怎么求方差和标准差?
1)求一组数据的方差一般是先求这组数据的平均数; 再求这所有的数与这个平均数的差的“平方和”; 用这个平方和除以这组数据的个数即为“方差”。 2)标准差即是方差的算术平方根。 如求2,4,6的方差和标准差: 2,4,6平均数为(2+4+6)/3=4; 方差为[(2-4)^2+(4-4)^2+(6-4)^2]÷3=8/3; 标准差为:√(8/3)=(2√6)/3.余辉2023-07-07 15:11:141
方差的标准差是多少
方差是各个数据与平均数之差的平方的平均数,即 s^2=(1/n)[(x1-x_)^2+(x2-x_)^2+...+(xn-x_)^2] ,其中,x_表示样本的平均数,n表示样本的数量,^2表示平方,xn表示个体,而s^2就表示方差.标准差=方差的算术平方根,标准差 ,也称均方差,是各数据偏离平均数的距离的平均数,它是离均差平方和平均后的方根,用σ表示.标准差是方差的算术平方根.标准差能反映一个数据集的离散程度.平均数相同的,标准差未必相同.平均差是总体所有单位的平均值与其算术平均数的离差绝对值的算术平均数. 平均差是一种平均离差.离差是总体各单位的标志值与算术平均数之差.因离差和为零,离差的平均数不能将离差和除以离差的个数求得,而必须讲离差取绝对数来消除正负号.铁血嘟嘟2023-07-07 15:11:141
知道方差怎么求标准差
你翻翻高三选修2不就知道了吗!黑桃花2023-07-07 15:11:143
方差及标准差的是如何计算的呢
方差是各个数据与平均数之差的平方和的平均数,即s^2=(1/n)[(x1-x_)^2+(x2-x_)^2+...+(xn-x_)^2],其中,x_表示样本的平均数,n表示样本的数量,^,xn表示个体,而s^2就表示方差. 标准差就是方差开算术平方根阿啵呲嘚2023-07-07 15:11:141
方差与标准差
标准差(StandardDeviation),也称均方差(meansquareerror),是各数据偏离平均数的距离的平均数,它是离均差平方和平均后的方根,用σ表示。标准差是方差的算术平方根。标准差能反映一个数据集的离散程度。平均数相同的,标准差未必相同。方差是各个数据与平均数之差的平方的平均数。公式:1、方差s=[(x1-x)^2+(x2-x)^2+(xn-x)^2]/n(x为平均数)2、标准差=方差的算术平方根它们的意义:1、方差的意义在于反映了一组数据与其平均值的偏离程度;2、方差是衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。统计中的方差(样本方差)是各个数据分别与其平均数之差的平方的和的平均数。3、方差的特性在于:方差是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)并把它叫做这组数据的方差。在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定。4、标准差是方差的算术平方根,意义在于反映一个数据集的离散程度。我们可以代入期望的数学表达形式。比如连续随机变量:Var(X)=E[(Xu2212μ)2]=∫+∞u2212∞(xu2212μ)2f(x)dx方差概念背后的逻辑很简单。一个取值与期望值的“距离”用两者差的平方表示。该平方值表示取值与分布中心的偏差程度。平方的最小取值为0。当取值与期望值相同时,此时不离散,平方为0,即“距离”最小;当随机变量偏离期望值时,平方增大。由于取值是随机的,不同取值的概率不同,我们根据概率对该平方进行加权平均,也就获得整体的离散程度——方差。方差的平方根称为标准差(standard deviation, 简写std)。我们常用σ表示标准差σ=Var(X)u2212u2212u2212u2212u2212u2212√标准差也表示分布的离散程度。正态分布的方差 根据上面的定义,可以算出正态分布E(X)=1σ2πu2212u2212√∫+∞u2212∞xeu2212(xu2212μ)2/2σ2dx的方差为Var(X)=σ2正态分布的标准差正等于正态分布中的参数σ。这正是我们使用字母σ来表示标准差的原因!肖振2023-07-07 15:11:131
配方法的步骤需要用平方差公式吗?
配方法的步骤一般不需要用平方差公式。配方法过程 1.转化: 将此一元二次方程化为ax^2+bx+c=0的形式(即一元二次方程的一般形式)化为一般形式 2.移项: 常数项移到等式右边 3.系数化1: 二次项系数化为1 4.配方: 等号左右两边同时加上一次项系数一半的平方 5.求解: 用直接开平方法求解 整理 (即可得到原方程的根) 代数式表示方法:注(^2是平方的意思.) ax^2+bx+c=a(x+b/2a)^2+(4ac-b^2)/4a=a[(x+m)^2-n^2]=a(x+m+n)*(x+m-n) 例:解方程2x^2+4=6x 1. 2x^2-6x+4=0 2. x^2-3x+2=0 3. x^2-3x=-2 4. x^2-3x+2.25=0.25 (+2.25:加上3一半的平方,同时-2也要加上3一半的平方让等式两边相等) 5. (x-1.5)^2=0.25 (a^2+2b+1=0 即 (a+1)^2=0) 6. x-1.5=±0.5 7. x1=2 x2=1 (一元二次方程通常有两个解,X1 X2)再也不做站长了2023-07-07 06:53:031
方差公式是什么啊?
一.方差的概念与计算公式 例1两人的5次测验成绩如下: x:50,100,100,60,50e(x)=72; y:73,70,75,72,70e(y)=72。 平均成绩相同,但x不稳定,对平均值的偏离大。 方差描述随机变量对于数学期望的偏离程度。 单个偏离是 消除符号影响 方差即偏离平方的均值,记为d(x): 直接计算公式分离散型和连续型,具体为: 这里是一个数。推导另一种计算公式 得到:“方差等于平方的均值减去均值的平方”,即 , 其中 分别为离散型和连续型计算公式。称为标准差或均方差,方差描述波动程度。 二.方差的性质 1.设c为常数,则d(c)=0(常数无波动); 2.d(cx)=c2d(x)(常数平方提取); 证: 特别地d(-x)=d(x),d(-2x)=4d(x)(方差无负值) 3.若x、y相互独立,则 证:记 则 前面两项恰为d(x)和d(y),第三项展开后为 当x、y相互独立时, , 故第三项为零。 特别地 独立前提的逐项求和,可推广到有限项。 三.常用分布的方差 1.两点分布 2.二项分布 x~b(n,p) 引入随机变量xi(第i次试验中a出现的次数,服从两点分布) , 3.泊松分布(推导略) 4.均匀分布 另一计算过程为 5.指数分布(推导略) 6.正态分布(推导略) ~ 正态分布的后一参数反映它与均值的偏离程度,即波动程度(随机波动),这与图形的特征是相符的。 例2求上节例2的方差。 解根据上节例2给出的分布律,计算得到 工人乙废品数少,波动也小,稳定性好。凡尘2023-07-06 08:14:495
泊松分布的方差证明?
如果X~P(a)那么E(x)=D(x)=a;证明过程实在不好写(很多符号)先证明E(x)=a;然后按定义展开E(x^2)=a^2+a;因为D(x)=E(x^2)-[E(x)]^2;得证。典型的有:0-1分布二项分布泊松分布几何分布超几何分布均匀分布指数分布正态分布T(tao)分布等~苏萦2023-07-06 08:14:481
设X与Y是相互独立的两个随机变量,且均服从参数为λ的指数分布,试求随机变量Z1=4X-3Y与Z2=3X+Y的协方差
由于X~E(λ),所以密度函数为f(x)=λe?λx,x>0 0,x≤0 ,分布函数为F(x)=1?e?λx,x>0 0,x≤0 ?EX=1 λ ,DX=1 λ2 ,所以A,B,C都不对.因为E(X+Y)=2 λ ,E(X?Y)=0,而max(X,Y)的分布函数不是F2(x)=1?e?2λx,x>0 0,x≤0 ,所以D对.事实上,min(X,Y)的分布函数为 P{min(X,Y)}≤x}=1-P{min(X,Y)}>x}=1?P{X>x,Y>x}=1?P{X>x}P{Y>x}=1?[1?F(x)]2=1?e?2λx,x>0 0,x≤0 .故选择:D.铁血嘟嘟2023-07-06 08:14:461
如何推导指数分布的期望?为什么是 E(X)=1/λ 最好还能告诉我如何推导它的方差?
f(x)=λe^(-λx) E(X),对xf(x)积分,从0到正无穷. 积出的结果就是1/λ. 方差,对x^2f(x)积分.Jm-R2023-07-06 08:14:441
x~E(a),参数为a的指数分布,期望和方差为多少?
E(x)=1/a;D(X)=1/(a^2).tt白2023-07-06 08:14:441
指数分布e(入)的数学期望和方差分别是
数学期望是入方差是入http://baike.baidu.com/view/743082.htm?fr=ala0_1瑞瑞爱吃桃2023-07-06 08:14:442
方差分析的基本思想是什么?
通过分析研究中不同来源的变异对总变异的贡献大小,从而确定可控因素对研究结果影响力的大小。mlhxueli 2023-07-06 08:14:445
X1,X2…Xn服从指数分布exp(λ),问总体方差的1-α置信区间怎么算?谢谢大神指导!
