汉邦问答 / 问答 / 问答详情

如何用SPSS进行多因素方差分析

2023-06-10 08:14:54
左迁

多因素方差分析是对一个独立变量是否受一个或多个因素或变量影响而进行的方差分析。SPSS调

用逗Univariate地过程,检验不同水平组合之间因变量均数,由于受不同因素影响是否有差异的问题。在这个过程中可以分析每一个因素的作用,也可以

分析因素之间的交互作用,以及分析协方差,以及各因素变量与协变量之间的交互作用。该过程要求因变量是从多元正态总体随机采样得来,且总体中各单元的方差

相同。但也可以通过方差齐次性检验选择均值比较结果。因变量和协变量必须是数值型变量,协变量与因变量不彼此独立。因素变量是分类变量,可以是数值型也可

以是长度不超过8的字符型变量。固定因素变量(Fixed Factor)是反应处理的因素;随机因素是随机地从总体中抽取的因素。

[例子]

研究不同温度与不同湿度对粘虫发育历期的影响,得试验数据如表5-7。分析不同温度和湿度对粘虫发育历期的影响是否存在着显著性差异。

表5-7 不同温度与不同湿度粘虫发育历期表

相对湿度(%)

温度℃

重 复

1

2

3

4

100

25

91.2

95.0

93.8

93.0

27

87.6

84.7

81.2

82.4

29

79.2

67.0

75.7

70.6

31

65.2

63.3

63.6

63.3

80

25

93.2

89.3

95.1

95.5

27

85.8

81.6

81.0

84.4

29

79.0

70.8

67.7

78.8

31

70.7

86.5

66.9

64.9

40

25

100.2

103.3

98.3

103.8

27

90.6

91.7

94.5

92.2

29

77.2

85.8

81.7

79.7

31

73.6

73.2

76.4

72.5

数据保存在逗DATA5-2.SAV地文件中,变量格式如图5-1。

下载信息 [文件大小:1.02 KB 下载次数: 次]

点击下载文件:DATA5-2.rar

1)准备分析数据

在数据编辑窗口中输入数据。建立因变量历期逗历期地变量,因素变量温度逗A地,湿度为逗B地变量,重复变量逗重复地。然后输入对应的数值,如图5-6所示。或者打开已存在的数据文件逗DATA5-2.SAV地。

图5-6 数据输入格式

2)启动分析过程

点击主菜单逗Analyze地项,在下拉菜单中点击逗General Linear Model地项,在右拉式菜单中点击逗Univariate地项,系统打开单因变量多因素方差分析设置窗口如图5-7。

图5-7 多因素方差分析窗口

3)设置分析变量

设置因变量: 在左边变量列表中选逗历期地,用向右拉按钮选入到逗Dependent Variable:地框中。

设置因素变量: 在左边变量列表中选逗a地和逗b地变量,用向右拉按钮移到逗Fixed Factor(s):地框中。可以选择多个因素变量。由于内存容量的限制,选择的因素水平组合数(单元数)应该尽量少。

设置随机因素变量: 在左边变量列表中选逗重复地变量,用向右拉按钮移到逗到Random Factor(s)地框中。可以选择多个随机变量。

设置协变量:如果需要去除某个变量对因素变量的影响,可将这个变量移到逗Covariate(s)地框中。

设置权重变量:如果需要分析权重变量的影响,将权重变量移到逗WLS Weight地框中。

4)选择分析模型

在主对话框中单击逗Model地按钮,打开逗Univariate Model地对话框。见图5-8。

图5-8 逗Univariate Model地 定义分析模型对话框

在Specify Model栏中,指定分析模型类型。

① Full Factorial选项

项为系统默认的模型类型。该项选择建立全模型。全模型包括所有因素变量的主效应和所有的交互效应。例如有三个因素变量,全模型包括三个因素变量的主效应、

两两的交互效应和三个因素的交互效应。选择该项后无需进行进一步的操作,即可单击逗Continue地按钮返回主对话框。此项是系统缺省项。

② Custom选项

立自定义的分析模型。选择了逗Custom地后,原被屏蔽的逗Factors & Covariates地、逗Model地和逗Build

Term(s)地栏被激活。在逗Factors &

Covariates地框中自动列出可以作为因素变量的变量名,其变量名后面的括号中标有字母逗F地;和可以作为协变量的变量名,其变量名后面的括号中标

有字母逗C地。这些变量都是由用户在主对话框中定义过的。根据表中列出的变量名建立模型,其方法如下:

在逗Build Term(s)地栏右面的有一向下箭头按钮(下拉按钮),单击该按钮可以展开一小菜单,在下拉菜单中用鼠标单击某一项,下拉菜单收回,选中的交互类型占据矩形框。有如下几项选择:

Interaction 选中此项可以指定任意的交互效应;

Main effects 选中此项可以指定主效应;

All 2-way 指定所有2维交互效应;

All 3-way 指定所有3维交互效应;

All 4-way 指定所有4维交互效应

All 5-way 指定所有5维交互效应。

③ 建立分析模型中的主效应:

在逗Build Term(s)地栏用下拉按钮选中主效应逗Main effects地。

变量列表栏用鼠标键单击某一个单个的因素变量名,该变量名背景将改变颜色(一般变为蓝色),单击逗Build

Term(s)地栏中的右拉箭头按钮,该变量出现在逗Model地框中。一个变量名占一行称为主效应项。欲在模型中包括几个主效应项,就进行几次如上的操

作。也可以在标有逗F地变量名中标记多个变量同时送到逗Model地框中。

本例将逗a地和逗b地变量作为主效应,按上面的方法选送到逗Model地框中。

④ 建立模型中的交互项

要求在分析模型中包括哪些变量的交互效应,可以通过如下的操作建立交互项。

例如,因素变量有逗a(F)地和逗b(F)地,建立它们之间的相互效应。

连续在逗Factors &地框的变量表中单击逗a(F)地和逗b(F)地变量使其选中。

单击逗Build Term(s)地栏内下拉按钮,选中交互效应逗Interaction地项。

单击逗Build Term(s)地栏内的右拉按钮,逗a*b地交互效应就出现在逗Model地框中,模型增加了一个交互效应项:a*b

⑤ Sum of squares 栏分解平方和的选择项

Type I项,分层处理平方和。仅对模型主效应之前的每项进行调整。一般适用于:平衡的AN0VA模型,在这个模型中一阶交互

效应前指定主效应,二阶交互效应前指定一阶交互效应,依次类推;多项式回归模型。嵌套模型是指第一效应嵌套在第二

效应里,第二效应嵌套在第三效应里,嵌套的形式可使用语句指定。

Type II项,对其他所有效应进行调整。一般适用于:平衡的AN0VA模型、主因子效应模型、回归模型、嵌套设计。

Type III项,是系统默认的处理方法。对其他任何效应均进行调整。它的优势是把所估计剩余常量也考虑到单元频数中。对没

有缺失单元格的不平衡模型也适用,一般适用于:Type I、Type II所列的模型:没有空单元格的平衡和不平衡模型。

Type IV顶,没有缺失单元的设计使用此方法对任何效应F计算平方和。如果F不包含在其他效应里,Type IV = Type IIIl =

TypeII。如果F包含在其他效应里,Type IV只对F的较高水平效应参数作对比。一般适用于:Type I、Type lI所列模型;

