二项分布的方差
二项分布的方差:np(1-p)。方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。概率论,是研究随机现象数量规律的数学分支。随机现象是相对于决定性现象而言的,在一定条件下必然发生某一结果的现象称为决定性现象。例如在标准大气压下,纯水加热到100℃时水必然会沸腾等。随机现象则是指在基本条件不变的情况下,每一次试验或观察前,不能肯定会出现哪种结果,呈现出偶然性。小白2023-05-23 12:57:291
matlab均值方差和峰度和偏度的求解?
shuju=[ ]; % 读入数据jun_zhi = mean(shuju) % 求均值biao_zhun_cha=std(shuju) % 标准差pian_du=skewness(shuju) % 偏度:>0 称为右偏态,<0,称为左偏态feng_du=kurtosis(shuju) % 峰度:用作衡量偏离正态分布的尺度之一大鱼炖火锅2023-05-22 22:50:201
matlab均值方差和峰度和偏度的求解?
shuju=[ ]; % 读入数据x0dx0ajun_zhi = mean(shuju) % 求均值x0dx0abiao_zhun_cha=std(shuju) % 标准差x0dx0ax0dx0apian_du=skewness(shuju) % 偏度:>0 称为右偏态,<0,称为左偏态x0dx0ax0dx0afeng_du=kurtosis(shuju) % 峰度:用作衡量偏离正态分布的尺度之一gitcloud2023-05-22 22:50:181
简述总体方差样本方差偏态和峰度的区别
搜一下:简述总体方差样本方差偏态和峰度的区别九万里风9 2023-05-22 22:50:182
均值、方差、标准差、偏度和峰度
shuju=[];%读入数据jun_zhi=mean(shuju)%求均值biao_zhun_cha=std(shuju)%标准差pian_du=skewness(shuju)%偏度:>0称为右偏态,<0,称为左偏态feng_du=kurtosis(shuju)%峰度:用作衡量偏离正态分布的尺度之一北营2023-05-22 22:50:171
excel怎么求众数,中位数,方差,偏度以及峰度?
众数用mode函数中位数用median函数方差用var和varp函数峰度用Kurt函数偏度Skew函数左迁2023-05-22 22:50:171
大数定律要求期望和方差存在,有什么用
随机变量的期望存在,则方差不一定存在。 比如一个随机变量X 取1的概率为 1/2 取2的概率为 1/4 。 取n的概率为1/2^n 。 比如一个随机变量X 取1的概率为 1/2 取2的概率为 1/4 。 取n的概率为1/2^n 。北营2023-05-22 22:50:051
方差是什么
方差和标准差样本中各数据与样本平均数的差的平方的平均数叫做样本方差.样本方差的算术平方根叫做样本标准差.样本方差和样本标准差都是衡量一个样本波动大小的量,样本方差或样本标准差越大,样本数据的波动就越大.可桃可挑2023-05-22 22:50:022
方差怎么算?
方差分两步算:第一步:先算样本中各个数据的平均数x拔 x拔=(x1+x2+x3+........+xn)÷n第二步:再算样本中各个数据与平均数x拔的差的平方的平均数 S^2=[(x1-x拔)^2+(x2-x拔)^2+(x3-x拔)^2+...........+(xn-x拔)^2]÷n 则S^2就是样本方差。FinCloud2023-05-22 22:50:022
协方差公式
cov(X,Y)=[E(XY)-E(X)E(Y)]/{sqrt[D(X)]*sqrt[D(Y)]}小菜G的建站之路2023-05-22 22:50:022
协方差的实际意义
协方差(Covariance)是概率论和统计学中非常重要的概念,它用于衡量两个随机变量之间的线性相关程度。协方差的实际意义如下:协方差的符号表示两个变量的相关方向。当协方差为正数时,表示两个变量是正相关的,即当一个变量增加时,另一个变量也增加;当协方差为负数时,表示两个变量是负相关的,即当一个变量增加时,另一个变量减少。协方差的绝对值大小表示两个变量相关程度的强度。当协方差的绝对值越大时,表示两个变量的相关程度越强。协方差的单位是两个变量的单位的乘积,因此很难用具体的数值来直接解释协方差的实际意义。但是,我们可以通过计算协方差的相对大小,来比较两个变量之间的相关程度。协方差在金融和投资领域中被广泛使用,用于衡量不同资产之间的相关性。协方差可以帮助投资者理解不同资产之间的风险和收益之间的关系,以便在投资组合中进行最优的资产分配。协方差还可以用于计算其他重要的概念,如相关系数和回归分析中的斜率等。Chen2023-05-22 22:50:021
怎么求协方差?
你好,请采纳! cov(x,y)=EXY-EX*EY 协方差的定义,EX为随机变量X的数学期望,同理,EXY是XY的数学期望,挺麻烦的,建议你看一下概率论cov(x,y)=EXY-EX*EY 协方差的定义,EX为随机变量X的数学期望,同理,EXY是XY的数学期望,挺麻烦的,建议你看一下概率论 举例: Xi 1.1 1.9 3 Yi 5.0 10.4 14.6 E(X) = (1.1+1.9+3)/3=2 E(Y) = (5.0+10.4+14.6)/3=10 E(XY)=(1.1×5.0+1.9×10.4+3×14.6)/3=23.02 Cov(X,Y)=E(XY)-E(X)E(Y)=23.02-2×10=3.02 此外:还可以计算:D(X)=E(X^2)-E^2(X)=(1.1^2+1.9^2+3^2)/3 - 4=4.60-4=0.6 σx=0.77 D(Y)=E(Y^2)-E^2(Y)=(5^2+10.4^2+14.6^2)/3-100=15.44 σy=3.93 X,Y的相关系数: r(X,Y)=Cov(X,Y)/(σxσy)=3.02/(0.77×3.93) = 0.9979 表明这组数据X,Y之间相关性很好!肖振2023-05-22 22:50:021
什么叫协方差分析?其与方差分析比较有何优势
协方差分析是加入协变量的方差分析,协变量实际上就是我们所说的控制变量,你的调查研究中如果有一些你并不真正关心、但有可能对因变量有影响的变量,你可以将其作为协变量,这就意味着你控制了该变量对因变量的效应,从而可以考察自变量与因变量的真实关系。协方差分析出了要设定协变量这一点,其他方面与一般的方差分析没有太大区别。协变量是连续变量方差分析是不能控制这种无关的连续变量的,所以协方差分析能够得到更可靠的研究结果可桃可挑2023-05-22 22:50:021
计算样本协方差
除以n首先,把这两组数据看做是二维随机变量(X,Y), 要求协方差cov(X,Y) 有公式cov(X,Y)=E{[X-E(X)]*[Y-E(Y)]} =E(X*Y)-E(X)*E(Y) 又因为,求期望的表达式为E(X)=∑Xi*Pi 由于样本中元素较少,每个元素的概率可以看作相等,都为1/n 因此,E(X)=(∑Xi)/n 同理可得,E(Y)=(∑Yi)/n E(X*Y)=(∑Xi*Yi)/n 最终结果为:大鱼炖火锅2023-05-22 22:50:021
怎样求方差,怎样求协方差?
