方差

什么是单因素多变量方差分析?

单因素多变量方差分析适用于两个个因素、两个个以上观测变量的检验。单因子多变量方差分析适用于一个自变量两个以上因变量的检验,其中因变量为连续型变量,自变量为类别变量。在单变量方差分析中(univariate analysis of variance),只检验因变量各水平在单一因变量测量值平均数的差异,使用的检验方法为F检验,而多变量方差分析(multivariate analysis of variance,简称MANOVA)则同时检验K组间在两个以上因变量是否有显著差异。单因素方差分析试验中要考察的指标称为试验指标,影响试验指标的条件称为因素,因素所处的状态称为水平,若试验中只有一个因素改变则称为单因素试验,若有两个因素改变则称为双因素试验,若有多个因素改变则称为多因素试验。方差分析就是对试验数据进行分析,检验方差相等的多个正态总体均值是否相等,进而判断各因素对试验指标的影响是否显著,根据影响试验指标条件的个数可以区分为单因素方差分析、双因素方差分析和多因素方差分析。
hi投2023-06-10 08:15:071

什么是单因素多变量方差分析?

单因素多变量方差分析适用于(两个)个因素、(两个)个以上观测变量的检验。试验中要考察的指标称为试验指标,影响试验指标的条件称为因素,因素所处的状态称为水平,若试验中只有一个因素改变则称为单因素试验,若有两个因素改变则称为双因素试验,若有多个因素改变则称为多因素试验。对试验数据进行分析,检验方差相等的多个正态总体均值是否相等,进而判断各因素对试验指标的影响是否显著,根据影响试验指标条件的个数可以区分为单因素方差分析、双因素方差分析和多因素方差分析。扩展资料因素可分为两类:一类是人们可以控制的(如原材料、设备、学历、专业等因素);另一类人们无法控制的(如员工素质与机遇等因素)。每个因素又有若干个状态可供选择,因素可供选择的每个状态称为该因素的水平。如果在一项试验中只有一个因素在改变,则称为单因素试验;如果多于一个因素在改变,则称为多因素试验。
瑞瑞爱吃桃2023-06-10 08:15:061

什么是单因素多变量方差分析?

单因素多变量方差分析适用于(两个)个因素、(两个)个以上观测变量的检验。试验中要考察的指标称为试验指标,影响试验指标的条件称为因素,因素所处的状态称为水平,若试验中只有一个因素改变则称为单因素试验,若有两个因素改变则称为双因素试验,若有多个因素改变则称为多因素试验。对试验数据进行分析,检验方差相等的多个正态总体均值是否相等,进而判断各因素对试验指标的影响是否显著,根据影响试验指标条件的个数可以区分为单因素方差分析、双因素方差分析和多因素方差分析。扩展资料因素可分为两类:一类是人们可以控制的(如原材料、设备、学历、专业等因素);另一类人们无法控制的(如员工素质与机遇等因素)。每个因素又有若干个状态可供选择,因素可供选择的每个状态称为该因素的水平。如果在一项试验中只有一个因素在改变,则称为单因素试验;如果多于一个因素在改变,则称为多因素试验。
再也不做站长了2023-06-10 08:15:061

单因素多变量方差分析有什么意义?

单因素多变量方差分析适用于(两个)个因素、(两)个以上观测变量的检验。单因素方差分析是研究一个变量的多种水平对观测量的影响。比如研究施肥的多少对于庄稼生长的影响。单因素方差分析就是检测施肥多少这个单因素对于庄稼生长这应变量的影响。若方差分析显著,就表明存在影响,若不显著就表明没有影响。扩展资料:一、条件原理不同1、两因素方差分析:假定因素A和因素B的效应之间是相互独立的,不存在相互关系2、单因素方差分析:假定因素所处的状态称为水平,试验中只有一个因素改变。二、假设原理不同1、两因素方差分析:假定因素A和因素B的结合会产生出一种新的效应。例如,若假定不同地区的消费者对某种品牌有与其他地区消费者不同的特殊偏爱,这就是两个因素结合后产生的新效应,属于有交互作用的背景2、单因素方差分析:δi表示在水平Ai下总体的均值μi与总平均μ的差异,称其为因子A的第i个水平Ai的效应。三、影响不同1、两因素方差分析:通过分析研究中不同来源的变异对总变异的贡献大小,从而确定可控因素对研究结果影响力的大小。2、单因素方差分析:每个总体的方差σ2相同;从每个总体中抽取的样本。
hi投2023-06-10 08:15:051

协方差分析单变量和多变量的区别 spss

现代统计学1.因子分析(Factor Analysis) 因子分析的基本目的就是用少数几个因子去描述许多指标或因素之间的联系,即将相关比较密切的几个变量归在同一类中,每一类变量就成为一个因子(之所以称其为因子,是因为它是不可观测的,即不是具体的变量),以较少的几个因子反映原资料的大部分信息。 运用这种研究技术,我们可以方便地找出影响消费者购买、消费以及满意度的主要因素是哪些,以及它们的影响力(权重)运用这种研究技术,我们还可以为市场细分做前期分析。 2.主成分分析 主成分分析主要是作为一种探索性的技术,在分析者进行多元数据分析之前,用主成分分析来分析数据,让自己对数据有一个大致的了解是非常重要的。主成分分析一般很少单独使用:a,了解数据。(screening the data),b,和cluster analysis一起使用,c,和判别分析一起使用,比如当变量很多,个案数不多,直接使用判别分析可能无解,这时候可以使用主成份发对变量简化。(reduce dimensionality)d,在多元回归中,主成分分析可以帮助判断是否存在共线性(条件指数),还可以用来处理共线性。 ******************************************************************************************************************主成分分析和因子分析的区别1、因子分析中是把变量表示成各因子的线性组合,而主成分分析中则是把主成分表示成个变量的线性组合。 2、主成分分析的重点在于解释个变量的总方差,而因子分析则把重点放在解释各变量之间的协方差。 3、主成分分析中不需要有假设(assumptions),因子分析则需要一些假设。因子分析的假设包括:各个共同因子之间不相关,特殊因子(specific factor)之间也不相关,共同因子和特殊因子之间也不相关。 4、主成分分析中,当给定的协方差矩阵或者相关矩阵的特征值是唯一的时候,的主成分一般是独特的;而因子分析中因子不是独特的,可以旋转得到不同的因子。 5、在因子分析中,因子个数需要分析者指定(spss根据一定的条件自动设定,只要是特征值大于1的因子进入分析),而指定的因子数量不同而结果不同。在主成分分析中,成分的数量是一定的,一般有几个变量就有几个主成分。 和主成分分析相比,由于因子分析可以使用旋转技术帮助解释因子,在解释方面更加有优势。大致说来,当需要寻找潜在的因子,并对这些因子进行解释的时候,更加倾向于使用因子分析,并且借助旋转技术帮助更好解释。而如果想把现有的变量变成少数几个新的变量(新的变量几乎带有原来所有变量的信息)来进入后续的分析,则可以使用主成分分析。当然,这中情况也可以使用因子得分做到。所以这中区分不是绝对的。 总得来说,主成分分析主要是作为一种探索性的技术,在分析者进行多元数据分析之前,用主成分分析来分析数据,让自己对数据有一个大致的了解是非常重要的。主成分分析一般很少单独使用:a,了解数据。(screening the data),b,和cluster analysis一起使用,c,和判别分析一起使用,比如当变量很多,个案数不多,直接使用判别分析可能无解,这时候可以使用主成份发对变量简化。(reduce dimensionality)d,在多元回归中,主成分分析可以帮助判断是否存在共线性(条件指数),还可以用来处理共线性。 在算法上,主成分分析和因子分析很类似,不过,在因子分析中所采用的协方差矩阵的对角元素不在是变量的方差,而是和变量对应的共同度(变量方差中被各因子所解释的部分)。 ******************************************************************************************************************3.聚类分析(Cluster Analysis) 聚类分析是直接比较各事物之间的性质,将性质相近的归为一类,将性质差别较大的归入不同的类的分析技术 。 在市场研究领域,聚类分析主要应用方面是帮助我们寻找目标消费群体,运用这项研究技术,我们可以划分出产品的细分市场,并且可以描述出各细分市场的人群特征,以便于客户可以有针对性的对目标消费群体施加影响,合理地开展工作。4.判别分析(Discriminatory Analysis) 判别分析(Discriminatory Analysis)的任务是根据已掌握的1批分类明确的样品,建立较好的判别函数,使产生错判的事例最少,进而对给定的1个新样品,判断它来自哪个总体。 根据资料的性质,分为定性资料的判别分析和定量资料的判别分析;采用不同的判别准则,又有费歇、贝叶斯、距离等判别方法。 费歇(FISHER)判别思想是投影,使多维问题简化为一维问题来处理。选择一个适当的投影轴,使所有的样品点都投影到这个轴上得到一个投影值。对这个投影轴的方向的要求是:使每一类内的投影值所形成的类内离差尽可能小,而不同类间的投影值所形成的类间离差尽可能大。 贝叶斯(BAYES)判别思想是根据先验概率求出后验概率,并依据后验概率分布作出统计推断。所谓先验概率,就是用概率来描述人们事先对所研究的对象的认识的程度;所谓后验概率,就是根据具体资料、先验概率、特定的判别规则所计算出来的概率。它是对先验概率修正后的结果。 距离判别思想是根据各样品与各母体之间的距离远近作出判别。即根据资料建立关于各母体的距离判别函数式,将各样品数据逐一代入计算,得出各样品与各母体之间的距离值,判样品属于距离值最小的那个母体。5.对应分析(Correspondence Analysis) 对应分析是一种用来研究变量与变量之间联系紧密程度的研究技术。 运用这种研究技术,我们可以获取有关消费者对产品品牌定位方面的图形,从而帮助您及时调整营销策略,以便使产品品牌在消费者中能树立起正确的形象。 这种研究技术还可以用于检验广告或市场推广活动的效果,我们可以通过对比广告播出前或市场推广活动前与广告播出后或市场推广活动后消费者对产品的不同认知图来看出广告或市场推广活动是否成功的向消费者传达了需要传达的信息。6.典型相关分析 典型相关分析是分析两组随机变量间线性密切程度的统计方法,是两变量间线性相关分析的拓广。各组随机变量中既可有定量随机变量,也可有定性随机变量(分析时须F6说明为定性变量)。本法还可以用于分析高维列联表各边际变量的线性关系。******************************************************************************************************************注意:1.严格地说,一个典型相关系数描述的只是一对典型变量之间的相关,而不是两个变量组之间的相关。而各对典型变量之间构成的多维典型相关才共同揭示了两个观测变量组之间的相关形式。2.典型相关模型的基本假设和数据要求 要求两组变量之间为线性关系,即每对典型变量之间为线性关系; 每个典型变量与本组所有观测变量的关系也是线性关系。如果不是线性关系,可先线性化:如经济水平和收入水平与其他一些社会发展水之间并不是线性关系,可先取对数。即log经济水平,log收入水平。3.典型相关模型的基本假设和数据要求 所有观测变量为定量数据。同时也可将定性数据按照一定形式设为虚拟变量后,再放入典型相关模型中进行分析。 ******************************************************************************************************************7.多维尺度分析(Multi-dimension Analysis) 多维尺度分析(Multi-dimension Analysis) 是市场研究的一种有力手段,它可以通过低维空间(通常是二维空间)展示多个研究对象(比如品牌)之间的联系,利用平面距离来反映研究对象之间的相似程度。由于多维尺度分析法通常是基于研究对象之间的相似性(距离)的,只要获得了两个研究对象之间的距离矩阵,我们就可以通过相应统计软件做出他们的相似性知觉图。 在实际应用中,距离矩阵的获得主要有两种方法:一种是采用直接的相似性评价,先所有评价对象进行两两组合,然后要求被访者所有的这些组合间进行直接相似性评价,这种方法我们称之为直接评价法;另一种为间接评价法,由研究人员根据事先经验,找出影响人们评价研究对象相似性的主要属性,然后对每个研究对象,让被访者对这些属性进行逐一评价,最后将所有属性作为多维空间的坐标,通过距离变换计算对象之间的距离。****************************************************************************************************************** 多维尺度分析的主要思路是利用对被访者对研究对象的分组,来反映被访者对研究对象相似性的感知,这种方法具有一定直观合理性。同时该方法实施方便,调查中被访者负担较小,很容易得到理解接受。当然,该方法的不足之处是牺牲了个体距离矩阵,由于每个被访者个体的距离矩阵只包含1与0两种取值,相对较为粗糙,个体距离矩阵的分析显得比较勉强。但这一点是完全可以接受的,因为对大多数研究而言,我们并不需要知道每一个体的空间知觉图。************************************************************************************************************************************************************************************************************************************ 多元统计分析是统计学中内容十分丰富、应用范围极为广泛的一个分支。在自然科学和社会科学的许多学科中,研究者都有可能需要分析处理有多个变量的数据的问题。能否从表面上看起来杂乱无章的数据中发现和提炼出规律性的结论,不仅对所研究的专业领域要有很好的训练,而且要掌握必要的统计分析工具。对实际领域中的研究者和高等院校的研究生来说,要学习掌握多元统计分析的各种模型和方法,手头有一本好的、有长久价值的参考书是非常必要的。这样一本书应该满足以下条件:首先,它应该是“浅入深出”的,也就是说,既可供初学者入门,又能使有较深基础的人受益。其次,它应该是既侧重于应用,又兼顾必要的推理论证,使学习者既能学到“如何”做,而且在一定程度上了解“为什么”这样做。最后,它应该是内涵丰富、全面的,不仅要基本包括各种在实际中常用的多元统计分析方法,而且还要对现代统计学的最新思想和进展有所介绍、交代。************************************************************************************************************************************************************************************************************************************因子分析 主成分分析通过线性组合将原变量综合成几个主成分,用较少的综合指标来代替原来较多的指标(变量)。在多变量分析中,某些变量间往往存在相关性。是什么原因使变量间有关联呢?是否存在不能直接观测到的、但影响可观测变量变化的公共因子?因子分析(Factor Analysis)就是寻找这些公共因子的模型分析方法,它是在主成分的基础上构筑若干意义较为明确的公因子,以它们为框架分解原变量,以此考察原变量间的联系与区别。 例如,随着年龄的增长,儿童的身高、体重会随着变化,具有一定的相关性,身高和体重之间为何会有相关性呢?因为存在着一个同时支配或影响着身高与体重的生长因子。那么,我们能否通过对多个变量的相关系数矩阵的研究,找出同时影响或支配所有变量的共性因子呢?因子分析就是从大量的数据中“由表及里”、“去粗取精”,寻找影响或支配变量的多变量统计方法。 可以说,因子分析是主成分分析的推广,也是一种把多个变量化为少数几个综合变量的多变量分析方法,其目的是用有限个不可观测的隐变量来解释原始变量之间的相关关系。 因子分析主要用于:1、减少分析变量个数;2、通过对变量间相关关系探测,将原始变量进行分类。即将相关性高的变量分为一组,用共性因子代替该组变量。 1. 因子分析模型 因子分析法是从研究变量内部相关的依赖关系出发,把一些具有错综复杂关系的变量归结为少数几个综合因子的一种多变量统计分析方法。它的基本思想是将观测变量进行分类,将相关性较高,即联系比较紧密的分在同一类中,而不同类变量之间的相关性则较低,那么每一类变量实际上就代表了一个基本结构,即公共因子。对于所研究的问题就是试图用最少个数的不可测的所谓公共因子的线性函数与特殊因子之和来描述原来观测的每一分量。 因子分析模型描述如下: (1)X = (x1,x2,…,xp)¢是可观测随机向量,均值向量E(X)=0,协方差阵Cov(X)=∑,且协方差阵∑与相关矩阵R相等(只要将变量标准化即可实现)。(2)F = (F1,F2,…,Fm)¢ (m<p)是不可测的向量,其均值向量E(F)=0,协方差矩阵Cov(F) =I,即向量的各分量是相互独立的。(3)e = (e1,e2,…,ep)¢与F相互独立,且E(e)=0, e的协方差阵∑是对角阵,即各分量e之间是相互独立的,则模型: x1 = a11F1+ a12F2 +…+a1mFm + e1 x2 = a21F1+a22F2 +…+a2mFm + e2 ……… xp = ap1F1+ ap2F2 +…+apmFm + ep 称为因子分析模型,由于该模型是针对变量进行的,各因子又是正交的,所以也称为R型正交因子模型。 其矩阵形式为: x =AF + e . 其中: x=,A=,F=,e= 这里,(1)m £ p; (2)Cov(F,e)=0,即F和e是不相关的; (3)D(F) = Im ,即F1,F2,…,Fm不相关且方差均为1; D(e)=,即e1,e2,…,ep不相关,且方差不同。 我们把F称为X的公共因子或潜因子,矩阵A称为因子载荷矩阵,e 称为X的特殊因子。 A = (aij),aij为因子载荷。数学上可以证明,因子载荷aij就是第i变量与第j因子的相关系数,反映了第i变量在第j因子上的重要性。2. 模型的统计意义 模型中F1,F2,…,Fm叫做主因子或公共因子,它们是在各个原观测变量的表达式中都共同出现的因子,是相互独立的不可观测的理论变量。公共因子的含义,必须结合具体问题的实际意义而定。e1,e2,…,ep叫做特殊因子,是向量x的分量xi(i=1,2,…,p)所特有的因子,各特殊因子之间以及特殊因子与所有公共因子之间都是相互独立的。模型中载荷矩阵A中的元素(aij)是为因子载荷。因子载荷aij是xi与Fj的协方差,也是xi与Fj的相关系数,它表示xi依赖Fj的程度。可将aij看作第i个变量在第j公共因子上的权,aij的绝对值越大(|aij|£1),表明xi与Fj的相依程度越大,或称公共因子Fj对于xi的载荷量越大。为了得到因子分析结果的经济解释,因子载荷矩阵A中有两个统计量十分重要,即变量共同度和公共因子的方差贡献。 因子载荷矩阵A中第i行元素之平方和记为hi2,称为变量xi的共同度。它是全部公共因子对xi的方差所做出的贡献,反映了全部公共因子对变量xi的影响。hi2大表明x的第i个分量xi对于F的每一分量F1,F2,…,Fm的共同依赖程度大。 将因子载荷矩阵A的第j列( j =1,2,…,m)的各元素的平方和记为gj2,称为公共因子Fj对x的方差贡献。gj2就表示第j个公共因子Fj对于x的每一分量xi(i=1,2,…,p)所提供方差的总和,它是衡量公共因子相对重要性的指标。gj2越大,表明公共因子Fj对x的贡献越大,或者说对x的影响和作用就越大。如果将因子载荷矩阵A的所有gj2 ( j =1,2,…,m)都计算出来,使其按照大小排序,就可以依此提炼出最有影响力的公共因子。3. 因子旋转 建立因子分析模型的目的不仅是找出主因子,更重要的是知道每个主因子的意义,以便对实际问题进行分析。如果求出主因子解后,各个主因子的典型代表变量不很突出,还需要进行因子旋转,通过适当的旋转得到比较满意的主因子。 旋转的方法有很多,正交旋转(orthogonal rotation)和斜交旋转(oblique rotation)是因子旋转的两类方法。最常用的方法是最大方差正交旋转法(Varimax)。进行因子旋转,就是要使因子载荷矩阵中因子载荷的平方值向0和1两个方向分化,使大的载荷更大,小的载荷更小。因子旋转过程中,如果因子对应轴相互正交,则称为正交旋转;如果因子对应轴相互间不是正交的,则称为斜交旋转。常用的斜交旋转方法有Promax法等。4.因子得分 因子分析模型建立后,还有一个重要的作用是应用因子分析模型去评价每个样品在整个模型中的地位,即进行综合评价。例如地区经济发展的因子分析模型建立后,我们希望知道每个地区经济发展的情况,把区域经济划分归类,哪些地区发展较快,哪些中等发达,哪些较慢等。这时需要将公共因子用变量的线性组合来表示,也即由地区经济的各项指标值来估计它的因子得分。 设公共因子F由变量x表示的线性组合为: Fj = uj1 xj1+ uj2 xj2+…+ujpxjp j=1,2,…,m 该式称为因子得分函数,由它来计算每个样品的公共因子得分。若取m=2,则将每个样品的p个变量代入上式即可算出每个样品的因子得分F1和F2,并将其在平面上做因子得分散点图,进而对样品进行分类或对原始数据进行更深入的研究。 但因子得分函数中方程的个数m小于变量的个数p,所以并不能精确计算出因子得分,只能对因子得分进行估计。估计因子得分的方法较多,常用的有回归估计法,Bartlett估计法,Thomson估计法。(1)回归估计法 F = X b = X (X ¢X)-1A¢ = XR-1A¢ (这里R为相关阵,且R = X ¢X )。(2)Bartlett估计法 Bartlett估计因子得分可由最小二乘法或极大似然法导出。 F = [(W-1/2A)¢ W-1/2A]-1(W-1/2A)¢ W-1/2X = (A¢W-1A)-1A¢W-1X(3)Thomson估计法 在回归估计法中,实际上是忽略特殊因子的作用,取R = X ¢X,若考虑特殊因子的作,此时R = X ¢X+W,于是有: F = XR-1A¢ = X (X ¢X+W)-1A¢ 这就是Thomson估计的因子得分,使用矩阵求逆算法(参考线性代数文献)可以将其转换为: F = XR-1A¢ = X (I+A¢W-1A)-1W-1A¢5. 因子分析的步骤 因子分析的核心问题有两个:一是如何构造因子变量;二是如何对因子变量进行命名解释。因此,因子分析的基本步骤和解决思路就是围绕这两个核心问题展开的。(i)因子分析常常有以下四个基本步骤:(1)确认待分析的原变量是否适合作因子分析。(2)构造因子变量。(3)利用旋转方法使因子变量更具有可解释性。(4)计算因子变量得分。(ii)因子分析的计算过程:(1)将原始数据标准化,以消除变量间在数量级和量纲上的不同。(2)求标准化数据的相关矩阵;(3)求相关矩阵的特征值和特征向量;(4)计算方差贡献率与累积方差贡献率; (5)确定因子: 设F1,F2,…, Fp为p个因子,其中前m个因子包含的数据信息总量(即其累积贡献率)不低于80%时,可取前m个因子来反映原评价指标; (6)因子旋转: 若所得的m个因子无法确定或其实际意义不是很明显,这时需将因子进行旋转以获得较为明显的实际含义。(7)用原指标的线性组合来求各因子得分: 采用回归估计法,Bartlett估计法或Thomson估计法计算因子得分。(8)综合得分 以各因子的方差贡献率为权,由各因子的线性组合得到综合评价指标函数。 F = (w1F1+w2F2+…+wmFm)/(w1+w2+…+wm ) 此处wi为旋转前或旋转后因子的方差贡献率。(9)得分排序:利用综合得分可以得到得分名次。 ************************************************************************************************************************************************************************************************************************************ 在采用多元统计分析技术进行数据处理、建立宏观或微观系统模型时,需要研究以下几个方面的问题:· 简化系统结构,探讨系统内核。可采用主成分分析、因子分析、对应分析等方法,在众多因素中找出各个变量最佳的子集合,从子集合所包含的信息描述多变量的系统结果及各个因子对系统的影响。“从树木看森林”,抓住主要矛盾,把握主要矛盾的主要方面,舍弃次要因素,以简化系统的结构,认识系统的内核。· 构造预测模型,进行预报控制。在自然和社会科学领域的科研与生产中,探索多变量系统运动的客观规律及其与外部环境的关系,进行预测预报,以实现对系统的最优控制,是应用多元统计分析技术的主要目的。在多元分析中,用于预报控制的模型有两大类。一类是预测预报模型,通常采用多元线性回归或逐步回归分析、判别分析、双重筛选逐步回归分析等建模技术。另一类是描述性模型,通常采用聚类分析的建模技术。· 进行数值分类,构造分类模式。在多变量系统的分析中,往往需要将系统性质相似的事物或现象归为一类。以便找出它们之间的联系和内在规律性。过去许多研究多是按单因素进行定性处理,以致处理结果反映不出系统的总的特征。进行数值分类,构造分类模式一般采用聚类分析和判别分析技术。 如何选择适当的方法来解决实际问题,需要对问题进行综合考虑。对一个问题可以综合运用多种统计方法进行分析。例如一个预报模型的建立,可先根据有关生物学、生态学原理,确定理论模型和试验设计;根据试验结果,收集试验资料;对资料进行初步提炼;然后应用统计分析方法(如相关分析、逐步回归分析、主成分分析等)研究各个变量之间的相关性,选择最佳的变量子集合;在此基础上构造预报模型,最后对模型进行诊断和优化处理,并应用于生产实际。 ******************************************************************************************************************
kikcik2023-06-10 08:15:041