由于X~E(λ),所以密度函数为f(x)=λe?λx,x>00,x≤0,分布函数为F(x)=1?e?λx,x>00,x≤0?EX=1λ,DX=1λ2,所以A,B,C都不对.因为E(X+Y)=2λ,E(X?Y)=0,而max(X,Y)的分布函数不是F2(x)=1?e?2λx,x>00,x≤0,所以D对.事实上,min。此后故乡只2023-07-06 08:14:441
指数分布期望方差是怎么证明的 指数分布期望方差证明方法
1、首先知道EX=1/a DX=1/a^2 2、指数函数概率密度函数:f(x)=a*e^(ax),x>0,其中a>0为常数。 f(x)=0,其他 3、有连续行随机变量的期望有E(X)==∫|x|*f(x)dx,(积分区间为负无穷到正无穷) 则E(X)==∫|x|*f(x)dx,(积分区间为0到正无穷),因为负无穷到0时函数值为0. EX)==∫x*f(x)dx==∫ax*e^(-ax)dx=-(xe^(-ax)+1/a*e^(-ax))|(正无穷到0)=1/a 而E(X^2)==∫x^2*f(x)dx=∫x^2*a*e^(ax)dx=-(2/a^2*e^(-ax)+2x*e^(-ax)+ax^2*e^(-ax))|(正无穷到0)=2/a^2, DX=E(X^2)-(EX)^2=2/a^2-(1/a)^2=1/a^2 即证!meira2023-07-06 08:14:431
指数分布期望与方差的证明
首先知道ex=1/adx=1/a^2指数函数概率密度函数:f(x)=a*e^(ax),x>0,其中a>0为常数。f(x)=0,其他有连续行随机变量的期望有e(x)==∫|x|*f(x)dx,(积分区间为负无穷到正无穷)则e(x)==∫|x|*f(x)dx,(积分区间为0到正无穷),因为负无穷到0时函数值为0.ex)==∫x*f(x)dx==∫ax*e^(-ax)dx=-(xe^(-ax)+1/a*e^(-ax))|(正无穷到0)=1/a而e(x^2)==∫x^2*f(x)dx=∫x^2*a*e^(ax)dx=-(2/a^2*e^(-ax)+2x*e^(-ax)+ax^2*e^(-ax))|(正无穷到0)=2/a^2,dx=e(x^2)-(ex)^2=2/a^2-(1/a)^2=1/a^2即证!!主要是求积分的问题,证明只要按照连续型随机变量的期望与方差的求法公式就行啦!黑桃花2023-07-06 08:14:421
求参数为λ的指数分布的期望与方差
【答案】:指数函数概率密度函数:f(x)=a*e^(ax),x>0,其中a>0为常数.f(x)=0,其他有连续行随机变量的期望有E(X)==∫|x|*f(x)dx,(积分区间为负无穷到正无穷)则E(X)==∫|x|*f(x)dx,(积分区间为0到正无穷),因为负无穷到0时函数值为0.EX)==∫x*f(x)dx==∫ax*e^(-ax)dx=-(xe^(-ax)+1/a*e^(-ax))|(正无穷到0)=1/a而E(X^2)==∫x^2*f(x)dx=∫x^2*a*e^(ax)dx=-(2/a^2*e^(-ax)+2x*e^(-ax)+ax^2*e^(-ax))|(正无穷到0)=2/a^2,DX=E(X^2)-(EX)^2=2/a^2-(1/a)^2=1/a^2kikcik2023-07-06 08:14:421
设随机变量X1,X2,...Xn相互独立,且都服从数学期望为1的指数分步,求Z=min{X1,X2,...Xn}的数学期望和方差
对于这种min形式的随机变量,计算Z>t的概率。易知Z是期望为1/n的指数分布,方差是1/n^2再也不做站长了2023-07-06 08:14:413
设随机变量X服从参数为λ的指数分布(λ>0),求X的数学期望EX和方差DX
EX=DX =u03bb西柚不是西游2023-07-06 08:14:411
设总体x服从指数分布,密度函数为 1x是否为θ的有效估计2求θd的无偏估计的方差
由已知得:N1~B(n,1-θ),N2~B(n,θ-θ2),N3~B(n,θ2),因为:E(T)=E(3i=1aiNi)=a1E(N1)+a2E(N2)+a3E(N3)=a1n(1-θ)+a2n(θ-θ2)+a3nθ2 =na1+n(a2-a1)θ+n(a3?a2)θ2,由:E(T)=θ,得:a1=0,a2=1n,a3=1n瑞瑞爱吃桃2023-07-06 08:14:401
设总体X服从n的卡方分布,X1,X2…Xn为其样本,求样本平均值X bar的数学期望和方差
样本均值的期望是n,方差是2/n余辉2023-07-06 08:14:405
概率论数学期望和方差问题?
1、什么是方差呢?可以说是建立在数学期望基础上的概念,什么是数学期望呢?详见扩展:《关于数学期望由来??》从方差的概念中:X-E(x),可以看出是随机变量X的取值偏离E(x)平均程度的值,可能是正,也可能是负,再取平方之后,都是正。可见方差是对数学期望的偏离程度的放大。如果说数学期望是对一条曲线整体波动性的描述(用值 X 概率,再相加或积分),那么方差则更深入到这个波动性的内部,提示了波动性产生的原因(也就是偏离程度,用随机变量X的平方的数学期望 减去 X的数学期望的平方)。也就是计算方差公式:公式很重要!!!!!!2、常见离散型随机变量方差:0-1分布: D(x)=p(数学期望) * (1-p)二项分布: D(x)=np * (1-p)泊松分布: D(x)=lambda(与数学期望一样)3、常见连续型随机变量的方差:均匀分布: D(x)=frac{(b-a)^{2}}{12},区间长度的平方除以12指数分布: D(x)=frac{1}{lambda ^{2}}正态分布: D(x)=sigma^24、方差的性质:扩展:关于数学期望由来??整个随机变量的数学特征,数学期望描述的是随机变量取值的平均程度。方差描述的是随机变量的取值偏离其数学期望的偏离程度。相关系数描述的是两个随机变量之间的相互关系,是不是具有线性关系。可见,前两个都是随机变量的取值的特征,也是最先想到的,至于为什么用平均程度来衡量呢?书中提到个词“波动性”就很关键了,这也是其中的原因。离散型随机变量的数学期望:为什么离散型随机变量的数学期望是通过不同值乘其对应概率,相加得到的呢?可以从其离散型随机变量图形得到,每个具体的值(在x轴),分别对应一个不同的概率值,相加后自然会得到一个值,对于同一个事物研究这个和,仿佛没有什么意义,但当相同的事物大于2个的时候,和越大,说明这个事物的波动性越大,越不稳定,从而具有现实意义和价值。需要记忆的常见离散型随机变量的数学期望:0-1分布:P{X=1},P{X=0}=1-p,EX=1*p+0*(1-p)=p二项分布:Xsim(n,p) , EX=np泊松分布北境漫步2023-07-06 08:14:391
总结归纳方差的性质
方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的平均数。在许多实际问题中,研究方差即偏离程度有着重要意义。以下是我整理的总结归纳方差的性质,一起来看看吧。 总结归纳方差的性质 篇1 一.方差的概念与计算公式 例1 两人的5次测验成绩如下: X: 50,100,100,60,50 E(X )=72; Y: 73, 70, 75,72,70 E(Y )=72。 平均成绩相同,但X 不稳定,对平均值的偏离大。 方差描述随机变量对于数学期望的偏离程度。 单个偏离是 消除符号影响 方差即偏离平方的均值,记为D(X ): 直接计算公式分离散型和连续型,具体为: 这里 是一个数。推导另一种计算公式 得到:“方差等于平方的均值减去均值的平方”。 其中,分别为离散型和连续型计算公式。 称为标准差或均方差,方差描述波动 二.方差的性质 1.设C为常数,则D(C) = 0(常数无波动); 2. D(CX )=C2 D(X ) (常数平方提取); 证: 特别地 D(-X ) = D(X ), D(-2X ) = 4D(X )(方差无负值) 特别地 独立前提的逐项求和,可推广到有限项。 方差公式: 平均数:M=(x1+x2+x3+…+xn)/n (n表示这组数据个数,x1、x2、x3……xn表示这组数据具体数值) 方差公式:S=〈(M-x1)+(M-x2)+(M-x3)+…+(M-xn)〉╱n 三.常用分布的方差 1.两点分布 2.二项分布 X ~ B ( n, p ) 引入随机变量 Xi (第i次试验中A 出现的次数,服从两点分布), 3.泊松分布(推导略) 4.均匀分布 另一计算过程为 5.指数分布(推导略) 6.正态分布(推导略) 7.t分布 :其中X~T(n),E(X)=0;D(X)=n/(n-2); 8.F分布:其中X~F(m,n),E(X)=n/(n-2); ~ 正态分布的后一参数反映它与均值 的偏离程度,即波动程度(随机波动),这与图形的特征是相符的 总结归纳方差的性质 篇2 第一章 实数 一、 重要概念 1.数的分类及概念 数系表: 说明:"分类"的原则:1)相称(不重、不漏) 2)有标准 2.非负数:正实数与零的统称。(表为:x≥0) 性质:若干个非负数的和为0,则每个非负数均为0。 3.倒数: ①定义及表示法 ②性质:A.a≠1/a(a≠±1);B.1/a中,a≠0;C.01;a>1时,1/a<1;D.积为1。 4.相反数: ①定义及表示法 ②性质:A.a≠0时,a≠-a;B.a与-a在数轴上的位置;C.和为0,商为-1。 5.数轴:①定义("三要素") ②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。 6.奇数、偶数、质数、合数(正整数-自然数) 定义及表示: 奇数:2n-1 偶数:2n(n为自然数) 7.绝对值:①定义(两种): 代数定义: 几何定义:数a的绝对值顶的几何意义是实数a在数轴上所对应的点到原点的距离。 ②│a│≥0,符号"││"是"非负数"的标志;③数a的绝对值只有一个;④处理任何类型的题目,只要其中有"││"出现,其关键一步是去掉"││"符号。 二、 实数的运算 1. 运算法则(加、减、乘、除、乘方、开方) 2. 运算定律(五个-加法[乘法]交换律、结合律;[乘法对加法的] 分配律) 3. 运算顺序:A.高级运算到低级运算;B.