对于二维随机变量(X,Y)方差Var(2X-Y)=Var(2X)+Var(Y)-2Cov(2X,Y)=4Var(X)+Var(Y)-4Cov(X,Y)因为X,Y独立,即X,Y不相关,因此协方差Cov(X,Y)=0=4Var(X)+Var(Y)示例已知某零件的真实长度为a,现用甲、乙两台仪器各测量10次,将测量结果X用坐标上的点表示如图1:甲仪器测量结果:a,乙仪器测量结果:全是a。两台仪器的测量结果的均值都是 a 。但是用上述结果评价一下两台仪器的优劣,很明显,我们会认为乙仪器的性能更好,因为乙仪器的测量结果集中在均值附近。由此可见,研究随机变量与其均值的偏离程度是十分必要的。那么,用怎样的量去度量这个偏离程度呢?容易看到E[|X-E[X]|]能度量随机变量与其均值E(X)的偏离程度。但由于上式带有绝对值,运算不方便,通常用量E[(X-E[X])2] 这一数字特征就是方差。善士六合2023-05-22 22:50:021
协方差公式
协方差公式为:COV(X,Y)=E(XY)-E(X)E(Y)。其中X和Y为两个实随机变量,E[X]与E[Y]为其期望值。协方差(Covariance)在概率论和统计学中用于衡量两个变量的总体误差。若两个变量的变化趋势一致,即如果其中一个变量大于自身的期望值,另一个变量也大于自身的期望值,则两个变量之间的协方差就是正值。若两个变量的变化趋势相反,即其中一个变量大于自身的期望值,另一个变量却小于自身的期望值,则两个变量之间的协方差就是负值。人类地板流精华2023-05-22 22:50:021
什么是方差.协方差
协方差分析是建立在方差分析和回归分析基础之上的一种统计分析方法。 方差分析是从质量因子的角度探讨因素不同水平对实验指标影响的差异。一般说来,质量因子是可以人为控制的。 回归分析是从数量因子的角度出发,通过建立回归方程来研究实验指标与一个(或几个)因子之间的数量关系。但大多数情况下,数量因子是不可以人为加以控制的。样本中各数据与样本平均数的差的平方和的平均数叫做样本方差;样本方差的算术平方根叫做样本标准差。样本方差和样本标准差都是衡量一个样本波动大小的量,样本方差或样本标准差越大,样本数据的波动就越大。数学上一般用E{[X-E(X)]^2}来度量随机变量X与其均值E(X)的偏离程度,称为X的方差。望采纳真颛2023-05-22 22:50:021
协方差计算公式 公式讲解
协方差计算公式 1. 公式:cov (x, y)=EXY-EX * EY协方差的定义,EX为随机变量x的数学期望,同理,EXY为XY的数学期望。 2. 协方差是概率论和统计学中用来度量两个变量的总体误差。方差是协方差的一种特殊情况,即当两个变量相同时。 3.协方差表示两个变量的总误差,不同于方差只表示一个变量的误差。如果两个变量的变化趋势一致,即其中一个大于其期望值,另一个大于其期望值,则两个变量之间的协方差为正。mlhxueli 2023-05-22 22:50:021
什么是协方差,怎么计算?
cov(x,y)公式是:D(X)=E(X²)-E²(X)=(1.1²+1.9²+3²)/3 - 4=4.60-4=0.6 σx=0.77D(Y)=E(Y²)-E²(Y)=(5²+10.4²+14.6²)/3-100=15.44 σy=3.93X,Y的相关系数:r(X,Y)=Cov(X,Y)/(σxσy)=3.02/(0.77×3.93) = 0.9979协方差表示的是两个变量的总体的误差,这与只表示一个变量误差的方差不同。 如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值,另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值。 如果两个变量的变化趋势相反,即其中一个大于自身的期望值,另外一个却小于自身的期望值,那么两个变量之间的协方差就是负值。若两个随机变量X和Y相互独立,则E[(X-E(X))(Y-E(Y))]=0,因而若上述数学期望不为零,则X和Y必不是相互独立的,亦即它们之间存在着一定的关系。协方差与方差之间有如下关系:D(X+Y)=D(X)+D(Y)+2Cov(X,Y)D(X-Y)=D(X)+D(Y)-2Cov(X,Y)协方差与期望值有如下关系:Cov(X,Y)=E(XY)-E(X)E(Y)。协方差的性质:(1)Cov(X,Y)=Cov(Y,X);(2)Cov(aX,bY)=abCov(X,Y),(a,b是常数);(3)Cov(X1+X2,Y)=Cov(X1,Y)+Cov(X2,Y)。由协方差定义,可以看出Cov(X,X)=D(X),Cov(Y,Y)=D(Y)。设X和Y是随机变量,若E(X^k),k=1,2,...存在,则称它为X的k阶原点矩,简称k阶矩。若E{[X-E(X)]k},k=1,2,...存在,则称它为X的k阶中心矩。若E{(X^k)(Y^p)},k、l=1,2,...存在,则称它为X和Y的k+p阶混合原点矩。若E{[X-E(X)]^k[Y-E(Y)]^l },k、l=1,2,...存在,则称它为X和Y的k+l阶混合中心矩。显然,X的数学期望E(X)是X的一阶原点矩,方差D(X)是X的二阶中心矩,协方差Cov(X,Y)是X和Y的二阶混合中心矩。wpBeta2023-05-22 22:50:021
协方差的计算公式?
定义 E[(X-E(X))(Y-E(Y))]称为随机变量X和Y的协方差,记作COV(X,Y),即COV(X,Y)=E[(X-E(X))(Y-E(Y))]。注意 E[(X-E(X))(Y-E(Y))]= E(XY)-E(X)E(Y) 。一:举例(1)Xi 1.1 1.9 3Yi 5.0 10.4 14.6E(X) = (1.1+1.9+3)/3=2E(Y) = (5.0+10.4+14.6)/3=10E(XY)=(1.1×5.0+1.9×10.4+3×14.6)/3=23.02Cov(X,Y)=E(XY)-E(X)E(Y)=23.02-2×10=3.02。二:(1)协方差表示的是两个变量的总体的误差,这与只表示一个变量误差的方差不同。 如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值,另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值。(2) 如果两个变量的变化趋势相反,即其中一个大于自身的期望值,另外一个却小于自身的期望值,那么两个变量之间的协方差就是负值。(3)如果X与Y是统计独立的,那么二者之间的协方差就是0,因为两个独立的随机变量满足E[XY]=E[X]E[Y]。(4)反过来并不成立。即如果X与Y的协方差为0,二者并不一定是统计独立的。(5)协方差Cov(X,Y)的度量单位是X的协方差乘以Y的协方差。而取决于协方差的相关性,是一个衡量线性独立的无量纲的数。协方差为0的两个随机变量称为是不相关的。三:性质若两个随机变量X和Y相互独立,则E[(X-E(X))(Y-E(Y))]=0,因而若上述数学期望不为零,则X和Y必不是相互独立的,亦即它们之间存在着一定的关系。协方差与方差之间有如下关系D(X+Y)=D(X)+D(Y)+2Cov(X,Y)D(X-Y)=D(X)+D(Y)-2Cov(X,Y)协方差与期望值有如下关系:Cov(X,Y)=E(XY)-E(X)E(Y)。北营2023-05-22 22:50:021
协方差的性质是什么?
定义1:变量xk和xl如果均取n个样本,则它们的协方差定义为 ,这里 分别表示两变量系列的平均值。协方差可记为两个变量距平向量的内积,它反映两气象要素异常关系的平均状况。定义2:度量两个随机变量协同变化程度的方差。协方差 协方差(Covariance)在概率论和统计学中用于衡量两个变量的总体误差。而方差是协方差的一种特殊情况,即当两个变量是相同的情况。协方差表示的是两个变量的总体的误差,这与只表示一个变量误差的方差不同。 如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值,另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值。 如果两个变量的变化趋势相反,即其中一个大于自身的期望值,另外一个却小于自身的期望值,那么两个变量之间的协方差就是负值。性质若两个随机变量X和Y相互独立,则E[(X-E(X))(Y-E(Y))]=0,因而若上述数学期望不为零,则X和Y必不是相互独立的,亦即它们之间存在着一定的关系。 协方差与方差之间有如下关系:D(X+Y)=D(X)+D(Y)+2Cov(X,Y)D(X-Y)=D(X)+D(Y)-2Cov(X,Y)协方差与期望值有如下关系:Cov(X,Y)=E(XY)-E(X)E(Y)协方差的性质:(1)Cov(X,Y)=Cov(Y,X)(2)Cov(aX,bY)=abCov(X,Y),(a,b是常数)(3)Cov(X1+X2,Y)=Cov(X1,Y)+Cov(X2,Y)小白2023-05-22 22:50:021
方差及标准差公式
1.方差 s=[(x1-x)^2 +(x2-x)^2 +.(xn-x)^2]/n (x为平均数)2.标准差=方差的算术平方根u投在线2023-05-22 22:50:015
方差是什么意思
方差也是比较数据的一个非常有用的工具举个例子你就明白了以前我们要比较两组数据大小一般用平均数,但是有的时候平均数不能非常准确的表示数据比如 有现在有六只鸡,每三只一组 第一组的鸡的斤数分别是 2.5,3,3.5 第二组的鸡的斤数分别是 1,3,5很显然我们能看出第一组鸡看起来重量的差别不大,第二组鸡的差别就很大,因为鸡本身重量并不大,相差两斤的话一下子就能看出来可是我们发现这两组鸡重量的平均数是一样的,但是这两组鸡却有明显的差别,这是平均数就不能体现二者的差别,所以我们引入了方差的概念用每一个数据和这组数的平均数比较,再计算差的平方和,哪一个大就说明这组数据的差别较大这里面还有一个问题就是为什么要平方,因为每个数和平均数的差有正有负,而我们只关心差的绝对值,但是用绝对值会使计算繁琐,所以用平方余辉2023-05-22 22:50:013
如何理解方差?