没有空单元的平衡和不平衡模型。

⑥ Include intercept in model栏选项

系统默认选项。通常截距包括在模型中。如果能假设数据通过原点,可以不包括截距,即不选择此项。

5)选择比较方法

在主对话框中单击逗Contrasts地按钮,打开逗Contrasts地比较设置对话框,如图5-9所示。

如图5-9 Contrasts对比设置框

在逗Factors地框中显示出所有在主对话框中选中的因素变量。因素变量名后的括号中是当前的比较方法。

① 选择因子

在逗Factors地框中选择想要改变比较方法的因子,即鼠标单击选中的因子。这一操作使逗Change Contrast地栏中的各项被激活。

② 选择比较方法

单击逗Contrast地参数框中的向下箭头,展开比较方法表。用鼠标单击选中的对照方法。可供选择的对照方法有:

None,不进行均数比较。

Deviation,除被忽略的水平外,比较预测变量或因素变量的每个水平的效应。可以选择逗Last地(最后一个水平)或

逗First地(第一个水平)作为忽略的水平。

Simple,除了作为参考的水平外,对预测变量或因素变量的每一水平都与参考水平进行比较。选择逗Last地或逗First地作为

参考水平。

Difference,对预测变量或因素每一水平的效应,除第一水平以外,都与其前面各水平的平均效应进行比较。与Helmert对照

方法相反。

Helmert,对预测变量或因素的效应,除最后一个以外,都与后续的各水平的平均效应相比较。

Repeated,对相邻的水平进行比较。对预测变量或因素的效应,除第一水平以外,对每一水平都与它前面的水平进行比较。

Polynomial,多项式比较。第一级自由度包括线性效应与预测变量或因素水平的交叉。第二级包括二次效应等。各水平彼此

的间隔被假设是均匀的。

③ 修改比较方法

先按步骤①选中因子变量,再选比较方法,然后单击逗Change地按钮,选中的(或改变的)比较方法显示在步骤①选中的因子变量后面的括号中。

④设置比较的参考类

在逗Reference Category地栏比较的参考类有两个,只有选择了逗Deviation地或逗Simple地方法时才需要选择参考水平。共有两种可能的选择,最后一个水平逗Last地选项和第一水平逗First地项。系统默认的参考水平是逗Last地。

6) 选择均值图

在主对话框中单击逗Plot地按钮,打开逗Profile Plots地对话框,如图5-10所示。在该对话框中设置均值轮廓图。

如图5-10 逗Profile Plots地对话框

均值轮廓图(Profile Plots)用于比较边际均值。轮廓图是线图,图中每个点表明因变量在因素变量每个水平上的边际均值的估计值。如果指定了协变量,该均值则是经过协变量调整的均值。因变量做轮廓图的纵轴;一个因素变量做横轴。

做单因素方差分析时,轮廓图表明该因素各水平的因变量均值。

双因素方差分析时,指定一个因素做横轴变量,另一个因素变量的每个水平产生不同的线。如果是三因素方差分析,可以指定第三个因素变量,该因素每个水平产生一个轮廓图。双因素或多因素轮廓图中的相互平行的线表明在因素间无交互效应;不平行的线表明有交互效应。

Factors 框中为因素变量列表。

Horlzontal Axis 横坐标框,选择选择逗Factors地框中一个因素变量做横坐标变量。被选的变量名反向显示,单击向右拉箭

头按钮,将变量名送入相应的横坐标轴框中。

如果只想看该因素变量各水平的,因变量均值分布,单击逗Add地按钮,将所选因素变量移入下面的逗Plots地框中。否

则,不点击逗Add地按钮,接着做下步。

Separate Lines 分线框。如果想看两个因素变量组合的各单元格中因变量均值分布,或想看两个因变量间是否存在交互效应,

选择逗Factors地框中另一个因素变量,单击右拉按钮将变量名送入逗Separate Lines地框中。单击逗Add地按钮,将自动生成

的图形表达式送入到逗Plots地栏中。分线框中的变量的每个水平将在图中是一条线。图形表达式是用逗*地连接的两个因素变

量名。

Separate Plots 分图框。如果在逗Factors地栏中还有因素变量,可以按上述方法,将其送入逗Separate Plot地框中,单击

逗Add地按钮,将自动生成的图形表达式送入到逗Plots地栏中。图形表达式是用逗*"连接的三个因素变量名。分图变量的每个

水平生成一张线图。

将图形表达式送到逗Plots地框后发现有错误,单击选错的变量,单击逗Remove地按钮,将其取消,再重新输入正确内容。

在检查无误后,按逗Continue地按钮确认,返回到主对话框。如果取消做的设置单击逗Cancel地按钮

7) 选择多重比较

主对话框中单击逗Post Hoc地选项,打开逗Post Hoc Multiple Comparisons for Observed

Means地对话框,从逗Factor(s)地框选择变量,单击向右拉按钮,使被选变量进入逗Post Hoc test for地框。本例子选择了逗a地和逗b地。

然后选择多重比较方法。在对话框中选择多重比较方法。本例子选择了逗Duncan地和逗Tamhane"s T2地。

8)选择保存运算值

图5-11 Save对话框

在主对话框中,单击逗Save地按钮,打开逗Save地设置对话框,如图5-11所示。通过在对话框中的选择,可以将所计算的预测值、残差和检测值作为新的变量保存在编辑数据文件中。以便于在其他统计分析中使用这些值。