spss多因素方差分析中为什么不能按确定

spss分析确定没反应的原因是:1.下载的是盗版的spss程序。2.是电脑存在问题。只需在官方进行下载即可解决。在进行统计工作中,有时候需要对某一变量或多个变量进行重复数据分析,这时候就需要使用到重复测量方差分析方法,今天小编就来和大家分享一下,SPSS重复测量方差分析怎么做,SPSS重复测量方差分析结果解读的相关内容。一、SPSS重复测量方差分析怎么做1.启动SPSS软件,将分析数据导入到软件中,点击“分析”-“一般线性模型”-“重复测量”。图1:重复测量2.在“重复测量定义因子”窗口,受试者内因子名填写为“时点”,“级别数”的数值填写为“4”,点击“添加”按钮对其进行添加,同时,测量名称填写为“平均成绩”,点击“添加”按钮,再点击“定义”按钮,进入“重复测量”窗口。图2:定义因子3.在“重复测量”窗口,将模考平均成绩1月到4月转移到受试者内变量中,年级转移到受试者间因子中。图3:变量转移4.点击“选项”,在“选项”窗口,勾选中描述统计,返回“重复测量窗口”点击“确定”按钮即可得到分析结果。图4:选项设置二、SPSS重复测量方差分析结果解读上文对案例数据进行了重复测量方差分析,并得到了分析结果,下面,就对其结果进行解读分析。1.从主体间因子和主体内因子两张分析结果列表中,可以看到本次主要对一年级到三年级4个时间点的平均成绩进行了数据走势分析。图5:主体间因子和主体内因子分析结果2.在描述统计分析列表中给出了一年级到三年级平均成绩的平均值和标准差。图6:描述统计分析结果3.在Mauchly球形度检验分析列表中,其显著性是0.504是大于0.05,所以这里主要查看主体内效应检验分析结果。图7:Mauchly球形度检验分析结果4.在主体内效应检验分析列表中时点的显著性都不行同,这时主要看“格林豪斯-盖斯勒”的显著性,很明显其显著性数值大于0.05,所以一年级到三年级四个时点的平均成绩波动不是很大,而在时点*年级这的“格林豪斯-盖斯勒”显著性也是大于0.05,所以时点和年级基本没有交互性。图8:主体内效应检验分析结果上文所述就是SPSS重复测量方差分析结果的解读。总结:通过上文,小编详细讲解了SPSS重复测量方差分析怎么做,SPSS重复测量方差分析结果解读,希望通过上文所述能够帮助到有需要的小伙伴。作者:子楠标签:上一篇:SPSS数据重构—将选定变量重组为个案下一篇:SPSS多因素方差分析怎么输数据 SPSS多因素方差分析结果解读读者也喜欢这些内容:spss显著性分析是什么意思 spss显著性分析怎么做显著性检验是先对总体数据做出一个大致的预估,接着使用样本容量的数据信息来判断这个假设是否合理,也就是判断假设情况与实际
墨然殇2023-06-10 08:15:031

如何用SPSS进行多因素方差分析

统计操作:1、建立数据文件变量视图:建立3个变量,如下图数据视图:如下图:区组号用1-8表示,营养素号用1-3表示2、统计菜单选择:分析 -> 一般线性模型 -> 单变量点击进入“单变量”对话框将“体重”选入“因变量”框,“区组”、“营养素”选入固定因子框点击右边“模型”按钮,进入“单变量:模型对话框”点击“设定”单选按钮,在“构建项”下拉菜单中选择“主效应”把左边框中区组和营养素均选入右边框中其余选项取默认值就行,点击“继续”按钮,回到“单变量”界面点击“两项比较”按钮,进入下面对话框将右边框中“区组”、“营养素”均选入右边框中再选择两两比较的方法,LSD、S-N-K,Duncan为常用的三种方法,点击“继续”按钮回到“单变量”主界面点击“选项”按钮勾选“统计描述”及“方差齐性检验”,设置显著性水平,点击“继续”按钮,回到“单变量”主界面点击下方“确定”按钮,开始分析。3、结果解读
人类地板流精华2023-06-10 08:15:021

如何用SPSS进行多因素方差分析

确定你的因变量是一个因变量还是多个因变量,如果是一个因变量,则用上面那个单元方差分析(univarite),如果是多个因变量,则使用第二个多元方差分析(multivariate)。进去之后,分别将 因变量、自变量、协变量移入对应对话框之后,其他的可以全部默认 点确定就能出来一般所需的结果了
北营2023-06-10 08:15:011

spss多因素方差分析步骤

“营养素”选入固定因子框点击右边“模型”按钮统计操作:如下图,设置显著性水平,开始分析、建立数据文件变量视图、“营养素”均选入右边框中再选择两两比较的方法,点击“继续”按钮回到“单变量”主界面点击“选项”按钮勾选“统计描述”及“方差齐性检验”,在“构建项”下拉菜单中选择“主效应”把左边框中区组和营养素均选入右边框中其余选项取默认值就行,营养素号用1-3表示2,Duncan为常用的三种方法,“区组”、统计菜单选择,点击“继续”按钮:1:分析->:模型对话框”点击“设定”单选按钮,进入下面对话框将右边框中“区组”:建立3个变量;一般线性模型->单变量点击进入“单变量”对话框将“体重”选入“因变量”框,LSD,如下图数据视图,回到“单变量”主界面点击下方“确定”按钮、S-N-K。3:区组号用1-8表示,进入“单变量,点击“继续”按钮,回到“单变量”界面点击“两项比较”按钮
黑桃花2023-06-10 08:14:591

如何用spss做多因素方差分析

“营养素”选入固定因子框点击右边“模型”按钮统计操作:如下图,设置显著性水平,开始分析、建立数据文件变量视图、“营养素”均选入右边框中再选择两两比较的方法,点击“继续”按钮回到“单变量”主界面点击“选项”按钮勾选“统计描述”及“方差齐性检验”,在“构建项”下拉菜单中选择“主效应”把左边框中区组和营养素均选入右边框中其余选项取默认值就行,营养素号用1-3表示2,Duncan为常用的三种方法,“区组”、统计菜单选择,点击“继续”按钮:1:分析->:模型对话框”点击“设定”单选按钮,进入下面对话框将右边框中“区组”:建立3个变量;一般线性模型->单变量点击进入“单变量”对话框将“体重”选入“因变量”框,LSD,如下图数据视图,回到“单变量”主界面点击下方“确定”按钮、S-N-K。3:区组号用1-8表示,进入“单变量,点击“继续”按钮,回到“单变量”界面点击“两项比较”按钮
拌三丝2023-06-10 08:14:592

如何用SPSS进行多因素方差分析

设置因变量: 在左边变量列表中选“历期”,用向右拉按钮选入到“Dependent Variable:”框中。设置因素变量: 在左边变量列表中选“a”和“b”变量,用向右拉按钮移到“Fixed Factor(s):”框中。可以选择多个因素变量。由于内存容量的限制,选择的因素水平组合数(单元数)应该尽量少。设置随机因素变量: 在左边变量列表中选“重复”变量,用向右拉按钮移到“到Random Factor(s)”框中。可以选择多个随机变量。设置协变量:如果需要去除某个变量对因素变量的影响,可将这个变量移到“Covariate(s)”框中。
u投在线2023-06-10 08:14:591

请教关于spss多元方差分析的结果如何分析?请各位指导!

一下子问了这么多问题啊多因素方差分析,一般分析以下内容:1、各因素间是否有差异,主要看“主体间效应的检验表”中的F和P2、同一个因素不同水平情况是否有差异,主要看“性别”、“年级”的多重检验中的t和P
Chen2023-06-10 08:14:571

R语言中的多元方差分析

R语言中的多元方差分析1、当因变量(结果变量)不止一个时,可用多元方差分析(MANOVA)对它们同时进行分析。library(MASS)attach(UScereal)y <- cbind(calories, fat, sugars)aggregate(y, by = list(shelf), FUN = mean)Group.1 calories fat sugars1 1 119.4774 0.6621338 6.2954932 2 129.8162 1.3413488 12.5076703 3 180.1466 1.9449071 10.856821cov(y)calories fat sugarscalories 3895.24210 60.674383 180.380317fat 60.67438 2.713399 3.995474sugars 180.38032 3.995474 34.050018fit <- manova(y ~ shelf)summary(fit)Df Pillai approx F num Df den Df Pr(>F) shelf 1 0.19594 4.955 3 61 0.00383 **Residuals 63 ---Signif. codes: 0 ‘***" 0.001 ‘**" 0.01 ‘*" 0.05 ‘." 0.1 ‘ " 1summary.aov(fit)Response calories : Df Sum Sq Mean Sq F value Pr(>F) shelf 1 45313 45313 13.995 0.0003983 ***Residuals 63 203982 3238 ---Signif. codes: 0 ‘***" 0.001 ‘**" 0.01 ‘*" 0.05 ‘." 0.1 ‘ " 1Response fat : Df Sum Sq Mean Sq F value Pr(>F) shelf 1 18.421 18.4214 7.476 0.008108 **Residuals 63 155.236 2.4641 ---Signif. codes: 0 ‘***" 0.001 ‘**" 0.01 ‘*" 0.05 ‘." 0.1 ‘ " 1Response sugars : Df Sum Sq Mean Sq F value Pr(>F) shelf 1 183.34 183.34 5.787 0.01909 *Residuals 63 1995.87 31.68 ---Signif. codes: 0 ‘***" 0.001 ‘**" 0.01 ‘*" 0.05 ‘." 0.1 ‘ " 12、评估假设检验单因素多元方差分析有两个前提假设,一个是多元正态性,一个是方差—协方差矩阵同质性。(1)多元正态性第一个假设即指因变量组合成的向量服从一个多元正态分布。可以用Q-Q图来检验该假设条件。center <- colMeans(y)n <- nrow(y)p <- ncol(y)cov <- cov(y)d <- mahalanobis(y, center, cov)coord <- qqplot(qchisq(ppoints(n), df = p), d, main = "QQ Plot Assessing Multivariate Normality", ylab = "Mahalanobis D2")abline(a = 0, b = 1)identify(coord$x, coord$y, labels = row.names(UScereal))如果所有的点都在直线上,则满足多元正太性。2、方差—协方差矩阵同质性即指各组的协方差矩阵相同,通常可用Box"s M检验来评估该假设3、检测多元离群点library(mvoutlier)outliers <- aq.plot(y)outliers
大鱼炖火锅2023-06-10 08:14:561