方差=平方的均值减去均值的平方。例:有 1、2、3、4、5这组样本,其平均数为(1+2+3+4+5)/5=3,而方差是各个数据分别与其和的平均数之差的平方的和的平均数,则为:[(1-3)^2+(2-3)^2+(3-3)^2+(4-3)^2+(5-3)^2]/5=2,方差为2。方差的公式:方差是实际值与期望值之差平方的平均值,而标准差是方差算术平方根。方差是各个数据与平均数之差的平方的和的平均数,即其中,x表示样本的平均数,n表示样本的数量,xi表示个体,而s2就表示方差。方差是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)并把它叫做这组数据的方差,记作S2。无尘剑 2023-05-22 22:50:011
方差的计算公式是什么?
Ntou1232023-05-22 22:50:0111
方差什么意思
方差是各个数据与平均数之差的平方和的平均数.在概率论和数理统计中,方差(英文Variance)用来度量随机变量和其数学期望(即均值)之间的偏离程度.在许多实际问题中,研究随机变量和均值之间的偏离程度有着很重要的意义.hi投2023-05-22 22:50:011
方差,平方差,公式,
若x1,x2,x3.xn的平均数为m 则方差s^2=1/n[(x1-m)^2+(x2-m)^2+.+(xn-m)^2] 方差即偏离平方的均值,称为标准差或均方差,方差描述波动程度. 平方差公式: a^2-b^2=(a+b)(a-b) 如果本题有什么不明白可以追问,无尘剑 2023-05-22 22:50:011
样本方差的公式怎么求啊?
一般情况下求D(S^2)并不容易,但如果总体服从正态分布N(μ,σ^2),则(n-1)S^2/σ^2服从自由度为n-1的卡方分布,从而D[(n-1)S^2/σ^2]=2(n-1),可由此间接求出D(S^2)。在许多实际情况下,人口的真实差异事先是不知道的,必须以某种方式计算。 当处理非常大的人口时,不可能对人口中的每个物体进行计数,因此必须对人口样本进行计算。样本方差也可以应用于从该分布的样本的连续分布的方差的估计。扩展资料:如果大数定律的条件对于平方观测值同样适用,则s2是σ2的一致估计量。 可以看出,估计的方差趋于零。 在Kenney and Keeping(1951:164),Rose和Smith(2002:264)和Weisstein(n.d.)中给出了渐近等效的公式。正态总体的样本均值和样本方差相互独立。方差刻画了随机变量的取值对于其数学期望的离散程度。(标准差、方差越大,离散程度越大)若X的取值比较集中,则方差D(X)较小,若X的取值比较分散,则方差D(X)较大。因此,D(X)是刻画X取值分散程度的一个量,它是衡量取值分散程度的一个尺度。参考资料来源:百度百科——样本方差凡尘2023-05-22 22:50:011
方差怎么求?
方差DX2和DX的关系:若随机变量X的分布函数F(x)可表示成一个非负可积函数f(x)的积分,则称X为连续性随机变量,f(x)称为X的概率密度函数(分布密度函数)。DX=E(X^2-2XEX+(EX)^2)=E(X^2)-E(2XEX)+(EX)^2=E(X^2)-2(EX)^2+(EX)^2=E(X^2)-(EX)^2概念在做实验时,常常是相对于试验结果本身而言,我们主要还是对结果的某些函数感兴趣。例如,在掷骰子时,我们常常关心的是两颗骰子的点和数,而并不真正关心其实际结果,就是说,我们关心的也许是其点和数为7,而并不关心其实际结果是否是(1,6)或(2,5)或(3,4)或(4,3)或(5,2)或(6,1)。西柚不是西游2023-05-22 22:50:011
0-1分布和二项分布的期望方差分别是什么
0-1分布,期望p方差p(1-p)二项分布期望np方差np(1-p)拌三丝2023-05-22 22:50:012
方差分析F值 是什么意思
方差分析(analysisofvariance,简称anova),又称“变异数分析”或“f检验”,是r.a.fisher发明的,用于两个及两个以上样本均数差别的显著性检验。f检验的f值算法如下:样本标准偏差的平方,即(“^2”是表示平方):s^2=∑(x-x平均)^2/(n-1)两组数据就能得到两个s^2值,s大^2和s小^2f=s大^2/s小^2由表中f大和f小(f为自由度n-1),查得f表,然后计算的f值与查表得到的f表值比较,如果f<f表表明两组数据没有显著差异;f≥f表表明两组数据存在显著差异黑桃花2023-05-22 22:50:013
方差怎么求
ardim2023-05-22 22:50:011
方差到底是有什么意义?
方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的平均数。在许多实际问题中,研究方差即偏离程度有着重要意义。九万里风9 2023-05-22 22:50:016
什么叫方差?
1,数学期望:公式离散型随机变量X的取值为 , 为X对应取值的概率,可理解为数据 出现的频率 ,则:2,方差是实际值与期望值之差平方的平均值,而标准差是方差算术平方根。 [5] 在实际计算中,我们用以下公式计算方差。方差是各个数据与平均数之差的平方的和的平均数,即 :,其中,x表示样本的平均数,n表示样本的数量,xi表示个体,而s^2就表示方差。扩展资料:在概率论和统计学中,数学期望(mean)(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。它反映随机变量平均取值的大小。需要注意的是,期望值并不一定等同于常识中的“期望”——“期望值”也许与每一个结果都不相等。期望值是该变量输出值的平均数。期望值并不一定包含于变量的输出值集合里。大数定律规定,随着重复次数接近无穷大,数值的算术平均值几乎肯定地收敛于期望值。参考资料:百度百科-方差 百度百科-数学期望wpBeta2023-05-22 22:50:001
什么是方差???
平均数减原数,开方陶小凡2023-05-22 22:50:0010
方差怎么计算?
设X为随机变量,X1,X2,...Xi,...,Xn为其n个样本,DX为方差。根据方差的性质,有D(X+Y)=DX+DY,以及D(kX)=k^2*DX,其中X和Y相互独立,k为常数。于是D(ΣXi/n)=ΣD(Xi)/(n^2)=DX/n扩展资料当数据分布比较分散(即数据在平均数附近波动较大)时,各个数据与平均数的差的平方和较大,方差就较大;当数据分布比较集中时,各个数据与平均数的差的平方和较小。因此方差越大,数据的波动越大;方差越小,数据的波动就越小。 样本中各数据与样本平均数的差的平方和的平均数叫做样本方差;样本方差的算术平方根叫做样本标准差。样本方差和样本标准差都是衡量一个样本波动大小的量,样本方差或样本标准差越大,样本数据的波动就越大。方差和标准差是测算离散趋势最重要、最常用的指标。方差是各变量值与其均值离差平方的平均数,它是测算数值型数据离散程度的最重要的方法。标准差为方差的算术平方根,用S表示。方差相应的计算公式为:标准差与方差不同的是,标准差和变量的计算单位相同,比方差清楚,因此很多时候我们分析的时候更多的使用的是标准差。bikbok2023-05-22 22:50:001
什么是方差
方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的平均数。 方差 方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的平均数。在许多实际问题中,研究方差即偏离程度有着重要意义。方差是衡量源数据和期望值相差的度量值。 方差的性质 (1)设C是常数,则D(C)=0 (2)设X是随机变量,C是常数,则有D(CX)=C 2 D(X),D(X+C)=D(X) (3)设X与Y是两个随机变量,则D(X±Y)=D(X)+D(Y)±2Cov(X,Y) 其中协方差2Cov(X,Y)=E{[X-E(X)][Y-E(Y)]} 特别的,当X,Y是两个不相关的随机变量则D(X±Y)=D(X)+D(Y) 此性质可以推广到有限多个两两不相关的随机变量之和的情况。 (4)D(X)=0的充分必要条件是X以概率1取常数E(X),即P={X=E(X)}=1 (当且仅当X取常数值E(X)时的概率为1时,D(X)=0。) 注:不能得出X恒等于常数,当x是连续的时候X可以在任意有限个点取不等于常数c的值。 (5)D(aX+bY)=a 2 DX+b 2 DY+2abCov(X,Y)。Jm-R2023-05-22 22:50:001
方差的定义是什么?
