如果你见过cov(x)只是cov(x,x)的缩写,cox(x)=cov(x,x)=D(x)因此没有"xy乘积的协方差"这个东西,要有的话意思也是cov(xy,xy)即D(xy)
tt白2023-06-12 06:57:482

协方差怎样计算

1.在概率论和统计学中,协方差用于衡量两个变量的总体误差。COV(X,Y)=E[(X-E(X))(Y-E(Y))]自协方差在统计学中,特定时间序列或者连续信号Xt的自协方差是信号与其经过时间平移的信号之间的协方差。如果序列的每个状态都有一个平均数E[Xt]=μt,那么自协方差为其中E是期望值运算符。如果Xt是二阶平稳过程,那么有更加常见的定义:其中k是信号移动的量值,通常称为延时。如果用方差σ^2进行归一化处理,那么自协方差就变成了自相关系数R(k),即有些学科中自协方差术语等同于自相关。自协方差函数是描述随机信号X(t)在任意两个不同时刻t1,t2,的取值之间的二阶混合中心矩,用来描述X(t)在两个时刻取值的起伏变化(相对与均值)的相关程度,也称为中心化的自相关函数。
meira2023-06-12 06:57:471

如何用sas计算两个变量的协方差

可以做相关分析(统计之星工作室)
九万里风9 2023-06-12 06:57:462

协方差矩阵、矩阵求逆的实际意义

1、协方差矩阵中的每一个元素是表示的随机向量X的不同分量之间的协方差,而不是不同样本之间的协方差,如元素Cij就是反映的随机变量Xi,Xj的协方差.2、协方差是反映的变量之间的二阶统计特性,如果随机向量的不同分量之间的相关性很小,则所得的协方差矩阵几乎是一个对角矩阵.对于一些特殊的应用场合,为了使随机向量的长度较小,可以采用主成分分析的方法,使变换之后的变量的协方差矩阵完全是一个对角矩阵,之后就可以舍弃一些能量较小的分量了(对角线上的元素反映的是方差,也就是交流能量).特别是在模式识别领域,当模式向量的维数过高时会影响识别系统的泛化性能,经常需要做这样的处理.3、必须注意的是,这里所得到的式(5)和式(6)给出的只是随机向量协方差矩阵真实值的一个估计(即由所测的样本的值来表示的,随着样本取值的不同会发生变化),故而所得的协方差矩阵是依赖于采样样本的,并且样本的数目越多,样本在总体中的覆盖面越广,则所得的协方差矩阵越可靠.4、如同协方差和相关系数的关系一样,我们有时为了能够更直观地知道随机向量的不同分量之间的相关性究竟有多大,还会引入相关系数矩阵.在概率论和统计学中,相关或称相关系数或关联系数,显示两个随机变量之间线性关系的强度和方向.在统计学中,相关的意义是用来衡量两个变量相对于其相互独立的距离.在这个广义的定义下,有许多根据数据特点而定义的用来衡量数据相关的系数.对于不同数据特点,可以使用不同的系数.最常用的是皮尔逊积差相关系数.其定义是两个变量协方差除以两个变量的标准差(方差).皮尔逊积差系数 数学特征 其中,E是数学期望,cov表示协方差.因为μX=E(X),σX2=E(X2) E2(X),同样地,对于Y,可以写成 当两个变量的标准差都不为零,相关系数才有定义.从柯西—施瓦茨不等式可知,相关系数不超过1.当两个变量的线性关系增强时,相关系数趋于1或-1.当一个变量增加而另一变量也增加时,相关系数大于0.当一个变量的增加而另一变量减少时,相关系数小于0.当两个变量独立时,相关系数为0.但反之并不成立.这是因为相关系数仅仅反映了两个变量之间是否线性相关.比如说,X是区间[-1,1]上的一个均匀分布的随机变量.Y=X2.那么Y是完全由X确定.因此Y和X是不独立的.但是相关系数为0.或者说他们是不相关的.当Y和X服从联合正态分布时,其相互独立和不相关是等价的.当一个或两个变量带有测量误差时,他们的相关性就受到削弱,这时,“反衰减”性(disattenuation)是一个更准确的系数.
左迁2023-06-12 06:57:291

方差、标准差、协方差、残差分别如何定义?用什么符号?有何区别?

以上特征值均用于数据统计,一般而言,统计只能针对有限的样本进行统计,故以下描述均基于样本统计。假设样本为xi,i=1...n,E(x)为样本的算术平均值残差vi=xi-E(x);残差的个数与样本中数据的数量n相等方差s^2=∑vi^2 /(n-1)标准差s为方差的平方根假设另外一个样本为yi,i=1...n,E(x)为样本的算术平均值协方差s(x,y)=∑vi*yi /(n-1)协方差用于衡量两个变量之间的关系,当两个变量完全独立,且样本数足够大时,协方差为零。方差是协方差的特殊形式,即s(x,x)=s(x)。
拌三丝2023-06-12 06:57:283

协方差函数在空间数据插值中的作用

1、两个随机变量的混合中心矩,变异函数为两个随机变量的方差的一半作为因变量的函数,直接理解为协方差函数即方差期望公式。2、是用于衡量两个变量的总体误差,协方差的一种特殊情况是方差,即当两个变量是相同的情况。3、是从质量因子的角度探讨因素不同水平对实验指标影响的差异,质量因子是可以人为控制的。回归分析是从数量因子的角度出发,通过建立回归方程来研究实验指标与一个或几个因子之间的数量关系,但大多数情况下,数量因子是不可以人为加以控制的。
真颛2023-06-12 06:57:281

两个变量的协方差为二阶混合中心矩吗?