怎样用SPSS进行多因素多指标方差分析啊,正交表采

方差分析多因素就纳入多个因素,在univariate分析
陶小凡2023-06-10 08:14:553

如何用SPSS进行多因素方差分析

多因素方差分析是对一个独立变量是否受一个或多个因素或变量影响而进行的方差分析。SPSS调用逗Univariate地过程,检验不同水平组合之间因变量均数,由于受不同因素影响是否有差异的问题。在这个过程中可以分析每一个因素的作用,也可以分析因素之间的交互作用,以及分析协方差,以及各因素变量与协变量之间的交互作用。该过程要求因变量是从多元正态总体随机采样得来,且总体中各单元的方差相同。但也可以通过方差齐次性检验选择均值比较结果。因变量和协变量必须是数值型变量,协变量与因变量不彼此独立。因素变量是分类变量,可以是数值型也可以是长度不超过8的字符型变量。固定因素变量(Fixed Factor)是反应处理的因素;随机因素是随机地从总体中抽取的因素。[例子]研究不同温度与不同湿度对粘虫发育历期的影响,得试验数据如表5-7。分析不同温度和湿度对粘虫发育历期的影响是否存在着显著性差异。表5-7 不同温度与不同湿度粘虫发育历期表相对湿度(%) 温度℃重 复12341002591.295.093.893.02787.684.781.282.42979.267.075.770.63165.263.363.663.3802593.289.395.195.52785.881.681.084.42979.070.867.778.83170.786.566.964.94025100.2103.398.3103.82790.691.794.592.22977.285.881.779.73173.673.276.472.5数据保存在逗DATA5-2.SAV地文件中,变量格式如图5-1。 下载信息 [文件大小:1.02 KB 下载次数: 次] 点击下载文件:DATA5-2.rar 1)准备分析数据在数据编辑窗口中输入数据。建立因变量历期逗历期地变量,因素变量温度逗A地,湿度为逗B地变量,重复变量逗重复地。然后输入对应的数值,如图5-6所示。或者打开已存在的数据文件逗DATA5-2.SAV地。图5-6 数据输入格式2)启动分析过程点击主菜单逗Analyze地项,在下拉菜单中点击逗General Linear Model地项,在右拉式菜单中点击逗Univariate地项,系统打开单因变量多因素方差分析设置窗口如图5-7。图5-7 多因素方差分析窗口 3)设置分析变量设置因变量: 在左边变量列表中选逗历期地,用向右拉按钮选入到逗Dependent Variable:地框中。设置因素变量: 在左边变量列表中选逗a地和逗b地变量,用向右拉按钮移到逗Fixed Factor(s):地框中。可以选择多个因素变量。由于内存容量的限制,选择的因素水平组合数(单元数)应该尽量少。设置随机因素变量: 在左边变量列表中选逗重复地变量,用向右拉按钮移到逗到Random Factor(s)地框中。可以选择多个随机变量。设置协变量:如果需要去除某个变量对因素变量的影响,可将这个变量移到逗Covariate(s)地框中。设置权重变量:如果需要分析权重变量的影响,将权重变量移到逗WLS Weight地框中。 4)选择分析模型在主对话框中单击逗Model地按钮,打开逗Univariate Model地对话框。见图5-8。图5-8 逗Univariate Model地 定义分析模型对话框在Specify Model栏中,指定分析模型类型。① Full Factorial选项此项为系统默认的模型类型。该项选择建立全模型。全模型包括所有因素变量的主效应和所有的交互效应。例如有三个因素变量,全模型包括三个因素变量的主效应、两两的交互效应和三个因素的交互效应。选择该项后无需进行进一步的操作,即可单击逗Continue地按钮返回主对话框。此项是系统缺省项。② Custom选项建立自定义的分析模型。选择了逗Custom地后,原被屏蔽的逗Factors & Covariates地、逗Model地和逗Build Term(s)地栏被激活。在逗Factors & Covariates地框中自动列出可以作为因素变量的变量名,其变量名后面的括号中标有字母逗F地;和可以作为协变量的变量名,其变量名后面的括号中标有字母逗C地。这些变量都是由用户在主对话框中定义过的。根据表中列出的变量名建立模型,其方法如下:在逗Build Term(s)地栏右面的有一向下箭头按钮(下拉按钮),单击该按钮可以展开一小菜单,在下拉菜单中用鼠标单击某一项,下拉菜单收回,选中的交互类型占据矩形框。有如下几项选择:Interaction 选中此项可以指定任意的交互效应;Main effects 选中此项可以指定主效应;All 2-way 指定所有2维交互效应;All 3-way 指定所有3维交互效应;All 4-way 指定所有4维交互效应All 5-way 指定所有5维交互效应。③ 建立分析模型中的主效应:在逗Build Term(s)地栏用下拉按钮选中主效应逗Main effects地。在变量列表栏用鼠标键单击某一个单个的因素变量名,该变量名背景将改变颜色(一般变为蓝色),单击逗Build Term(s)地栏中的右拉箭头按钮,该变量出现在逗Model地框中。一个变量名占一行称为主效应项。欲在模型中包括几个主效应项,就进行几次如上的操作。也可以在标有逗F地变量名中标记多个变量同时送到逗Model地框中。本例将逗a地和逗b地变量作为主效应,按上面的方法选送到逗Model地框中。④ 建立模型中的交互项要求在分析模型中包括哪些变量的交互效应,可以通过如下的操作建立交互项。例如,因素变量有逗a(F)地和逗b(F)地,建立它们之间的相互效应。连续在逗Factors &地框的变量表中单击逗a(F)地和逗b(F)地变量使其选中。单击逗Build Term(s)地栏内下拉按钮,选中交互效应逗Interaction地项。单击逗Build Term(s)地栏内的右拉按钮,逗a*b地交互效应就出现在逗Model地框中,模型增加了一个交互效应项:a*b⑤ Sum of squares 栏分解平方和的选择项Type I项,分层处理平方和。仅对模型主效应之前的每项进行调整。一般适用于:平衡的AN0VA模型,在这个模型中一阶交互 效应前指定主效应,二阶交互效应前指定一阶交互效应,依次类推;多项式回归模型。嵌套模型是指第一效应嵌套在第二 效应里,第二效应嵌套在第三效应里,嵌套的形式可使用语句指定。Type II项,对其他所有效应进行调整。一般适用于:平衡的AN0VA模型、主因子效应模型、回归模型、嵌套设计。Type III项,是系统默认的处理方法。对其他任何效应均进行调整。它的优势是把所估计剩余常量也考虑到单元频数中。对没 有缺失单元格的不平衡模型也适用,一般适用于:Type I、Type II所列的模型:没有空单元格的平衡和不平衡模型。Type IV顶,没有缺失单元的设计使用此方法对任何效应F计算平方和。如果F不包含在其他效应里,Type IV = Type IIIl = TypeII。如果F包含在其他效应里,Type IV只对F的较高水平效应参数作对比。一般适用于:Type I、Type lI所列模型; 没有空单元的平衡和不平衡模型。⑥ Include intercept in model栏选项系统默认选项。通常截距包括在模型中。如果能假设数据通过原点,可以不包括截距,即不选择此项。 5)选择比较方法在主对话框中单击逗Contrasts地按钮,打开逗Contrasts地比较设置对话框,如图5-9所示。如图5-9 Contrasts对比设置框在逗Factors地框中显示出所有在主对话框中选中的因素变量。因素变量名后的括号中是当前的比较方法。① 选择因子在逗Factors地框中选择想要改变比较方法的因子,即鼠标单击选中的因子。这一操作使逗Change Contrast地栏中的各项被激活。② 选择比较方法单击逗Contrast地参数框中的向下箭头,展开比较方法表。用鼠标单击选中的对照方法。可供选择的对照方法有:None,不进行均数比较。Deviation,除被忽略的水平外,比较预测变量或因素变量的每个水平的效应。可以选择逗Last地(最后一个水平)或 逗First地(第一个水平)作为忽略的水平。Simple,除了作为参考的水平外,对预测变量或因素变量的每一水平都与参考水平进行比较。选择逗Last地或逗First地作为 参考水平。Difference,对预测变量或因素每一水平的效应,除第一水平以外,都与其前面各水平的平均效应进行比较。与Helmert对照 方法相反。Helmert,对预测变量或因素的效应,除最后一个以外,都与后续的各水平的平均效应相比较。Repeated,对相邻的水平进行比较。对预测变量或因素的效应,除第一水平以外,对每一水平都与它前面的水平进行比较。Polynomial,多项式比较。第一级自由度包括线性效应与预测变量或因素水平的交叉。第二级包括二次效应等。各水平彼此 的间隔被假设是均匀的。③ 修改比较方法先按步骤①选中因子变量,再选比较方法,然后单击逗Change地按钮,选中的(或改变的)比较方法显示在步骤①选中的因子变量后面的括号中。④设置比较的参考类在逗Reference Category地栏比较的参考类有两个,只有选择了逗Deviation地或逗Simple地方法时才需要选择参考水平。共有两种可能的选择,最后一个水平逗Last地选项和第一水平逗First地项。系统默认的参考水平是逗Last地。 6) 选择均值图在主对话框中单击逗Plot地按钮,打开逗Profile Plots地对话框,如图5-10所示。在该对话框中设置均值轮廓图。如图5-10 逗Profile Plots地对话框均值轮廓图(Profile Plots)用于比较边际均值。轮廓图是线图,图中每个点表明因变量在因素变量每个水平上的边际均值的估计值。如果指定了协变量,该均值则是经过协变量调整的均值。因变量做轮廓图的纵轴;一个因素变量做横轴。做单因素方差分析时,轮廓图表明该因素各水平的因变量均值。双因素方差分析时,指定一个因素做横轴变量,另一个因素变量的每个水平产生不同的线。如果是三因素方差分析,可以指定第三个因素变量,该因素每个水平产生一个轮廓图。双因素或多因素轮廓图中的相互平行的线表明在因素间无交互效应;不平行的线表明有交互效应。Factors 框中为因素变量列表。Horlzontal Axis 横坐标框,选择选择逗Factors地框中一个因素变量做横坐标变量。被选的变量名反向显示,单击向右拉箭 头按钮,将变量名送入相应的横坐标轴框中。 如果只想看该因素变量各水平的,因变量均值分布,单击逗Add地按钮,将所选因素变量移入下面的逗Plots地框中。否 则,不点击逗Add地按钮,接着做下步。Separate Lines 分线框。如果想看两个因素变量组合的各单元格中因变量均值分布,或想看两个因变量间是否存在交互效应, 选择逗Factors地框中另一个因素变量,单击右拉按钮将变量名送入逗Separate Lines地框中。单击逗Add地按钮,将自动生成 的图形表达式送入到逗Plots地栏中。分线框中的变量的每个水平将在图中是一条线。图形表达式是用逗*地连接的两个因素变 量名。Separate Plots 分图框。如果在逗Factors地栏中还有因素变量,可以按上述方法,将其送入逗Separate Plot地框中,单击 逗Add地按钮,将自动生成的图形表达式送入到逗Plots地栏中。图形表达式是用逗*"连接的三个因素变量名。分图变量的每个 水平生成一张线图。将图形表达式送到逗Plots地框后发现有错误,单击选错的变量,单击逗Remove地按钮,将其取消,再重新输入正确内容。在检查无误后,按逗Continue地按钮确认,返回到主对话框。如果取消做的设置单击逗Cancel地按钮 7) 选择多重比较在主对话框中单击逗Post Hoc地选项,打开逗Post Hoc Multiple Comparisons for Observed Means地对话框,从逗Factor(s)地框选择变量,单击向右拉按钮,使被选变量进入逗Post Hoc test for地框。本例子选择了逗a地和逗b地。然后选择多重比较方法。在对话框中选择多重比较方法。本例子选择了逗Duncan地和逗Tamhane"s T2地。8)选择保存运算值图5-11 Save对话框在主对话框中,单击逗Save地按钮,打开逗Save地设置对话框,如图5-11所示。通过在对话框中的选择,可以将所计算的预测值、残差和检测值作为新的变量保存在编辑数据文件中。以便于在其他统计分析中使用这些值。① Predicted Values 预测值Unstsndardized,非标准化预测值。Weighted,如果在主对话框中选择了WLS变量,选中该复选项,将保存加权非标准化预测值。Standard error,预测值标准误。② Diagnostics 诊断值Cook"s distance,Cook 距离。Leverage values,非中心化 Leverage 值。③ Residuals 残差Unstsndardized,非标准化残差值,观测值与预测值之差。Weighted,如果在主对话框中选择了WLS变量,选中该复选项,将保存加权非标准化残差。Standardized,标准化残差,又称Pearson残差。Studentized,学生化残差。Deleted,剔除残差,自变量值与校正预测值之差。④ Save to New File 保存协方差矩阵选中地Coefficient statistics地项,将参数协方差矩阵保存到一个新文件中。单击逗File地按钮,打开相应的对话框将文件保存。 9)选择输出项在主对话框中单击逗Options地按钮,打开逗Options地输出设置对话框,见图5-12。图5-12 逗Options地输出设置对话框① Estimated Marginal Means 估测边际均值设置在逗Factor(s) and Factor Interactions地框中列出逗Model地对话框中指定的效应项,在该框中选定因素变量的各种效应项, 单击右拉按钮就将其复制到逗Display Means for地框中。选择主效应,则产生估计的边际均值表;选择二维交互效应产生的估计 边际均值表实际上是典型的单元格均值表。选择三维交互效应也是单元格均值表。在逗Display Means for地框中有主效应时激活此框下面的逗Compare main effects地复选项,对主效应的边际均值进行组间的配 对比较。Confidence interval adjustment参数框,进行多重组间比较。打开下拉菜单,共有三个选项: LSD(none)、Bonferroni、Sidak.。② 在逗Display地栏中指定要求输出的统计量Descriptive statistics项,输出描述统计量:观测量的均值、标准差和每个单元格中的观测量数。Estimates of effect size项,效应量估计。选择此项,给出η2(eta-Square)值。它反应了每个效应与每个参数估计值可以归于 因素的总变异的大小。Observed power复选项,选中此项给出在假设是基于观测值时各种检验假设的功效。计算功效的显著性水平,系统默认的临界值 是0.05。Parameter estimates项。选择此项给出了各因素变量的模型参数估计、标准误、t检验的t值、显著性概率和95%的置信区间。Contrast coefficient matrix项,显示协方差矩阵。Homogeneity test项,方差齐次性检验。本例子选中该项。Spread vs.level plot项,绘制观测量均值对标准差和观测量均值对方差的图形。Residual plot项,绘制残差图。给出观测值、预测值散点图和观测量数目,观测量数目对标准化残差的散点图,加上正态和标准化 残差的正态概率图。Lack of fit项,检查独立变量和非独立变量间的关系是否被充分描述。General estimable function项,可以根据一般估计函数自定义假设检验。对比系数矩阵的行与一般估计函数是线性组合的。③ Significance level 框设置改变逗Confidence intervals地框内多重比较的显著性水平。 10) 提交执行设置完成后,在多因素方差分析窗口框中点击逗OK地按钮,SPSS就会根据设置进行运算,并将结算结果输出到SPSS结果输出窗口中。 11) 结果与分析主要输出结果:结果分析:方差不齐次性检验显著 表5-8 方差齐次性检验表明:方差不齐次性显著,p<0.05。方差分析: 表5-9 主效应方差分析表:在表的左上方标明研究的对象是粘虫历期。偏差来源和偏差平方和:Source 列是偏差的来源。其次列是逗Type III Sum of Squares地偏差平方和。Corrected Model 校正模型,其偏差平方和等于两个主效应a、b平方和加上交互a*b的平方和之和。Intercept 截距。a 温度主效应,其偏差平方和反应的是不同温度造成对粘虫历期的差异。与b偏差平方相同均属于组间偏差平方和。b 湿度主效应,其偏差平方和反应的是不同湿度计量造成的粘虫历期之差异。a*b 温度和湿度交互效应,其偏差平方和反应的是不同温度和湿度共同造成的粘虫历期的差异。Error 误差。其偏差平方和反应的是组内差异。也称组内偏差平方和。Total 是偏差平方和在数值上等于截距、主效应、次效应和误差偏差平方和之总和。Corrected Total 校正总和。其偏差平方和等于校正模型与误差之偏差平方和之总和。df 自由度Mean Square 均方,数值上等于偏差平方和除以相应的自由度。F 值,是各效应项与误差项的均方之比值Sig 进行F检验的p值。p≤0.05,由此得出逗温度地和逗湿度地对因变量逗粘虫历期地在0.05水平上是有显著性差异的。根据方差分析表明:不同温度(a)对粘虫历期的偏差均方是1575.434,F值为90.882,显著性水平是0.000,即p<0.05存在显著性差异;不同湿度(b)对粘虫历期的偏差均方是322.000,F值为18.575,显著性水平是0.000,即p<0.05存在显著性差异;不同温度和不同湿度(a*b)共同对粘虫历期的偏差均方是19.809,F值为1.143,显著性水平是0.358,即p>0.05存在不显著性 差异。多重比较由于方差不齐次性,应选择方差不具有齐次性时的逗Tamhane"s T2地t检验进行配对比较。表5-10 多重比较表就是逗温度地各水平逗Tamhane"s T2地方法比较的结果。表中的各项说明参见表5-6(5.2.2节)。温度25℃与27℃、29℃和31℃之间都有显著性差异;温度27℃与25℃、29℃和31℃之间都有显著性差异;温度29℃与26℃和27℃之间都有显著性差异;与31℃无显著性差异;温度31℃与25℃和27℃之间都有显著性差异;与29℃无显著性差异。不同湿度水平之间无显著性差异存在,这里没有列出多重比较表。地址:
左迁2023-06-10 08:14:541

求助spss高手,在多变量方差分析中Box‘s M 检测sig小于0.05 说明什么?

s M 检测sig小于0.05 说明很复杂。。
可桃可挑2023-06-10 08:14:542

多因素方差分析spss步骤

1、将数据粘贴到spss软件中。2、点击界面上方的“分析”,然后选择“一般性模型”选项。3、选择“多变量”分析。4、选中数据,然后点击箭头,将数据导入到指定位置。5、数据导入完成后点击左下角的确定按钮。多因素方差分析多因素方差分析是对一个独立变量是否受一个或多个因素或变量影响而进行的方差分析。可以通过方差齐次性检验选择均值比较结果。因变量和协变量必须是数值型变量,协变量与因变量不彼此独立。
北境漫步2023-06-10 08:14:531

方差分析可以用于两个多分类变量的分析吗

可以。方差分析可以用于两个多分类变量的分析,能分析多个因素对因变量的独立影响,方差分析(AnalysisofVariance,简称ANOVA),又称“变异数分析”,是RAFisher发明的,用于两个及两个以上样本均数差别的显著性检验。
bikbok2023-06-10 08:14:531

多因素方差分析与回归分析有什么异同啊?

1、分析对象不同回归分析(regressionanalysis)是确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法。多因素方差分析,当有两个或者两个以上的因素对因变量产生影响时,可以用多因素方差分析的方法来进行分析。2、应用不同多因素方差分析不仅能够分析多个控制变量对观测变量的独立影响,更能够分析多个控制变量的交互作用能否对观测变量产生显著影响,最终找到利于观测变量的最优组合。而回归分析则要分析现象之间相关的具体形式,确定其因果关系,并用数学模型来表现其具体关系。比如说,从相关分析中我们可以得知“质量”和“用户满意度”变量密切相关,但是这两个变量之间到底是哪个变量受哪个变量的影响,影响程度如何,则需要通过回归分析方法来确定。3、分析方法不同回归分析方法有LinearRegression线性回归、LogisticRegression逻辑回归、PolynomialRegression多项式回归、StepwiseRegression逐步回归、LassoRegression套索回归等。多因素方差分析往往选用一般化线性模型(GeneralIinearModel)进行参数估计。相同点回归分析和多因素方差分析都属于统计学的分析方法。分析几种因素对因变量的影响显著性的时候,选用方差分析,二者不能通用。参考资料来源:百度百科-多因素方差分析参考资料来源:百度百科-回归分析
NerveM 2023-06-10 08:14:521

spss多因素方差分析步骤

多因素方差分析,用于研究一个因变量是否受到多个自变量也称为因素的影响,它检验多个因素取值水平的不同组合之间,因变量的均值之间是否存在显著的差异。多因素方差分析既可以分析单个因素的作用主效应,也可以分析因素之间的交互作用交互效应,还可以进行协方差分析,以及各个因素变量与协变量的交互作用。1、进入SPSS环境,打开数据文件。2、选择变量,在多变量窗口中,将数学成绩、英语成绩选入因变量列表框,将考生所在地,性别选入固定因子列表框。3、对比设置,单击对话框右侧对比按钮,在弹出的窗口中选择差值,并单击继续。4、绘图设置,单击右侧绘图按钮,将考生所在地选入水平轴,性别选入单图,再单击添加按钮。5、多重比较设置。将考生所在地区和性别选入时候检验列表框中,并选择LSD复选框,单击继续按钮回到多变量对话框,确定后等待结果输出即可。
左迁2023-06-10 08:14:511

多变量方差分析和多元方差分析有什么区别?

其实多元方差分析,指的就是多变量方差分析,“多元”即是“多变量”,同时监测多个指标,与单变量方差分析相对;另外,有些人将多元方差分析理解为多因素方差分析也是不对的!
瑞瑞爱吃桃2023-06-10 08:14:501

单因素方差分析与多因素方差分析的区别是什么?交互作用分析不显著说明什么问题?两因素不能相互补偿吗?

单因素方差分析是研究一个变量的多种水平对观测量的影响。比如研究施肥的多少对于庄稼生长的影响。单因素方差分析就是检测施肥多少这个单因素对于庄稼生长这应变量的影响。若方差分析显著,就表明存在影响,若不显著就表明没有影响。多因素方差分析就是研究多个变量对于应变量的影响。结果也是一个一个分开的,比如研究施肥多少,和光照强度两个自变量对于庄稼生长的影响,结果算得是施肥多少对于庄稼生长是否存在影响,和光照强度对庄稼生长是否存在影响。交互作用不显著,表明这些因素之间没有交互作用。既这些自变量之间没有内在联系。这个交互作用是可以有多种情况的,得根据结果具体讨论。比如,施肥多少,和光照强度两个自变量,若当施肥比较多时,光照强度的变化对于庄稼生长影响不大,这就是一种交互作用。
mlhxueli 2023-06-10 08:14:501

如何用SPSS进行多因素方差分析

多因素方差分析菜单选择:分析 -> 一般线性模型 -> 单变量将研究变量选入“因变量”框,分组变量都选入固定因子框点击右边“模型”按钮,进入“单变量:模型对话框,点击“设定”单选按钮,设置“主效应”、“交互作用”其余选项取默认值就行,点击“继续”按钮,回到“单变量”界面,ok统计专业研究生工作室为您服务
黑桃花2023-06-10 08:14:451

spss多元方差分析的操作方法和结果分析

多元方差分析就是有多个因变量的分析,但是这几个因变量并不是没有关系的,他们应该属于同一种质的不同的形式,比如一个问卷的几个不同的维度。看一下spss多元方差分析的操作方法和结果分析吧。材料/工具spss方法1/10在spss中打开数据,在菜单栏上执行:analyse--general linear model--multivariate。请点击输入图片描述2/10将所有的因变量都放到第一个列表里,将自变量放到固定因素列表里。请点击输入图片描述3/10点击options按钮,打开子对话框。请点击输入图片描述4/10将自变量矫正方式放到右侧的display means,勾选如图所示的三个选项,用来展示描述统计、方差齐性、效应大小,点击继续,返回到主对话框。请点击输入图片描述5/10点击post hoc,设置事后检验。请点击输入图片描述6/10将自变量矫正方式放到事后检验的列表里,在方差齐性的方法中选择lsd,在方差不齐性的方法中选dunnet c,点击continue按钮。请点击输入图片描述7/10点击ok按钮,开始数据处理。请点击输入图片描述8/10先来分析多变量检验,如图所示的红色方框中显示的是检验的不同方法,有时候不同的方法会显示出不同的结果,需要分别解释,下面的结果是一致的。请点击输入图片描述9/10以wilks lambda方法为例,看sig值为000说明差异显著,篇eta方位0.375说明可以解释变异的37.5%。请点击输入图片描述10/10看主体间效应的检验,在矫正方式这一栏,也就是自变量的这一栏,乍一看三个水平的自变量都达到了显著水平,因为对自变量的多次比较会造成一类错误的概率增加,所以我们要用显著性水平除以自变量的水平数,也就是0.05/3=0.17,这样来看重复减少这个水平是达不到显著水平的。请点击输入图片描述
ardim2023-06-10 08:14:451

如何用SPSS进行多因素方差分析

多因素方差分析是对一个独立变量是否受一个或多个因素或变量影响而进行的方差分析。SPSS调用“Univariate”过程,检验不同水平组合之间因变量均数,由于受不同因素影响是否有差异的问题。在这个过程中可以分析每一个因素的作用。也可以分析因素之间的交互作用,以及分析协方差,以及各因素变量与协变量之间的交互作用。该过程要求因变量是从多元正态总体随机采样得来,且总体中各单元的方差相同。但也可以通过方差齐次性检验选择均值比较结果。因变量和协变量必须是数值型变量,协变量与因变量不彼此独立。因素变量是分类变量,可以是数值型也可以是长度不超过8的字符型变量。固定因素变量(Fixed Factor)是反应处理的因素;随机因素是随机地从总体中抽取的因素。[例子]研究不同温度与不同湿度对粘虫发育历期的影响,得试验数据如表5-7。分析不同温度和湿度对粘虫发育历期的影响是否存在着显著性差异。SPSS for Windows的分析结果清晰、直观、易学易用,而且可以直接读取EXCEL及DBF数据文件,现已推广到多种各种操作系统的计算机上,它和SAS、BMDP并称为国际上最有影响的三大统计软件。在国际学术界有条不成文的规定,即在国际学术交流中,凡是用SPSS软件完成的计算和统计分析,可以不必说明算法,由此可见其影响之大和信誉之高。扩展资料:SPSS是世界上最早采用图形菜单驱动界面的统计软件,它最突出的特点就是操作界面极为友好,输出结果美观漂亮。它将几乎所有的功能都以统一、规范的界面展现出来,使用Windows的窗口方式展示各种管理和分析数据方法的功能,对话框展示出各种功能选择项。用户只要掌握一定的Windows操作技能,精通统计分析原理,就可以使用该软件为特定的科研工作服务。SPSS采用类似EXCEL表格的方式输入与管理数据,数据接口较为通用,能方便的从其他数据库中读入数据。其统计过程包括了常用的、较为成熟的统计过程,完全可以满足非统计专业人士的工作需要。输出结果十分美观,存储时则是专用的SPO格式,可以转存为HTML格式和文本格式。对于熟悉老版本编程运行方式的用户,SPSS还特别设计了语法生成窗口,用户只需在菜单中选好各个选项,然后按“粘贴”按钮就可以自动生成标准的SPSS程序。极大的方便了中、高级用户。1)统计图:在经过一年的使用后,新的常规图操作界面已基本完善,本次的改进除使得操作更为便捷外,还突出了两个重点。首先在常规图中引入更多的交互图功能,如图组(Paneled charts),带误差线的分类图形如误差线条图和线图,三维效果的简单、堆积和分段饼图等。其次是引入几种新的图形,已知的有人口金字塔和点密度图两种。2)统计表:几乎全部过程的输出都将会弃用文本,改为更美观的枢轴表。而且枢轴表的表现和易用性会得到进一步的提高,并加入了一些新的功能,如可以对统计量进行排序、在表格中合并/省略若干小类的输出等。此外,枢轴表将可以被直接导出到PowerPoint中,这些无疑都方便了用户的使用。参考资料:百度百科——spss
水元素sl2023-06-10 08:14:441

如何用SPSS进行多因素方差分析?