方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的平均数。在许多实际问题中,研究方差即偏离程度有着重要意义。相关信息:在统计描述中,方差用来计算每一个变量(观察值)与总体均数之间的差异。为避免出现离均差总和为零,离均差平方和受样本含量的影响,统计学采用平均离均差平方和来描述变量的变异程度。豆豆staR2023-05-22 22:50:001
方差的定义
方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量,概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度,统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的平均数。方差和标准差是测算离散趋势最重要、最常用的指标,方差是各变量值与其均值离差平方的平均数,它是测算数值型数据离散程度的最重要的方法。方差不仅仅表达了样本偏离均值的程度,更是揭示了样本内部彼此波动的程度,也可以理解为方差代表了样本彼此波动的期望。小菜G的建站之路2023-05-22 22:50:001
统计学中的方差公式是什么
方差和标准差: 英文:variation and standard deviation 右图为计算公式 Variance"s formula 样本中各数据与样本平均数的差的平方和的平均数叫做样本方差;样本方差的算术平方根叫做样本标准差。样本方差和样本标准差都是衡量一个样本波动大小的量,样本方差或样本标准差越大,样本数据的波动就越大。 数学上一般用E{[X-E(X)]^2}来度量随机变量X与其均值E(X)即期望的偏离程度,称为X的方差。 定义 设X是一个随机变量,若E{[X-E(X)]^2}存在,则称E{[X-E(X)]^2}为X的方差,记为D(X)或DX。即D(X)=E{[X-E(X)]^2},而σ(X)=D(X)^0.5(与X有相同的量纲)称为标准差或均方差。 由方差的定义可以得到以下常用计算公式: D(X)=E(X^2)-[E(X)]^2 S^2=[(x1-x拔)2+(x2-x拔)^2+(x3-x拔)^2+…+(xn-x拔)^2]/n 方差的几个重要性质(设一下各个方差均存在)。 (1)设c是常数,则D(c)=0。 (2)设X是随机变量,c是常数,则有D(cX)=(c^2)D(X)。 (3)设X,Y是两个相互独立的随机变量,则D(X+Y)=D(X)+D(Y)。 (4)D(X)=0的充分必要条件是X以概率为1取常数值c,即P{X=c}=1,其中E(X)=c。 方差是标准差的平方阿啵呲嘚2023-05-22 22:50:0011
方差是什么
方差是各个数据与平均数之差的平方的和的平均数,用字母D表示。在概率论和数理统计中,方差(英文Variance)用来度量随机变量和其数学期望(即均值)之间的偏离程度CarieVinne 2023-05-22 22:50:001
方差用什么表示
stt白2023-05-22 22:50:004
什么是方差
在概率论和数理统计中,方差(英文Variance)用来度量随机变量和其数学期望(即均值)之间的偏离程度。 方差,通俗点讲,就是和中心偏离的程度!用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)。 在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定 。 方差的公式 D(x)=E(x^2)-[E(x)]^2 (E(x)表示期望) 方差的几个重要性质 (1)设c是常数,则D(c)=0。 (2)设X是随机变量,c是常数,则有D(cX)=(c^2)D(X)。 (3)设 X 与 Y 是两个随机变量,则 D(X+Y)= D(X)+D(Y)+2E{[X-E(X)][Y-E(Y)]} 特别的,当X,Y是两个相互独立的随机变量,上式中右边第三项为0(常见协方差), 则D(X+Y)=D(X)+D(Y)。此性质可以推广到有限多个相互独立的随机变量之和的情况. (4)D(X)=0的充分必要条件是X以概率为1取常数值c,即P{X=c}=1,其中E(X)=c。编辑本段常见随机变量的期望和方差 设随机变量X。 X服从(0—1)分布,则E(X)=p D(X)=p(1-p) X服从泊松分布,即X~ π(λ),则 E(X)= λ,D(X)= λ X服从均匀分布,即X~U(a,b),则E(X)=(a+b)/2, D(X)=(b-a)^2/12 X服从指数分布,即X~e(λ), E(X)= λ^(-1),D(X)= λ^(-2) X服从二项分布,即X~B(n,p),则E(x)=np, D(X)=np(1-p) X 服从正态分布,即X~N(μ,σ^2), 则E(x)=μ, D(X)=σ^2 X 服从标准正态分布,即X~N(0,1), 则E(x)=0, D(X)=1wpBeta2023-05-22 22:50:001
数学期望的作用是什么?方差的作用是什么?
这些本身是为了在分析现实生活中统计得到的数据的时候有用数学期望,是为了准确地预期某件事未来可能的发展方差,是为了分析一组数据中的差异情况,方差越小越“整齐”北境漫步2023-05-22 22:49:592
随机变量方差计算公式是什么?
离散型随机变量的方差:D(X) = E{[X - E(X)]^2};(1)=E(X^2) - (EX)^2;(2)(1)式是方差的离差表示,,如果不懂,可以记忆(2)式(2)式表示:方差 = X^2的期望 - X的期望的平方。X和X^2都是随机变量,针对于某次随机变量的取值, 例如: 随机变量X服从“0 - 1”:取0概率为q,取1概率为p,p+q=1 则: 对于随即变量X的期望 E(X) = 0*q + 1*p = p 同样对于随即变量X^2的期望 E(X^2) = 0^2 * q + 1^2 * p = p 所以由方差公式(2)得:D(X) = E(X^2) - (EX)^2 = p - p^2 = p(1-p) = pq 无论对于X或者X^2,都是一次随机变量,或者一次实验,不是什么未知的函数, 要通过题目的的随机变量到底是服从什么分配,然后才可以判断出该随机变量具有什么性质或者可以得出什么条件。扩展资料:机变量的期望,离散情形:如果X是离散随机变量,具有概率质量函数p(x),那么X的期望值定义为E[X]= 。换句话说,X的期望是X可能取的值的加权平均,每个值被X取此值的概率所加权。连续情形:也可以定义连续随机变量的期望值。如果X是具有概率密度函数f(x)的连续随机变量,那么X的期望就定义为E[X]= = =β+a/2。换句话说,在(a,β) 上均匀分布的随机变量的期望值正是区间的中点。随机变量在不同的条件下由于偶然因素影响,可能取各种不同的值,故其具有不确定性和随机性,但这些取值落在某个范围的概率是一定的,此种变量称为随机变量。随机变量可以是离散型的,也可以是连续型的。如分析测试中的测定值就是一个以概率取值的随机变量,被测定量的取值可能在某一范围内随机变化,具体取什么值在测定之前是无法确定的,但测定的结果是确定的,多次重复测定所得到的测定值具有统计规律性。随机变量与模糊变量的不确定性的本质差别在于,后者的测定结果仍具有不确定性,即模糊性。参考资料:百度百科-随机变量西柚不是西游2023-05-22 22:49:501
怎样用数形结合证完全平方差公式
画出边长为a的正方形,再以其一个端点的两条边延长至b,得到边长为b的正方形,那么两个正方形不相交的部分就是b^2-a^2而显然其面积为两个长方形之和即(b-a)*a+(b-a)*b所以b^2-a^2=(b-a)*a+(b-a)*b合并即证明了b^2-a^2=(b-a)*(a+b)证明完全平方公式也是同样的道理墨然殇2023-05-21 22:10:171
怎样用数形结合证完全平方差公式
画出边长为a的正方形,再以其一个端点的两条边延长至b,得到边长为b的正方形,那么两个正方形不相交的部分就是b^2-a^2而显然其面积为两个长方形之和即(b-a)*a +(b-a)*b所以b^2-a^2=(b-a)*a +(b-a)*b合并即证明了b^2-a^2=(b-a)*(a+b)证明完全平方公式也是同样的道理wpBeta2023-05-21 22:10:141
方差存在期望一定存在吗
存在方差存在期望一定存在吗?方差存在期望一定存在的。FinCloud2023-05-20 08:56:212
切比雪夫大数定律不是要求每个随机变量期望和方差都一样吗,C哪里满足了
要好好的算铁血嘟嘟2023-05-20 08:56:194
泊松分布方差是什么?