① Predicted Values 预测值

Unstsndardized,非标准化预测值。

Weighted,如果在主对话框中选择了WLS变量,选中该复选项,将保存加权非标准化预测值。

Standard error,预测值标准误。

② Diagnostics 诊断值

Cook"s distance,Cook 距离。

Leverage values,非中心化 Leverage 值。

③ Residuals 残差

Unstsndardized,非标准化残差值,观测值与预测值之差。

Weighted,如果在主对话框中选择了WLS变量,选中该复选项,将保存加权非标准化残差。

Standardized,标准化残差,又称Pearson残差。

Studentized,学生化残差。

Deleted,剔除残差,自变量值与校正预测值之差。

④ Save to New File 保存协方差矩阵

选中地Coefficient statistics地项,将参数协方差矩阵保存到一个新文件中。单击逗File地按钮,打开相应的对话框将文件保存。

9)选择输出项

在主对话框中单击逗Options地按钮,打开逗Options地输出设置对话框,见图5-12。

图5-12 逗Options地输出设置对话框

① Estimated Marginal Means 估测边际均值设置

在逗Factor(s) and Factor Interactions地框中列出逗Model地对话框中指定的效应项,在该框中选定因素变量的各种效应项,

单击右拉按钮就将其复制到逗Display Means for地框中。选择主效应,则产生估计的边际均值表;选择二维交互效应产生的估计

边际均值表实际上是典型的单元格均值表。选择三维交互效应也是单元格均值表。

在逗Display Means for地框中有主效应时激活此框下面的逗Compare main effects地复选项,对主效应的边际均值进行组间的配

对比较。

Confidence interval adjustment参数框,进行多重组间比较。打开下拉菜单,共有三个选项:

LSD(none)、Bonferroni、Sidak.。

② 在逗Display地栏中指定要求输出的统计量

Descriptive statistics项,输出描述统计量:观测量的均值、标准差和每个单元格中的观测量数。

Estimates of effect size项,效应量估计。选择此项,给出η2(eta-Square)值。它反应了每个效应与每个参数估计值可以归于

因素的总变异的大小。

Observed power复选项,选中此项给出在假设是基于观测值时各种检验假设的功效。计算功效的显著性水平,系统默认的临界值

是0.05。

Parameter estimates项。选择此项给出了各因素变量的模型参数估计、标准误、t检验的t值、显著性概率和95%的置信区间。

Contrast coefficient matrix项,显示协方差矩阵。

Homogeneity test项,方差齐次性检验。本例子选中该项。

Spread vs.level plot项,绘制观测量均值对标准差和观测量均值对方差的图形。

Residual plot项,绘制残差图。给出观测值、预测值散点图和观测量数目,观测量数目对标准化残差的散点图,加上正态和标准化

残差的正态概率图。

Lack of fit项,检查独立变量和非独立变量间的关系是否被充分描述。

General estimable function项,可以根据一般估计函数自定义假设检验。对比系数矩阵的行与一般估计函数是线性组合的。

③ Significance level 框设置

改变逗Confidence intervals地框内多重比较的显著性水平。

10) 提交执行

设置完成后,在多因素方差分析窗口框中点击逗OK地按钮,SPSS就会根据设置进行运算,并将结算结果输出到SPSS结果输出窗口中。

11) 结果与分析

主要输出结果:

结果分析:

方差不齐次性检验显著

表5-8 方差齐次性检验表明:方差不齐次性显著,p<0.05。

方差分析:

表5-9 主效应方差分析表:在表的左上方标明研究的对象是粘虫历期。

偏差来源和偏差平方和:

Source 列是偏差的来源。其次列是逗Type III Sum of Squares地偏差平方和。

Corrected Model 校正模型,其偏差平方和等于两个主效应a、b平方和加上交互a*b的平方和之和。

Intercept 截距。

a 温度主效应,其偏差平方和反应的是不同温度造成对粘虫历期的差异。与b偏差平方相同均属于组间偏差平方和。

b 湿度主效应,其偏差平方和反应的是不同湿度计量造成的粘虫历期之差异。

a*b 温度和湿度交互效应,其偏差平方和反应的是不同温度和湿度共同造成的粘虫历期的差异。

Error 误差。其偏差平方和反应的是组内差异。也称组内偏差平方和。

Total 是偏差平方和在数值上等于截距、主效应、次效应和误差偏差平方和之总和。

Corrected Total 校正总和。其偏差平方和等于校正模型与误差之偏差平方和之总和。

df 自由度

Mean Square 均方,数值上等于偏差平方和除以相应的自由度。

F 值,是各效应项与误差项的均方之比值

Sig 进行F检验的p值。p≤0.05,由此得出逗温度地和逗湿度地对因变量逗粘虫历期地在0.05水平上是有显著性差异的。

根据方差分析表明:

不同温度(a)对粘虫历期的偏差均方是1575.434,F值为90.882,显著性水平是0.000,即p<0.05存在显著性差异;

不同湿度(b)对粘虫历期的偏差均方是322.000,F值为18.575,显著性水平是0.000,即p<0.05存在显著性差异;

不同温度和不同湿度(a*b)共同对粘虫历期的偏差均方是19.809,F值为1.143,显著性水平是0.358,即p>0.05存在不显著性

差异。

多重比较

由于方差不齐次性,应选择方差不具有齐次性时的逗Tamhane"s T2地t检验进行配对比较。表5-10 多重比较表就是逗温度地各水平逗Tamhane"s T2地方法比较的结果。表中的各项说明参见表5-6(5.2.2节)。

温度25℃与27℃、29℃和31℃之间都有显著性差异;

温度27℃与25℃、29℃和31℃之间都有显著性差异;

温度29℃与26℃和27℃之间都有显著性差异;与31℃无显著性差异;

温度31℃与25℃和27℃之间都有显著性差异;与29℃无显著性差异。

不同湿度水平之间无显著性差异存在,这里没有列出多重比较表。

地址:

单因素多变量方差分析是什么意思?

单因素多变量方差分析适用于(两个)个因素、(两)个以上观测变量的检验。单因素方差分析是研究一个变量的多种水平对观测量的影响。比如研究施肥的多少对于庄稼生长的影响。单因素方差分析就是检测施肥多少这个单因素对于庄稼生长这应变量的影响。若方差分析显著,就表明存在影响,若不显著就表明没有影响。扩展资料:一、条件原理不同1、两因素方差分析:假定因素A和因素B的效应之间是相互独立的,不存在相互关系2、单因素方差分析:假定因素所处的状态称为水平,试验中只有一个因素改变。二、假设原理不同1、两因素方差分析:假定因素A和因素B的结合会产生出一种新的效应。例如,若假定不同地区的消费者对某种品牌有与其他地区消费者不同的特殊偏爱,这就是两个因素结合后产生的新效应,属于有交互作用的背景2、单因素方差分析:δi表示在水平Ai下总体的均值μi与总平均μ的差异,称其为因子A的第i个水平Ai的效应。三、影响不同1、两因素方差分析:通过分析研究中不同来源的变异对总变异的贡献大小,从而确定可控因素对研究结果影响力的大小。2、单因素方差分析:每个总体的方差σ2相同;从每个总体中抽取的样本。
2023-06-09 17:28:481

什么是单因素多变量方差分析?