多因素方差分析是对一个独立变量是否受一个或多个因素或变量影响而进行的方差分析。SPSS调用“Univariate”过程,检验不同水平组合之间因变量均数,由于受不同因素影响是否有差异的问题。在这个过程中可以分析每一个因素的作用,也可以分析因素之间的交互作用,以及分析协方差,以及各因素变量与协变量之间的交互作用。该过程要求因变量是从多元正态总体随机采样得来,且总体中各单元的方差相同。但也可以通过方差齐次性检验选择均值比较结果。因变量和协变量必须是数值型变量,协变量与因变量不彼此独立。因素变量是分类变量,可以是数值型也可以是长度不超过8的字符型变量。固定因素变量(Fixed Factor)是反应处理的因素;随机因素是随机地从总体中抽取的因素。[例子]研究不同温度与不同湿度对粘虫发育历期的影响,得试验数据如表5-7。分析不同温度和湿度对粘虫发育历期的影响是否存在着显著性差异。向左转|向右转1)准备分析数据在数据编辑窗口中输入数据。建立因变量历期“历期”变量,因素变量温度“A”,湿度为“B”变量,重复变量“重复”。然后输入对应的数值,如图5-6所示。或者打开已存在的数据文件“DATA5-2.SAV”。2)启动分析过程点击主菜单“Analyze”项,在下拉菜单中点击“General Linear Model”项,在右拉式菜单中点击“Univariate”项,系统打开单因变量多因素方差分析设置窗口如图5-7。向左转|向右转3)设置分析变量向左转|向右转4)选择分析模型在主对话框中单击“Model”按钮,打开“Univariate Model”对话框。见图5-8。在Specify Model栏中,指定分析模型类型。① Full Factorial选项此项为系统默认的模型类型。该项选择建立全模型。全模型包括所有因素变量的主效应和所有的交互效应。例如有三个因素变量,全模型包括三个因素变量的主效应、两两的交互效应和三个因素的交互效应。选择该项后无需进行进一步的操作,即可单击“Continue”按钮返回主对话框。此项是系统缺省项。向左转|向右转向左转|向右转向左转|向右转向左转|向右转向左转|向右转向左转|向右转向左转|向右转向左转|向右转向左转|向右转向左转|向右转向左转|向右转
阿啵呲嘚2023-06-10 08:14:401

《R语言实战》自学笔记62-多元方差分析

数据准备 多元方差分析( multivariate analysis of variance ,MANOVA),亦称为多变量方差分析,即表示多元数据的方差分析,是一元方差分析的推广。作为一个多变量过程,多元方差分析在有两个或多个因变量时使用,并且通常后面是分别涉及各个因变量的显着性检验。 当因变量(结果变量)不止一个时,可用多元方差分析(MANOVA)对它们同时进行分析。 结果解读:可以看出v1,v2和v3在nitrogen之间存在很大的不同(P值均小于0.05)。 单因素多元方差分析有两个前提假设,一个是多元正态性,一个是方差—协方差矩阵同质性。 第一个假设即指因变量组合成的向量服从一个多元正态分布。可以用Q-Q图来检验该假设条 件。 方差—协方差矩阵同质性即指各组的协方差矩阵相同,通常可用Box"s M检验来评估该假设。 最后,还可以使用mvoutlier包中的ap.plot()函数来检验多元离群点。 如果多元正态性或者方差—协方差均值假设都不满足,又或者你担心多元离群点,那么可以 考虑用稳健或非参数版本的 MANOVA检验。稳健单因素 MANOVA可通过 rrcov包中的 Wilks.test()函数实现。vegan包中的adonis()函数则提供了非参数MANOVA的等同形式。 稳健检验对离群点和违反MANOVA假设的情况不敏感,结果说明在nitrogen的两个水平下,v1、v2、v3的值均存在显著不同。 参考资料:
善士六合2023-06-10 08:14:391

如何用SPSS进行多因素方差分析

多因素方差分析是对一个独立变量是否受一个或多个因素或变量影响而进行的方差分析。SPSS调用“Univariate”过程,检验不同水平组合之间因变量均数,由于受不同因素影响是否有差异的问题。在这个过程中可以分析每一个因素的作用,也可以分析因素之间的交互作用,以及分析协方差,以及各因素变量与协变量之间的交互作用。该过程要求因变量是从多元正态总体随机采样得来,且总体中各单元的方差相同。但也可以通过方差齐次性检验选择均值比较结果。因变量和协变量必须是数值型变量,协变量与因变量不彼此独立。因素变量是分类变量,可以是数值型也可以是长度不超过8的字符型变量。固定因素变量(Fixed Factor)是反应处理的因素;随机因素是随机地从总体中抽取的因素。[例子]研究不同温度与不同湿度对粘虫发育历期的影响,得试验数据如表5-7。分析不同温度和湿度对粘虫发育历期的影响是否存在着显著性差异。表5-7 不同温度与不同湿度粘虫发育历期表相对湿度(%) 温度℃ 重 复1 2 3 4100 25 91.2 95.0 93.8 93.027 87.6 84.7 81.2 82.429 79.2 67.0 75.7 70.631 65.2 63.3 63.6 63.380 25 93.2 89.3 95.1 95.527 85.8 81.6 81.0 84.429 79.0 70.8 67.7 78.831 70.7 86.5 66.9 64.940 25 100.2 103.3 98.3 103.827 90.6 91.7 94.5 92.229 77.2 85.8 81.7 79.731 73.6 73.2 76.4 72.5数据保存在“DATA5-2.SAV”文件中,变量格式如图5-1。 下载信息 [文件大小:1.02 KB 下载次数: 次] 点击下载文件:DATA5-2.rar 1)准备分析数据在数据编辑窗口中输入数据。建立因变量历期“历期”变量,因素变量温度“A”,湿度为“B”变量,重复变量“重复”。然后输入对应的数值,如图5-6所示。或者打开已存在的数据文件“DATA5-2.SAV”。如何用SPSS进行多因素方差分析? 图5-6 数据输入格式2)启动分析过程点击主菜单“Analyze”项,在下拉菜单中点击“General Lwww.hbbz08.com inear Model”项,在右拉式菜单中点击“Univariate”项,系统打开单因变量多因素方差分析设置窗口如图5-7。如何用SPSS进行多因素方差分析? 图5-7 多因素方差分析窗口 3)设置分析变量设置因变量: 在左边变量列表中选“历期”,用如何用SPSS进行多因素方差分析?向右拉按钮选入到“Dependent Variable:”框中。设置因素变量: 在左边变量列表中选“a”和“b”变量,用如何用SPSS进行多因素方差分析?向右拉按钮移到“Fixed Factor(s):”框中。可以选择多个因素变量。由于内存容量的限制,选择的因素水平组合数(单元数)应该尽量少。设置随机因素变量: 在左边变量列表中选“重复”变量,用向右拉按钮移到“到Random Factor(s)”框中。可以选择多个随机变量。设置协变量:如果需要去除某个变量对因素变量的影响,可将这个变量移到“Covariate(s)”框中。设置权重变量:如果需要分析权重变量的影响,将权重变量移到“WLS Weight”框中。 4)选择分析模型在主对话框中单击“Model”按钮,打开“Univariate Model”对话框。见图5-8。如何用SPSS进行多因素方差分析?图5-8 “Univariate Model” 定义分析模型对话框在Specify Model栏中,指定分析模型类型。① Full Factorial选项此项为系统默认的模型类型。该项选择建立全模型。全模型包括所有因素变量的主效应和所有的交互效应。例如有三个因素变量,全模型包括三个因素变量的主效应、两两的交互效应和三个因素的交互效应。选择该项后无需进行进一步的操作,即可单击“Continue”按钮返回主对话框。此项是系统缺省项。② Custom选项建立自定义的分析模型。选择了“Custom”后,原被屏蔽的“Factors & Covariates”、“Model”和“Build Term(s)”栏被激活。在“Factors & Covariates”框中自动列出可以作为因素变量的变量名,其变量名后面的括号中标有字母“F”;和可以作为协变量的变量名,其变量名后面的括号中标有字母“C”。这些变量都是由用户在主对话框中定义过的。根据表中列出的变量名建立模型,其方法如下: 在“Build Term(s)”栏右面的有一向下箭头按钮(下拉按钮),单击该按钮可以展开一小菜单,在下拉菜单中用鼠标单击某一项,下拉菜单收回,选中的交互类型占据矩形框。有如下几项选择:Interaction 选中此项可以指定任意的交互效应;Main effects 选中此项可以指定主效应;All 2-way 指定所有2维交互效应;All 3-way 指定所有3维交互效应;All 4-way 指定所有4维交互效应All 5-way 指定所有5维交互效应。③ 建立分析模型中的主效应:在“Build Term(s)”栏用下拉按钮选中主效应“Main effects”。在变量列表栏用鼠标键单击某一个单个的因素变量名,该变量名背景将改变颜色(一般变为蓝色),单击“Build Term(s)”栏中的右拉箭头按钮,该变量出现在“Model”框中。一个变量名占一行称为主效应项。欲在模型中包括几个主效应项,就进行几次如上的操作。也可以在标有“F”变量名中标记多个变量同时送到“Model”框中。本例将“a”和“b”变量作为主效应,按上面的方法选送到“Model”框中。④ 建立模型中的交互项要求在分析模型中包括哪些变量的交互效应,可以通过如下的操作建立交互项。例如,因素变量有“a(F)”和“b(F)”,建立它们之间的相互效应。连续在“Factors &”框的变量表中单击“a(F)”和“b(F)”变量使其选中。单击“Build Term(s)”栏内下拉按钮,选中交互效应“Interaction”项。单击“Build Term(s)”栏内的右拉按钮,“a*b”交互效应就出现在“Model”框中,模型增加了一个交互效应项:a*b⑤ Sum of squares 栏分解平方和的选择项Type I项,分层处理平方和。仅对模型主效应之前的每项进行调整。一般适用于:平衡的AN0VA模型,在这个模型中一阶交互 效应前指定主效应,二阶交互效应前指定一阶交互效应,依次类推;多项式回归模型。嵌套模型是指第一效应嵌套在第二 效应里,第二效应嵌套在第三效应里,嵌套的形式可使用语句指定。Type II项,对其他所有效应进行调整。一般适用于:平衡的AN0VA模型、主因子效应模型、回归模型、嵌套设计。Type III项,是系统默认的处理方法。对其他任何效应均进行调整。它的优势是把所估计剩余常量也考虑到单元频数中。对没 有缺失单元格的不平衡模型也适用,一般适用于:Type I、Type II所列的模型:没有空单元格的平衡和不平衡模型。Type IV顶,没有缺失单元的设计使用此方法对任何效应F计算平方和。如果F不包含在其他效应里,Type IV = Type IIIl = TypeII。如果F包含在其他效应里,Type IV只对F的较高水平效应参数作对比。一般适用于:Type I、Type lI所列模型; 没有空单元的平衡和不平衡模型。⑥ Include intercept in model栏选项系统默认选项。通常截距包括在模型中。如果能假设数据通过原点,可以不包括截距,即不选择此项。 5)选择比较方法在主对话框中单击“Contrasts”按钮,打开“Contrasts”比较设置对话框,如图5-9所示。如何用SPSS进行多因素方差分析?
Chen2023-06-10 08:14:391

如何使用单因素多变量方差分析?

单因素多变量方差分析适用于(两个)个因素、(两个)个以上观测变量的检验。单因素统计:单因素的盆栽试验;温室内、实验室内的实验等,应用该设计,若实验中获得的数据各处理重复数相等,采用重复数相等的单因素资料方差分析法分析,若实验中获得的数据各处理重复数不相等,则采用重复数不等的单因素资料方差分析法分析。扩展资料:在方差分析中,将要考察的对象的某种特征称为试验指标,影响试验指标的条件称为因素,因素可分为两类,一类是人们可以控制的(如原材料、设备、学历、专业等因素);另一类人们无法控制的(如员工素质与机遇等因素)。下面所讨论的因素都是指可控制因素。每个因素又有若干个状态可供选择,因素可供选择的每个状态称为该因素的水平。参考资料来源:百度百科-单因素方差分析
西柚不是西游2023-06-10 08:14:381

应用多变量方差分析的前提条件包括什么?

进行方差分析需要数据满足以下两个基本前提:各观测变量总体要服从正态分布。各观测变量的总体满足方差齐。这是方差分析的两个基本前提条件,理论上讲,数据必须满足以上两个条件才能进行方差分析,如不满足,则使用非参数检验。但现实研究中,数据多数情况下无法到达理想状态。正态性检验要求严格通常无法满足,实际研究中,若峰度绝对值小于10并且偏度绝对值小于3,或正态图基本上呈现出钟形,则说明数据虽然不是绝对正态,但基本可接受为正态分布,此时也可使用方差分析进行分析。方差分析的用途:1、两个或多个样本均数间的比较。2、分析两个或多个因素间的交互作用。3、回归方程的线性假设检验。4、多元线性回归分析中偏回归系数的假设检验。5、两样本的方差齐性检验等。由于各种因素的影响,研究所得的数据呈现波动状。造成波动的原因可分成两类,一是不可控的随机因素,另一是研究中施加的对结果形成影响的可控因素。
mlhxueli 2023-06-10 08:14:311

应用多变量方差分析的前提条件包括什么?

方差分析的应用前提条件为:1、可比性。若资料中各组均数本身不具可比性则不适用方差分析。2、正态性。即偏态分布资料不适用方差分析。对偏态分布的资料应考虑用对数变换、平方根变换、倒数变换、平方根反正弦变换等变量变换方法变为正态或接近正态后再进行方差分析。3、方差齐性。即若组间方差不齐则不适用方差分析。多个方差的齐性检验可用 Bartlett法,它用卡方值作为检验统计量,结果判断需查阅卡方界值表。方差分析主要用于:1、均数差别的显著性检验;2、分离各有关因素并估计其对总变异的作用;3、分析因素间的交互作用;4、方差齐性检验。
余辉2023-06-10 08:14:261

spss怎么做多因素方差分析,且考虑交互作用

有交互作用的方差分析,可以这样做(简要步骤):1。Analyze---general linear model---univeriate 然后你把因变量选进dependent variable ,把因素ABC选进FIX FACTOR 或random factor(注意区分固定因素和随机因素)2。接着在MODEL---CUSTOM,把A,B,C因素一个一个选进右侧的文本框中,并用ctrl+A,B;ctrl+A,C一起把AB,AC选进右侧文本框中(这个是交互作用),完了选continue3。最后,你可以选中OPTIONS按钮,按照需要把自己要做的分析(描述统计,方差齐性检验,系数估计等)选上就可以了。我用的是英文版,怕中文翻译不准确,就直接把英文打出来了,希望能帮得上忙
铁血嘟嘟2023-06-10 08:14:192

什么是单因素多变量方差分析?

单因素多变量方差分析适用于(两个)个因素、(两个)个以上观测变量的检验。试验中要考察的指标称为试验指标,影响试验指标的条件称为因素,因素所处的状态称为水平,若试验中只有一个因素改变则称为单因素试验,若有两个因素改变则称为双因素试验,若有多个因素改变则称为多因素试验。对试验数据进行分析,检验方差相等的多个正态总体均值是否相等,进而判断各因素对试验指标的影响是否显著,根据影响试验指标条件的个数可以区分为单因素方差分析、双因素方差分析和多因素方差分析。扩展资料因素可分为两类:一类是人们可以控制的(如原材料、设备、学历、专业等因素);另一类人们无法控制的(如员工素质与机遇等因素)。每个因素又有若干个状态可供选择,因素可供选择的每个状态称为该因素的水平。如果在一项试验中只有一个因素在改变,则称为单因素试验;如果多于一个因素在改变,则称为多因素试验。
FinCloud2023-06-10 08:14:161

单因素多变量方差分析是什么意思?