方差D(X)=λ。泊松分布的期望和方差均是λ,λ表示总体均值;P(X=0)=e^(-λ)。X~P(λ) 期望E(X)=λ,方差D(X)=λ。利用泊松分布公式P(x=k)=e^(-λ)*λ^k/k!P表示概率,x表示某类函数关系,k表示数量,等号的右边,λ 表示事件的频率。应用泊松分布适合于描述单位时间(或空间)内随机事件发生的次数。如某一服务设施在一定时间内到达的人数,电话交换机接到呼叫的次数,汽车站台的候客人数,机器出现的故障数,自然灾害发生的次数,一块产品上的缺陷数,显微镜下单位分区内的细菌分布数等等。bikbok2023-05-18 05:43:201
泊松分布的方差是什么?
泊松分布的期望和方差均是λ,λ表示总体均值;P(X=0)=e^(-λ)。泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生次数。 泊松分布适合于描述单位时间内随机事件发生的次数。泊松分布的期望和方差均是λ。应用:泊松分布适合于描述单位时间(或空间)内随机事件发生的次数。如某一服务设施在一定时间内到达的人数,电话交换机接到呼叫的次数,汽车站台的候客人数,机器出现的故障数,自然灾害发生的次数,一块产品上的缺陷数,显微镜下单位分区内的细菌分布数等等。wpBeta2023-05-18 05:43:201
泊松分布的期望和方差分别是什么公式?
一、泊松分布的期望:P(λ)期望 E(X)=λ方差D(X)=λ利用泊松分布公式P(x=k)=e^(-λ)*λ^k/k!可知P(X=0)=e^(-λ)二、解泊松分布的方差:方差D(X)=λ利用泊松分布公式P(x=k)=e^(-λ)*λ^k/k!可知P(X=0)=e^(-λ)p(x>1)=1-p(x=0,所以直接对f(k)=e^(-λ)*λ^k/k!求定积分k从0到1即可求出p(x1)了。扩展资料:泊松分布是最重要的离散分布之一,它多出现在当X表示在一定的时间或空间内出现的事件个数这种场合。在一定时间内某交通路口所发生的事故个数,是一个典型的例子。泊松分布的产生机制可以通过如下例子来解释。当二项分布的n很大而p很小时,泊松分布可作为二项分布的近似,其中λ为np。通常当n≧20,p≦0.05时,就可以用泊松公式近似得计算。参考资料来源:百度百科-泊松分布康康map2023-05-18 05:43:201
泊松分布方差是多少呢?
泊松分布的期望和方差均是λ,λ表示总体均值。泊松分布的形状随着λ的数值发生变化。λ小,则分布向右偏斜,随着λ变大,分布逐渐变的对称。如果λ是一个整数,则有2个众数,λ和λ-1,如果λ不是整数,则众数为λ。如果X~Po(λ),则E(X)为给定区间内能够期望的事件发生次数。方差方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的平均数。在许多实际问题中,研究方差即偏离程度有着重要意义。方差刻画了随机变量的取值对于其数学期望的离散程度。(标准差、方差越大,离散程度越大)若X的取值比较集中,则方差较小,若X的取值比较分散,则方差较大。因此,是刻画取值分散程度的一个量,它是衡量取值分散程度的一个尺度。以上内容参考 百度百科——方差小菜G的建站之路2023-05-18 05:43:171
泊松分布的期望和方差是什么?
泊松分布的期望和方差均是λ,λ表示总体均值;P(X=0)=e^(-λ)。X~P(λ) 期望E(X)=λ,方差D(X)=λ利用泊松分布公式P(x=k)=e^(-λ)*λ^k/k!P表示概率,x表示某类函数关系,k表示数量,等号的右边,λ 表示事件的频率。注意:泊松分布(Poisson distribution),台译卜瓦松分布(法语:loi de Poisson,英语:Poisson distribution,译名有泊松分布、普阿松分布、卜瓦松分布、布瓦松分布、布阿松分布、波以松分布、卜氏分配等),是一种统计与概率学里常见到的离散机率分布(discrete probability distribution)。泊松分布是以18~19 世纪的法国数学家西莫恩·德尼·泊松(Siméon-Denis Poisson)命名的,他在1838年时发表。这个分布在更早些时候由贝努里家族的一个人描述过。拌三丝2023-05-18 05:43:171
二项分布的均值、方差 均值与方差的性质
这个东西,我也是不熟悉。有人回答了,我也跟着学习。CarieVinne 2023-05-17 07:53:146
二项分布方差如何求,就是那种先让你求分
知道了,也就是取得最大概率的k值。证明思路如下:设第k项是最可能的,列方程组:1.第k项概率>第k-1项的概率2.第k项概率>第k+1项。解之即可.小菜G的建站之路2023-05-17 07:53:141
负二项分布的正则性,期望,方差的证明
1、二项分布数学期望Eξ=∑{ξ=0,n}ξ*C{ξ,n}*p^ξ*q^(n-ξ) =∑{ξ=0,n}ξ*n!/ξ!/(n-ξ)!*p^ξ*q^(n-ξ) =∑{ξ=1,n}n!/(ξ-1)!/(n-ξ)!*p^ξ*q^(n-ξ) =n*p*∑{ξ=1,n}C{ξ-1,n-1}*p^(ξ-1)*q^(n-ξ) =n*p*(p+q)^(n-1) =n*p, 方差Dξ=E(ξ^2)-Eξ^2 =∑{ξ=0,n}ξ^2*C{ξ,n}*p^ξ*q^(n-ξ)-n*p*∑{ξ=0,n}ξ*C{ξ,n}*p^ξ*q^(n-ξ) =n*p*∑{ξ=1,n}ξ*(n-1)!/(ξ-1)!/(n-ξ)!*p^(ξ-1)*q^(n-ξ)-n*p*∑{ξ=1,n}ξ*C{ξ,n}*p^ξ*q^(n-ξ) =n*p*∑{ξ=1,n}p^(ξ-1)*q^(n-ξ)*ξ*(C{ξ-1,n-1}-C{ξ,n}+C{ξ,n}*q) =n*p*∑{ξ=1,n}p^(ξ-1)*q^(n-ξ)*ξ*[C{ξ,n}*q-(C{ξ,n}-C{ξ-1,n-1})] =n*p*[∑{ξ=1,n}p^(ξ-1)*q^(n-ξ)*ξ*C{ξ,n}*q-∑{ξ=1,n-1}p^(ξ-1)*q^(n-ξ)*ξ*C{ξ,n-1}] =n*p*[∑{ξ=1,n}p^(ξ-1)*q^(n-ξ)*n!/(ξ-1)!/(n-ξ)!*q-∑{ξ=1,n-1}p^(ξ-1)*q^(n-ξ)*(n-1)!/(ξ-1)!/(n-1-ξ)!] =n*p*[∑{ξ=1,n}n*q*C{ξ-1,n-1}*p^(ξ-1)*q^(n-ξ)- ∑{ξ=1,n-1}(n-1)*q*C{ξ-1,n-2}*p^(ξ-1)*q^(n-ξ-1)] =n*p*[n*q*(p+q)^(n-1)-(n-1)*q*(p+q)^(n-2)] =n*p*[n*q-(n-1)*q] =n*p*q,其中p为单次事件发生的概率,q=1-p。 2、二项分布的概念:在每次试验中只有两种可能的结果,而且两种结果发生与否互相对立,并且相互独立,与其它各次试验结果无关,事件发生与否的概率在每一次独立试验中都保持不变,则这一系列试验总称为n重伯努利实验,当试验次数为1时,二项分布就是伯努利分布。hi投2023-05-17 07:53:131
协方差cov计算公式例题有哪些?