(同级运算)从"左" 到"右"(如5÷ ×5);C.(有括号时)由"小"到"中"到"大"。 三、 应用举例(略) 附:典型例题 1. 已知:a、b、x在数轴上的位置如下图,求证:│x-a│ │x-b│ =b-a. 2.已知:a-b=-2且ab<0,(a≠0,b≠0),判断a、b的符号。 第二章 代数式 ★重点★代数式的有关概念及性质,代数式的运算 ☆内容提要☆ 一、 重要概念 分类: 1.代数式与有理式 用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独 的一个数或字母也是代数式。 整式和分式统称为有理式。 2.整式和分式 含有加、减、乘、除、乘方运算的代数式叫做有理式。 没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。 有除法运算并且除式中含有字母的有理式叫做分式。 3.单项式与多项式 没有加减运算的整式叫做单项式。(数字与字母的积-包括单独的一个数或字母) 几个单项式的和,叫做多项式。 说明:①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。划分代数式类别时,是从外形来看。如, =x, =│x│等。 4.系数与指数 区别与联系:①从位置上看;②从表示的意义上看 5.同类项及其合并 条件:①字母相同;②相同字母的指数相同 合并依据:乘法分配律 6.根式 表示方根的代数式叫做根式。 含有关于字母开方运算的代数式叫做无理式。 注意:①从外形上判断;②区别: 、 是根式,但不是无理式(是无理数)。 7.算术平方根 ⑴正数a的正的平方根( [a≥0-与"平方根"的区别]); ⑵算术平方根与绝对值 ① 联系:都是非负数, =│a│ ②区别:│a│中,a为一切实数; 中,a为非负数。 8.同类二次根式、最简二次根式、分母有理化 化为最简二次根式以后,被开方数相同的二次根式叫做同类二次根式。 满足条件:①被开方数的因数是整数,因式是整式;②被开方数中不含有开得尽方的因数或因式。 把分母中的根号划去叫做分母有理化。 9.指数 ⑴ ( -幂幂,乘方运算) ① a>0时, >0;②a<0时,>0(n是偶数),<0(n是奇数) ⑵零指数: =1(a≠0) 负整指数: =1/ (a≠0,p是正整数) 二、 运算定律、性质、法则 1.分式的加、减、乘、除、乘方、开方法则 2.分式的性质 ⑴基本性质: = (m≠0) ⑵符号法则: ⑶繁分式:①定义;②化简方法(两种) 3.整式运算法则(去括号、添括号法则) 4.幂的运算性质:① o = ;② ÷ = ;③ = ;④ = ;⑤ 技巧: 5.乘法法则:⑴单×单;⑵单×多;⑶多×多。 6.乘法公式:(正、逆用) (a b)(a-b)= (a±b) = 7.除法法则:⑴单÷单;⑵多÷单。 8.因式分解:⑴定义;⑵方法:A.提公因式法;B.公式法;C.十字相乘法;D.分组分解法;E.求根公式法。 9.算术根的性质: = ; ; (a≥0,b≥0); (a≥0,b>0)(正用、逆用) 10.根式运算法则:⑴加法法则(合并同类二次根式);⑵乘、除法法则;⑶分母有理化:A. ;B. ;C. . 11.科学记数法: (1≤a<10,n是整数= 三、 应用举例(略) 四、 数式综合运算(略) 第三章 统计初步 ★重点★ ☆ 内容提要☆ 一、 重要概念 1.总体:考察对象的全体。 2.个体:总体中每一个考察对象。 3.样本:从总体中抽出的一部分个体。 4.样本容量:样本中个体的数目。 5.众数:一组数据中,出现次数最多的数据。 6.中位数:将一组数据按大小依次排列,处在最中间位置的一个数(或最中间位置的两个数据的平均数) 二、 计算方法 1.样本平均数:⑴ ;⑵若 , ,…, ,则 (a-常数, , ,…, 接近较整的常数a);⑶加权平均数: ;⑷平均数是刻划数据的集中趋势(集中位置)的特征数。通常用样本平均数去估计总体平均数,样本容量越大,估计越准确。 2.样本方差:⑴ ;⑵若 , ,…, ,则 (a-接近 、 、…、 的平均数的较"整"的常数);若 、 、…、 较"小"较"整",则 ;⑶样本方差是刻划数据的离散程度(波动大小)的特征数,当样本容量较大时,样本方差非常接近总体方差,通常用样本方差去估计总体方差。 3.样本标准差: 三、 应用举例(略) 第四章 直线形 ★重点★相交线与平行线、三角形、四边形的有关概念、判定、性质。 ☆ 内容提要☆ 一、 直线、相交线、平行线 1.线段、射线、直线三者的区别与联系 从"图形"、"表示法"、"界限"、"端点个数"、"基本性质"等方面加以分析。 2.线段的中点及表示 3.直线、线段的基本性质(用"线段的基本性质"论证"三角形两边之和大于第三边") 4.两点间的距离(三个距离:点-点;点-线;线-线) 5.角(平角、周角、直角、锐角、钝角) 6.互为余角、互为补角及表示方法 7.角的平分线及其表示 8.垂线及基本性质(利用它证明"直角三角形中斜边大于直角边") 9.对顶角及性质 10.平行线及判定与性质(互逆)(二者的区别与联系) 11.常用定理:①同平行于一条直线的两条直线平行(传递性);②同垂直于一条直线的两条直线平行。 12.定义、命题、命题的组成 13.公理、定理 14.逆命题 二、 三角形 分类:⑴按边分; ⑵按角分 1.定义(包括内、外角) 2.三角形的边角关系:⑴角与角:①内角和及推论;②外角和;③n边形内角和;④n边形外角和。⑵边与边:三角形两边之和大于第三边,两边之差小于第三边。⑶角与边:在同一三角形中, 3.三角形的主要线段 讨论:①定义②××线的交点-三角形的×心③性质 ① 高线②中线③角平分线④中垂线⑤中位线 ⑴一般三角形⑵特殊三角形:直角三角形、等腰三角形、等边三角形 4.特殊三角形(直角三角形、等腰三角形、等边三角形、等腰直角三角形)的判定与性质 5.全等三角形 ⑴一般三角形全等的判定(SAS、ASA、AAS、SSS) ⑵特殊三角形全等的判定:①一般方法②专用方法 6.三角形的面积 ⑴一般计算公式⑵性质:等底等高的三角形面积相等。 7.重要辅助线 ⑴中点配中点构成中位线;⑵加倍中线;⑶添加辅助平行线 8.证明方法 ⑴直接证法:综合法、分析法 ⑵间接证法-反证法:①反设②归谬③结论 ⑶证线段相等、角相等常通过证三角形全等 ⑷证线段倍分关系:加倍法、折半法 ⑸证线段和差关系:延结法、截余法 ⑹证面积关系:将面积表示出来 三、 四边形 分类表: 1.一般性质(角) ⑴内角和:360° ⑵顺次连结各边中点得平行四边形。 推论1:顺次连结对角线相等的四边形各边中点得菱形。 推论2:顺次连结对角线互相垂直的四边形各边中点得矩形。 ⑶外角和:360° 2.特殊四边形 ⑴研究它们的一般方法: ⑵平行四边形、矩形、菱形、正方形;梯形、等腰梯形的定义、性质和判定 ⑶判定步骤:四边形→平行四边形→矩形→正方形 ┗→菱形--↑ ⑷对角线的纽带作用: 3.对称图形 ⑴轴对称(定义及性质);⑵中心对称(定义及性质) 4.有关定理:①平行线等分线段定理及其推论1、2 ②三角形、梯形的中位线定理 ③平行线间的距离处处相等。(如,找下图中面积相等的三角形) 5.重要辅助线:①常连结四边形的对角线;②梯形中常"平移一腰"、"平移对角线"、"作高"、"连结顶点和对腰中点并延长与底边相交"转化为三角形。 6.作图:任意等分线段。 初三年级上册数学知识点归纳总结: 第五章 方程(组) ★重点★一元一次、一元二次方程,二元一次方程组的解法;方程的有关应用题(特别是行程、工程问题) ☆ 内容提要☆ 一、 基本概念 1.方程、方程的解(根)、方程组的解、解方程(组) 2. 分类: 二、 解方程的依据-等式性质 1.a=b←→a c=b c 2.a=b←→ac=bc (c≠0) 三、 解法 1.一元一次方程的解法:去分母→去括号→移项→合并同类项→ 系数化成1→解。 2. 元一次方程组的解法:⑴基本思想:"消元"⑵方法:①代入法 ②加减法 四、 一元二次方程 1.定义及一般形式: 2.解法:⑴直接开平方法(注意特征) ⑵配方法(注意步骤-推倒求根公式) ⑶公式法: ⑷因式分解法(特征:左边=0) 3.根的判别式: 4.根与系数顶的关系: 逆定理:若 ,则以 为根的一元二次方程是: 。 5.常用等式: 五、 可化为一元二次方程的方程 1.分式方程 ⑴定义 ⑵基本思想: ⑶基本解法:①去分母法②换元法(如, ) ⑷验根及方法 2.无理方程 ⑴定义 ⑵基本思想: ⑶基本解法:①乘方法(注意技巧!!)②换元法(例, )⑷验根及方法 3.简单的二元二次方程组 由一个二元一次方程和一个二元二次方程组成的二元二次方程组都可用代入法解。 六、 列方程(组)解应用题 一概述 列方程(组)解应用题是中学数学联系实际的一个重要方面。其具体步骤是: ⑴审题。理解题意。弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关系是什 么。 ⑵设元(未知数)。①直接未知数②间接未知数(往往二者兼用)。一般来说,未知数越多,方程越易列,但越难解。 ⑶用含未知数的代数式表示相关的量。 ⑷寻找相等关系(有的由题目给出,有的由该问题所涉及的等量关系给出),列方程。一般地,未知数个数与方程个数是相同的。 ⑸解方程及检验。 ⑹答案。 综上所述,列方程(组)解应用题实质是先把实际问题转化为数学问题(设元、列方程),在由数学问题的解决而导致实际问题的解决(列方程、写出答案)。在这个过程中,列方程起着承前启后的作用。因此,列方程是解应用题的关键。 二常用的相等关系 1. 行程问题(匀速运动) 基本关系:s=vt ⑴相遇问题(同时出发): ⑵追及问题(同时出发): 若甲出发t小时后,乙才出发,而后在B处追上甲,则 ⑶水中航行: ; 2. 配料问题:溶质=溶液×浓度 溶液=溶质 溶剂 3.增长率问题: 4.工程问题:基本关系:工作量=工作效率×工作时间(常把工作量看着单位"1")。 5.几何问题:常用勾股定理,几何体的面积、体积公式,相似形及有关比例性质等。 三注意语言与解析式的"互化 如,"多"、"少"、"增加了"、"增加为(到)"、"同时"、"扩大为(到)"、"扩大了"、…… 又如,一个三位数,百位数字为a,十位数字为b,个位数字为c,则这个三位数为:100a 10b c,而不是abc。 