单因素多变量方差分析适用于(两个)个因素、(两)个以上观测变量的检验。单因素方差分析是研究一个变量的多种水平对观测量的影响。比如研究施肥的多少对于庄稼生长的影响。单因素方差分析就是检测施肥多少这个单因素对于庄稼生长这应变量的影响。若方差分析显著,就表明存在影响,若不显著就表明没有影响。扩展资料:一、条件原理不同1、两因素方差分析:假定因素A和因素B的效应之间是相互独立的,不存在相互关系2、单因素方差分析:假定因素所处的状态称为水平,试验中只有一个因素改变。二、假设原理不同1、两因素方差分析:假定因素A和因素B的结合会产生出一种新的效应。例如,若假定不同地区的消费者对某种品牌有与其他地区消费者不同的特殊偏爱,这就是两个因素结合后产生的新效应,属于有交互作用的背景2、单因素方差分析:δi表示在水平Ai下总体的均值μi与总平均μ的差异,称其为因子A的第i个水平Ai的效应。三、影响不同1、两因素方差分析:通过分析研究中不同来源的变异对总变异的贡献大小,从而确定可控因素对研究结果影响力的大小。2、单因素方差分析:每个总体的方差σ2相同;从每个总体中抽取的样本。
LuckySXyd2023-06-10 08:14:141

设随机变量X~N(μ,σ^2),求Y=bX+c的分布密度,其中b,c都是常数且b不为0,并求Y的期望和方差

E(Y)=bμD(Y)=b^2σ^2因此Y=bX+c的分布密度为:f(x)=2/[√(2π)σ]*e^[-(y-bμ)^2/(b^2σ^2)]
bikbok2023-06-10 08:09:041

高中数学必修三方差计算公式

方差是指各个数据与平均数之差的平方的平均数,同时这也是高中数学必修三课本的重点内容,下面我给大家带来数学必修三方差计算公式,希望对你有帮助。 目录 高中数学必修三方差的计算公式 高中数学必修三方差的性质 高中数学必修三统计知识点 高中数学必修三方差的计算公式 例1 两人的5次测验成绩如下: X: 50,100,100,60,50 E(X)=72; Y: 73, 70, 75,72,70 E(Y)=72。 平均成绩相同,但X 不稳定,对平均值的偏离大。 方差描述随机变量对于数学期望的偏离程度。 单个偏离是 消除符号影响 方差即偏离平方的均值,记为D(X): 直接计算公式分离散型和连续型,具体为: 这里 是一个数。推导另一种计算公式 得到:“方差等于平方的均值减去均值的平方”。 其中,分别为离散型和连续型计算公式。 称为标准差或均方差,方差描述波动程度。 <<< 高中数学必修三方差的性质 1.设C为常数,则D(C) = 0(常数无波动); 2.D(CX)=C2 D(X) (常数平方提取); 证: 特别地 D(-X) = D(X), D(-2X ) = 4D(X)(方差无负值) 3.若X 、Y 相互独立,则证:记则 前面两项恰为 D(X)和D(Y),第三项展开后为 当X、Y 相互独立时, 故第三项为零。 特别地 独立前提的逐项求和,可推广到有限项。 方差公式: 平均数:M=(x1+x2+x3+…+xn)/n (n表示这组数据个数,x1、x2、x3……xn表示这组数据具体数值) 方差公式:S^2=〈(M-x1)^2+(M-x2)^2+(M-x3)^2+…+(M-xn)^2〉╱n <<< 高中数学必修三统计知识点 分层抽样 (1)分层抽样(类型抽样): 先将总体中的所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采用简单随机抽样或系用抽样的办法抽取一个子样本,最后,将这些子样本合起来构成总体的样本。 两种 方法 : ①先以分层变量将总体划分为若干层,再按照各层在总体中的比例从各层中抽取。 ②先以分层变量将总体划分为若干层,再将各层中的元素按分层的顺序整齐排列,最后用系统抽样的方法抽取样本。 (2)分层抽样是把异质性较强的总体分成一个个同质性较强的子总体,再抽取不同的子总体中的样本分别代表该子总体,所有的样本进而代表总体。 分层标准: ①以调查所要分析和研究的主要变量或相关的变量作为分层的标准。 ②以保证各层内部同质性强、各层之间异质性强、突出总体内在结构的变量作为分层变量。 ③以那些有明显分层区分的变量作为分层变量。 高中数学必修3统计知识点:系统抽样 (1)系统抽样(等距抽样或机械抽样): 把总体的单位进行排序,再计算出抽样距离,然后按照这一固定的抽样距离抽取样本。第一个样本采用简单随机抽样的办法抽取。 K(抽样距离)=N(总体规模)/n(样本规模) 前提条件:总体中个体的排列对于研究的变量来说,应是随机的,即不存在某种与研究变量相关的规则分布。可以在调查允许的条件下,从不同的样本开始抽样,对比几次样本的特点。如果有明显差别,说明样本在总体中的分布承某种循环性规律,且这种循环和抽样距离重合。 (2)系统抽样,即等距抽样是实际中最为常用的抽样方法之一。因为它对抽样框的要求较低,实施也比较简单。更为重要的是,如果有某种与调查指标相关的辅助变量可供使用,总体单元按辅助变量的大小顺序排队的话,使用系统抽样可以大大提高估计精度。 简单随机抽样 (1)总体和样本 ①在统计学中 , 把研究对象的全体叫做总体.②把每个研究对象叫做个体.③把总体中个体的总数叫做总体容量. ④为了研究总体 的有关性质,一般从总体中随机抽取一部分: x1,x2 , ....研究,我们称它为样本.其中个体的个数称为样本容量. (2)简单随机抽样,也叫纯随机抽样。就是从总体中不加任何分组、划类、排队等,完全随 机地抽取调查单位。特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。简单随机抽样是 其它 各种抽样形式的基础。通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。 (3)简单随机抽样常用的方法: ①抽签法②随机数表法③计算机模拟法③使用统计软件直接抽取。 在简单随机抽样的样本容量设计中,主要考虑:①总体变异情况;②允许误差范围;③概率保证程度。 (4)抽签法: ①给调查对象群体中的每一个对象编号;②准备抽签的工具,实施抽签; ③对样本中的每一个个体进行测量或调查 程序框图 程序框图的概念: 程序框图又称流程图,是一种用程序框、流程线及文字说明来表示算法的图形; 程序框图的构成: 一个程序框图包括以下几部分:实现不同算法功能的相对应的程序框;带箭头的流程线;程序框内必要的 说明文 字。 设计程序框图的步骤: 第一步,用自然语言表述算法步骤; 第二步,确定每一个算法步骤所包含的逻辑结构,并用相应的程序框图表示,得到该步骤的程序框图; 第三步,将所有步骤的程序框图用流程线连接起来,并加上终端框,得到表示整个算法的程序框图。 画程序框图的规则: (1)使用标准的框图符号; (2)框图一般按从上到下、从左到右的方向画; (3)除判断框外,大多数程序框图中的程序框只有一个进入点和一个退出点,判断框是具有超过一个退出点的唯一符号; (4)在图形符号内描述的语言要非常简练清楚。 几种重要的结构: 顺序结构、条件结构、循环结构。 <<< 高中数学必修三方差计算公式相关 文章 : ★ 高中数学必修三方差计算公式 ★ 高中数学方差公式 ★ 2017年高考数学方差必考知识点 ★ 高中数学公式大全 ★ 高三数学期望与方差知识点复习(2) ★ 广东高考数学方差必考知识点 ★ 数学期望与方差的关系 ★ 高中数学必修三正态分布知识点 ★ 高中数学统计知识点 ★ 做数学大题的技巧 var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm.baidu.com/hm.js?1fc3c5445c1ba79cfc8b2d8178c3c5dd"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();
LuckySXyd2023-06-10 08:06:251

如果变量数列把频数换成频率,方差怎么变

如果变量数列把频数换成频率,方差不变,知道频数求频率的公式是频率=频数÷样本容量。在相同的条件下,进行了n次试验,在这n次试验中,事件A发生的次数m称为事件A发生的频数,比值m/n称为事件A发生的频率。这个公式用文字表示定义为:每个对象出现的次数与总次数的比值结果是频率。某个组的频数与样本容量的比值也叫做这个组的频率。有了频数(或频率)就可以知道数的分布情况。
豆豆staR2023-06-10 07:55:001

常数和变量的协方差为0吗

为0。因为Ec=c,所以cov(X,c)=E[(X-EX)(c-Ec)]=E[0]=0,所以随机变量与常数的协方差为0。常量与变量是数学中反映事物量的一对范畴。
九万里风9 2023-06-10 07:54:051

如何运用对数变换法克服异方差性的不利影响

运用对数变换法处理异方差性的方法:针对连续且大于0的原始自变量X和因变量Y,进行取自然对数(或10为底对数)操作,如果是定类数据则不处理。取对数可以将原始数据的大小进行‘压缩",这样会减少异方差问题。事实上多数研究时默认就进行此步骤处理。负数不能直接取对数,如果数据中有负数,研究人员可考虑先对小于0的负数,先取其绝对值再求对数,然后加上负数符号。异方差性的检测方法:1、残差图通过绘制残差图,将残差项分别与模型的自变量X或者因变量Y,作散点图,查看散点是否有明显的规律性。残差图通常存在异方差时,散点图会呈现出自变量X值越大,残差项越大/越小的分布规律。如上图中散点图呈现出这样的规律性,说明模型具有异方差性。2、white检验怀特检验是最常用于检验异方差的方法。SPSSAU中会自动输出怀特检验结果。3、BP检验除此之外,也可用BP检验结果判断,SPSSAU中会自动输出此结果。如果BP结果与white检验结果出现矛盾,建议以怀特检验结果为准。
wpBeta2023-06-10 07:52:121

在word中怎么进行方差齐性检验

统计学搜索整理汇总——方差齐性检验的原理LXK的结论:齐性检验时F越小(p越大),就证明没有差异,就说明齐,比如F=1.27,p>0.05则齐,这与方差分析均数时F越大约好相反。LXK注:方差(MS或s2)=离均差平方和/自由度(即离均差平方和的均数) 标准差=方差的平方根(s)F=MS组间/MS误差=(处理因素的影响+个体差异带来的误差)/个体差异带来的误差F检验为什么要求各比较组的方差齐性?——之所以需要这些前提条件,是因为必须在这样的前提下所计算出的t统计量才服从t分布,而t检验正是以t分布作为其理论依据的检验方法。在方差分析的F检验中,是以各个实验组内总体方差齐性为前提的,因此,按理应该在方差分析之前,要对各个实验组内的总体方差先进行齐性检验。如果各个实验组内总体方差为齐性,而且经过F检验所得多个样本所属总体平均数差异显著,这时才可以将多个样本所属总体平均数的差异归因于各种实验处理的不同所致;如果各个总体方差不齐,那么经过F检验所得多个样本所属总体平均数差异显著的结果,可能有一部分归因于各个实验组内总体方差不同所致。简单地说就是在进行两组或多组数据进行比较时,先要使各组数据符合正态分布,另外就是要使各组数据的方差相等(齐性)。在SPSS中,如果进行方差齐性检验呢?命令是什么?方差分析(Anaylsis of Variance, ANOVA)要求各组方差整齐,不过一般认为,如果各组人数相若,就算未能通过方差整齐检验,问题也不大。One-Way ANOVA对话方块中,点击Options…(选项…)按扭,勾Homogeneity-of-variance即可。它会产生Levene、Cochran C、Bartlett-Box F等检验值及其显著性水平P值,若P值<于0.05,便拒绝方差整齐的假设。顺带一提,Cochran和Bartlett检定对非正态性相当敏感,若出现「拒绝方差整齐」的检测结果,或因这原因而做成。用spss处理完数据的显示结果中,F值,t值及其显著性(sig)都分别是解释什么的?答案一般而言,为了确定从样本(sample)统计结果推论至总体时所犯错的概率,我们会利用统计学家所开发的一些统计方法,进行统计检定。通过把所得到的统计检定值,与统计学家建立了一些随机变量的概率分布(probability distribution)进行比较,我们可以知道在多少%的机会下会得到目前的结果。倘若经比较后发现,出现这结果的机率很少,亦即是说,是在机会很少、很罕有的情况下才出现;那我们便可以有信心的说,这不是巧合,是具有统计学上的意义的(用统计学的话讲,就是能够拒绝虚无假设null hypothesis,Ho)。相反,若比较后发现,出现的机率很高,并不罕见;那我们便不能很有信心的直指这不是巧合,也许是巧合,也许不是,但我们没能确定。F值和t值就是这些统计检定值,与它们相对应的概率分布,就是F分布和t分布。统计显著性(sig)就是出现目前样本这结果的机率。至於具体要检定的内容,须看你是在做哪一个统计程序。举一个例子,比如,你要检验两独立样本均数差异是否能推论至总体,而行的t检验。两样本(如某班男生和女生)某变量(如身高)的均数并不相同,但这差别是否能推论至总体,代表总体的情况也是存在著差异呢?会不会总体中男女生根本没有差别,只不过是你那麼巧抽到这2样本的数值不同?为此,我们进行t检定,算出一个t检定值,与统计学家建立的以「总体中没差别」作基础的随机变量t分布进行比较,看看在多少%的机会(亦即显著性sig值)下会得到目前的结果。若显著性sig值很少,比如<0.05(少於5%机率),亦即是说,「如果」总体「真的」没有差别,那麼就只有在机会很少(5%)、很罕有的情况下,才会出现目前这样本的情况。虽然还是有5%机会出错,但我们还是可以「比较有信心」的说:目前样本中这情况(男女生出现差异的情况)不是巧合,是具统计学意义的,「总体中男女生不存差异」的虚无假设应予拒绝,简言之,总体应该存在著差异。每一种统计方法的检定的内容都不相同,同样是t-检定,可能是上述的检定总体中是否存在差异,也同能是检定总体中的单一值是否等於0或者等於某一个数值。至於F-检定,方差分析(或译变异数分析,Analysis of Variance),它的原理大致也是上面说的,但它是透过检视变量的方差而进行的。它主要用于:均数差别的显著性检验、分离各有关因素并估计其对总变异的作用、分析因素间的交互作用、方差齐性(Equality of Variances)检验等情况。方差齐性检验在什么情况下进行?为什么要进行方差齐性检验?如果需要进行方差分析,就要进行方差齐性检验,即若组间方差不齐则不适用方差分析。但可通过对数变换、平方根变换、倒数变换、平方根反正弦变换等方法变换后再进行方差齐性检验,若还不行只能进行非参数检验.除了对两个研究总体的总体平均数的差异进行显著性检验以外,我们还需要对两个独立样本所属总体的总体方差的差异进行显著性检验,统计学上称为方差齐性(相等)检验。方差齐性实际上是指要比较的两组数据的分布是否一致,通俗的来说就是两者是否适合比较为什么要做方差齐性和正态检验?在做方差分析时,为什么要做方差齐性和正态检验?目的是什么?主要是确认数据的合理性(不具备相关性)而已。正态分布以及近似正态分布是应用该分析的基本条件……构造的统计量需要样本有正态等方差的条件,或者说是这样的条件情况下的一种判断,失去了这个前提,后期的判断分析都是空中楼阁。就像讨论如何成为一个好男人,那么前提他必须是一个男人而且方差齐性检验的Bartlett方法也是以正太分布为前提的,其所构造的卡方统计量必须满足样本为正态分布。F检验与方差齐性检验在方差分析的F检验中,是以各个实验组内总体方差齐性为前提的,因此,按理应该在方差分析之前,要对各个实验组内的总体方差先进行齐性检验。如果各个实验组内总体方差为齐性,而且经过F检验所得多个样本所属总体平均数差异显著,这时才可以将多个样本所属总体平均数的差异归因于各种实验处理的不同所致;如果各个总体方差不齐,那么经过F检验所得多个样本所属总体平均数差异显著的结果,可能有一部分归因于各个实验组内总体方差不同所致。但是,方差齐性检验也可以在F检验结果为多个样本所属总体平均数差异显著的情况下进行,因为F检验之后,如果多个样本所属总体平均数差异不显著,就不必再进行方差齐性检验。Levene方差齐性检验也称为Levene检验(Levene"s Test).由H.Levene在1960年提出[1].M.B.Brown和A.B.Forsythe在1974年对Levene检验进行了扩展[2],使对原始数据的数据转换不但可以使用数据与算术平均数的绝对差,也可以使用数据与中位数和调整均数(trimmed mean)的绝对差.这就使得Levene检验的用途更加广泛.Levene检验主要用于检验两个或两个以上样本间的方差是否齐性.要求样本为随机样本且相互独立.国内常见的Bartlett多样本方差齐性检验主要用于正态分布的资料,对于非正态分布的数据,检验效果不理想.Levene检验既可以用于正态分布的资料,也可以用于非正态分布的资料或分布不明的资料,其检验效果比较理想.方差分析的条件之一为方差齐,即各总体方差相等。因此在方差分析之前,应首先检验各样本的方差是否具有齐性。常用方差齐性检验(test for homogeneity of variance)推断各总体方差是否相等。本节将介绍多个样本的方差齐性检验,本法由Bartlett于1937年提出,称Bartlett法。该检验方法所计算的统计量服从分布。用自由度查界值表,若值大于等于界值,则P值小于等于相应的概率,反之,P值大于相应的概率。如果未经校正的值小于界值,则校正后的值更小,可不必再计算校正值。例5.7对照组、A降脂药组、B降脂药组和C降脂药组家兔的血清胆固醇含量(mmol/L)的均数分别为5.845、2.853、2.972和1.768,方差分别为5.941、2.370、0.517和0.581,样本含量分别为6、6、6和7,问四样本的方差是否齐同?本例自由度为,查界值表,得0.025>P>0.01,按=0.05水准拒绝H0,接受H1,可以认为四总体方差不同或不全相同。两个独立样本的方差齐性检验例:某市初中毕业班进行了一次数学考试,为了比较该市毕业班男女生成绩的离散程度,从男生中抽出一个样本,容量为31,从女考生中也抽出一个样本,容量为21.男女生成绩的方差分别为49和36,请问男女生成绩的离散程度是否一致解:1.提出假设2.选择检验统计量并计算其值3.统计决断查附表3,得F(19,19)0.05=2.04F=1.340.05,即男女生成绩的差异没有达到显著性差异.两个相关样本的方差齐性检验例子:教科书164页.综合应用例1:某省在高考后,为了分析男,女考生对语文学习上的差异,随机抽取了各20名男,女考生的语文成绩,并且计算得到男生平均成绩=54.6,标准差=16.9,女生的平均成绩=59.7,标准差=10.4,试分析男,女考生语文高考成绩是否有显著差异解:先进行方差齐性检验: 1.提出假设2.计算检验的统计量3.统计决断查附表3,得F(19,19)0.05=2.16F=2.64>F(19,19)0.05=2.16,p<0.05,即方差不齐性.然后,进行平均数差异的显著性检验:1.提出假设2.计算检验的统计量3.确定检验形式双侧检验4.统计决断1.120.05所以,要保留零假设,即男,女考生语文高考成绩无显著差异.例2:为了对某门课的教学方法进行改革,某大学对各方面情况相似的两个班进行教改实验,甲班32人,采用教师面授的教学方法,乙班25人,采用教师讲授要点,学生讨论的方法.一学期后,用统一试卷对两个班学生进行测验,得到以下结果:甲班平均成绩=80.3,标准差=11.9,乙班平均成绩=86.7,标准差=10.2,试问两种教学方法的效果是否有显著性差异解:先进行方差齐性检验:1.提出假设2.计算检验的统计量3.统计决断查附表3,得F(31,24)0.05=1.94F=1.350.05,即方差齐性.然后,进行平均数差异的显著性检验:1.提出假设2.计算检验的统计量3.确定检验形式双侧检验4.统计决断当df=55时,t=2.105>2.009,P<0.05所以,要在0.05的显著性水平上零假设,即两种教学方法的效果有显著性差异.哪位高手能帮我解释一下方差和SPSS?问题补充:先对数据进行方差齐次性检验,必要时,对数据进行反正弦平方根转换。根据实验的要求分别进行单因素、双因素和三因素方差分析 (ANOVA)。在满足方差齐性的情况下,采用Tukey检验进行多重比较;方差非齐的情况下,采用Dunnett"s T3检验进行多重比较,确定哪些处理间的差异达到显著水平。方差是用来比较两组数据的整齐程度,例如,两人打靶,各有一组成绩,且平均分相同,那么谁的成绩好呢?用方差比较一下,数值小的成绩稳定。其实在excel中的分析工具里,也可以进行方差和t校验的分析。问题:我用spss做出的结果如下:1.在Levene"s Test for Equality of Variances一栏中 F值为2.36, Sig.为.128是不是就应该看第一排的数据?是不是说明没有显著差异呢?2.在t-test for Equality of Means中的Sig. (2-tailed)里,两排都是.000 第一排的其它数据为:t=8.892,df=84,Mean Difference=22.993.到底看哪个Levene"s Test for Equality of Variances一栏中sig,还是看t-test for Equality of Means中那个Sig. (2-tailed)啊?我得出的这个结果倒底是显著不显著呢?4.还有最后一个问题,我做的是T检验为什么会有F值呢?最佳答案t检验过程,是对两样本均数(mean)差别的显著性进行检验。惟t检验须知道两个总体的方差(Variances)是否相等;t检验值的计算会因方差是否相等而有所不同。也就是说,t检验须视乎方差齐性(Equality of Variances)结果。所以,SPSS在进行t-test for Equality of Means的同时,也要做Levene"s Test for Equality of Variances 。1.在Levene"s Test for Equality of Variances一栏中 F值为2.36, Sig.为.128,表示方差齐性检验「没有显著差异」,即两方差齐(Equal Variances),故下面t检验的结果表中要看第一排的数据,亦即方差齐的情况下的t检验的结果。2.在t-test for Equality of Means中,第一排(Variances=Equal)的情况:t=8.892, df=84, 2-Tail Sig=.000, Mean Difference=22.99既然Sig=.000,亦即,两样本均数差别有显著性意义!3.到底看哪个Levene"s Test for Equality of Variances一栏中sig,还是看t-test for Equality of Means中那个Sig. (2-tailed)啊?答案是:两个都要看。先看Levene"s Test for Equality of Variances,如果方差齐性检验「没有显著差异」,即两方差齐(Equal Variances),故接著的t检验的结果表中要看第一排的数据,亦即方差齐的情况下的t检验的结果。反之,如果方差齐性检验「有显著差异」,即两方差不齐(Unequal Variances),故接著的t检验的结果表中要看第二排的数据,亦即方差不齐的情况下的t检验的结果。4.你做的是T检验,为什么会有F值呢?就是因为要评估两个总体的方差(Variances)是否相等,要做Levene"s Test for Equality of Variances,要检验方差,故所以就有F值。1. 方差分析的概念方差分析(ANOVA)又称变异数分析或F检验,其目的是推断两组或多组资料的总体均数是否相同,检验两个或多个样本均数的差异是否有统计学意义。我们要学习的主要内容包括单因素方差分析即完全随机设计或成组设计的方差分析和两因素方差分析即配伍组设计的方差分析。2. 方差分析的基本思想下面我们用一个简单的例子来说明方差分析的基本思想:如某克山病区测得11例克山病患者和13名健康人的血磷值(mmol/L)如下,患者:0.84 1.05 1.20 1.20 1.39 1.53 1.67 1.80 1.87 2.07 2.11健康人:0.54 0.64 0.64 0.75 0.76 0.81 1.16 1.20 1.34 1.35 1.48 1.56 1.87问该地克山病患者与健康人的血磷值是否不同?从以上资料可以看出,24个患者与健康人的血磷值各不相同,如果用离均差平方和(SS)描述其围绕总均数的变异情况,则总变异有以下两个来源:(1)组内变异,即由于随机误差的原因使得各组内部的血磷值各不相等;(2)组间变异,即由于克山病的影响使得患者与健康人组的血磷值均数大小不等。而且:SS总=SS组间+SS组内 v总=v组间+v组内如果用均方MS(离均差平方和SS/自由度v,)代替离均差平方和以消除各组样本数不同的影响,则方差分析就是用组内均方去除组间均方的商(即F值)与1相比较,若F值接近1,则说明各组均数间的差异没有统计学意义,若F值远大于1,则说明各组均数间的差异有统计学意义。实际应用中检验假设成立条件下F值大于特定值的概率可通过查阅F界值表(方差分析用)获得。3. 方差分析的应用条件应用方差分析对资料进行统计推断之前应注意其使用条件,包括:(1)可比性,若资料中各组均数本身不具可比性则不适用方差分析。(2)正态性,即偏态分布资料不适用方差分析。对偏态分布的资料应考虑用对数变换、平方根变换、倒数变换、平方根反正弦变换等变量变换方法变为正态或接近正态后再进行方差分析。(3)方差齐性,即若组间方差不齐则不适用方差分析。多个方差的齐性检验可用Bartlett法,它用卡方值作为检验统计量,结果判断需查阅卡方界值表。二、方差分析的主要内容根据资料设计类型的不同,有以下两种方差分析的方法:1. 对成组设计的多个样本均数比较,应采用完全随机设计的方差分析,即单因素方差分析。2. 对随机区组设计的多个样本均数比较,应采用配伍组设计的方差分析,即两因素方差分析。两类方差分析的基本步骤相同,只是变异的分解方式不同,对成组设计的资料,总变异分解为组内变异和组间变异(随机误差),即:SS总=SS组间+SS组内,而对配伍组设计的资料,总变异除了分解为处理组变异和随机误差外还包括配伍组变异,即:SS总=SS处理+SS配伍+SS误差。整个方差分析的基本步骤如下:(1) 建立检验假设;H0:多个样本总体均数相等。H1:多个样本总体均数不相等或不全等。检验水准为0.05。(2) 计算检验统计量F值;(3) 确定P值并作出推断结果。三、多个样本均数的两两比较经过方差分析若拒绝了检验假设,只能说明多个样本总体均数不相等或不全相等。若要得到各组均数间更详细的信息,应在方差分析的基础上进行多个样本均数的两两比较。1. 多个样本均数间两两比较多个样本均数间两两比较常用q检验的方法,即 Newman-kueuls法,其基本步骤为:建立检验假设-->样本均数排序-->计算q值-->查q界值表判断结果。2. 多个实验组与一个对照组均数间两两比较多个实验组与一个对照组均数间两两比较,若目的是减小第II类错误,最好选用最小显著差法(LSD法);若目的是减小第I类错误,最好选用新复极差法,前者查t界值表,后者查q"界值表egg1022请问老师,我们做作业时可以用计算机做方差齐性的检验,那考试中呢?默认为齐性吗?还需再说明吗?medista 一般根据样本方差来判断,如果样本方差相差不大,一般不用做方差齐性检验。而如果样本方差相差比较大(比如相差3倍以上)时,则要怀疑方差不齐,需要进行总体方差齐性检验。用SPSS做时,自动给出方差齐性检验;考试的时候,可以根据实际资料判断。egg1022 请问老师,(1)假如S1=1 S2=3.5,我是否可以这样说:因为S2〉3S1,所以认为两样本方差不齐,故应用近似t检验。(2)两方差相差3倍是否就是通常所用的判断标准?谢谢老师:)medista 不是这样的。(1)我们比较的样本方差,而不是标准差。你举的例子,样本方差已经相差12倍以上了。(2)3倍只是个例子,说明样本方差相差比较大而已(就象我们教材上所说的样本量n>60为大样本一样),只起提示作用。并没有定理说明样本方差相差3倍以上总体方差就不齐。总体方差是否齐性,还需要进行检验。切记切记比如你举的例子,样本方差相差很大,提示总体方差不齐,要进行检验。严格来说,方差齐不齐,都需要进行检验。egg1022老师,(1)那假如说考试中两样本方差相差很大,提示总体方差不齐,没有计算机,怎么行检验呢?(2)假设检验中要求样本服从正态分布的,可为何例题(哪怕是小样本)不作正态分析呢?(3)在我看的一篇文献中,作者把受试对象分为4组,分别进行配对检验,为何他a取值不一致呢?有的组用0.05,有的用0.01,这样可以吗? 呵呵,问题有点多,谢谢老师!medista (1)不要总盯着考试,老师们知道那时候没有计算机,也不能查表,不会让你为难。(2)“假设检验中要求样本服从正态分布”?要严谨,同学!本章只讲t检验,只说t检验的条件。注意,是要求“总体”服从正态分布,这里还要注意是哪种t检验,要求哪个总体是正态的。比如配对t检验要求差值的总体服从正态分布,两样本t检验要求相应的两总体服从正态分布。至于书上为什么不进行正态性检验,我想应该是为了编教材方便,默认总体是正态的吧,汗一个~~~~~~(3)没见到文献不便发表意见,呵呵。至于为什么检验水准不一,如果是同一类数据,同一个指标,采用不同的检验水平,估计作者是根据P值然后才确定的alhpa,你别学他就好了。杂志中存在的统计问题太多,注意别被误导。¥5.9百度文库VIP限时优惠现在开通,立享6亿+VIP内容立即获取方差齐性检验的原理8页word文档统计学搜索整理汇总——方差齐性检验的原理LXK的结论:齐性检验时F越小(p越大),就证明没有差异,就说明齐,比如F=1.27,p>0.05则齐,这与方差分析均数时F越大约好相反。LXK注:方差(MS或s2)=离均差平方和/自由度(即离均差平方和的均数) 标准差=方差的平方根(s)F=MS组间/MS误差=(处理因素的影响+个体差异带来的误差)/个体差异带来的误差第 1 页F检验为什么要求各比较组的方差齐性?——之所以需要这些前提条件,是因为必须在这样的前提下所计算出的t统计量才服从t分布,而t检验正是以t分布作为其理论依据的检验方法。在方差分析的F检验中,是以各个实验组内总体方差齐性为前提的,因此,按理应该在方差分析之前,要对各个实验组内的总体方差先进行齐性检验。如果各个实验组内总体方差为齐性,而且经过F检验所得多个样本所属总体平均数差异显著,这时才可以将多个样本所属总体平均数的差异归因于各种实验处理的不同所致;如果各个总体方差不齐,那么经过F检验所得多个样本所属总体平均数差异显著的结果,可能有一部分归因于各个实验组内总体方差不同所致。
九万里风9 2023-06-10 07:51:401