两个变量的协方差是二阶混合中心矩。中心矩:对于正整数k,E(X)存在,E[|X-E(X)|)]<∞,则称E{[X-E(X)]}为随机变量X的k阶中心矩。X的方差是X的二阶中心矩,即D(X)=E{[X-E(X)]}。设X,Y为随机变量,E{[X-E(X)][Y-E(Y)]}存在,则称之为X与Y的k+p阶混合中心矩。协方差Cov(X,Y)是X和Y的二阶混合中心矩。
CarieVinne 2023-06-12 06:57:261

如何证明协方差为零的两个随机变量并不独立

如果两个变量的协方差为正, 那么两个变量的变化趋势一致,即一个变量如果变大,那么这个变量也会变大。如果协方差为负,那么两个变量的变化趋势想反。如果为0,说明两个变量不相关。协方差虽然在一定程度上能够反映了X和Y相关间的联系,但它还是受X与Y量纲的影响。所以再计算X与Y的协方差之前,先对X与Y进行标准化变换。扩展资料:注意事项:比如有100个样本,每个样本10个属性,那么计算得到的协方差矩阵一定是10*10的,而不是100*100的,这个一定要注意。协方差矩阵主要是为了分析属性与属性之间的相关性,而非样本与样本之间的相关性。利用协方差矩阵可以测量性别与剩下三个属性的相关程度,计算值为负值,比如胡子和岁数的协方差值计算为负,那么说明呈负相关,胡子越少,越年轻。如果为正值,比如皱纹和岁数的协方差矩阵为正值,那么呈正相关,即皱纹越多越年轻。参考资料来源:百度百科-协方差参考资料来源:百度百科-随机变量
康康map2023-06-12 06:57:261

两个变量协方差的计算公式

相关系数r的计算公式如图:其中Cov(X,Y)为X与Y的协方差,Var[X]为X的方差,Var[Y]为Y的方差。扩展资料:相关系数有一个明显的缺点,即它接近于1的程度与数据组数n相关,这容易给人一种假象。因为,当n较小时,相关系数的波动较大,对有些样本相关系数的绝对值易接近于1。当n较大时,相关系数的绝对值容易偏小。特别是当n=2时,相关系数的绝对值总为1。因此在样本容量n较小时,我们仅凭相关系数较大就判定变量x与y之间有密切的线性关系是不妥当的。参考资料来源:百度百科-相关系数
肖振2023-06-12 06:57:251

怎么求两个随机变量的协方差

cov(x,y)=EXY-EX*EY协方差的定义,EX为随机变量X的数学期望,同理,EXY是XY的数学期望,挺麻烦的,建议你看一下概率论cov(x,y)=EXY-EX*EY举例:Xi 1.1 1.9 3Yi 5.0 10.4 14.6E(X) = (1.1+1.9+3)/3=2E(Y) = (5.0+10.4+14.6)/3=10E(XY)=(1.1×5.0+1.9×10.4+3×14.6)/3=23.02 Cov(X,Y)=E(XY)-E(X)E(Y)=23.02-2×10=3.02  此外:还可以计算:D(X)=E(X^2)-E^2(X)=(1.1^2+1.9^2+3^2)/3 - 4=4.60-4=0.6 σx=0.77D(Y)=E(Y^2)-E^2(Y)=(5^2+10.4^2+14.6^2)/3-100=15.44 σy=3.93X,Y的相关系数:r(X,Y)=Cov(X,Y)/(σxσy)=3.02/(0.77×3.93) = 0.9979 表明这组数据X,Y之间相关性很好。扩展资料协方差(Covariance)在概率论和统计学中用于衡量两个变量的总体误差。而方差是协方差的一种特殊情况,即当两个变量是相同的情况。协方差表示的是两个变量的总体的误差,这与只表示一个变量误差的方差不同。 如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值,另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值。 如果两个变量的变化趋势相反,即其中一个大于自身的期望值,另外一个却小于自身的期望值,那么两个变量之间的协方差就是负值。期望值分别为E[X]与E[Y]的两个实随机变量X与Y之间的协方差Cov(X,Y)定义为:从直观上来看,协方差表示的是两个变量总体误差的期望。如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值时另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值;如果两个变量的变化趋势相反,即其中一个变量大于自身的期望值时另外一个却小于自身的期望值,那么两个变量之间的协方差就是负值。如果X与Y是统计独立的,那么二者之间的协方差就是0,因为两个独立的随机变量满足E[XY]=E[X]E[Y]。但是,反过来并不成立。即如果X与Y的协方差为0,二者并不一定是统计独立的。协方差Cov(X,Y)的度量单位是X的协方差乘以Y的协方差。而取决于协方差的相关性,是一个衡量线性独立的无量纲的数。协方差为0的两个随机变量称为是不相关的。参考资料:百度百科协方差
再也不做站长了2023-06-12 06:57:251

变量值对90的方差是什么意思

变量值与其均值离差平方的平均数。方差是各变量值与其均值离差平方的平均数,它是测算数值型数据离散程度的最重要的方法。变量值对90中的方差的意思是各变量值与其均值离差平方的平均数。标准差为方差的平方根,用S表示。方差是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)并把它叫做这组数据的方差。
北境漫步2023-06-12 06:56:241

SPSS方差分析如何体现调节变量?

说的是协变量么?再具体一点。
gitcloud2023-06-12 06:40:102
 首页 上一页  4 5 6 7 8 9 10 11 12 13 14  下一页  尾页