四注意从语言叙述中写出相等关系。 如,x比y大3,则x-y=3或x=y 3或x-3=y。又如,x与y的差为3,则x-y=3。五注意单位换算 如,"小时""分钟"的换算;s、v、t单位的一致等。 七、应用举例(略) 第六章 一元一次不等式(组) ★重点★一元一次不等式的性质、解法 ☆ 内容提要☆ 1. 定义:a>b、a 2. 一元一次不等式:ax>b、ax 3. 一元一次不等式组: 4. 不等式的性质:⑴a>b←→a c>b c ⑵a>b←→ac>bc(c>0) ⑶a>b←→ac ⑷(传递性)a>b,b>c→a>c ⑸a>b,c>d→a c>b d. 5.一元一次不等式的解、解一元一次不等式 6.一元一次不等式组的解、解一元一次不等式组(在数轴上表示解集) 7.应用举例(略) 第七章 相似形 ★重点★相似三角形的判定和性质 ☆内容提要☆ 一、本章的两套定理 第一套(比例的有关性质): 涉及概念:①第四比例项②比例中项③比的前项、后项,比的内项、外项④黄金分割等。 第二套: 注意:①定理中"对应"二字的含义; ②平行→相似(比例线段)→平行。 二、相似三角形性质 1.对应线段…;2.对应周长…;3.对应面积…。 三、相关作图 ①作第四比例项;②作比例中项。 四、证(解)题规律、辅助线 1."等积"变"比例","比例"找"相似"。 2.找相似找不到,找中间比。方法:将等式左右两边的比表示出来 3.添加辅助平行线是获得成比例线段和相似三角形的重要途径。 4.对比例问题,常用处理方法是将"一份"看着k;对于等比问题,常用处理办法是设"公比"为k。 5.对于复杂的几何图形,采用将部分需要的图形(或基本图形)"抽"出来的办法处理。 五、 应用举例(略) 第八章 函数及其图象 ★重点★正、反比例函数,一次、二次函数的图象和性质。 ☆ 内容提要☆ 一、平面直角坐标系 1.各象限内点的坐标的特点 2.坐标轴上点的坐标的特点 3.关于坐标轴、原点对称的点的坐标的特点 4.坐标平面内点与有序实数对的对应关系 二、函数 1.表示方法:⑴解析法;⑵列表法;⑶图象法。 2.确定自变量取值范围的原则:⑴使代数式有意义;⑵使实际问题有 意义。 3.画函数图象:⑴列表;⑵描点;⑶连线。 三、几种特殊函数 (定义→图象→性质) 1. 正比例函数 ⑴定义:y=kx(k≠0) 或y/x=k。 ⑵图象:直线(过原点) ⑶性质:①k>0,…②k<0,… 2. 一次函数 ⑴定义:y=kx b(k≠0) ⑵图象:直线过点(0,b)-与y轴的交点和(-b/k,0)-与x轴的交点。 ⑶性质:①k>0,…②k<0,… ⑷图象的四种情况: 3. 二次函数 ⑴定义: 特殊地, 都是二次函数。 ⑵图象:抛物线(用描点法画出:先确定顶点、对称轴、开口方向,再对称地描点)。 用配方法变为,则顶点为(h,k);对称轴为直线x=h;a>0时,开口向上;a<0时,开口向下。 ⑶性质:a>0时,在对称轴左侧…,右侧…;a<0时,在对称轴左侧…,右侧…。 4.反比例函数 ⑴定义: 或xy=k(k≠0)。 ⑵图象:双曲线(两支)-用描点法画出。 ⑶性质:①k>0时,图象位于…,y随x…;②k<0时,图象位于…,y随x…;③两支曲线无限接近于坐标轴但永远不能到达坐标轴。 四、重要解题方法 1.用待定系数法求解析式(列方程[组]求解)。对求二次函数的解析式,要合理选用一般式或顶点式,并应充分运用抛物线关于对称轴对称的特点,寻找新的点的坐标。如下图: 2.利用图象一次(正比例)函数、反比例函数、二次函数中的k、b;a、b、c的符号。 六、应用举例(略) 第九章 解直角三角形 ★重点★解直角三角形 ☆ 内容提要☆ 一、三角函数 1.定义:在Rt△ABC中,∠C=Rt∠,则sinA= ;cosA= ;tgA= ;ctgA= . 2. 特殊角的三角函数值: 0° 30° 45° 60° 90° sinα cosα tgα / ctgα / 3. 互余两角的三角函数关系:sin(90°-α)=cosα;… 4. 三角函数值随角度变化的关系 5.查三角函数表 二、解直角三角形 1. 定义:已知边和角(两个,其中必有一边)→所有未知的边和角。 2. 依据:①边的关系: ②角的关系:A B=90° ③边角关系:三角函数的定义。 注意:尽量避免使用中间数据和除法。 三、对实际问题的处理 1. 俯、仰角: 2.方位角、象限角: 3.坡度: 4.在两个直角三角形中,都缺解直角三角形的条件时,可用列方程的办法解决。 四、应用举例(略) 第十章 圆 ★重点★①圆的重要性质;②直线与圆、圆与圆的位置关系;③与圆有关的角的定理;④与圆有关的比例线段定理。 ☆ 内容提要☆ 一、圆的基本性质 1.圆的定义(两种) 2.有关概念:弦、直径;弧、等弧、优弧、劣弧、半圆;弦心距;等圆、同圆、同心圆。 3."三点定圆"定理 4.垂径定理及其推论 5."等对等"定理及其推论 5. 与圆有关的角:⑴圆心角定义(等对等定理) ⑵圆周角定义(圆周角定理,与圆心角的关系) ⑶弦切角定义(弦切角定理) 二、直线和圆的位置关系 1.三种位置及判定与性质: 2.切线的性质(重点) 3.切线的判定定理(重点)。圆的切线的判定有⑴…⑵… 4.切线长定理 三、圆换圆的位置关系 1.五种位置关系及判定与性质:(重点:相切) 2.相切(交)两圆连心线的性质定理 3.两圆的公切线:⑴定义⑵性质 四、与圆有关的比例线段 1.相交弦定理 2.切割线定理 五、与和正多边形 1.圆的内接、外切多边形(三角形、四边形) 2.三角形的外接圆、内切圆及性质 3.圆的外切四边形、内接四边形的性质 4.正多边形及计算 中心角: 内角的一半: (右图) (解Rt△OAM可求出相关元素, 、 等) 六、 一组计算公式 1.圆周长公式 2.圆面积公式 3.扇形面积公式 4.弧长公式 5.弓形面积的计算方法 6.圆柱、圆锥的侧面展开图及相关计算 七、 点的轨迹 六条基本轨迹 八、 有关作图 1.作三角形的外接圆、内切圆 2.平分已知弧 3.作已知两线段的比例中项 4.等分圆周:4、8;6、3等分 九、 基本图形 十、 重要辅助线 1.作半径 2.见弦往往作弦心距 3.见直径往往作直径上的圆周角 4.切点圆心莫忘连 5.两圆相切公切线(连心线) 6.两圆相交公共弦再也不做站长了2023-07-06 08:14:391
方差的计算公式(S的平方=)是什么?
例1两人的5次测验成绩如下: X:50,100,100,60,50E(X)=72; Y:73,70,75,72,70E(Y)=72。 平均成绩相同,但X不稳定,对平均值的偏离大。 方差描述随机变量对于数学期望的偏离程度。 单个偏离是 消除符号影响 方差即偏离平方的均值,记为D(X): 直接计算公式分离散型和连续型,具体为: 这里是一个数。推导另一种计算公式 得到:“方差等于平方的均值减去均值的平方”,即 , 其中 分别为离散型和连续型计算公式。称为标准差或均方差,方差描述波动程度。 二.方差的性质 1.设C为常数,则D(C)=0(常数无波动); 2.D(CX)=C2D(X)(常数平方提取); 证: 特别地D(-X)=D(X),D(-2X)=4D(X)(方差无负值) 3.若X、Y相互独立,则 证:记 则 前面两项恰为D(X)和D(Y),第三项展开后为 当X、Y相互独立时, , 故第三项为零。 特别地 独立前提的逐项求和,可推广到有限项。 三.常用分布的方差 1.两点分布 2.二项分布 X~B(n,p) 引入随机变量Xi(第i次试验中A出现的次数,服从两点分布) , 3.泊松分布(推导略) 4.均匀分布 另一计算过程为 5.指数分布(推导略) 6.正态分布(推导略) ~ 正态分布的后一参数反映它与均值的偏离程度,即波动程度(随机波动),这与图形的特征是相符的。 例2求上节例2的方差。 解根据上节例2给出的分布律,计算得到 工人乙废品数少,波动也小,稳定性好。 方差的定义: 设一组数据x1,x2,x3······xn中,各组数据与它们的平均数x(拔)的差的平方分别是(x1-x拔)2,(x2-x拔)2······(xn-x拔)2,那么我们用他们的平均数s2=1/n【(x1-x拔)2+(x2-x拔)2+·····(xn-x拔)2】来衡量这组数据的波动大小,并把它叫做这组数据的方差无尘剑 2023-07-06 08:14:392
设随机变量X服从参数为Y的指数分布(Y>O),求X的数学期望EX和方差DX.
EX=1/y DX=1/(y^2) 不需要算的铁血嘟嘟2023-07-06 08:14:381
方差的计算公式
是这样,你这里,m就是,也就是均值,也就是你下面说的x拔,这三者是一个意思。EX=(x1+x2+...+xn)/n方差DX=【(x1-EX)平方+(x2-EX)平方+...(xn-EX)平方】/n望采纳,谢谢凡尘2023-07-06 08:14:381
整理二项分布、播送分布、均匀分布、指数分布、正态分布的期望和方差
二项分布X~B(n,p) E(X)=np Var(X)=npq 泊松分布X~P(λ) E(X)= Var(X)= λ^(-1) 均匀分布X~U(a,b) E(X)=(b+a)/2 Var(X)=(b-a)^(2) /12 指数分布X~E(λ) E(X)= λ^(-1) Var(X)= λ^(-2) 正态分布X~N(μ,σ^2 ) E(X)= μ Var(X)=σ^2mlhxueli 2023-07-06 08:14:371
x服从以r为参数的指数分布,求x的数学期望及方差
X~E(r)f(x)=re^(-rx),x>0;0,x<=0E(X)=∫xre^(-rx)dx=-∫xd(e^(-rx))=-xe^(-rx)+∫e^(-rx)dx=1/rE(X^2)=∫x^2re^(-rx)dx=-∫x^2de^(-rx)=-x^2e^(-rx)+2∫xe^(-rx)dx=0+(2/r)∫xre^(-rx)dx=2/r^2D(X)=E(X^2)-[E(X)]^2=1/r^2在这里求定积分太难表示了,总之是用分部积分,求期望时那个积分用了一次分部积分公式,求方差时用了两次北境漫步2023-07-06 08:14:371
六个常见分布的期望和方差是多少?