协方差的计算公式为cov(X,Y)=E[(X-E[X])(Y-E[Y])],这里的E[X]代表变量X的期望。从直观上来看,协方差表示的是两个变量总体误差的期望。如果其中一个大于自身的期望值时另外一个也大于自身的期望值,两个变量之间的协方差就是正值。如果其中一个变量大于自身的期望值时另外一个却小于自身的期望值,那么两个变量之间的协方差就是负值。协方差的性质:(1)Cov(X,Y)=Cov(Y,X);(2)Cov(aX,bY)=abCov(X,Y),(a,b是常数);(3)Cov(X1+X2,Y)=Cov(X1,Y)+Cov(X2,Y)。由协方差定义,可以看出Cov(X,X)=D(X),Cov(Y,Y)=D(Y)。协方差作为描述X和Y相关程度的量,在同一物理量纲之下有一定的作用,但同样的两个量采用不同的量纲使它们的协方差在数值上表现出很大的差异。余辉2023-05-16 14:52:491
同方差与异方差的区别
如果说方差是用来衡量一个样本中,样本值的偏离程度的话,协方差就是用来衡量两个样本之间的相关性有多少,也就是一个样本的值的偏离程度,会对另外一个样本的值偏离产生多大的影响,协方差是可以用来计算相关系数的,相关系数P=Cov(a.b)/Sa*Sb,Cov(a.b)是协方差,Sa Sb 分别是样本标准差.异方差性(heteroscedasticity )是相对于同方差而言的.所谓同方差,是为了保证回归参数估计量具有良好的统计性质,经典线性回归模型的一个重要假定:总体回归函数中的随机误差项满足同方差性,即它们都有相同的方差.如果这一假定不满足,即:随机误差项具有不同的方差,则称线性回归模型存在异方差性.所谓残差是指观测值与预测值(拟合值)之间的差,即是实际观察值与回归估计值的差.LuckySXyd2023-05-16 14:52:493
协方差是怎么回事?
E(X)=μ,,D(X)=σ^2,这是N(x,y)两个参数的定义。Y=(X-μ)/σ,则E(Y)=E[(X-μ)/σ]=[E[(X)-μ)]/σ=0,D(Y)=D[(X-μ)/σ]=D(X)/σ^2=1。若两个随机变量X和Y相互独立,则E=0,因而若上述数学期望不为零,则X和Y必不是相互独立的,亦即它们之间存在着一定的关系。协方差与方差之间有如下关系:D(X+Y)=D(X)+D(Y)+2Cov(X,Y)D(X-Y)=D(X)+D(Y)-2Cov(X,Y)协方差与期望值有如下关系:Cov(X,Y)=E(XY)-E(X)E(Y)。协方差协方差在概率论和统计学中用于衡量两个变量的总体误差。而方差是协方差的一种特殊情况,即当两个变量是相同的情况。协方差表示的是两个变量的总体的误差,这与只表示一个变量误差的方差不同。如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值,另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值。如果两个变量的变化趋势相反,即其中一个大于自身的期望值,另外一个却小于自身的期望值,那么两个变量之间的协方差就是负值。大鱼炖火锅2023-05-16 14:52:491
协方差和方差有什么联系和区别?
E(X)=μ,,D(X)=σ^2,这是N(x,y)两个参数的定义。Y=(X-μ)/σ,则E(Y)=E[(X-μ)/σ]=[E[(X)-μ)]/σ=0,D(Y)=D[(X-μ)/σ]=D(X)/σ^2=1。若两个随机变量X和Y相互独立,则E=0,因而若上述数学期望不为零,则X和Y必不是相互独立的,亦即它们之间存在着一定的关系。协方差与方差之间有如下关系:D(X+Y)=D(X)+D(Y)+2Cov(X,Y)D(X-Y)=D(X)+D(Y)-2Cov(X,Y)协方差与期望值有如下关系:Cov(X,Y)=E(XY)-E(X)E(Y)。协方差协方差在概率论和统计学中用于衡量两个变量的总体误差。而方差是协方差的一种特殊情况,即当两个变量是相同的情况。协方差表示的是两个变量的总体的误差,这与只表示一个变量误差的方差不同。如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值,另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值。如果两个变量的变化趋势相反,即其中一个大于自身的期望值,另外一个却小于自身的期望值,那么两个变量之间的协方差就是负值。肖振2023-05-16 14:52:491
怎样计算协方差的值啊
协方差计算式为COV(X,Y)=E(XY)-E(X)E(Y)。这里的E[X]代表变量X的期。协方差用于表示变量间的相互关系,变量间的相互关系一般有三种:正相关,负相关和不相关。正相关:假设有两个变量x和y,若x越大y越大;x越小y越小则x和y为正相关。负相关:假设有两个变量x和y,若x越大y越小;x越小y越大则x和y为负相关。不相关:假设有两个变量x和y,若x和y变化无关联则x和y为负相关。协方差在农业上的应用:农业科学实验中,经常会出现可以控制的质量因子和不可以控制的数量因子同时影响实验结果的情况,这时就需要采用协方差分析的统计处理方法,将质量因子与数量因子(也称协变量)综合起来加以考虑。比如,要研究3种肥料对苹果产量的实际效应,而各棵苹果树头年的“基础产量”不一致,但对试验结果又有一定的影响。要消除这一因素带来的影响,就需将各棵苹果树第1年年产量这一因素作为协变量进行协方差分析,才能得到正确的实验结果。以上内容参考:百度百科-协方差康康map2023-05-16 14:52:491
知道两个变量的方差,如何求它们的协方差?
随机变量X,Y 协方差cov(X,Y)=ρ*√D(X)√D(Y),其中ρ是X,Y的相关系数,D(X),D(Y)是X,Y的方差. 或者还可以由定义式来求:cov(X,Y)=E[(X-EX)(Y-EY)]=EXY-EXEY,其中E是数学期望.此后故乡只2023-05-16 14:52:491
x和x的协方差是多少
x和x的协方差是方差本身。X与X的协方差就等于方差本身:Cov(X,X)=DXCov(X,X)=DXCov(X,X)=DX,公式中EX与EY分别为两个实数随机变量X与Y的数学期望,Cov(X,Y)为X,Y的协方差。协方差(Covariance)在概率论和统计学中用于衡量两个变量的总体误差。而方差是协方差的一种特殊情况,即当两个变量是相同的情况。苏萦2023-05-16 14:52:491
残差的协方差等于原变量的协方差吗
以上特征值均用于数据统计,一般而言,统计只能针对有限的样本进行统计,故以下描述均基于样本统计.假设样本为xi,i=1...n,E(x)为样本的算术平均值残差vxi=xi-E(x);残差的个数与样本中数据的数量n相等方差s^2=∑vi^2 /(n-1)标准差s为方差的平方根假设另外一个样本为yi,i=1...n,E(y)为样本的算术平均值,vyi=yi-E(y)为样本的残差协方差s(x,y)=∑vxi*vyi /(n-1)协方差用于衡量两个变量之间的关系,当两个变量完全独立,且样本数足够大时,协方差为零.方差是协方差的特殊形式,即s(x,x)=s(x).苏萦2023-05-16 14:52:491
协方差的概念和公式是什么
设(x,y)是二维随机向量,称E(x-Ex)(y-Ey)为x和y 的协方差 记为cov(x,y) 计算式:cov(x,y)=E(x*y)-Ex*Ey铁血嘟嘟2023-05-16 14:52:481
什么叫协方差
1、协方差是用于衡量两个变量的总体误差,协方差的一种特殊情况是方差,即当两个变量是相同的情况。 2、协方差分析是从质量因子的角度探讨因素不同水平对实验指标影响的差异。一般说来,质量因子是可以人为控制的。 回归分析是从数量因子的角度出发,通过建立回归方程来研究实验指标与一个或几个因子之间的数量关系。但大多数情况下,数量因子是不可以人为加以控制的。左迁2023-05-16 14:52:481
协方差计算公式是什么?