单因素多变量方差分析适用于(两个)个因素、(两个)个以上观测变量的检验。试验中要考察的指标称为试验指标,影响试验指标的条件称为因素,因素所处的状态称为水平,若试验中只有一个因素改变则称为单因素试验,若有两个因素改变则称为双因素试验,若有多个因素改变则称为多因素试验。对试验数据进行分析,检验方差相等的多个正态总体均值是否相等,进而判断各因素对试验指标的影响是否显著,根据影响试验指标条件的个数可以区分为单因素方差分析、双因素方差分析和多因素方差分析。扩展资料因素可分为两类:一类是人们可以控制的(如原材料、设备、学历、专业等因素);另一类人们无法控制的(如员工素质与机遇等因素)。每个因素又有若干个状态可供选择,因素可供选择的每个状态称为该因素的水平。如果在一项试验中只有一个因素在改变,则称为单因素试验;如果多于一个因素在改变,则称为多因素试验。
2023-06-09 17:28:551

spss怎么做多因素方差分析,且考虑交互作用

有交互作用的方差分析,可以这样做(简要步骤):1。Analyze---general linear model---univeriate 然后你把因变量选进dependent variable ,把因素ABC选进FIX FACTOR 或random factor(注意区分固定因素和随机因素)2。接着在MODEL---CUSTOM,把A,B,C因素一个一个选进右侧的文本框中,并用ctrl+A,B;ctrl+A,C一起把AB,AC选进右侧文本框中(这个是交互作用),完了选continue3。最后,你可以选中OPTIONS按钮,按照需要把自己要做的分析(描述统计,方差齐性检验,系数估计等)选上就可以了。我用的是英文版,怕中文翻译不准确,就直接把英文打出来了,希望能帮得上忙
2023-06-09 17:29:152

应用多变量方差分析的前提条件包括什么?

方差分析的应用前提条件为:1、可比性。若资料中各组均数本身不具可比性则不适用方差分析。2、正态性。即偏态分布资料不适用方差分析。对偏态分布的资料应考虑用对数变换、平方根变换、倒数变换、平方根反正弦变换等变量变换方法变为正态或接近正态后再进行方差分析。3、方差齐性。即若组间方差不齐则不适用方差分析。多个方差的齐性检验可用 Bartlett法,它用卡方值作为检验统计量,结果判断需查阅卡方界值表。方差分析主要用于:1、均数差别的显著性检验;2、分离各有关因素并估计其对总变异的作用;3、分析因素间的交互作用;4、方差齐性检验。
2023-06-09 17:29:571

应用多变量方差分析的前提条件包括什么?

进行方差分析需要数据满足以下两个基本前提:各观测变量总体要服从正态分布。各观测变量的总体满足方差齐。这是方差分析的两个基本前提条件,理论上讲,数据必须满足以上两个条件才能进行方差分析,如不满足,则使用非参数检验。但现实研究中,数据多数情况下无法到达理想状态。正态性检验要求严格通常无法满足,实际研究中,若峰度绝对值小于10并且偏度绝对值小于3,或正态图基本上呈现出钟形,则说明数据虽然不是绝对正态,但基本可接受为正态分布,此时也可使用方差分析进行分析。方差分析的用途:1、两个或多个样本均数间的比较。2、分析两个或多个因素间的交互作用。3、回归方程的线性假设检验。4、多元线性回归分析中偏回归系数的假设检验。5、两样本的方差齐性检验等。由于各种因素的影响,研究所得的数据呈现波动状。造成波动的原因可分成两类,一是不可控的随机因素,另一是研究中施加的对结果形成影响的可控因素。
2023-06-09 17:30:111

manova和anova的区别

manova可以看做是anova从一元到多元的延伸;anova目标的变量时一元的数据,而manova的目标变量是多元的;从原假设看,anova的原假设H0:u1=u2=u3;manova的原假设H0:(u11 u12)=(u21 u22)=(u31 u32)为了方便理解,写成上面这种形式,一般书上还是会写成向量的形式,所用的统计量也不同,一元通常用F统计量,而多元通常采用wilks统计量。oneway,twoway的区别简单来说就是,前者是单因素分析,后者是双因素分析,多因素分析通常需要考虑因素之间的交互作用
2023-06-09 17:30:312

如何使用单因素多变量方差分析?

单因素多变量方差分析适用于(两个)个因素、(两个)个以上观测变量的检验。单因素统计:单因素的盆栽试验;温室内、实验室内的实验等,应用该设计,若实验中获得的数据各处理重复数相等,采用重复数相等的单因素资料方差分析法分析,若实验中获得的数据各处理重复数不相等,则采用重复数不等的单因素资料方差分析法分析。扩展资料:在方差分析中,将要考察的对象的某种特征称为试验指标,影响试验指标的条件称为因素,因素可分为两类,一类是人们可以控制的(如原材料、设备、学历、专业等因素);另一类人们无法控制的(如员工素质与机遇等因素)。下面所讨论的因素都是指可控制因素。每个因素又有若干个状态可供选择,因素可供选择的每个状态称为该因素的水平。参考资料来源:百度百科-单因素方差分析
2023-06-09 17:30:441

《R语言实战》自学笔记62-多元方差分析

数据准备 多元方差分析( multivariate analysis of variance ,MANOVA),亦称为多变量方差分析,即表示多元数据的方差分析,是一元方差分析的推广。作为一个多变量过程,多元方差分析在有两个或多个因变量时使用,并且通常后面是分别涉及各个因变量的显着性检验。 当因变量(结果变量)不止一个时,可用多元方差分析(MANOVA)对它们同时进行分析。 结果解读:可以看出v1,v2和v3在nitrogen之间存在很大的不同(P值均小于0.05)。 单因素多元方差分析有两个前提假设,一个是多元正态性,一个是方差—协方差矩阵同质性。 第一个假设即指因变量组合成的向量服从一个多元正态分布。可以用Q-Q图来检验该假设条 件。 方差—协方差矩阵同质性即指各组的协方差矩阵相同,通常可用Box"s M检验来评估该假设。 最后,还可以使用mvoutlier包中的ap.plot()函数来检验多元离群点。 如果多元正态性或者方差—协方差均值假设都不满足,又或者你担心多元离群点,那么可以 考虑用稳健或非参数版本的 MANOVA检验。稳健单因素 MANOVA可通过 rrcov包中的 Wilks.test()函数实现。vegan包中的adonis()函数则提供了非参数MANOVA的等同形式。 稳健检验对离群点和违反MANOVA假设的情况不敏感,结果说明在nitrogen的两个水平下,v1、v2、v3的值均存在显著不同。 参考资料:
2023-06-09 17:30:581