六个常见分布的期望和方差:1、均匀分布,期望是(a+b)/2,方差是(b-a)的平方/12。2、二项分布,期望是np,方差是npq。3、泊松分布,期望是p,方差是p。4、指数分布,期望是1/p,方差是1/(p的平方)。5、正态分布,期望是u,方差是&的平方。6、x服从参数为p的0-1分布,则e(x)=p,d(x)=p(1-p)。方差计算注意事项协方差矩阵计算的是不同维度之间的协方差,而不是不同样本之间的,结合下面的2理解,每个样本有很多特征,每个特征就是一个维度。根据公式,计算协方差需要计算均值,那是按行计算均值还是按列,协方差矩阵是计算不同维度间的协方差,要时刻牢记这一点。mlhxueli 2023-07-06 08:14:371
x服从均值为0.2的指数分布,y服从均值为0.3的指数分布,x+y 的期望和方差怎么求
E(x+y)=Ex+Ey=1/5+3/5=0.8D(x+y)=Dx+Dy+cov(x,y)=1/25+9/25+cov(x,y)需要知道x,y的协方差,若相互独立,则D(x+y)=Dx+Dy=1/25+9/25=0.4九万里风9 2023-07-06 08:14:371
伽马分布,指数分布,卡方分布之间的关系及期望,方差
个人拙见,如有错误请各位指出,互相讨论,共同进步Jm-R2023-07-06 08:14:371
方差怎么算?
一.方差的概念与计算公式 例1 两人的5次测验成绩如下: X: 50,100,100,60,50 E(X )=72; Y: 73, 70, 75,72,70 E(Y )=72。 平均成绩相同,但X 不稳定,对平均值的偏离大。 方差描述随机变量对于数学期望的偏离程度。 单个偏离是 消除符号影响 方差即偏离平方的均值,记为D(X ): 直接计算公式分离散型和连续型,具体为: 这里 是一个数。推导另一种计算公式 得到:“方差等于平方的均值减去均值的平方”,即 , 其中 分别为离散型和连续型计算公式。 称为标准差或均方差,方差描述波动程度。 二.方差的性质 1.设C为常数,则D(C) = 0(常数无波动); 2. D(CX )=C2 D(X ) (常数平方提取); 证: 特别地 D(-X ) = D(X ), D(-2X ) = 4D(X )(方差无负值) 3.若X 、Y 相互独立,则 证:记 则 前面两项恰为 D(X )和D(Y ),第三项展开后为 当X、Y 相互独立时, , 故第三项为零。 特别地 独立前提的逐项求和,可推广到有限项。 三.常用分布的方差 1.两点分布 2.二项分布 X ~ B ( n, p ) 引入随机变量 Xi (第i次试验中A 出现的次数,服从两点分布) , 3.泊松分布(推导略) 4.均匀分布 另一计算过程为 5.指数分布(推导略) 6.正态分布(推导略) ~ 正态分布的后一参数反映它与均值 的偏离程度,即波动程度(随机波动),这与图形的特征是相符的。 例2 求上节例2的方差。 解 根据上节例2给出的分布律,计算得到 工人乙废品数少,波动也小,稳定性好。豆豆staR2023-07-06 08:14:371
写出指数分布的概率密度函数、累积分布函数,并计算它的期望和方差(写出计算过程)。
点击看大图哈肖振2023-07-06 08:14:371
如果x服从指数分布,那么x平方的方差如何计算
利用方差计算公式D(x)=E(x^2)-(E(x))^2,E(x^2)和E(x)利用指数分布的概率密度函数在概率空间上积分可以求出。豆豆staR2023-07-06 08:14:361
指数分布 期望 方差是怎么证明的
九万里风9 2023-07-06 08:14:351
母体服从指数分布 子样数学期望和方差是什么
解:因为随机变量X服从参数为1的指数分布,所以f(x)=e^(-x)(x>0时)而f(x)=0(x<=0时)E(X+e^(-2X))=E(X)+E(e^(-2X))[令g(x)=e^(-2x)]=1+∫f(x)g(x)dx(0到无穷大积分)=1+∫e^(-3x)dx=4/3北境漫步2023-07-06 08:14:351
matlab计算指数分布期望与方差的命令?
不管是什么分布,期望是mean(x),方差是std(x)无尘剑 2023-07-06 08:14:351
求泊松分布和指数分布的期望和方差公式
import numpy as npx = np.random.poisson(lam=12, size=30) #lam就是均值和方差λ啦,size是产生多少个随机数print(x)bikbok2023-07-06 08:14:353
指数分布的方差是什么?
如果你用的是上海交通大学出版社出版的<<概率论与数理统计>>它的指数分布的数学期望是λ,方差是λ的平方,但是它的指数分布的概率密度与高教出版社的不同,需要你注意,提醒一下.北有云溪2023-07-06 08:14:343
什么是方差如何计算方差 方差计算公式
1、方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的平均数。在许多实际问题中,研究方差即偏离程度有着重要意义。 2、方差是衡量源数据和期望值相差的度量值。 3、离散型随机变量方差计算公式:D(X)=E{[X-E(X)]^2}=E(X^2) - [ E(X)]^2;连续型随机变量X方差计算公式:D(X)=(x-μ)^2 f(x) dx。小白2023-07-06 08:08:041
什么是方差如何计算方差方差计算公式
1、方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的平均数。在许多实际问题中,研究方差即偏离程度有着重要意义。2、方差是衡量源数据和期望值相差的度量值。3、离散型随机变量方差计算公式:D(X)=E{[X-E(X)]^2}=E(X^2)-[E(X)]^2;连续型随机变量X方差计算公式:D(X)=(x-μ)^2f(x)dx。九万里风9 2023-07-06 08:08:041
设随机变量X的方差D(X)=1,则E(D(X))等于多少,D(E(X))等于多少,在线等,速度啊。
你首先要明白E(X)和D(X)都是一个常数,再利用相关的公式得到E(D(X))=1,D(E(X))=0无尘剑 2023-07-06 08:08:001
离散型随机变量X的方差公式是什么?
方程D(X)=E{[X-E(X)]^2}=E(X^2) - [ E(X)]^2,其中 E(X)表示数学期望。若x1,x2,x3......xn的平均数为m则方差s^2=1/n[(x1-m)^2+(x2-m)^2+.......+(xn-m)^2]方差即偏离平方的均值,称为标准差或均方差,方差描述波动程度。对于连续型随机变量X,若其定义域为(a,b),概率密度函数为f(x),连续型随机变量X方差计算公式:D(X)=(x-μ)^2 f(x) dx。离散型:如果随机变量只取得有限个值或无穷能按一定次序一一列出,其值域为一个或若干个有限或无限区间,这样的随机变量称为离散型随机变量。如果变量可以在某个区间内取任一实数,即变量的取值可以是连续的,这随机变量就称为连续型随机变量。西柚不是西游2023-07-06 08:07:591
方差D(X)公式
方差D(X)公式:D(X)=E(X^2)-[E(X)]^2。方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的平均数。概率,亦称“或然率”,它是反映随机事件出现的可能性(likelihood)大小。随机事件是指在相同条件下,可能出现也可能不出现的事件。例如,从一批有正品和次品的商品中,随意抽取一件,“抽得的是正品”就是一个随机事件。设对某一随机现象进行了n次试验与观察,其中A事件出现了m次,即其出现的频率为m/n。瑞瑞爱吃桃2023-07-06 08:07:521
为什么方差的D(x)= E(x)?
当X,Y无关时,E(XY)=E(X)E(Y),D(X)=E(X^2)-(E(X))^2,此时,E(X(X+Y-2))=E(X^2+XY-2X)=E(X^2)+E(XY)-2E(X)。D(x)指方差,E(x)指期望。方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。在概率论和统计学中,数学期望(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。它反映随机变量平均取值的大小。扩展资料:对于连续型随机变量X,若其定义域为(a,b),概率密度函数为f(x),连续型随机变量X方差计算公式:D(X)=(x-μ)^2 f(x) dx。方差刻画了随机变量的取值对于其数学期望的离散程度。(标准差、方差越大,离散程度越大)若X的取值比较集中,则方差D(X)较小,若X的取值比较分散,则方差D(X)较大。因此,D(X)是刻画X取值分散程度的一个量,它是衡量取值分散程度的一个尺度。参考资料来源:百度百科-方差参考资料来源:百度百科-数学期望kikcik2023-07-06 08:07:501
E(X)求方差D(X)怎么求?
数学期望为设X是一个随机变量,若E{[X-E(X)]^2}存在,则称E{[X-E(X)]^2}为X的方差,记为D(X),Var(X)或DX。即D(X)=E{[X-E(X)]^2}称为方差,而σ(X)=D(X)^0.5(与X有相同的量纲)称为标准差(或方差)。期望就是一种均数,可以类似理解为加权平均数,x相应的概率就是它的权,所以ex就为各个xi×pi的和。dx就是一种方差,即是x偏差的加权平均,各个(xi-ex)的平方再乘以相应的pi之总和。dx与ex之间还有一个技巧公式需要记住,就是dx=e(x的平方)-(ex)的平方。方差的概念与计算公式例如两人的5次测验成绩如下:X: 50,100,100,60,50,平均值E(X)=72;Y:73, 70,75,72,70 平均值E(Y)=72。平均成绩相同,但X 不稳定,对平均值的偏离大。方差描述随机变量对于数学期望的偏离程度。单个偏离是消除符号影响方差即偏离平方的均值,记为E(X):直接计算公式分离散型和连续型。推导另一种计算公式得到:“方差等于各个数据与其算术平均数的离差平方和的平均数”。其中,分别为离散型和连续型计算公式。 称为标准差或均方差,方差描述波动程度。meira2023-07-06 08:07:411
数学期望ex方差dx公式
数学期望ex方差dx公式:D(X)=E[X-E(X)]^2=E{X^2-2XE(X)+[E(X)]^2}=E(X^2)-2[E(X)]^2+[E(X)]^2。D(X)指方差,E(X)指期望。方差是在概率论和统计方差衡量随机变量,或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。在概率论和统计学中,数学期望(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。它反映随机变量平均取值的大小。kikcik2023-07-06 08:07:391
泊松分布的期望和方差公式及详细证明过程
泊松分布 正态分布 几何分布 指数分布 均匀分布 二项分布 卡方分布 超几何分布泊松分布的概率密度函数为: :P(X=k)=frac{e^{-lambda}lambda^k}{k!} 泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生率。 泊松分布适合于描述单位时间内随机事件发生的次数。如某一服务设施在一定时间内到达的人数,电话交换机接到呼叫的次数,汽车站台的候客人数,机器出现的故障数,自然灾害发生的次数等等。 观察事物平均发生m次的条件下,实际发生x次的概率P(x)可用下式表示: P(x)=(m^x/x!)*e^(-m) p ( 0 ) = e ^ (-m) 称为泊松分布。例如采用0.05J/m2紫外线照射大肠杆菌时,每个基因组(~4×106核苷酸对)平均产生3个嘧啶二体。实际上每个基因组二体的分布是服从泊松分布的,将取如下形式: P(0)=e^(-3)=0.05; P(1)=(3/1!)e^(-3)=0.15; P(2)=(3^2/2!)e^(-3)=0.22; P(3)=0.22; P(4)=0.17;…… P(0)是未产生二体的菌的存在概率,实际上其值的5%与采用0.05J/m2照射时的大肠杆菌uvrA-株,recA-株(除去既不能修复又不能重组修复的二重突变)的生存率是一致的。由于该菌株每个基因组有一个二体就是致死量,因此P(1),P(2)……就意味着全部死亡的概率。 在百度上搜了一下,只有这些,我们以前只学了正态分布。期望,方差就记住公式就可以了,证明的话需要一些比较深的知识,总和e有关系。求积分变换。康康map2023-07-06 08:07:376
离散型随机变量方差公式如何求离散型随机变量的方差:D(X) = E{[X - E...