协方差计算式为COV(X,Y)=E(XY)-E(X)E(Y)。这里的E[X]代表变量X的期。协方差用于表示变量间的相互关系,变量间的相互关系一般有三种:正相关,负相关和不相关。正相关:假设有两个变量x和y,若x越大y越大;x越小y越小则x和y为正相关。负相关:假设有两个变量x和y,若x越大y越小;x越小y越大则x和y为负相关。不相关:假设有两个变量x和y,若x和y变化无关联则x和y为负相关。协方差在农业上的应用:农业科学实验中,经常会出现可以控制的质量因子和不可以控制的数量因子同时影响实验结果的情况,这时就需要采用协方差分析的统计处理方法,将质量因子与数量因子(也称协变量)综合起来加以考虑。比如,要研究3种肥料对苹果产量的实际效应,而各棵苹果树头年的“基础产量”不一致,但对试验结果又有一定的影响。要消除这一因素带来的影响,就需将各棵苹果树第1年年产量这一因素作为协变量进行协方差分析,才能得到正确的实验结果。以上内容参考:百度百科-协方差北有云溪2023-05-16 14:52:481
什么是协方差,有什么用?
协方差计算式为COV(X,Y)=E(XY)-E(X)E(Y)。这里的E[X]代表变量X的期。协方差用于表示变量间的相互关系,变量间的相互关系一般有三种:正相关,负相关和不相关。正相关:假设有两个变量x和y,若x越大y越大;x越小y越小则x和y为正相关。负相关:假设有两个变量x和y,若x越大y越小;x越小y越大则x和y为负相关。不相关:假设有两个变量x和y,若x和y变化无关联则x和y为负相关。协方差在农业上的应用:农业科学实验中,经常会出现可以控制的质量因子和不可以控制的数量因子同时影响实验结果的情况,这时就需要采用协方差分析的统计处理方法,将质量因子与数量因子(也称协变量)综合起来加以考虑。比如,要研究3种肥料对苹果产量的实际效应,而各棵苹果树头年的“基础产量”不一致,但对试验结果又有一定的影响。要消除这一因素带来的影响,就需将各棵苹果树第1年年产量这一因素作为协变量进行协方差分析,才能得到正确的实验结果。以上内容参考:百度百科-协方差大鱼炖火锅2023-05-16 14:52:481
协方差是怎么计算的?
协方差定义为:COV(X,Y)=E[(X-E(X))(Y-E(Y))]等价计算式为COV(X,Y)=E(XY)-E(X)E(Y)。例如:Xi 1.1 1.9 3Yi 5.0 10.4 14.6E(X) = (1.1+1.9+3)/3=2E(Y) = (5.0+10.4+14.6)/3=10E(XY)=(1.1×5.0+1.9×10.4+3×14.6)/3=23.02Cov(X,Y)=E(XY)-E(X)E(Y)=23.02-2×10=3.02扩展资料:协方差公式推导cov(X,Y)=∑ni=1(Xi−X¯)(Yi−Y¯)n=E[(X−E[X])(Y−E[Y])]cov(X,Y)=∑i=1n(Xi−X¯)(Yi−Y¯)n=E[(X−E[X])(Y−E[Y])]=E[XY−E[X]Y−XE[Y]+E[X]E[Y]]=E[XY−E[X]Y−XE[Y]+E[X]E[Y]]因为均值计算是线性的,即(a和b均为常数): E[aX+bY]=aE[X]+bE[Y]E[aX+bY]=aE[X]+bE[Y]方差的概念与计算公式,例1 两人的5次测验成绩如下:X: 50,100,100,60,50 E(X)=72;Y: 73, 70, 75,72,70 E(Y)=72。平均成绩相同,但X 不稳定,对平均值的偏离大。方差描述随机变量对于数学期望的偏离程度。单个偏离是消除符号影响方差即偏离平方的均值,记为D(X):直接计算公式分离散型和连续型。推导另一种计算公式得到:“方差等于各个数据与其算术平均数的离差平方和的平均数”。其中,分别为离散型和连续型计算公式。 称为标准差或均方差,方差描述波动程度。参考资料:协方差计算-百度百科hi投2023-05-16 14:52:481
协方差如何计算
定义 E[(X-E(X))(Y-E(Y))]称为随机变量X和Y的协方差,记作COV(X,Y),即COV(X,Y)=E[(X-E(X))(Y-E(Y))]. 注意 E[(X-E(X))(Y-E(Y))]= E(XY)-E(X)E(Y)九万里风9 2023-05-16 14:52:481
请分别解释一下:方差、标准差、协方差、异方差、同方差、残差~这些概念如何区别如何应用之类的~谢谢
如果说方差是用来衡量一个样本中,样本值的偏离程度的话,协方差就是用来衡量两个样本之间的相关性有多少,也就是一个样本的值的偏离程度,会对另外一个样本的值偏离产生多大的影响,协方差是可以用来计算相关系数的,相关系数P=Cov(a.b)/Sa*Sb, Cov(a.b)是协方差, Sa Sb 分别是样本标准差。异方差性(heteroscedasticity )是相对于同方差而言的。所谓同方差,是为了保证回归参数估计量具有良好的统计性质,经典线性回归模型的一个重要假定:总体回归函数中的随机误差项满足同方差性,即它们都有相同的方差。如果这一假定不满足,即:随机误差项具有不同的方差,则称线性回归模型存在异方差性。 所谓残差是指观测值与预测值(拟合值)之间的差,即是实际观察值与回归估计值的差。余辉2023-05-16 14:52:481
xy的协方差公式
协方差的定义,EX为随机变量X的数学期望,同理,EXY是XY的数学期望。若两个随机变量X和Y相互独立,则E[(X-E(X))(Y-E(Y))]=0,因而若上述数学期望不为零,则X和Y必不是相互独立的,亦即它们之间存在着一定的关系。大鱼炖火锅2023-05-16 14:52:481
协方差定义
协方差在概率论和统计学中用于衡量两个变量的总体误差。而方差是协方差的一种特殊情况,即当两个变量是相同的情况。 协方差表示的是两个变量的总体的误差,这与只表示一个变量误差的方差不同。 如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值,另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值。 如果两个变量的变化趋势相反,即其中一个大于自身的期望值,另外一个却小于自身的期望值,那么两个变量之间的协方差就是负值。在概率论和统计学中,协方差用于衡量两个变量的总体误差。而方差是协方差的一种特殊情况,即当两个变量是相同的情况。期望值分别为E[X]与E[Y]的两个实随机变量X与Y之间的协方差Cov(X,Y)定义为:从直观上来看,协方差表示的是两个变量总体误差的期望。如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值时另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值;如果两个变量的变化趋势相反,即其中一个变量大于自身的期望值时另外一个却小于自身的期望值,那么两个变量之间的协方差就是负值。如果X与Y是统计独立的,那么二者之间的协方差就是0,因为两个独立的随机变量满足E[XY]=E[X]E[Y]。但是,反过来并不成立。即如果X与Y的协方差为0,二者并不一定是统计独立的。协方差Cov(X,Y)的度量单位是X的协方差乘以Y的协方差。协方差为0的两个随机变量称为是不相关的。FinCloud2023-05-16 14:52:482
到底什么是协方差,它的公式是什么?