毕业论文中需要做内生性,自相关,异方差吗

在我认知范围内,多重共线性问题一直不是计量里的什么大问题,回归之前看看各变量之间的相关系数基本就可以确定是否需要进一步检验了,线性相关性比较高,那就直接剔除吧!异方差检验我也没有做过,我一般直接就用稳健标准差,从来不用一般标准差!至于自相关检验这个问题也是没有做过的!我认为做什么检验和文章关系比较大!我做过一篇FDI的文章,里面采用FDI存量数据,存量数据肯定有很强自相关性,于是我就采用动态面板估计了,后来经过几个模型的比对发现,FDI存量的自相关性对回归结果影响很小。计量实证还是应该为自己的思想服务,检验越多、方法越复杂不见得就一定是好事!
FinCloud2023-06-09 08:45:541

多重共线性剔除的变量异方差性还要吗

楼上有误。遗漏变量会引起估计系数大小有偏,而自相关和异方差只会带来统计量(T值)有偏,也就是影响显著性,系数是无偏的。再来解释你的问题。遗漏变量是指,你遗漏的变量既与自变量有关,又与因变量有关。比如你的身高是x,树的高度是y,把树每年的高度对你每年的身高做回归,系数肯定显著为正。但是你遗漏了时间这个变量。其实你的身高和树的身高并没有关系,只不过都随着时间长高而已。另外,多重共线性和线性相关是不一样的。线性相关就是你说的,一个变量可以用另一个变量表示。用向量的语言来说,就是两个变量是共线的。而多重共线性是说,两个变量的向量是夹角小于90度大于0度(如果完全无关,则向量夹角为90度)。多重共线性是普遍存在的。两个自变量之间有多重共线性是很正常的,只要vif<10,就对结果影响不大。顺便一说,多重共线性也能保证结果无偏,只是影响显著性。而如果vif<10,则显著性的影响也不大,可以不用考虑。所以,加入遗漏的相关的变量,可能会出现多重共线性,但一般不会线性相关。如果多重共线性太严重,可以考虑换个指标什么的。
大鱼炖火锅2023-06-09 08:12:051

计量经济学中用怀特(White)检验修正了异方差性,进行自相关检验时发现该模型还有序列自相关,该如何修正

科克伦—奥科特迭代或者普莱斯—温斯特差分
余辉2023-06-09 08:11:533

离散变量能不能进行方差分析

可以
北有云溪2023-06-09 08:10:232

三个随机变量独立不相关,和的方差怎么算

三维随机变量和的方差公式:DX = E(X-EX)^2。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的平均数。在许多实际问题中,研究方差即偏离程度有着重要意义。性质设C为常数,则D(C) = 0(常数无波动)。D(CX )=C2D(X ) (常数平方提取,C为常数,X为随机变量)。证:特别地 D(-X ) = D(X ), D(-2X ) = 4D(X )(方差无负值)。若X 、Y 相互独立,则证:记则前面两项恰为 D(X)和D(Y),第三项展开后为当X、Y 相互独立时,故第三项为零。
Chen2023-06-09 08:09:431

三个变量之间的协方差

没有三组数据的协方差 只有协方差矩阵
再也不做站长了2023-06-09 08:09:062

方差分析应具备的条件有哪些

方差分析的应用条件为:1、各样本须是相互独立的随机样本;2、各样本来自正态分布总体;3、各总体方差相等,即方差齐。方差分析的用途:1、两个或多个样本均数间的比较;2、分析两个或多个因素间的交互作用;3、回归方程的线性假设检验;4、多元线性回归分析中偏回归系数的假设检验;5、两样本的方差齐性检验等。由于各种因素的影响,研究所得的数据呈现波动状。造成波动的原因可分成两类,一是不可控的随机因素,另一是研究中施加的对结果形成影响的可控因素。扩展资料:方差分析的基本原理是认为不同处理组的均数间的差别基本来源有两个:1、实验条件,即不同的处理造成的差异,称为组间差异。用变量在各组的均值与总均值之偏差平方和的总和表示,记作SSb,组间自由度dfb。2、随机误差,如测量误差造成的差异或个体间的差异,称为组内差异,用变量在各组的均值与该组内变量值之偏差平方和的总和表示, 记作SSw,组内自由度dfw。总偏差平方和 SSt = SSb + SSw。根据资料设计类型的不同,有以下两种方差分析的方法:1、对成组设计的多个样本均值比较,应采用完全随机设计的方差分析,即单因素方差分析。2、对随机区组设计的多个样本均值比较,应采用配伍组设计的方差分析,即两因素方差分析。在观测变量总离差平方和中,如果组间离差平方和所占比例较大,则说明观测变量的变动主要是由控制变量引起的,可以主要由控制变量来解释,控制变量给观测变量带来了显著影响。反之,如果组间离差平方和所占比例小,则说明观测变量的变动不是主要由控制变量引起的,不可以主要由控制变量来解释,控制变量的不同水平没有给观测变量带来显著影响,观测变量值的变动是由随机变量因素引起的。参考资料来源:百度百科——方差分析
陶小凡2023-06-09 08:07:401

spss方差分析

多因素方差分析用来研究两个及两个以上控制变量是否对观测变量产生显著影响。多因素方差分析不仅能够分析多个控制变量对观测变量的独立影响,更能够分析多个控制变量的交互作用能否对观测变量产生显著影响,最终找到利于观测变量的最优组合。多因素方差分析的第一步是明确观测变量和若干个控制变量,并在此基础上提出原假设。多因素方差分析的原假设是:各控制变量不同水平下观测变量各总体的均值无显著性差异,控制变量各效应和交互作用效应同时为0,即控制变量和它们的交互作用没有对观测变量产生显著影响。spss功能强大具有完整的数据输入、编辑、统计分析、报表、图形制作等功能。自带11种类型136个函数。SPSS提供了从简单的统计描述到复杂的多因素统计分析方法,比如数据的探索性分析、统计描述、列联表分析、二维相关、秩相关、偏相关、方差分析、非参数检验、多元回归、生存分析、协方差分析、判别分析、因子分析、聚类分析、非线性回归、Logistic回归等。
真颛2023-06-09 08:07:291

方差分析应具备的条件有哪些?

 控制变量不同水平下观测变量总体方差无显著差异是方差分析的前提要求。如果没有满足这个前提要求,就不能认为各总体分布相同。因此,有必要对方差是否齐性进行检验。  方差分析(AnalysisofVariance,简称ANOVA),又称“变异数分析”或“F检验”,是R.A.Fisher发明的,用于两个及两个以上样本均数差别的显著性检验。由于各种因素的影响,研究所得的数据呈现波动状。造成波动的原因可分成两类,一是不可控的随机因素,另一是研究中施加的对结果形成影响的可控因素。  方差分析是从观测变量的方差入手,研究诸多控制变量中哪些变量是对观测变量有显著影响的变量。
可桃可挑2023-06-09 08:07:295

spss方差结果为5,但手算结果为4

Spss算法方差,是修正后的结果,n-1不是n
苏州马小云2023-06-09 08:07:262

方差分析是否有应用的条件?

方差分析的应用条件为:1、各样本须是相互独立的随机样本;2、各样本来自正态分布总体;3、各总体方差相等,即方差齐。方差分析的用途:1、两个或多个样本均数间的比较;2、分析两个或多个因素间的交互作用;3、回归方程的线性假设检验;4、多元线性回归分析中偏回归系数的假设检验;5、两样本的方差齐性检验等。由于各种因素的影响,研究所得的数据呈现波动状。造成波动的原因可分成两类,一是不可控的随机因素,另一是研究中施加的对结果形成影响的可控因素。扩展资料:方差分析的基本原理是认为不同处理组的均数间的差别基本来源有两个:1、实验条件,即不同的处理造成的差异,称为组间差异。用变量在各组的均值与总均值之偏差平方和的总和表示,记作SSb,组间自由度dfb。2、随机误差,如测量误差造成的差异或个体间的差异,称为组内差异,用变量在各组的均值与该组内变量值之偏差平方和的总和表示, 记作SSw,组内自由度dfw。总偏差平方和 SSt = SSb + SSw。根据资料设计类型的不同,有以下两种方差分析的方法:1、对成组设计的多个样本均值比较,应采用完全随机设计的方差分析,即单因素方差分析。2、对随机区组设计的多个样本均值比较,应采用配伍组设计的方差分析,即两因素方差分析。在观测变量总离差平方和中,如果组间离差平方和所占比例较大,则说明观测变量的变动主要是由控制变量引起的,可以主要由控制变量来解释,控制变量给观测变量带来了显著影响。反之,如果组间离差平方和所占比例小,则说明观测变量的变动不是主要由控制变量引起的,不可以主要由控制变量来解释,控制变量的不同水平没有给观测变量带来显著影响,观测变量值的变动是由随机变量因素引起的。参考资料来源:百度百科——方差分析
韦斯特兰2023-06-09 08:07:241

单因素方差分析与多因素方差分析的异同

使用条件:单因素:要求因变量服从正态分布;方差要齐性;适合完全随机试验设计。多因素:因变量服从正态分布,且总体个单元方差相同(单元就是个因素水平之间的每个组合);因变量是连续变量,自变量是分类变量。多因素最常用的就是分析交互作用了,当然,如果结果显著了,是要做简单效应检验的。你用SPSS做一个数据,就会发现多因素的强大了~~
tt白2023-06-09 08:07:203

方差分析的应用条件是什么?

方差分析的应用条件为:1、各样本须是相互独立的随机样本;2、各样本来自正态分布总体;3、各总体方差相等,即方差齐。方差分析的用途:1、两个或多个样本均数间的比较;2、分析两个或多个因素间的交互作用;3、回归方程的线性假设检验;4、多元线性回归分析中偏回归系数的假设检验;5、两样本的方差齐性检验等。由于各种因素的影响,研究所得的数据呈现波动状。造成波动的原因可分成两类,一是不可控的随机因素,另一是研究中施加的对结果形成影响的可控因素。扩展资料:方差分析的基本原理是认为不同处理组的均数间的差别基本来源有两个:1、实验条件,即不同的处理造成的差异,称为组间差异。用变量在各组的均值与总均值之偏差平方和的总和表示,记作SSb,组间自由度dfb。2、随机误差,如测量误差造成的差异或个体间的差异,称为组内差异,用变量在各组的均值与该组内变量值之偏差平方和的总和表示, 记作SSw,组内自由度dfw。总偏差平方和 SSt = SSb + SSw。根据资料设计类型的不同,有以下两种方差分析的方法:1、对成组设计的多个样本均值比较,应采用完全随机设计的方差分析,即单因素方差分析。2、对随机区组设计的多个样本均值比较,应采用配伍组设计的方差分析,即两因素方差分析。在观测变量总离差平方和中,如果组间离差平方和所占比例较大,则说明观测变量的变动主要是由控制变量引起的,可以主要由控制变量来解释,控制变量给观测变量带来了显著影响。反之,如果组间离差平方和所占比例小,则说明观测变量的变动不是主要由控制变量引起的,不可以主要由控制变量来解释,控制变量的不同水平没有给观测变量带来显著影响,观测变量值的变动是由随机变量因素引起的。参考资料来源:百度百科——方差分析
u投在线2023-06-09 08:07:191

t检验与方差分析有什么不同?

1、用途不同T检验,主要用于样本含量较小(例如n < 30),总体标准差σ未知的正态分布。单因素方差分析用来研究一个控制变量的不同水平是否对观测变量产生了显著影响。2、分析步骤不同单因素方差分析的第一步明确观测变量和控制变量。单因素方差分析的第二步剖析观测变量的方差。方差分析认为:观测变量值的变动会受控制变量和随机变量两方面的影响。据此,单因素方差分析将观测变量总的离差平方和分解为组间离差平方和和组内离差平方和两部分,用数学形式表述为:SST=SSA+SSE。单因素方差分析的第三步通过比较观测变量总离差平方和各部分所占的比例,推断控制变量是否给观测变量带来了显著影响。t检验步骤:建立假设、确定检验水准α;计算检验统计量;查相应界值表,确定P值,下结论。3、条件不同t检验的前提:来自正态分布总体;随机样本;均数比较时,要求两样本总体方差相等,即具有方差齐性。方差分析的条件:实验条件,即不同的处理造成的差异,称为组间差异。用变量在各组的均值与总均值之偏差平方和的总和表示,记作SSb,组间自由度dfb。随机误差,如测量误差造成的差异或个体间的差异,称为组内差异,用变量在各组的均值与该组内变量值之偏差平方和的总和表示, 记作SSw,组内自由度dfw。参考资料来源:百度百科-t检验参考资料来源:百度百科-方差分析
韦斯特兰2023-06-09 08:07:171

spss双因素方差如何分析?