Dζ=(x1-Eζ)2*p1+(x2-Eζ)2*p2+…+(xn-Eζ)2*pn是定义,D(X)=E(X^2)-(EX)^2是推论.如果E(X^2)能够统一求出,D(X)=E(X^2)-(EX)^2式子用起来很方便.一般来说,如果给出的分布列的各项的概率值可以用通项表示,那么用D(X)=E(X^2)-(EX)^2如果仅仅是做数字的计算,没有什么技术含量可言,那么用定义.比如说,已知某分布X值为0,1,2,3,……,n,……,其对应的概率P(X=k)=1/(e*k!)(泊松分布),求方差时用D(X)=E(X^2)-(EX)^2如果题目中给出的分布律是X012345p1/31/61/81/121/1611/48那么肯定是用Dζ=(x1-Eζ)2*p1+(x2-Eζ)2*p2+…+(xn-Eζ)2*pnCarieVinne 2023-07-06 08:07:361
求乘法分配律乘法结合律平方差公式简便运算
乘法分配律两个数相加再乘另一个数,等于把这个数分别同两个加数相乘,再把两个积相加,结果不变。 a+b)x c=axc+bxc 乘法结合律 axc+bxc =a+b)x c如:25×37+25×3 =25×(37+3) =25×40 =1000 平方差公式 a^2 - b^2 =(a+b)(a-b)ardim2023-07-05 07:01:411
EXCEL中用协方差法计算基尼系数
看看这个有帮助么http://wenku.baidu.com/view/e5aa43d6195f312b3169a5b2.html这个文档逐步逐步教的,有例子参考http://zhidao.baidu.com/link?url=_YOnBy5v3kpUR9QUhW3bAPJTauYe7VOO9aVbuoq_lxx2jscNRdeouBkQt8xJ825zI0KTAbOAN227Jf2DoZ2o1a不行在知道里在嗖嗖Chen2023-07-05 06:55:421
什么时候用t检验?什么时候用方差分析?
方差分析与t检验都是对数据进行研究分析时,使用频率非常高的方法,二者都是在研究一种差异关系。下面先简单说一下这两种分析方法。什么是方差分析?什么是t检验?1、方差分析方差分析又称“F检验”,用于两个及两个以上样本均数差别的显著性检验, 方差分析的基本思想是:通过分析研究不同来源的变异对总变异的贡献大小,从而确定可控因素对研究结果影响力的大小。根据研究中自变量X的不同,方差分析又可以进行细分。X的个数为一个时,我们称之为单因素方差;X为2个时则为双因素方差;X为3个时则称作三因素方差,依次下去。当X超过1个时,统称为多因素方差。在此以SPSSAU-在线SPSS分析软件为工具介绍详细情况。2.方差分析的分类单因素方差分析: 用于分析定类数据与定量数据之间的关系情况。在使用单因素方差分析时,需要每个选项的样本量大于30,比如男性和女性样本量分别是100和120,如果出现某个选项样本量过少时应该首先进行组别合并处理,比如研究不同年龄组样本对于研究变量的差异性态度时,年龄小于20岁的样本量仅为20个,那么需要将小于20岁的选项与另外一组(比如20~25岁)的组别合并为一组,然后再进行单因素方差分析。如果选项无法进行合并处理,比如研究不同专业样本对于变量的态度差异,研究样本的专业共分为市场营销、心理学、教育学和管理学四个专业,这四个专业之间为彼此独立无法进行合并组别,但是市场营销专业样本量仅为20并没有代表意义,因此可以考虑首先筛选出市场营销专业,即仅比较心理学,教育学和管理学这三个专业对某变量的差异性态度,当对比的组别超过三个,并且呈现出显著性差异时,可以考虑使用事后检验进一步对比具体两两组别间的差异情况。请点击输入图片描述双因素方差分析:用于分析定类数据(2个)与定量数据之间的关系情况,例如研究人员性别,学历对于网购满意度的差异性;以及男性或者女性时,不同学历是否有着网购满意度差异性;或者同一学历时,不同性别是否有着网购满意度差异性。请点击输入图片描述多因素方差分析:比如研究者测试某新药对于胆固醇水平是否有疗效;研究者共招募72名被试,男女分别为36名,以及男女分别再细分使用新药和普通药物;同时高血压患者对于新药可能有干扰,因而研究者将被试是否患高血压也纳入考虑范畴中。因而最终,X共分为三个,分别是药物(旧药和新药)、性别,是否患高血压;Y为胆固醇水平。因而需要进行三因素方差分析即多因素方差分析。请点击输入图片描述3、t检验t检验,主要用于样本含量较小(例如n < 30),总体标准差σ未知的正态分布。t检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。4、t检验分类T检验共分为三种方法,分别是独立样本T检验,配对样本T检验和单样本T检验。独立样本t检验:独立样本T检验比较两组选项的差异,比如男性和女性。相对来讲,独立样本T检验在实验比较时使用频率更高,尤其是生物、医学相关领域。针对问卷研究。独立样本T检验和配对样本T检验功能上都是比较差异,而且均是比较两个组别差异。但二者有着实质性区别,如果是比较不同性别,婚姻状况(已婚和未婚)样本对某变量的差异时,应该使用独立样本T检验。如果比较组别之间有配对关系时,只能使用配对样本T检验,配对关系是指类似实验组和对照组的这类关系。另外独立样本T检验两组样本个数可以不相等,而配对样本T检验的两组样本量需要完全相等。5、什么时候用t检验?什么时候用方差分析?方差和T检验的区别在于,对于T检验的自变量X来讲,只能为2个类别比如男和女。如果X为3个类别比如本科以下,本科,本科以上;此时只能使用方差分析。在方法选择上,问卷研究通常会使用方差分析,但某些专业,比如心理学、教育学或者师范类专业等涉及到实验研究时,更多会使用T检验进行分析,另外方差分析与T检验还有较多差异,在某些分析中只能使用其中一种。人类地板流精华2023-07-05 06:53:082
方差分析和t检验的区别是什么?
一、发明背景不同:1、方差分析:方差分析是R.A.Fisher发明的,用于两个及两个以上样本均数差别的显著性检验。2、t检验:t检验是戈斯特为了观测酿酒质量而发明的,并于1908年在Biometrika上公布。二、应用不同:1、方差分析:方差分析主要用途是均数差别的显著性检验,分离各有关因素并估计其对总变异的作用,分析因素间的交互作用,方差齐性检验。2、t检验:t检验主要应用于比较两个平均数的差异是否显著。联系:两者都要求比较的资料服从正态分布;而且两样本均数的比较及方差分析均要求比较组有相同的总体方差;配伍组比较的方差分析是配对比较t检验的推广,成组设计多个样本均数比较的方差分析是两样本均数比较t检验的推广;对于两个样本之间的比较,方差分析和t检验效果是相同的。扩展资料方差分析的基本原理:1、实验条件,即不同的处理造成的差异,称为组间差异。用变量在各组的均值与总均值之偏差平方和的总和表示,记作SSb,组间自由度dfb。2、随机误差,如测量误差造成的差异或个体间的差异,称为组内差异,用变量在各组的均值与该组内变量值之偏差平方和的总和表示, 记作SSw,组内自由度dfw。t检验适用条件:1、已知一个总体均数。2、可得到一个样本均数及该样本标准差。3、样本来自正态或近似正态总体。参考资料来源:百度百科-方差分析参考资料来源:百度百科-t检验大鱼炖火锅2023-07-05 06:52:532
对于方差为已知的正态总体
均值的一个置信水平为1-a的置信区间公式为:由题知:1-a=0.95,a/2=0.025,n=20,/x=37.545,σ=0.4594,za/2=1.96代入得到:置信区间为(37.3437,37.7463) 打字不易,拌三丝2023-07-05 06:40:131
八年级数学方差怎么算?
八年级数学方差可以这样算:1、方差是随机变量X的函数g(X)=∑[X-E(X)]^2 pi即:由方差的定义可以得到以下常用计算公式:D(X)=∑xipi-E(x)。D(X)=∑(xipi+E(X)pi-2xipiE(X))=∑xipi+∑E(X)pi-2E(X)∑xipi=∑xipi+E(X)-2E(X)=∑xipi-E(x)。方差其实就是标准差的平方。2、设X是一个随机变量,若E{^2}存在,则称E{^2}为X的方差,记为D(X),Var(X)或DX。即D(X)=E{^2}称为方差,而σ(X)=D(X)^0.5(与X有相同的量纲)称为标准差(或均方差)。即用来衡量一组数据的离散程度的统计量。方差刻画了随机变量的取值对于其数学期望的离散程度。若X的取值比较集中,则方差D(X)较小,若X的取值比较分散,则方差D(X)较大。因此,D(X)是刻画X取值分散程度的一个量,它是衡量X取值分散程度的一个尺度。康康map2023-07-03 11:20:591
随机变量X~N(2,4)的方差怎么算
因为X~N(2,4)即μ=2;σ=2所以X服从正态分布,则数学期望为μ=2;方差为σ^2=4希望对你有帮助再也不做站长了2023-07-03 11:20:581
方差怎么计算?