如何用SPSS进行多因素方差分析

多因素方差分析是对一个独立变量是否受一个或多个因素或变量影响而进行的方差分析。SPSS调用“Univariate”过程,检验不同水平组合之间因变量均数,由于受不同因素影响是否有差异的问题。在这个过程中可以分析每一个因素的作用,也可以分析因素之间的交互作用,以及分析协方差,以及各因素变量与协变量之间的交互作用。该过程要求因变量是从多元正态总体随机采样得来,且总体中各单元的方差相同。但也可以通过方差齐次性检验选择均值比较结果。因变量和协变量必须是数值型变量,协变量与因变量不彼此独立。因素变量是分类变量,可以是数值型也可以是长度不超过8的字符型变量。固定因素变量(Fixed Factor)是反应处理的因素;随机因素是随机地从总体中抽取的因素。[例子]研究不同温度与不同湿度对粘虫发育历期的影响,得试验数据如表5-7。分析不同温度和湿度对粘虫发育历期的影响是否存在着显著性差异。表5-7 不同温度与不同湿度粘虫发育历期表相对湿度(%) 温度℃ 重 复1 2 3 4100 25 91.2 95.0 93.8 93.027 87.6 84.7 81.2 82.429 79.2 67.0 75.7 70.631 65.2 63.3 63.6 63.380 25 93.2 89.3 95.1 95.527 85.8 81.6 81.0 84.429 79.0 70.8 67.7 78.831 70.7 86.5 66.9 64.940 25 100.2 103.3 98.3 103.827 90.6 91.7 94.5 92.229 77.2 85.8 81.7 79.731 73.6 73.2 76.4 72.5数据保存在“DATA5-2.SAV”文件中,变量格式如图5-1。 下载信息 [文件大小:1.02 KB 下载次数: 次] 点击下载文件:DATA5-2.rar 1)准备分析数据在数据编辑窗口中输入数据。建立因变量历期“历期”变量,因素变量温度“A”,湿度为“B”变量,重复变量“重复”。然后输入对应的数值,如图5-6所示。或者打开已存在的数据文件“DATA5-2.SAV”。如何用SPSS进行多因素方差分析? 图5-6 数据输入格式2)启动分析过程点击主菜单“Analyze”项,在下拉菜单中点击“General Lwww.hbbz08.com inear Model”项,在右拉式菜单中点击“Univariate”项,系统打开单因变量多因素方差分析设置窗口如图5-7。如何用SPSS进行多因素方差分析? 图5-7 多因素方差分析窗口 3)设置分析变量设置因变量: 在左边变量列表中选“历期”,用如何用SPSS进行多因素方差分析?向右拉按钮选入到“Dependent Variable:”框中。设置因素变量: 在左边变量列表中选“a”和“b”变量,用如何用SPSS进行多因素方差分析?向右拉按钮移到“Fixed Factor(s):”框中。可以选择多个因素变量。由于内存容量的限制,选择的因素水平组合数(单元数)应该尽量少。设置随机因素变量: 在左边变量列表中选“重复”变量,用向右拉按钮移到“到Random Factor(s)”框中。可以选择多个随机变量。设置协变量:如果需要去除某个变量对因素变量的影响,可将这个变量移到“Covariate(s)”框中。设置权重变量:如果需要分析权重变量的影响,将权重变量移到“WLS Weight”框中。 4)选择分析模型在主对话框中单击“Model”按钮,打开“Univariate Model”对话框。见图5-8。如何用SPSS进行多因素方差分析?图5-8 “Univariate Model” 定义分析模型对话框在Specify Model栏中,指定分析模型类型。① Full Factorial选项此项为系统默认的模型类型。该项选择建立全模型。全模型包括所有因素变量的主效应和所有的交互效应。例如有三个因素变量,全模型包括三个因素变量的主效应、两两的交互效应和三个因素的交互效应。选择该项后无需进行进一步的操作,即可单击“Continue”按钮返回主对话框。此项是系统缺省项。② Custom选项建立自定义的分析模型。选择了“Custom”后,原被屏蔽的“Factors & Covariates”、“Model”和“Build Term(s)”栏被激活。在“Factors & Covariates”框中自动列出可以作为因素变量的变量名,其变量名后面的括号中标有字母“F”;和可以作为协变量的变量名,其变量名后面的括号中标有字母“C”。这些变量都是由用户在主对话框中定义过的。根据表中列出的变量名建立模型,其方法如下: 在“Build Term(s)”栏右面的有一向下箭头按钮(下拉按钮),单击该按钮可以展开一小菜单,在下拉菜单中用鼠标单击某一项,下拉菜单收回,选中的交互类型占据矩形框。有如下几项选择:Interaction 选中此项可以指定任意的交互效应;Main effects 选中此项可以指定主效应;All 2-way 指定所有2维交互效应;All 3-way 指定所有3维交互效应;All 4-way 指定所有4维交互效应All 5-way 指定所有5维交互效应。③ 建立分析模型中的主效应:在“Build Term(s)”栏用下拉按钮选中主效应“Main effects”。在变量列表栏用鼠标键单击某一个单个的因素变量名,该变量名背景将改变颜色(一般变为蓝色),单击“Build Term(s)”栏中的右拉箭头按钮,该变量出现在“Model”框中。一个变量名占一行称为主效应项。欲在模型中包括几个主效应项,就进行几次如上的操作。也可以在标有“F”变量名中标记多个变量同时送到“Model”框中。本例将“a”和“b”变量作为主效应,按上面的方法选送到“Model”框中。④ 建立模型中的交互项要求在分析模型中包括哪些变量的交互效应,可以通过如下的操作建立交互项。例如,因素变量有“a(F)”和“b(F)”,建立它们之间的相互效应。连续在“Factors &”框的变量表中单击“a(F)”和“b(F)”变量使其选中。单击“Build Term(s)”栏内下拉按钮,选中交互效应“Interaction”项。单击“Build Term(s)”栏内的右拉按钮,“a*b”交互效应就出现在“Model”框中,模型增加了一个交互效应项:a*b⑤ Sum of squares 栏分解平方和的选择项Type I项,分层处理平方和。仅对模型主效应之前的每项进行调整。一般适用于:平衡的AN0VA模型,在这个模型中一阶交互 效应前指定主效应,二阶交互效应前指定一阶交互效应,依次类推;多项式回归模型。嵌套模型是指第一效应嵌套在第二 效应里,第二效应嵌套在第三效应里,嵌套的形式可使用语句指定。Type II项,对其他所有效应进行调整。一般适用于:平衡的AN0VA模型、主因子效应模型、回归模型、嵌套设计。Type III项,是系统默认的处理方法。对其他任何效应均进行调整。它的优势是把所估计剩余常量也考虑到单元频数中。对没 有缺失单元格的不平衡模型也适用,一般适用于:Type I、Type II所列的模型:没有空单元格的平衡和不平衡模型。Type IV顶,没有缺失单元的设计使用此方法对任何效应F计算平方和。如果F不包含在其他效应里,Type IV = Type IIIl = TypeII。如果F包含在其他效应里,Type IV只对F的较高水平效应参数作对比。一般适用于:Type I、Type lI所列模型; 没有空单元的平衡和不平衡模型。⑥ Include intercept in model栏选项系统默认选项。通常截距包括在模型中。如果能假设数据通过原点,可以不包括截距,即不选择此项。 5)选择比较方法在主对话框中单击“Contrasts”按钮,打开“Contrasts”比较设置对话框,如图5-9所示。如何用SPSS进行多因素方差分析?
2023-06-09 17:31:111

如何用SPSS进行多因素方差分析?