多因素方差分析,用于研究一个因变量是否受到多个自变量(也称为因素)的影响,它检验多个因素取值水平的不同组合之间,因变量的均值之间是否存在显著的差异。多因素方差分析既可以分析单个因素的作用(主效应),也可以分析因素之间的交互作用(交互效应),还可以进行协方差分析,以及各个因素变量与协变量的交互作用。根据观测变量(即因变量)的数目,可以把多因素方差分析分为:单变量多因素方差分析(也叫一元多因素方差分析)与多变量多因素方差分析(即多元多因素方差分析)。本文将重点讲述一元多因素方差分析,下篇文章将详细讲述多元多因素方差分析。一元多因素方差分析:只有一个因变量,考察多个自变量对该因变量的影响。例如:分析不同品种、不同施肥量对农作物产量的影响时,可将农作物产量作为观测变量,品种和施肥量作为控制变量。利用多因素方差分析方法,研究不同品种、不同施肥量是如何影响农作物产量的,并进一步研究哪种品种与哪种水平的施肥量是提高农作物产量的最优组合。分析原理。通过计算F统计量,进行F检验。F统计量是平均组间平方和与平均组内平方和的比。
人类地板流精华2023-06-09 08:07:161

多因素方差分析与回归分析有什么异同啊?

做回归分析,因变量的系数就显示了他对变量的影响
kikcik2023-06-09 08:07:134

请教单因素方差分析与独立样本t检验的区别

请搜索网易云课堂:生命科学实验统计分析
小白2023-06-09 08:07:135

单因素方差分析是建模吗

是的(一)单因素方差分析概念理解步骤①是用来研究一个控制变量的不同水平是否对观测变量产生了显著影响。这里,由于仅研究单个因素对观测变量的影响,因此称为单因素方差分析。②单因素方差分析的第一步是明确观测变量和控制变量。例如,上述问题中的观测变量分别是农作物产量、妇女生育率、工资收入;控制变量分别为施肥量、地区、学历。③单因素方差分析的第二步是剖析观测变量的方差。方差分析认为:观测变量值的变动会受控制变量和随机变量两方面的影响。据此,单因素方差分析将观测变量<<总的离差平方和分解为组间离差平方和和组内离差平方和两部分,用数学形式表述为:SST=SSA+SSE>>。④单因素方差分析的第三步是通过比较观测变量总离差平方和各部分所占的比例,推断控制变量是否给观测变量带来了显著影响。
北境漫步2023-06-09 08:07:121

什么条件下方差分析可以用来做统计分析?

什么条件下方差分析可以用来做统计分析?方差分析用于研究X对于Y的差异性,根据X的不同,方差分析又可以进行细分。X的个数为一个时,我们称之为单因素方差;X为2个时则为双因素方差;X为3个时则称作三因素方差,依次下去。当X超过1个时,统称为多因素方差。单因素方差分析(即X为一个时时)使用频率最高,默认称单因素方差分析就是方差分析。方差分析的前提条件:正态性、方差齐性、独立性。方差分析数据特点:方差分析,用于分析定类数据与定量数据之间的关系情况。
左迁2023-06-09 08:07:102

方差分析中的MS,SS,F,DF分别是什么意思

ms均方根,ss变异,f是统计量,df是自由度
西柚不是西游2023-06-09 08:07:093

请教单因素方差分析与独立样本t检验的区别

1、用途不同T检验,主要用于样本含量较小(例如n < 30),总体标准差σ未知的正态分布。单因素方差分析用来研究一个控制变量的不同水平是否对观测变量产生了显著影响。2、分析步骤不同单因素方差分析的第一步明确观测变量和控制变量。单因素方差分析的第二步剖析观测变量的方差。方差分析认为:观测变量值的变动会受控制变量和随机变量两方面的影响。据此,单因素方差分析将观测变量总的离差平方和分解为组间离差平方和和组内离差平方和两部分,用数学形式表述为:SST=SSA+SSE。单因素方差分析的第三步通过比较观测变量总离差平方和各部分所占的比例,推断控制变量是否给观测变量带来了显著影响。t检验步骤:建立假设、确定检验水准α;计算检验统计量;查相应界值表,确定P值,下结论。3、条件不同t检验的前提:来自正态分布总体;随机样本;均数比较时,要求两样本总体方差相等,即具有方差齐性。方差分析的条件:实验条件,即不同的处理造成的差异,称为组间差异。用变量在各组的均值与总均值之偏差平方和的总和表示,记作SSb,组间自由度dfb。随机误差,如测量误差造成的差异或个体间的差异,称为组内差异,用变量在各组的均值与该组内变量值之偏差平方和的总和表示, 记作SSw,组内自由度dfw。参考资料来源:百度百科-t检验参考资料来源:百度百科-方差分析
大鱼炖火锅2023-06-09 08:07:031

spss方差分析

多因素方差分析用来研究两个及两个以上控制变量是否对观测变量产生显著影响。多因素方差分析不仅能够分析多个控制变量对观测变量的独立影响,更能够分析多个控制变量的交互作用能否对观测变量产生显著影响,最终找到利于观测变量的最优组合。多因素方差分析的第一步是明确观测变量和若干个控制变量,并在此基础上提出原假设。多因素方差分析的原假设是:各控制变量不同水平下观测变量各总体的均值无显著性差异,控制变量各效应和交互作用效应同时为0,即控制变量和它们的交互作用没有对观测变量产生显著影响。spss功能强大具有完整的数据输入、编辑、统计分析、报表、图形制作等功能。自带11种类型136个函数。SPSS提供了从简单的统计描述到复杂的多因素统计分析方法,比如数据的探索性分析、统计描述、列联表分析、二维相关、秩相关、偏相关、方差分析、非参数检验、多元回归、生存分析、协方差分析、判别分析、因子分析、聚类分析、非线性回归、Logistic回归等。
tt白2023-06-09 08:07:021

方差分析的应用条件

方差分析的应用条件为:1、各样本须是相互独立的随机样本;2、各样本来自正态分布总体;3、各总体方差相等,即方差齐。方差分析的用途:1、两个或多个样本均数间的比较;2、分析两个或多个因素间的交互作用;3、回归方程的线性假设检验;4、多元线性回归分析中偏回归系数的假设检验;5、两样本的方差齐性检验等。由于各种因素的影响,研究所得的数据呈现波动状。造成波动的原因可分成两类,一是不可控的随机因素,另一是研究中施加的对结果形成影响的可控因素。扩展资料:方差分析的基本原理是认为不同处理组的均数间的差别基本来源有两个:1、实验条件,即不同的处理造成的差异,称为组间差异。用变量在各组的均值与总均值之偏差平方和的总和表示,记作SSb,组间自由度dfb。2、随机误差,如测量误差造成的差异或个体间的差异,称为组内差异,用变量在各组的均值与该组内变量值之偏差平方和的总和表示, 记作SSw,组内自由度dfw。总偏差平方和 SSt = SSb + SSw。根据资料设计类型的不同,有以下两种方差分析的方法:1、对成组设计的多个样本均值比较,应采用完全随机设计的方差分析,即单因素方差分析。2、对随机区组设计的多个样本均值比较,应采用配伍组设计的方差分析,即两因素方差分析。在观测变量总离差平方和中,如果组间离差平方和所占比例较大,则说明观测变量的变动主要是由控制变量引起的,可以主要由控制变量来解释,控制变量给观测变量带来了显著影响。反之,如果组间离差平方和所占比例小,则说明观测变量的变动不是主要由控制变量引起的,不可以主要由控制变量来解释,控制变量的不同水平没有给观测变量带来显著影响,观测变量值的变动是由随机变量因素引起的。参考资料来源:百度百科——方差分析
铁血嘟嘟2023-06-09 08:07:011

方差分析的影响因素

方差分析的影响因素:是用来研究一个控制变量的不同水平是否对观测变量产生了显著影响。这里,由于仅研究单个因素对观测变量的影响,因此称为单因素方差分析。例如,分析不同施肥量是否给农作物产量带来显著影响,考察地区差异是否影响妇女的生育率,研究学历对工资收入的影响等。这些问题都可以通过单因素方差分析得到答案。单因素方差分析的第一步是明确观测变量和控制变量。例如,上述问题中的观测变量分别是农作物产量、妇女生育率、工资收入;控制变量分别为施肥量、地区、学历。单因素方差分析的第二步是剖析观测变量的方差。方差分析认为:观测变量值的变动会受控制变量和随机变量两方面的影响。据此,单因素方差分析将观测变量总的离差平方和分解为组间离差平方和和组内离差平方和两部分,用数学形式表述为:SST=SSA+SSE。单因素方差分析的第三步是通过比较观测变量总离差平方和各部分所占的比例,推断控制变量是否给观测变量带来了显著影响。
NerveM 2023-06-09 08:06:571

根据观测变量的个数方差分析可分为单变量方差分析和多变量方差分析对吗

根据观测变量的个数方差分析可分为单变量方差分析和多变量方差分析是对的。因为所谓的单变量和多变量的分类,就是根据变量的个数来进行的一种划分方式。根据观测变量(即因变量)的数目,可以把多因素方差分析分为:单变量多因素方差分析(也叫一元多因素方差分析)与多变量多因素方差分析(即多元多因素方差分析)。方差分析的原理:方差分析的基本原理是认为不同处理组的均数间的差别基本来源有两个:1、实验条件,即不同的处理造成的差异,称为组间差异。用变量在各组的均值与总均值之偏差平方和的总和表示,记作SSb,组间自由度dfb。2、随机误差,如测量误差造成的差异或个体间的差异,称为组内差异,用变量在各组的均值与该组内变量值之偏差平方和的总和表示, 记作SSw,组内自由度dfw。总偏差平方和 SSt = SSb + SSw。组内SSw、组间SSb除以各自的自由度(组内dfw =n-m,组间dfb=m-1,其中n为样本总数,m为组数),得到其均方MSw和MSb,一种情况是处理没有作用,即各组样本均来自同一总体,MSb/MSw≈1。另一种情况是处理确实有作用,组间均方是由于误差与不同处理共同导致的结果,即各样本来自不同总体。那么,MSb>>MSw(远远大于)。MSb/MSw比值构成F分布。用F值与其临界值比较,推断各样本是否来自相同的总体。
肖振2023-06-09 08:06:541

单因素方差分析与多因素方差分析的异同

相同:1.原理都是利用方差比较的方法分析,通过假设检验的过程来判断多个因素是否对因变量产生显著性影响。2.步骤分析的基本步骤相同。a、建立检验假设;b、计算检验统计量F值;c、确定P值并作出推断结果。区别:1.试验指标个数单因素方差分析:1个。多因素方差分析:多于1个。2.适用范围:单因素方差分析:是用来研究一个控制变量的不同水平是否对观测变量产生了显著影响。如考察地区差异是否影响妇女的生育率。多因素方差分析:用来研究两个及两个以上控制变量是否对观测变量产生显著影响。分析不同品种、不同施肥量对农作物产量的影响时,可将农作物产量作为观测变量,品种和施肥量作为控制变量。扩展资料基本分析之后的进一步分析:1.单因素方差分析:在完成上述单因素方差分析的基本分析后,可得到关于控制变量是否对观测变量造成显著影响的结论,接下来还应做其他几个重要分析,主要包括方差齐性检验、多重比较检验。2.多因素方差分析:由分析可知:广告形式与地区的交互作用不显著,先进一步尝试非饱和模型,并进行均值比较分析、交互作用图形分析。a.建立非饱和模型。b.均值比较分析。c.控制变量交互作用的图形分析 。参考资料方差分析_百度百科多因素方差分析_百度百科单因素方差分析_百度百科
拌三丝2023-06-09 08:06:511

什么是方差分析?方差分析的基本思想是什么

方差主要是判断一件事情可能发生的把握
北营2023-06-09 08:06:473

方差分析spss步骤

计算检验统计量的观察值和概率P_值:Spss自动计算F统计值,如果相伴概率P小于显著性水平a,拒绝零假设,认为控制变量不同水平下各总体均值有显著差异,反之,则相反,即没有差异。在这个过程中可以分析每一个因素的作用,也可以分析因素之间的交互作用,以及分析协方差,以及各因素变量与协变量之间的交互作用。该过程要求因变量是从多元正态总体随机采样得来,且总体中各单元的方差相同。单因素方差分析:是用来研究一个控制变量的不同水平是否对观测变量产生了显著影响。这里,由于仅研究单个因素对观测变量的影响,因此称为单因素方差分析。例如,分析不同施肥量是否给农作物产量带来显著影响,考察地区差异是否影响妇女的生育率,研究学历对工资收入的影响等。这些问题都可以通过单因素方差分析得到答案。单因素方差分析的第一步是明确观测变量和控制变量。例如,上述问题中的观测变量分别是农作物产量、妇女生育率、工资收入;控制变量分别为施肥量、地区、学历。
阿啵呲嘚2023-06-09 08:06:431

方差分析与t检验的联系和区别是什么?

1、用途不同T检验,主要用于样本含量较小(例如n < 30),总体标准差σ未知的正态分布。单因素方差分析用来研究一个控制变量的不同水平是否对观测变量产生了显著影响。2、分析步骤不同单因素方差分析的第一步明确观测变量和控制变量。单因素方差分析的第二步剖析观测变量的方差。方差分析认为:观测变量值的变动会受控制变量和随机变量两方面的影响。据此,单因素方差分析将观测变量总的离差平方和分解为组间离差平方和和组内离差平方和两部分,用数学形式表述为:SST=SSA+SSE。单因素方差分析的第三步通过比较观测变量总离差平方和各部分所占的比例,推断控制变量是否给观测变量带来了显著影响。t检验步骤:建立假设、确定检验水准α;计算检验统计量;查相应界值表,确定P值,下结论。3、条件不同t检验的前提:来自正态分布总体;随机样本;均数比较时,要求两样本总体方差相等,即具有方差齐性。方差分析的条件:实验条件,即不同的处理造成的差异,称为组间差异。用变量在各组的均值与总均值之偏差平方和的总和表示,记作SSb,组间自由度dfb。随机误差,如测量误差造成的差异或个体间的差异,称为组内差异,用变量在各组的均值与该组内变量值之偏差平方和的总和表示, 记作SSw,组内自由度dfw。参考资料来源:百度百科-t检验参考资料来源:百度百科-方差分析
苏萦2023-06-09 08:06:421

为什么在做统计分析时一般都要做方差分析?

方差分析的应用条件为:1、各样本须是相互独立的随机样本;2、各样本来自正态分布总体;3、各总体方差相等,即方差齐。方差分析的用途:1、两个或多个样本均数间的比较;2、分析两个或多个因素间的交互作用;3、回归方程的线性假设检验;4、多元线性回归分析中偏回归系数的假设检验;5、两样本的方差齐性检验等。由于各种因素的影响,研究所得的数据呈现波动状。造成波动的原因可分成两类,一是不可控的随机因素,另一是研究中施加的对结果形成影响的可控因素。扩展资料:方差分析的基本原理是认为不同处理组的均数间的差别基本来源有两个:1、实验条件,即不同的处理造成的差异,称为组间差异。用变量在各组的均值与总均值之偏差平方和的总和表示,记作SSb,组间自由度dfb。2、随机误差,如测量误差造成的差异或个体间的差异,称为组内差异,用变量在各组的均值与该组内变量值之偏差平方和的总和表示, 记作SSw,组内自由度dfw。总偏差平方和 SSt = SSb + SSw。根据资料设计类型的不同,有以下两种方差分析的方法:1、对成组设计的多个样本均值比较,应采用完全随机设计的方差分析,即单因素方差分析。2、对随机区组设计的多个样本均值比较,应采用配伍组设计的方差分析,即两因素方差分析。在观测变量总离差平方和中,如果组间离差平方和所占比例较大,则说明观测变量的变动主要是由控制变量引起的,可以主要由控制变量来解释,控制变量给观测变量带来了显著影响。反之,如果组间离差平方和所占比例小,则说明观测变量的变动不是主要由控制变量引起的,不可以主要由控制变量来解释,控制变量的不同水平没有给观测变量带来显著影响,观测变量值的变动是由随机变量因素引起的。参考资料来源:百度百科——方差分析
凡尘2023-06-09 08:06:341

spss多因素方差分析是什么?

多因素方差分析用来研究两个及两个以上控制变量是否对观测变量产生显著影响。多因素方差分析不仅能够分析多个控制变量对观测变量的独立影响,更能够分析多个控制变量的交互作用能否对观测变量产生显著影响,最终找到利于观测变量的最优组合。多因素方差分析的第一步是明确观测变量和若干个控制变量,并在此基础上提出原假设。多因素方差分析的原假设是:各控制变量不同水平下观测变量各总体的均值无显著性差异,控制变量各效应和交互作用效应同时为0,即控制变量和它们的交互作用没有对观测变量产生显著影响。spss功能强大具有完整的数据输入、编辑、统计分析、报表、图形制作等功能。自带11种类型136个函数。SPSS提供了从简单的统计描述到复杂的多因素统计分析方法,比如数据的探索性分析、统计描述、列联表分析、二维相关、秩相关、偏相关、方差分析、非参数检验、多元回归、生存分析、协方差分析、判别分析、因子分析、聚类分析、非线性回归、Logistic回归等。
西柚不是西游2023-06-09 08:06:341

单因素多变量方差分析适用于()个因素、()个以上观测变量的检验?

单因素多变量方差分析适用于(两个)个因素、(两个)个以上观测变量的检验。
小白2023-06-09 08:06:305

多因素方差分析中观测变量取值变动受什么的影响

当有两个或者两个以上的因素对因变量产生影响时,可以用多因素方差分析的方法来进行分析。多因素方差分析亦称“多向方差分析”,原理与单因素方差分析基本一致,也是利用方差比较的方法,通过假设检验的过程来判断多个因素是否对因变量产生显著性影响。在多因素方差分析中,由于影响因变量的因素有多个,其中某些因素除了自身对因变量产生影响之外,它们之间也有可能会共同对因变量产生影响。在多因素方差分析中,把因素单独对因变量产生的影响称之为“主效应”;把因素之间共同对因变量产生的影响,或者因素某些水平同时出现时,除了主效应之外的附加影响,称之为“交互效应”。多因素方差分析不仅要考虑每个因素的主效应,往往还要考虑因素之间的交互效应。此外,多因素方差分析往往假定因素与因变量之间的关系是线性关系。从这个方面来说,方差分析的模型也是如下一个一般化线性模型的延续:因变量=因素1主效应+因素2主效应+…+因素n主效应+因素交互效应1+因素交互效应2+…+因素交互效应m+随机误差。所以多因素方差分析往往选用一般化线性模型(General Iinear Model)进行参数估计
tt白2023-06-09 08:06:282

单因素多变量方差分析中观测变量应为()变量,控制变量为类别变量?

单因素多变量方差分析中观测变量应为(因)变量,控制变量为类别变量
Jm-R2023-06-09 08:06:281

多因素方差分析中观测变量总的离差平方和不包括

一,原题解释:1.多因素方差分析中观测变量总的离差平方和不包括()A.多个控制变量单独作用引起的离差平方和B.多个控制变量交互作用引起的离差平方和C.其它随机因素引起的离差平方和D.观测变量的非自然因素引起的离差平方和答案:C二,方差变量1.单因素方差分析是用来研究一个控制变量的不同水平是否对观测变量产生了显著影响。2.单因素方差分析的第一步是明确观测变量和控制变量。3.单因素方差分析的第二步是剖析观测变量的方差。三,方差分析1.方差分析认为:观测变量使得变动会受控制变量和随机变量两方面的影响。据此,单因素方差分析将观测变量总的离差平方和分解为组间离差平方和和组内离差平方和两部分,用数学形式表述为SST=SSA+SSE。2.单因素方差分析的第三步是通过比较观测变量总离差平方和各部分所占的比例,推断控制变量是否给观测变量带来了显著影响。
LuckySXyd2023-06-09 08:06:271

根据观测变量的个数,方差分析可以分为什么?