方差公式如下图:方差在统计描述和概率分布中各有不同的定义,并有不同的公式。在统计描述中,方差用来计算每一个变量(观察值)与总体均数之间的差异。为避免出现离均差总和为零,离均差平方和受样本含量的影响,统计学采用平均离均差平方和来描述变量的变异程度。扩展资料方差计算事例:已知某零件的真实长度为a,现用甲、乙两台仪器各测量10次,将测量结果X用坐标上的点表示如图:甲仪器测量结果:乙仪器测量结果:全是a两台仪器的测量结果的均值都是 a 。但是用上述结果评价一下两台仪器的优劣,很明显,我们会认为乙仪器的性能更好,因为乙仪器的测量结果集中在均值附近。由此可见,研究随机变量与其均值的偏离程度是十分必要的。那么,用怎样的量去度量这个偏离程度呢?容易看到E[|X-E[X]|]能度量随机变量与其均值E(X)的偏离程度。但由于上式带有绝对值,运算不方便,通常用量E[(X-E[X])2] 。此后故乡只2023-07-03 11:20:561
方差开方怎么做
方差是实际值与期望值之差平方的期望值,而标准差是方差平方根。在实际计算中,我们用以下公式计算方差。方差是各个数据与平均数之差的平方的平均数,即s^2=(1/n)[(x1-x_)^2+(x2-x_)^2+...+(xn-x_)^2],其中,x_表示样本的平均数kikcik2023-07-03 11:20:552
方差怎么算?怎样求标准方差?
1。求每一个数与这个样本数列的数学平均值之间的差,称均差;2。计算每一个差的平方,称方差;3。求它们的总和,再除以这个样本数列的项数得到均方差;4。再开根号得到标准方差!标准方差主要和分母(项数)、分子(无极性偏差)有直接关系!这里的偏差为每一个数与平均值的差异,平方运算后以去除正负极性。为保持单位一致,再开方运算。几个适用的理解:1.数据整体分布离平均值越近,标准方差就越小;数据整体分布离平均值越远,标准方差越大。(标准方差和差异的正相关)2.特例,标准方差为0,意味着数列中每一个数都相等。(一组平方数总和为零时,每一个平方数都必须为零)3.序列中每一个数都加上一个常数,标准方差保持不变!(方差本身是数值和平均值之间作比较,常数已被相互抵消。)Standard deviation of a probability distribution or random variableThe standard deviation of a (univariate) probability distribution is the same as that of a random variable having that distribution.The standard deviation σ of a real-valued random variable X is defined as:egin{array}{lcl} sigma & = &sqrt{operatorname{E}((X - operatorname{E}(X))^2)} = sqrt{operatorname{E}(X^2) - (operatorname{E}(X))^2},, end{array}where E(X) is the expected value of X (another word for the mean), often indicated with the Greek letter μ.Not all random variables have a standard deviation, since these expected values need not exist. For example, the standard deviation of a random variable which follows a Cauchy distribution is undefined because its E(X) is undefined.[edit] Standard deviation of a continuous random variableContinuous distributions usually give a formula for calculating the standard deviation as a function of the parameters of the distribution. In general, the standard deviation of a continuous real-valued random variable X with probability density function p(x) issigma = sqrt{int (x-mu)^2 , p(x) , dx},,wheremu = int x , p(x) , dx,,and where the integrals are definite integrals taken for x ranging over the range of X.[edit] Standard deviation of a discrete random variable or data setThe standard deviation of a discrete random variable is the root-mean-square (RMS) deviation of its values from the mean.If the random variable X takes on N values extstyle x_1,dots,x_N (which are real numbers) with equal probability, then its standard deviation σ can be calculated as follows:1. Find the mean, scriptstyleoverline{x}, of the values.2. For each value xi calculate its deviation (scriptstyle x_i - overline{x}) from the mean.3. Calculate the squares of these deviations.4. Find the mean of the squared deviations. This quantity is the variance σ2.5. Take the square root of the variance.This calculation is described by the following formula:sigma = sqrt{frac{1}{N} sum_{i=1}^N (x_i - overline{x})^2},,where scriptstyle overline{x} is the arithmetic mean of the values xi, defined as:overline{x} = frac{x_1+x_2+cdots+x_N}{N} = frac{1}{N}sum_{i=1}^N x_i,.If not all values have equal probability, but the probability of value xi equals pi, the standard deviation can be computed by:sigma = sqrt{frac{sum_{i=1}^N p_i(x_i - overline{x})^2}{sum_{i=1}^N p_i}},,ands = sqrt{frac{N" sum_{i=1}^N p_i(x_i - overline{x})^2}{(N"-1)sum_{i=1}^N p_i}},,whereoverline{x} =frac{ sum_{i=1}^N p_i x_i}{sum_{i=1}^N p_i},,and N" is the number of non-zero weight elements.The standard deviation of a data set is the same as that of a discrete random variable that can assume precisely the values from the data set, where the point mass for each value is proportional to its multiplicity in the data set.小菜G的建站之路2023-07-03 11:20:541
方差的计算公式
墨然殇2023-07-03 11:20:457
方差的公式怎么写
设x1,x2,……xn的平均数为m则方差=((x1-m)^2+(x2-m)^2+……+(xn-m)^2)/nkikcik2023-07-03 11:20:432
数学方差怎么算,方差大小意味着什么
方差公式:方差大小意味着:每一个变量(观察值)与总体均数之间的差异。为避免出现离均差总和为零,离均差平方和受样本含量的影响,统计学采用平均离均差平方和来描述变量的变异程度。总体方差计算公式:离散型随机变量方差计算公式:D(X)=E{[X-E(X)]^2}=E(X^2)-[E(X)]^2;连续型随机变量X方差计算公式:D(X)=(x-μ)^2f(x)dx。扩展资料:方差的性质:1、设C是常数,则D(C)=02、设X是随机变量,C是常数,则有3、设X与Y是两个随机变量,则其中协方差特别的,当X,Y是两个不相关的随机变量则,此性质可以推广到有限多个两两不相关的随机变量之和的情况。Jm-R2023-07-03 11:20:422
成数方差是怎么推算出来的?
成数方差推算:方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的平均数。在许多实际问题中,研究方差即偏离程度有着重要意义。凡尘2023-07-03 11:20:397
方差怎么算 方差算法简述
1、方差等于各个数据与其算数平均值的离差平方和的平均数。 2、方差是实际值与期望值之差平方的平均值,标准差是方差的算数平方根。 3、方差的概念与计算公式,例如两人的5次测验成绩如下:X:50,100,100,60,50,平均值E(X)=72;Y:73,70,75,72,70平均值E(Y)=72。平均成绩相同,但X不稳定,对平均值的偏离大。方差描述随机变量对于数学期望的偏离程度。单个偏离是消除符号影响方差即偏离平方的均值,记为E(X):直接计算公式分离散型和连续型。推导另一种计算公式得到:“方差等于各个数据与其算术平均数的离差平方和的平均数”。其中,分别为离散型和连续型计算公式[1]。称为标准差或均方差,方差描述波动程度。左迁2023-07-03 11:20:351
方差怎么求?
方差的几个变形公式方差的计算公式有几种方差描述随机变量对于数学期望的偏离程度。单个偏离是消除符号影响方差即偏离平方的均值,记为E(X),直接计算公式分离散型和连续型。方差等于各个数据与其算术平均数的离差平方和的平均数。其中,分别为离散型和连续型计算公式。称为标准差或均方差,方差描述波动程度。方差是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)并把它叫做这组数据的方差,记作S^2。 在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定。计算公式为:S^2=1/n[(x1-x)^2+(x2-x)^2+……+(xn-x)^2]其中:x为这组数据中的数据,n为大于0的整数。方差的性质1.当C为常数时,V a r ( C ) = 0 Var( C ) = 0Var(C)=0。2.当X是随机变量,C是常数时:V a r ( C X ) = C 2 V a r ( X ) , V a r ( C + X ) = V a r ( X ) Var(CX) = C^2Var(X),Var(C+X)=Var(X)Var(CX)=C2Var(X),Var(C+X)=Var(X)。3.Var(X)=0的充分必要条件是X以概率1取常数E(X),即P ( X = E X ) = 1 P({X=EX})=1P(X=EX)=1。(当且仅当X取常数值E(X)时的概率为1时,Var(X)=0。)注:不能得出X恒等于常数,当x是连续的时候X可以在任意有限个点取不等于常数c的值。余辉2023-07-03 11:20:351
高中方差怎么算
高中的方差公式是:s^2=1/n[(x1-m)^2+(x2-m)^2+…+(xn-m)^2],式中,设x1,x2,x3……xn的平均数为m。方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的平均数。当数据分布比较分散(即数据在平均数附近波动较大)时,各个数据与平均数的差的平方和较大,方差就较大;当数据分布比较集中时,各个数据与平均数的差的平方和较小。因此方差越大,数据的波动越大;方差越小,数据的波动就越小。样本中各数据与样本平均数的差的平方和的平均数叫做样本方差;样本方差的算术平方根叫做样本标准差。样本方差和样本标准差都是衡量一个样本波动大小的量,样本方差或样本标准差越大,样本数据的波动就越大。方差和标准差是测算离散趋势最重要、最常用的指标。方差是各变量值与其均值离差平方的平均数,它是测算数值型数据离散程度的最重要的方法。标准差与方差不同的是,标准差和变量的计算单位相同,比方差清楚,因此很多时候我们分析的时候更多的使用的是标准差。可桃可挑2023-07-03 11:20:341
数学上的方差指什么?怎么样算的?
每个值与平均值的差的平常方之和。例如:有这几个数,1,2,3,那么方差就是(1-2)^2+(2-2)^2+(3-2)^2=2真颛2023-07-03 11:20:344
频率分布直方图方差怎么求 计算方式是什么
1、使用分组数据的方差计算方法。 2、直方图上有每个组的均值和每个组的频数。假设某个组处于10-20,频数为5,那么这个组可以看成是5个15,依次类推,能获得一堆数据,算这堆数据的方差即可。 3、方差:(中点-平均数)×频率的和,其中频率=各长方形面积wpBeta2023-07-03 11:20:341
方差怎么计算?