我晕了!小白2023-05-16 14:52:485
什么叫协方差
协方差科技名词定义中文名称:协方差 英文名称:covariance 定义1:变量xk和xl如果均取n个样本,则它们的协方差定义为 ,这里 分别表示两变量系列的平均值。协方差可记为两个变量距平向量的内积,它反映两气象要素异常关系的平均状况。 所属学科:大气科学(一级学科);气候学(二级学科) 定义2:度量两个随机变量协同变化程度的方差。 所属学科:遗传学(一级学科);群体、数量遗传学(二级学科) 本内容由全国科学技术名词审定委员会审定公布 百科名片协方差分析是建立在方差分析和回归分析基础之上的一种统计分析方法。 方差分析是从质量因子的角度探讨因素不同水平对实验指标影响的差异。一般说来,质量因子是可以人为控制的。 回归分析是从数量因子的角度出发,通过建立回归方程来研究实验指标与一个(或几个)因子之间的数量关系。但大多数情况下,数量因子是不可以人为加以控制的。目录基本定义协方差的性质协方差在农业上的应用 编辑本段基本定义 方差反应参数的波动情况。而两个不同参数之间的方差就是协方差。 若两个随机变量X和Y相互独立,则E[(X-E(X))(Y-E(Y))]=0,因而若上述数学期望不为零,则X和Y必不是相互独立的,亦即它们之间存在着一定的关系。 定义 E[(X-E(X))(Y-E(Y))]称为随机变量X和Y的协方差,记作COV(X,Y),即COV(X,Y)=E[(X-E(X))(Y-E(Y))]。 协方差与方差之间有如下关系: D(X+Y)=D(X)+D(Y)+2COV(X,Y) D(X-Y)=D(X)+D(Y)-2COV(X,Y) 因此,COV(X,Y)=E(XY)-E(X)E(Y)。编辑本段协方差的性质 (1)COV(X,Y)=COV(Y,X); (2)COV(aX,bY)=abCOV(X,Y),(a,b是常数); (3)COV(X1+X2,Y)=COV(X1,Y)+COV(X2,Y)。 由协方差定义,可以看出COV(X,X)=D(X),COV(Y,Y)=D(Y)。 协方差作为描述X和Y相关程度的量,在同一物理量纲之下有一定的作用,但同样的两个量采用不同的量纲使它们的协方差在数值上表现出很大的差异。为此引入如下概念: 定义 ρXY=COV(X,Y)/√D(X)√D(Y),称为随机变量X和Y的相关系数。 定义 若ρXY=0,则称X与Y不相关。 即ρXY=0的充分必要条件是COV(X,Y)=0,亦即不相关和协方差为零是等价的。 定理 设ρXY是随机变量X和Y的相关系数,则有 (1)∣ρXY∣≤1; (2)∣ρXY∣=1充分必要条件为P{Y=aX+b}=1,(a,b为常数,a≠0) 定义 设X和Y是随机变量,若E(X^k),k=1,2,...存在,则称它为X的k阶原点矩,简称k阶矩。 若E{[X-E(X)]^k},k=1,2,...存在,则称它为X的k阶中心矩。 若E(X^kY^l),k、l=1,2,...存在,则称它为X和Y的k+l阶混合原点矩。 若E{[X-E(X)]^k[Y-E(Y)]^l},k、l=1,2,...存在,则称它为X和Y的k+l阶混合中心矩。 显然,X的数学期望E(X)是X的一阶原点矩,方差D(X)是X的二阶中心矩,协方差COV(X,Y)是X和Y的二阶混合中心矩。编辑本段协方差在农业上的应用 农业科学实验中,经常会出现可以控制的质量因子和不可以控制的数量因子同时影响实验结果的情况,这时就需要采用协方差分析的统计处理方法,将质量因子与数量因子(也称协变量)综合起来加以考虑。 比如,要研究3种肥料对苹果产量的实际效应,而各棵苹果树头年的“基础产量”不一致,但对试验结果又有一定的影响。要消除这一因素带来的影响,就需将各棵苹果树第1年年产量这一因素作为协变量进行协方差分析,才能得到正确的实验结果。 当两个变量相关时,用于评估它们因相关而产生的对应变量的影响。 当多个变量独立时,用方差来评估这种影响的差异 当多个变量相关时,用协方差来评估这种影响的差异 简单来说,可以把协方差当成方差来理解。wpBeta2023-05-16 14:52:481
协方差与自协方差之间的关系
方差这个是什么就不说了; 协方差定义在两个随机变量上(设E(X) = µ,E(Y) = υ): cov(X, Y) = E[(X − µ)(Y − υ)] = E(XY) − µυ 若X和Y统计独立,那么协方差为0。 若随机变量为列向量,协方差为: cov(X, Y) = E[(X − µ)(Y − υ)T] cov(X, Y) = cov(Y, X)T 自协方差定义在随机过程上。 如果Xt二阶平稳: γ(τ) = E[(Xt − µ)(Xt+τ − µ)] 相应的,互协方差定义在两个随机过程上。 自相关/互相关类似于自协方差/互协方差,但不减直流。查看更多再也不做站长了2023-05-16 14:52:481
协方差cov与相关系数是什么?
协方差的计算公式为cov(X,Y)=E[(X-E[X])(Y-E[Y])],这里的E[X]代表变量X的期望。从直观上来看,协方差表示的是两个变量总体误差的期望。如果其中一个大于自身的期望值时另外一个也大于自身的期望值,两个变量之间的协方差就是正值。如果其中一个变量大于自身的期望值时另外一个却小于自身的期望值,那么两个变量之间的协方差就是负值。如果X与Y是统计独立的,那么二者之间的协方差就是0,因为两个独立的随机变量满足E[XY]=E[X]E[Y]。协方差的特点。协方差差出了一万倍,只能从两个协方差都是正数判断出两种情况下X、Y都是同向变化,但是,一点也看不出两种情况下X、Y的变化都具有相似性这一特点。相关系数是协方差除以标准差,当X,Y的波动幅度变大的时候,协方差变大,标准差也会变大,相关系数的分母都变大,其实变化的趋势是可以抵消的,协方差的取值范围是 正无穷到负无穷,相关系数则是+1 到-1之间。左迁2023-05-16 14:52:481
什么是协方差函数?
协方差(Covariance)在概率论和统计学中用于衡量两个变量的总体误差。而方差是协方差的一种特殊情况,即当两个变量是相同的情况。协方差表示的是两个变量的总体的误差,这与只表示一个变量误差的方差不同。 如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值,另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值。 如果两个变量的变化趋势相反,即其中一个大于自身的期望值,另外一个却小于自身的期望值,那么两个变量之间的协方差就是负值。 扩展资料协方差函数在概率论和统计学中,协方差是一种两个变量如何相关变化的度量,而协方差函数或核函数,描述一个随机过程或随机场中的空间上的协方差。对于一个随机场或随机过程Z(x)在定义域D,一个协方差函数C(x,y)给出在两个点x和y的值的协方差:C(x,y)在两种情况下称为自协方差函数:在时间序列(概念一致,除了x和y指时间点而不是空间点),以及在多变量随机场(指变量自己的协方差,而不是互协方差)。参考资料来源:百度百科-协方差阿啵呲嘚2023-05-16 14:52:481
协方差和联合分布有什么关系?
如果有联合分布律的话,E(XY)=(X1)* (Y1)*(P1)+ (X2)*( Y2)*(P2)+…向左转|向右转以此联合分布表为例:向左转|向右转扩展资料:若两个随机变量X和Y相互独立,则E[(X-E(X))(Y-E(Y))]=0,因而若上述数学期望不为零,则X和Y必不是相互独立的,亦即它们之间存在着一定的关系。协方差与方差之间有如下关系:D(X+Y)=D(X)+D(Y)+2Cov(X,Y)D(X-Y)=D(X)+D(Y)-2Cov(X,Y)协方差与期望值有如下关系:Cov(X,Y)=E(XY)-E(X)E(Y)。协方差的性质:(1)Cov(X,Y)=Cov(Y,X);(2)Cov(aX,bY)=abCov(X,Y),(a,b是常数);(3)Cov(X1+X2,Y)=Cov(X1,Y)+Cov(X2,Y)。由协方差定义,可以看出Cov(X,X)=D(X),Cov(Y,Y)=D(Y)。水元素sl2023-05-16 14:52:481