根据观测变量的个数方差分析可分为单变量方差分析和多变量方差分析。因为所谓的单变量和多变量的分类,就是根据变量的个数来进行的一种划分方式。根据观测变量(即因变量)的数目,可以把多因素方差分析分为:单变量多因素方差分析(也叫一元多因素方差分析)与多变量多因素方差分析(即多元多因素方差分析)。方差分析的原理:方差分析的基本原理是认为不同处理组的均数间的差别基本来源有两个:1、实验条件,即不同的处理造成的差异,称为组间差异。用变量在各组的均值与总均值之偏差平方和的总和表示,记作SSb,组间自由度dfb。2、随机误差,如测量误差造成的差异或个体间的差异,称为组内差异,用变量在各组的均值与该组内变量值之偏差平方和的总和表示, 记作SSw,组内自由度dfw。总偏差平方和 SSt = SSb + SSw。组内SSw、组间SSb除以各自的自由度(组内dfw =n-m,组间dfb=m-1,其中n为样本总数,m为组数),得到其均方MSw和MSb,一种情况是处理没有作用,即各组样本均来自同一总体,MSb/MSw≈1。另一种情况是处理确实有作用,组间均方是由于误差与不同处理共同导致的结果,即各样本来自不同总体。那么,MSb>>MSw(远远大于)。MSb/MSw比值构成F分布。用F值与其临界值比较,推断各样本是否来自相同的总体。
九万里风9 2023-06-09 08:06:211

如何使用特征函数求随机变量的期望与方差

在特征函数等于0处,求特征函数的一阶与二阶倒数就可以求随机变量的期望与方差。如果两个随机变量具有相同的特征函数,那么它们具有相同的概率分布; 反之, 如果两个随机变量具有相同的概率分布, 它们的特征函数也相同。方差数学期望给出了随机变量的平均大小,现实生活中我们还经常关心随机变量的取值在均值周围的散布程度,而方差就是这样的一个数字特征。方差的作用:在统计描述中,方差用来计算每一个变量(观察值)与总体均数之间的差异。为避免出现离均差总和为零,离均差平方和受样本含量的影响,统计学采用平均离均差平方和来描述变量的变异程度。一般来说,乘积的期望不等于期望的乘积,除非变量相互独立。因此,如果x和y相互独立,则E(xy)=E(x)E(y)E(xy)=E(x)E(y)。期望的运算构成了统计量的运算基础,因为方差、协方差等统计量本质上是一种特殊的期望。
小菜G的建站之路2023-06-09 08:03:571

异方差会导致什么后果

问题一:如果回归模型的随机误差项存在异方差性,会对线性回归分析造成什么影响 若误差方差或因变量方差不满足方差齐性条件,则在不同的X取值处,Y的实际分散程度不同,则回归线的预测在不同的X点准确度不同,回归预测效果不稳定,或者说此时在不同的X水平,其与Y的关系是有很大差别的,无法用单一的回归方程去预测Y。 比如下方这个图: a是满足方差齐性的,b不满足,很明显a的回归直线预测作用要好于b,在不同的X点处的预测效果也稳定 问题二:产生异方差的原因是什么 原因: 1.常来源于截面数据 2.来源于测量误差和模型中被省略的一些因素对憨解释变量的影响 3.有时产生于计量经济模型所研究问题的本身 4.用分组数据估计经济计量模型也是异方差性的重要来源 问题三:怀特检验怎么判断哪个变量引起的异方差 for (int i = 0; i 问题四:计量经济学中缺失变量会产生什么后果 其实缺失的变量都到了随机误差项中去了,导致最后得到非一致估计量。还有,因为有的缺失的变量可能会和解释变量相关,但是被归到随机误差项中去,这样会产生内生性问题。 问题五:计量经济学的几个问题 我是来等等回答的 问题六:下面哪些因素会导致ols估计量出现偏误 1、随机误差项是一个期望值或平均值为0的随机变量; 2、对于解释变量的所有观测值,随机误差项有相同的方差; 3、随机误差项彼此不相关; 4、解释变量是确定性变量,不是随机变量,与随机误差项彼此之间相互独立; 5、解释变量之间不存在精确的(完全的)线性关系,即解释变量的样本观测值矩阵是满秩矩阵; 6、随机误差项服从正态分布。 问题七:完全多重共线性和遗漏变量偏差。计量经济学 楼上有误。 遗漏变量会引起估计系数大小有偏,而自相关和异方差只会带来统计量(T值)有偏,也就是影响显著性,系数是无偏的。 再来解释你的问题。 遗漏变量是指,你遗漏的变量既与自变量有关,又与因变量有关。比如你的身高是x,树的高度是y,把树每年的高度对你每年的身高做回归,系数肯定显著为正。但是你遗漏了时间这个变量。其实你的身高和树的身高并没有关系,只不过都随着时间长高而已。 另外,多重共线性和线性相关是不一样的。线性相关就是你说的,一个变量可以用另一个变量表示。用向量的语言来说,就是两个变量是共线的。而多重共线性是说,两个变量的向量是夹角小于90度大于0度(如果完全无关,则向量夹角为90度)。 多重共线性是普遍存在的。两个自变量之间有多重共线性是很正常的,只要vif 问题八:经济学建模问题。。两个看起来是有相关性的经济因素,建模的结果确实两者之间影响的不大,该怎么解释呢? 首先,这样一个原则你要明确,如果模型的设定和数据处理基本没问题,那么不管结果好不好,都是有意义的,这就是实证研究,可以是证实一个猜想,也可以是证伪一个猜想。事实上,正是因为不断有不显著的实证结果产生,才推动着理论模型向前进步; 其次,针对你的这个研究,我认为可能你在以下方面还存在不足: 1.模型设定的偏误或遗漏变量。你研究的对外贸易是对外贸易总量吗?如果是这样的,那么你想研究国内物流运输成本和我国对外贸易总量这两个变量之间的关系,那么显然你缺少了一些重要的控制变量,计量经济学的多元线性回归分析是在保持其他因素不变的情况下,考查你感兴趣的解释变量对于被解释变量的偏效应,重要控制变量的遗漏会有严重后果。这里列举两个你遗漏的重要变量,一个是进口总额,国内物流运输成本的上涨带来出口价格的上升,从而导致国外的需求下降,导致出口减少,在进口不变的前提下,是会引起贸易额的缩小,但是如果进口上升了,贸易额可能不变也可能扩大,从而你可以看到不控制进口总额可能会导致不显著以及符号相反的系数;(当然,如果不想控制进口额也行,那么干脆直接研究国内物流成本和出口额之间的关系好了,也就相当于你研究一个东西的价格上升对于需求量的影响,那么你就有非常成熟而且简单的模型可以直接套用,根据你在微观经济学里面学习的知识,你就知道有外国人的收入等等变量需要控制了对吧)。另一个你没有控制的重要变量是汇率,汇率会影响进口商和出口商双方的行为。建议你从浏览有关国内物流成本和对外贸易的相关文献入手,理解所有变量的含义,了解目前理论界已有的研究成果、模型,这样你才能确保你在模型中加入了足够的控制变量,控制变量多一些没什么关系,它只影响估计的最优性,但是遗漏重要变量则会带来估计的有偏和不一致; 2.数据处理的问题,有可能你的数据存在异方差性和自相关性等问题,这样会导致系数不显著;建议参考一本计量经济学教材,例如古扎拉蒂的《计量经济学基础》,里面提供了系统的解决方案。 希望能对你有所帮助~ 问题九:计量经济学中用怀特(White)检验修正了异方差性,进行自相关检验时发现该模型还有序列自相关,该如何修正 看你的目的是什么啦,如果仅仅估计参数,无论是异方差还是自相关,你的参数都是无偏的;但方差较大,预测准确度较低。 你要克服异方差同时还有自相关,建议拟采用FGLS(可行广义二乘),可同时达到目的。广义差分尽管也可以,但损失自由度,而且要你自己推断出相关系数。 但我觉得奇怪的是,你为什么同时既有异方差又有序列相关;所以我觉得你很可能是有遗漏变量,遗漏变量进入残差项中,且与自变量相关,最终会导致你估计非无偏且非一致。 所以,最好先用直接做回归,后得到的残差,与自变量测下相关性;如相关性强,则说明存在遗漏变量。然后你采用工具变量法进行回归就可以了。
wpBeta2023-06-09 08:02:421

异方差性检验实验结论是什么

1.2 实验二 异方差性及其性质1.2.1 实验目的我们已经知道,在经典条件下,线性模型回归参数的OLS估计是具有最小方差的线性无偏估计量。随机误差项的异方差性,是线性回归模型中常见的不满足经典条件的情形。与满足经典条件的情形相比,当模型中出现异方差性时,模型参数的普通最小二乘(OLS)估计的统计性质将发生什么样的变化?如何理解和把握这些变化?如何纠正模型估计因为异方差性而产生的问题?通过本实验,可以帮助学生理解异方差性本身的概念、存在异方差性时模型参数的OLS估计量的性质、加权最小二乘法等。1.2.2 实验背景与理论基础1. 异方差性本实验以二元线性回归模型为例进行说明。线性回归模型,假设模型满足除“同方差性”之外的所有经典假设:(1),,或表示为,从而有;(3),随机误差无序列相关;(4)解释变量是确定性变量,与随机误差项不相关:,,(5)自变量之间不存在精确(完全)的线性关系。矩阵X是列满秩的:。(要求样本容量)(6)随机误差的正态性:,。2. 异方差性条件下OLS估计量的统计性质(1)的无偏性:模型回归参数的OLS估计量为: 可以证明,即使在异方差性条件下,上述估计量依然满足无偏性:(2)的方差及协方差:在模型满足经典条件时,OLS估计量的方差—协方差矩阵为,但是在异方差性条件下,不存在独立于X的随机误差项方差,因此不再存在这一简单公式。另一方面,在计量分析实践中,即使在线性回归模型的经典条件下,随机误差项的方差本身也不是可直接观察的,实践中我们用对其进行估计(大多数统计分析软件正是如此处理的),也即用矩阵去估计OLS估计量的方差—协方差矩阵,并在此基础上对模型进行各种检验。在线性回归模型的经典条件下,这种估计将是无偏的(参见本章实验一)。重要的问题是,在异方差性条件下,如果无视异方差性的存在,仍用去估计OLS估计量的方差—协方差矩阵,这种估计是否仍具有无偏性?建立在这种估计之上的各种模型检验是否依然有效?3. 加权最小二乘法修正异方差性的常用方法是加权最小二乘法,它是广义最小二乘法中的一种。具体的方法是:如果模型中的标准差为,在原模型中乘以,模型变为:将此模型看成是对的线性回归模型,此模型将具有同方差性,由于原模型满足除同方差性外的所有经典条件,因此上述模型将满足所有线性模型的经典条件,从此模型中利用最小二乘法估计参数将获得具有最小方差的线性无偏估计量,这就是加权最小二乘法及其原理。1.2.3 实验原理本实验仍然通过一个虚构的二元线性回归模型来展开。与本章实验一一样,我们首先设定一定二元线性回归模型的回归参数,取定解释变量的样本值。由于是存在异方差性的模型,不能再设定随机误差项的方差,但是我们可以设定随机误差项的方差与解释变量值之间的函数关系。这样,在总体上我们已经完全掌握了模型。接着我们使用Matlab进行模拟随机抽样,对于得到的每一个模拟随机样本,我们分别使用普通最小二乘法和加权最小二乘法得到模型参数的两种不同的估计量,分别记为和。反复以上模拟抽样和估计,我们将分别得到每个模型参数的普通最小二乘估计量和加权最小二乘估计量的样本。通过这两个样本,我们可以探讨普通最小二乘估计量和加权最小二乘估计量的统计性质,分析两者之间的共同性质和区别。1.2.4 实验过程和步骤1. 程序设计以下将实验过程通过编制一个简单的Matlab程序来进行。程序分为以下几个部分:(1)第一步,设置模型基本参数,解释变量的样本值,这一步与实验一的相应步骤是类似的。Matlab程序段如下:clearn=20;beta0=10;beta1=5;beta2=-3;x1=15*rand(n,1)+1;x2=10*rand(n,1)+1;e=ones(n,1);X=[e,x1,x2];(2)第二步,反复抽取样本,进行普通最小二乘估计和加权最小二乘估计,并将估计结果保存在相应的向量中。Matlab程序段如下:b0=[];b1=[];b2=[];sigma=[];c0=[];c1=[];c2=[];XX=X./[x1,x1,x1];times=5000;for j=1:timesuu=normrnd(0,se,n,1);u=2*x1.*uu;Y=beta0+beta1*x1+beta2*x2+u;[b,bint,r]=regress(Y,X);b0=[b0;b(1)];b1=[b1;b(2)];b2=[b2;b(3)];sigma=[sigma,sum(r.^2)/(n-3)];YY=Y./x1;[c,bint,r]=regress(YY,XX);c0=[c0;c(1)];c1=[c1;c(2)];c2=[c2;c(3)];end代码解释:“b0=[];b1=[];b2=[];sigma1=[];”生成4个维数可变的动态向量,准备分别存放每次抽样所产生的普通最小二乘估计量及,其中为普通最小二乘回归的残差。“c0=[];c1=[];c2=[];sigma2=[];”生成4个维数可变的动态向量,准备分别存放每次抽样所产生的加权最小二乘估计量估计量及,其中为加权最小二乘回归的残差。“XX=X./[x1,x1,x1];”表示将矩阵X的每一列向量的元素对应除以列向量X1的元素,也即得到矩阵生成这一矩阵的目的将在下文中揭示,实际上是为下文中的加权最小二乘估计做准备。“times=5000;”设定反复抽样和回归的次数,你可以根据需要设定成另外的整数;“uu=normrnd(0,1,n,1); ”随机生成分布N(0,1)的简单随机样本,构成n维列向量,“u=2*X1.*uu”表示生成一个n维列向量u,其元素是列向量X1和uu的对应元素的乘积再乘以2,即这表示随机误差相互间不相关,但其标准差为。“Y=beta0+beta1*x1+beta2*x2+u;”利用以上生成的向量生成被解释变量Y的一个模拟样本:这是一个具有异方差性的二元线性回归模型的模拟样本,随机误差的标准差与解释变量x1的关系是。“[b,bint,r]=regress(Y,X);”将 Y 对 X 进行普通最小二乘回归,获取估计结果参数,其中b为回归系数点估计向量,r为残差列向量。“b0=[b0;b(1)];” 将的值逐个存入数表b0,使b0于循环结束时成为times维列向量。“b1=[b1;b(2)];”将的值逐个存入数表b1,使b1于循环结束时成为times维列向量。“b2=[b2;b(3)];”将的值逐列存入数表b2,使b2于循环结束时成为times维列向量。“sigma=[sigma,sum(r.^2)/(n-3)];”将由回归残差计算所得的值逐列存入数表sigma1,使sigma于循环结束时成为times维列向量。“YY=Y./x1;”将向量Y的分量分别除以向量x1的对应分量,得到列向量YY,即“[c,bint,r]=regress(YY,XX);”将 YY 对 XX (参见前文中的XX的构造)进行普通最小二乘回归,获取估计结果参数。实际上,此时YY 对 XX 的普通最小二乘回归正是对线性模型的普通最小二乘回归,由于的标准差,因此上述模型又等价于对此模型的普通最小二乘估计正是对原模型的加权最小二乘估计。因此上述命令中的c为即为原模型回归参数的加权最小二乘估计向量,r为残差列向量。“c0=[c0;c(1)];” 将的值逐个存入数表c0,使c0于循环结束时成为times维列向量;“c1=[c1;c(2)];” 将的值逐个存入数表c1,使c1于循环结束时成为times维列向量;“c2=[c2;c(3)];” 将的值逐列存入数表c2,使c2于循环结束时成为times维列向量。2. 输出实验结果运行上述程序后,模型回归参数的普通最小二乘估计量的样本存放在向量b0,b1,b2中;模型回归参数的加权最小二乘估计量的样本存放在向量c0,c1,c2中,同时,两种估计法所产生的残差所计算的和的所有数据分别存放在向量sigma1和sigma2中。这些向量的值均被暂时保存于内存中,我们可以用相应的Matlab命令输出我们所希望获得的各种结果。这里需要特别指出的是,以下结果只是某一次实验(上述程序某一次运行)的结果,该程序的每一次运行都将使解释变量的值,以及被解释变量的随机样本发生变化,因此你实验时得到的结果与以下结果将会略有出入。(1)解释变量的值利用命令[x1,x2]可直接输出程序中生成的解释变量的值(经整理成为下表)。解释变量的值并没有在对被解释变量的反复抽样中发生变化。x1 x210.1281 2.21051.2364 5.50751.2453 8.15883.8511 9.92849.8038 3.7311.8637 3.54776.5135 9.65610.4718 3.323511.7645 9.048711.39 10.0842.2612 3.31897.8153 3.39317.6274 1.49756.2988 1.78383.3041 7.408211.1347 2.908911.4882 9.438711.9126 2.7398.1758 2.70799.3226 10.943(2)的无偏性即使在异方差性条件下,依然分别是的无偏估计。在上述程序运行结束后,使用以下MATLAB命令:b_theo=[beta0,beta1,beta2]mean_b_ols=[mean(b0),mean(b1),mean(b2)]mean_b_wols=[mean(c0),mean(c1),mean(c2)]其中第一个命令输出模型被事先设定的回归参数值,记为b_theo;第二个命令输出回归参数的普通最小二乘估计量的样本均值,记为mean_b_ols;第三个命令输出回归参数的加权最小二乘估计量的样本均值,记为mean_b_wols。运行上述命令,将分别得到:b_theo =10 5 -3mean_b_ols =9.8762 5.0029 -2.9843mean_b_wols =9.9659 4.9989 -2.9954实验结果显示,回归参数的普通最小二乘估计量和加权最小二乘估计量均是无偏估计量。(3)普通最小二乘估计量的方差—协方差矩阵在模型存在异方差性时,如果无视异方差性,仍然用去估计随机误差项的方差,进而用矩阵去估计的方差—协方差矩阵,这种估计具有无偏性吗?为此,我们使用以下Matlab命令:fangcha_est_ols=mean(sigma);cov_b_est_ols=fangcha_est_ols*(inv(X"*X))cov_b_sample_ols=cov([b0,b1,b2])代码解释:“fangcha_est_ols=mean(sigma1);”计算普通最小二乘估计法产生的的均值,赋予变量fangcha_est_ols。“cov_b_est_ols=fangcha_est_ols*(inv(X"*X))”计算并输出矩阵的均值,记为“cov_b_est_ols”。“cov_b_sample_ols=cov([b0,b1,b2])”计算并输出向量b0, b1, b2 的样本方差—协方差矩阵,也即的样本方差—协方差矩阵,记为“cov_b_sample_ols”。输出结果为:cov_b_est_ols =27.0496 -1.8265 -1.8278-1.8265 0.2447 0.0037-1.8278 0.0037 0.3235cov_b_sample_ols =18.1221 -0.9746 -2.2516-0.9746 0.1969 0.0329¥5.9百度文库VIP限时优惠现在开通,立享6亿+VIP内容立即获取异方差性实验1.2 实验二 异方差性及其性质1.2.1 实验目的我们已经知道,在经典条件下,线性模型回归参数的OLS估计是具有最小方差的线性无偏估计量。随机误差项的异方差性,是线性回归模型中常见的不满足经典条件的情形。与满足经典条件的情形相比,当模型中出现异方差性时,模型参数的普通最小二乘(OLS)估计的统计性质将发生什么样的变化?如何理解和把握这些变化?如何纠正模型估计因为异方差性而产生的问题?第 1 页通过本实验,可以帮助学生理解异方差性本身的概念、存在异方差性时模型参数的OLS估计量的性质、加权最小二乘法等。1.2.2 实验背景与理论基础1. 异方差性本实验以二元线性回归模型为例进行说明。线性回归模型,假设模型满足除“同方差性”之外的所有经典假设:(1),,或表示为,从而有;
无尘剑 2023-06-09 08:02:201

平均方差萃取量有什么作用

平均提取方差值是计算潜在变量之测量变量的变异数解释力,若AVE越高,则表示构念有越高的信度与收敛效度,OK
北营2023-06-08 08:02:081
 首页 上一页  6 7 8 9 10 11 12 13 14 15 16  下一页  尾页