多因素方差分析是对一个独立变量是否受一个或多个因素或变量影响而进行的方差分析。SPSS调用“Univariate”过程,检验不同水平组合之间因变量均数,由于受不同因素影响是否有差异的问题。在这个过程中可以分析每一个因素的作用,也可以分析因素之间的交互作用,以及分析协方差,以及各因素变量与协变量之间的交互作用。该过程要求因变量是从多元正态总体随机采样得来,且总体中各单元的方差相同。但也可以通过方差齐次性检验选择均值比较结果。因变量和协变量必须是数值型变量,协变量与因变量不彼此独立。因素变量是分类变量,可以是数值型也可以是长度不超过8的字符型变量。固定因素变量(Fixed Factor)是反应处理的因素;随机因素是随机地从总体中抽取的因素。[例子]研究不同温度与不同湿度对粘虫发育历期的影响,得试验数据如表5-7。分析不同温度和湿度对粘虫发育历期的影响是否存在着显著性差异。向左转|向右转1)准备分析数据在数据编辑窗口中输入数据。建立因变量历期“历期”变量,因素变量温度“A”,湿度为“B”变量,重复变量“重复”。然后输入对应的数值,如图5-6所示。或者打开已存在的数据文件“DATA5-2.SAV”。2)启动分析过程点击主菜单“Analyze”项,在下拉菜单中点击“General Linear Model”项,在右拉式菜单中点击“Univariate”项,系统打开单因变量多因素方差分析设置窗口如图5-7。向左转|向右转3)设置分析变量向左转|向右转4)选择分析模型在主对话框中单击“Model”按钮,打开“Univariate Model”对话框。见图5-8。在Specify Model栏中,指定分析模型类型。① Full Factorial选项此项为系统默认的模型类型。该项选择建立全模型。全模型包括所有因素变量的主效应和所有的交互效应。例如有三个因素变量,全模型包括三个因素变量的主效应、两两的交互效应和三个因素的交互效应。选择该项后无需进行进一步的操作,即可单击“Continue”按钮返回主对话框。此项是系统缺省项。向左转|向右转向左转|向右转向左转|向右转向左转|向右转向左转|向右转向左转|向右转向左转|向右转向左转|向右转向左转|向右转向左转|向右转向左转|向右转
2023-06-09 17:31:331

如何用SPSS进行多因素方差分析

多因素方差分析是对一个独立变量是否受一个或多个因素或变量影响而进行的方差分析。SPSS调用“Univariate”过程,检验不同水平组合之间因变量均数,由于受不同因素影响是否有差异的问题。在这个过程中可以分析每一个因素的作用。也可以分析因素之间的交互作用,以及分析协方差,以及各因素变量与协变量之间的交互作用。该过程要求因变量是从多元正态总体随机采样得来,且总体中各单元的方差相同。但也可以通过方差齐次性检验选择均值比较结果。因变量和协变量必须是数值型变量,协变量与因变量不彼此独立。因素变量是分类变量,可以是数值型也可以是长度不超过8的字符型变量。固定因素变量(Fixed Factor)是反应处理的因素;随机因素是随机地从总体中抽取的因素。[例子]研究不同温度与不同湿度对粘虫发育历期的影响,得试验数据如表5-7。分析不同温度和湿度对粘虫发育历期的影响是否存在着显著性差异。SPSS for Windows的分析结果清晰、直观、易学易用,而且可以直接读取EXCEL及DBF数据文件,现已推广到多种各种操作系统的计算机上,它和SAS、BMDP并称为国际上最有影响的三大统计软件。在国际学术界有条不成文的规定,即在国际学术交流中,凡是用SPSS软件完成的计算和统计分析,可以不必说明算法,由此可见其影响之大和信誉之高。扩展资料:SPSS是世界上最早采用图形菜单驱动界面的统计软件,它最突出的特点就是操作界面极为友好,输出结果美观漂亮。它将几乎所有的功能都以统一、规范的界面展现出来,使用Windows的窗口方式展示各种管理和分析数据方法的功能,对话框展示出各种功能选择项。用户只要掌握一定的Windows操作技能,精通统计分析原理,就可以使用该软件为特定的科研工作服务。SPSS采用类似EXCEL表格的方式输入与管理数据,数据接口较为通用,能方便的从其他数据库中读入数据。其统计过程包括了常用的、较为成熟的统计过程,完全可以满足非统计专业人士的工作需要。输出结果十分美观,存储时则是专用的SPO格式,可以转存为HTML格式和文本格式。对于熟悉老版本编程运行方式的用户,SPSS还特别设计了语法生成窗口,用户只需在菜单中选好各个选项,然后按“粘贴”按钮就可以自动生成标准的SPSS程序。极大的方便了中、高级用户。1)统计图:在经过一年的使用后,新的常规图操作界面已基本完善,本次的改进除使得操作更为便捷外,还突出了两个重点。首先在常规图中引入更多的交互图功能,如图组(Paneled charts),带误差线的分类图形如误差线条图和线图,三维效果的简单、堆积和分段饼图等。其次是引入几种新的图形,已知的有人口金字塔和点密度图两种。2)统计表:几乎全部过程的输出都将会弃用文本,改为更美观的枢轴表。而且枢轴表的表现和易用性会得到进一步的提高,并加入了一些新的功能,如可以对统计量进行排序、在表格中合并/省略若干小类的输出等。此外,枢轴表将可以被直接导出到PowerPoint中,这些无疑都方便了用户的使用。参考资料:百度百科——spss
2023-06-09 17:33:491