分组方差求总体方差:用文字表述就是“一组数的方差为其中每个数的平方的平均数减去这组数的平均数的平方”。在菜单栏上执行:analyse-comparemeans--one-wayanova,打开单因素方差分析对话框在这个对话框中,将因变量放到dependentlist中,将自变量放到factor中,点击posthoc,选择snk和lsd,返回确认ok统计专业研究生工作室原创,请勿复杂粘贴。计算方法:1)方差 s=[(x1-x)^2 +(x2-x)^2 +.(xn-x)^2]/n (x为平均数)。2)方差是各个数据分别与其平均数之差的平方的和的平均数,用字母D表示。在概率论和数理统计中,方差(Variance)用来度量随机变量和其数学期望(即均值)之间的偏离程度。在许多实际问题中,研究随机变量和均值之间的偏离程度有着重要意义。其中,x表示样本的平均数,n表示样本的数量,xi表示个体,而s^2就表示方差。总方差=组内方差+组间方差。组间方差的计算方法:先求各组平均值,再算其方差。组内方差=从方差-组间方差。hi投2023-07-03 11:20:331
统计中的方差计算公式是什么?
统计学中方差计算公式为:公式描述:公式中x为平均数,n为这组数据个数,x1、x2、x3……xn为这组数据具体数值。拓展:方差(variance)是在概率论和统计方差衡量随机变量或一组数据是离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。统计中的方差(样本方差)是各个数据分别与其平均数之差的平方的和的平均数。在许多实际问题中,研究方差即偏离程度有着重要意义。阿啵呲嘚2023-07-03 11:20:251
方差公式怎么求
一.方差的概念与计算公式 例1 两人的5次测验成绩如下: X: 50,100,100,60,50 E(X )=72; Y: 73, 70, 75,72,70 E(Y )=72。 平均成绩相同,但X 不稳定,对平均值的偏离大。 方差描述随机变量对于数学期望的偏离程度。 单个偏离是 消除符号影响 方差即偏离平方的均值,记为D(X ): 直接计算公式分离散型和连续型,具体为: 这里 是一个数。推导另一种计算公式 得到:“方差等于平方的均值减去均值的平方”,即 , 其中 分别为离散型和连续型计算公式。 称为标准差或均方差,方差描述波动程度。 二.方差的性质 1.设C为常数,则D(C) = 0(常数无波动); 2. D(CX )=C2 D(X ) (常数平方提取); 证: 特别地 D(-X ) = D(X ), D(-2X ) = 4D(X )(方差无负值) 3.若X 、Y 相互独立,则 证:记 则 前面两项恰为 D(X )和D(Y ),第三项展开后为 当X、Y 相互独立时, , 故第三项为零。 特别地 独立前提的逐项求和,可推广到有限项。 三.常用分布的方差 1.两点分布 2.二项分布 X ~ B ( n, p ) 引入随机变量 Xi (第i次试验中A 出现的次数,服从两点分布) , 3.泊松分布(推导略) 4.均匀分布 另一计算过程为 5.指数分布(推导略) 6.正态分布(推导略) ~ 正态分布的后一参数反映它与均值 的偏离程度,即波动程度(随机波动),这与图形的特征是相符的。 例2 求上节例2的方差。 解 根据上节例2给出的分布律,计算得到 工人乙废品数少,波动也小,稳定性好。水元素sl2023-07-03 11:20:241
方差的简单计算公式
s2=(x1-m)2+(x2-m)2+(x3-m)。方差是应用数学里的专有名词。在概率论和统计学中,一个随机变量的方差描述的是它的离散程度,也就是该变量离其期望值的距离。方差的算术平方根称为该随机变量的标性差。hi投2023-07-03 11:20:241
方差是什么?怎么计算?
方差是数学统计学范畴的重要概念,下面小编就带领大家盘点一下方差的概念以及方差的计算公式,希望对大家有所帮助。方差的定义和公式:设一组数据x1,x2,x3……xn中,各组数据与它们的平均数x的差的平方分别是(x1-x)2,(x2-x)2……(xn-x)2,那么就可以用他们的平均数对其进行衡量,公式为该公式主要用来衡量这组数据的波动大小,并把它叫做这组数据的方差。为了简便我们也可以将其记做(其中x为该组数据的平均值)如果一组数据的方差越小,那么就证明该组数据的稳定性较高。性质:1、设C为常数,则D(C) = 0(常数无波动);2、D(CX )=C2D(X ) (常数平方提取,C为常数,X为随机变量);证:特别地 D(-X ) = D(X ), D(-2X ) = 4D(X )(方差无负值)3、若X 、Y 相互独立,则,证:记前面两项恰为 D(X )和D(Y ),第三项展开后为当X、Y 相互独立时,故第三项为零。特别地独立前提的逐项求和,可推广到有限项。hi投2023-07-03 11:20:221
数学方差怎么算,方差大小意味着什么
①若x1,x2.xn 的平均数为m,其方差是:S^2=1/n[(x1-m)^2+(x2-m)^2+.+(xn-m)^2] 标准差:S=√{1/n[(x1-m)^2+(x2-m)^2+.+(xn-m)^2]} 比如:1.2,3.5,5.4,4.8这四个属的房差平均数=(1.2+3.5+5.4+4.8)/4=3.725房差=1/4[(1.2-3.725)^2+(3.5-3.725)^2+(5.4-3.725)^2+(4.8-3.725)^2]=2.596875答:房差为2.596875。拌三丝2023-07-03 11:20:202
方差公式怎么算??
统计学中方差计算公式:设X是一个随机变量,若E{[X-E(X)]^2}存在,则称E{[X-E(X)]^2}为X的方差,记为D(X)或DX。即D(X)=E{[X-E(X)]^2},而σ(X)=D(X)^0.5(与X有相同的量纲)称为标准差或均方差。由方差的定义可以得到以下常用计算公式:D(X)=E(X^2)-[E(X)]^2S^2=[(x1-x拔)2+(x2-x拔)^2+(x3-x拔)^2+…+(xn-x拔)^2]/n性质:1、设C为常数,则D(C) = 0(常数无波动);2、D(CX )=C2D(X ) (常数平方提取,C为常数,X为随机变量);证:特别地 D(-X ) = D(X ), D(-2X ) = 4D(X )(方差无负值)3、若X 、Y 相互独立,则证:记则前面两项恰为 D(X)和D(Y),第三项展开后为当X、Y 相互独立时,故第三项为零。Ntou1232023-07-03 11:20:191
方差怎么来算?
若每个数都加上a,则现在的平均数为x+a, 方差为y,标准差为 z。若每个数都乘以a,则现在的平均数为ax, 方差为aay,标准差为 az。若每个数都乘以a并且加上b,则现在的平均数为ax+b, 方差为aay,标准差为 az。简介:方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的平均数。在许多实际问题中,研究方差即偏离程度有着重要意义。拌三丝2023-07-03 11:20:181
方差计算公式是什么?
方差=平方的均值减去均值的平方。例:有 1、2、3、4、5这组样本,其平均数为(1+2+3+4+5)/5=3,而方差是各个数据分别与其和的平均数之差的平方的和的平均数,则为:[(1-3)^2+(2-3)^2+(3-3)^2+(4-3)^2+(5-3)^2]/5=2,方差为2。方差的公式:方差是实际值与期望值之差平方的平均值,而标准差是方差算术平方根。方差是各个数据与平均数之差的平方的和的平均数,即其中,x表示样本的平均数,n表示样本的数量,xi表示个体,而s2就表示方差。方差是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)并把它叫做这组数据的方差,记作S2。hi投2023-07-03 11:20:173
方差的公式是什么?
方差公式如下图:方差在统计描述和概率分布中各有不同的定义,并有不同的公式。在统计描述中,方差用来计算每一个变量(观察值)与总体均数之间的差异。为避免出现离均差总和为零,离均差平方和受样本含量的影响,统计学采用平均离均差平方和来描述变量的变异程度。扩展资料方差计算事例:已知某零件的真实长度为a,现用甲、乙两台仪器各测量10次,将测量结果X用坐标上的点表示如图:甲仪器测量结果:乙仪器测量结果:全是a两台仪器的测量结果的均值都是 a 。但是用上述结果评价一下两台仪器的优劣,很明显,我们会认为乙仪器的性能更好,因为乙仪器的测量结果集中在均值附近。由此可见,研究随机变量与其均值的偏离程度是十分必要的。那么,用怎样的量去度量这个偏离程度呢?容易看到E[|X-E[X]|]能度量随机变量与其均值E(X)的偏离程度。但由于上式带有绝对值,运算不方便,通常用量E[(X-E[X])2] 。左迁2023-07-03 11:20:161
方差怎么计算?
方差和标准差: 右图为计算公式 Variance"s formula 样本中各数据与样本平均数的差的平方和的平均数叫做样本方差;样本方差的算术平方根叫做样本标准差。样本方差和样本标准差都是衡量一个样本波动大小的量,样本方差或样本标准差越大,样本数据的波动就越大。 数学上一般用E{[X-E(X)]^2}来度量随机变量X与其均值E(X)的偏离程度,称为X的方差。 定义设X是一个随机变量,若E{[X-E(X)]^2}存在,则称E{[X-E(X)]^2}为X的方差,记为D(X)或DX。即D(X)=E{[X-E(X)]^2},而σ(X)=D(X)^0.5(与X有相同的量纲)称为标准差或均方差。 由方差的定义可以得到以下常用计算公式: D(X)=E(X^2)-[E(X)]^2 方差的几个重要性质(设一下各个方差均存在)。 (1)设c是常数,则D(c)=0。 (2)设X是随机变量,c是常数,则有D(cX)=(c^2)D(X)。 (3)设X,Y是两个相互独立的随机变量,则D(X+Y)=D(X)+D(Y)。LuckySXyd2023-07-03 11:20:091
方差怎么求,如何计算方差?
计算公式如下:1、方差公式:2、标准方差公式(1):3、标准方差公式(2):例如两人的5次测验成绩如下:X:50,100,100,60,50,平均值E(X)=72;Y:73,70,75,72,70平均值E(Y)=72。平均成绩相同,但X不稳定,对平均值的偏离大。方差描述随机变量对于数学期望的偏离程度。单个偏离是消除符号影响方差即偏离平方的均值,记为E(X):直接计算公式分离散型和连续型。推导另一种计算公式得到:“方差等于各个数据与其算术平均数的离差平方和的平均数”。其中,分别为离散型和连续型计算公式。称为标准差或均方差,方差描述波动程度。方差的概念:方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的平均数。在许多实际问题中,研究方差即偏离程度有着重要意义。方差是衡量源数据和期望值相差的度量值。苏萦2023-07-03 11:20:081