如何用SPSS进行多因素方差分析

多因素方差分析菜单选择:分析 -> 一般线性模型 -> 单变量将研究变量选入“因变量”框,分组变量都选入固定因子框点击右边“模型”按钮,进入“单变量:模型对话框,点击“设定”单选按钮,设置“主效应”、“交互作用”其余选项取默认值就行,点击“继续”按钮,回到“单变量”界面,ok统计专业研究生工作室为您服务
2023-06-09 17:34:061

spss多元方差分析的操作方法和结果分析

多元方差分析就是有多个因变量的分析,但是这几个因变量并不是没有关系的,他们应该属于同一种质的不同的形式,比如一个问卷的几个不同的维度。看一下spss多元方差分析的操作方法和结果分析吧。材料/工具spss方法1/10在spss中打开数据,在菜单栏上执行:analyse--general linear model--multivariate。请点击输入图片描述2/10将所有的因变量都放到第一个列表里,将自变量放到固定因素列表里。请点击输入图片描述3/10点击options按钮,打开子对话框。请点击输入图片描述4/10将自变量矫正方式放到右侧的display means,勾选如图所示的三个选项,用来展示描述统计、方差齐性、效应大小,点击继续,返回到主对话框。请点击输入图片描述5/10点击post hoc,设置事后检验。请点击输入图片描述6/10将自变量矫正方式放到事后检验的列表里,在方差齐性的方法中选择lsd,在方差不齐性的方法中选dunnet c,点击continue按钮。请点击输入图片描述7/10点击ok按钮,开始数据处理。请点击输入图片描述8/10先来分析多变量检验,如图所示的红色方框中显示的是检验的不同方法,有时候不同的方法会显示出不同的结果,需要分别解释,下面的结果是一致的。请点击输入图片描述9/10以wilks lambda方法为例,看sig值为000说明差异显著,篇eta方位0.375说明可以解释变异的37.5%。请点击输入图片描述10/10看主体间效应的检验,在矫正方式这一栏,也就是自变量的这一栏,乍一看三个水平的自变量都达到了显著水平,因为对自变量的多次比较会造成一类错误的概率增加,所以我们要用显著性水平除以自变量的水平数,也就是0.05/3=0.17,这样来看重复减少这个水平是达不到显著水平的。请点击输入图片描述
2023-06-09 17:34:141

单因素方差分析与多因素方差分析的区别是什么?交互作用分析不显著说明什么问题?两因素不能相互补偿吗?

单因素方差分析是研究一个变量的多种水平对观测量的影响。比如研究施肥的多少对于庄稼生长的影响。单因素方差分析就是检测施肥多少这个单因素对于庄稼生长这应变量的影响。若方差分析显著,就表明存在影响,若不显著就表明没有影响。多因素方差分析就是研究多个变量对于应变量的影响。结果也是一个一个分开的,比如研究施肥多少,和光照强度两个自变量对于庄稼生长的影响,结果算得是施肥多少对于庄稼生长是否存在影响,和光照强度对庄稼生长是否存在影响。交互作用不显著,表明这些因素之间没有交互作用。既这些自变量之间没有内在联系。这个交互作用是可以有多种情况的,得根据结果具体讨论。比如,施肥多少,和光照强度两个自变量,若当施肥比较多时,光照强度的变化对于庄稼生长影响不大,这就是一种交互作用。
2023-06-09 17:35:331

多变量方差分析和多元方差分析有什么区别?

其实多元方差分析,指的就是多变量方差分析,“多元”即是“多变量”,同时监测多个指标,与单变量方差分析相对;另外,有些人将多元方差分析理解为多因素方差分析也是不对的!
2023-06-09 17:35:411

spss多因素方差分析步骤

多因素方差分析,用于研究一个因变量是否受到多个自变量也称为因素的影响,它检验多个因素取值水平的不同组合之间,因变量的均值之间是否存在显著的差异。多因素方差分析既可以分析单个因素的作用主效应,也可以分析因素之间的交互作用交互效应,还可以进行协方差分析,以及各个因素变量与协变量的交互作用。1、进入SPSS环境,打开数据文件。2、选择变量,在多变量窗口中,将数学成绩、英语成绩选入因变量列表框,将考生所在地,性别选入固定因子列表框。3、对比设置,单击对话框右侧对比按钮,在弹出的窗口中选择差值,并单击继续。4、绘图设置,单击右侧绘图按钮,将考生所在地选入水平轴,性别选入单图,再单击添加按钮。5、多重比较设置。将考生所在地区和性别选入时候检验列表框中,并选择LSD复选框,单击继续按钮回到多变量对话框,确定后等待结果输出即可。
2023-06-09 17:35:491

多因素方差分析与回归分析有什么异同啊?

1、分析对象不同回归分析(regressionanalysis)是确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法。多因素方差分析,当有两个或者两个以上的因素对因变量产生影响时,可以用多因素方差分析的方法来进行分析。2、应用不同多因素方差分析不仅能够分析多个控制变量对观测变量的独立影响,更能够分析多个控制变量的交互作用能否对观测变量产生显著影响,最终找到利于观测变量的最优组合。而回归分析则要分析现象之间相关的具体形式,确定其因果关系,并用数学模型来表现其具体关系。比如说,从相关分析中我们可以得知“质量”和“用户满意度”变量密切相关,但是这两个变量之间到底是哪个变量受哪个变量的影响,影响程度如何,则需要通过回归分析方法来确定。3、分析方法不同回归分析方法有LinearRegression线性回归、LogisticRegression逻辑回归、PolynomialRegression多项式回归、StepwiseRegression逐步回归、LassoRegression套索回归等。多因素方差分析往往选用一般化线性模型(GeneralIinearModel)进行参数估计。相同点回归分析和多因素方差分析都属于统计学的分析方法。分析几种因素对因变量的影响显著性的时候,选用方差分析,二者不能通用。参考资料来源:百度百科-多因素方差分析参考资料来源:百度百科-回归分析
2023-06-09 17:36:031

多因素方差分析spss步骤

1、将数据粘贴到spss软件中。2、点击界面上方的“分析”,然后选择“一般性模型”选项。3、选择“多变量”分析。4、选中数据,然后点击箭头,将数据导入到指定位置。5、数据导入完成后点击左下角的确定按钮。多因素方差分析多因素方差分析是对一个独立变量是否受一个或多个因素或变量影响而进行的方差分析。可以通过方差齐次性检验选择均值比较结果。因变量和协变量必须是数值型变量,协变量与因变量不彼此独立。
2023-06-09 17:36:211

方差分析可以用于两个多分类变量的分析吗

可以。方差分析可以用于两个多分类变量的分析,能分析多个因素对因变量的独立影响,方差分析(AnalysisofVariance,简称ANOVA),又称“变异数分析”,是RAFisher发明的,用于两个及两个以上样本均数差别的显著性检验。
2023-06-09 17:36:281

求助spss高手,在多变量方差分析中Box‘s M 检测sig小于0.05 说明什么?

s M 检测sig小于0.05 说明很复杂。。
2023-06-09 17:36:452

怎样用SPSS进行多因素多指标方差分析啊,正交表采

方差分析多因素就纳入多个因素,在univariate分析
2023-06-09 17:36:553

R语言中的多元方差分析

R语言中的多元方差分析1、当因变量(结果变量)不止一个时,可用多元方差分析(MANOVA)对它们同时进行分析。library(MASS)attach(UScereal)y <- cbind(calories, fat, sugars)aggregate(y, by = list(shelf), FUN = mean)Group.1 calories fat sugars1 1 119.4774 0.6621338 6.2954932 2 129.8162 1.3413488 12.5076703 3 180.1466 1.9449071 10.856821cov(y)calories fat sugarscalories 3895.24210 60.674383 180.380317fat 60.67438 2.713399 3.995474sugars 180.38032 3.995474 34.050018fit <- manova(y ~ shelf)summary(fit)Df Pillai approx F num Df den Df Pr(>F) shelf 1 0.19594 4.955 3 61 0.00383 **Residuals 63 ---Signif. codes: 0 ‘***" 0.001 ‘**" 0.01 ‘*" 0.05 ‘." 0.1 ‘ " 1summary.aov(fit)Response calories : Df Sum Sq Mean Sq F value Pr(>F) shelf 1 45313 45313 13.995 0.0003983 ***Residuals 63 203982 3238 ---Signif. codes: 0 ‘***" 0.001 ‘**" 0.01 ‘*" 0.05 ‘." 0.1 ‘ " 1Response fat : Df Sum Sq Mean Sq F value Pr(>F) shelf 1 18.421 18.4214 7.476 0.008108 **Residuals 63 155.236 2.4641 ---Signif. codes: 0 ‘***" 0.001 ‘**" 0.01 ‘*" 0.05 ‘." 0.1 ‘ " 1Response sugars : Df Sum Sq Mean Sq F value Pr(>F) shelf 1 183.34 183.34 5.787 0.01909 *Residuals 63 1995.87 31.68 ---Signif. codes: 0 ‘***" 0.001 ‘**" 0.01 ‘*" 0.05 ‘." 0.1 ‘ " 12、评估假设检验单因素多元方差分析有两个前提假设,一个是多元正态性,一个是方差—协方差矩阵同质性。(1)多元正态性第一个假设即指因变量组合成的向量服从一个多元正态分布。可以用Q-Q图来检验该假设条件。center <- colMeans(y)n <- nrow(y)p <- ncol(y)cov <- cov(y)d <- mahalanobis(y, center, cov)coord <- qqplot(qchisq(ppoints(n), df = p), d, main = "QQ Plot Assessing Multivariate Normality", ylab = "Mahalanobis D2")abline(a = 0, b = 1)identify(coord$x, coord$y, labels = row.names(UScereal))如果所有的点都在直线上,则满足多元正太性。2、方差—协方差矩阵同质性即指各组的协方差矩阵相同,通常可用Box"s M检验来评估该假设3、检测多元离群点library(mvoutlier)outliers <- aq.plot(y)outliers
2023-06-09 17:37:091

SPSS分析多个自变量对多个因变量的影响用什么分析?

关键词:spss自变量因变量,spss自变量和因变量,spss自变量相关性分析,spss多自变量回归分析提问:我是在做问卷,然后是要研究A与B两个问题之间的关系.然后AB分别设定了n个问题,从完全不符合到完全符合设为1到5的数值.昨晚问卷后我就有A1,A2……An这些自变量,然后B1,B2……Bn这些因变量,都有数值,要分析A对B的影响,该怎么办?实在不能直接分析能不能用简单相加的方法,就是把一个问卷的A1到An加起来,B1到Bn加起来,然后再把所有问卷放在一起分析,这样可不可以?如果用因子分析提取主成分的话,就只能把收集来的所有问卷的A1提取一个主成分,所有问卷的A2提取一个主成分以此类推,可是我想要的是一个问卷中的A1到An提取一个主成分,如果不能的话能不能简单相加啊……精彩回答:可以做因子分析.首先,先将A1到An用提取主成分分析的方法,形成一个因子,同理,对B项做同样处理.其次,再在因子的层面上对两个因子单变量方差分析(当然,如果存在多个自变量因子和多个因变量因子,可以用多变量方差分析).最后,如果想考察两者的线性的数量关系,可以再做回归分析.因子分析的步骤:菜单栏”分析”——“降维”——“因子分析”,在变量框里分别选入变量,记住将因子得分保存为新的变量.方差分析的步骤:分析——一般线性模型——单变量,将因变量选入“因变量”框内,将自变量选入”固定因子“框内,点确定.回归分析:分析——回归.选择线性或曲线模型个自变量多个因变量用SPSS如何分析?我是在做问卷,然后是要研究A与B两个问题之间的关系.然后AB分别设定了n个问题,从完全不符合到完全符合设为1到5的数值.昨晚问卷后我就有A1,A2……An这些自变量,然后B1,B2……Bn这些因变量,都有数值,要分析A对B的影响,该怎么办?实在不能直接分析能不能用简单相加的方法,就是把一个问卷的A1到An加起来,B1到Bn加起来,然后再把所有问卷放在一起分析,这样可不可以?如果用因子分析提取主成分的话,就只能把收集来的所有问卷的A1提取一个主成分,所有问卷的A2提取一个主成分以此类推,可是我想要的是一个问卷中的A1到An提取一个主成分,如果不能的话能不能简单相加啊…可以做因子分析.首先,先将A1到An用提取主成分分析的方法,形成一个因子,同理,对B项做同样处理.其次,再在因子的层面上对两个因子单变量方差分析(当然,如果存在多个自变量因子和多个因变量因子,可以用多变量方差分析请教各位同仁一个问题。我在论文实证部分遇到一个问题,如下,自变量与因变量有多个,我想检验自变量与因变量间的回归效应,用SPSS进行操作,自变量与因变量都是定距尺度,难点在于怎样检验多个自变量与多个因变量之间的关系呢,我的想法是将多个自变量分别与每一个因变量进行回归分析,即不将自变量与因变量整体放进去检验,但不知我的这种做法是否有理论根据,另外有没有其它办法(在SPSS里)同时检验多个自变量与多个因变量之间的回归效应。在此请教诸位,感谢。
2023-06-09 17:37:171

多个自变量,多个因变量,用因变量做的量表,自变量为一个问答题,用什么分析方法,求教,感激不尽

可以做因子分析.首先,先将A1到An用提取主成分分析的方法,形成一个因子,同理,对B项做同样处理.其次,再在因子的层面上对两个因子单变量方差分析(当然,如果存在多个自变量因子和多个因变量因子,可以用多变量方差分析).最后,如果想考察两者的线性的数量关系,可以再做回归分析.因子分析的步骤:菜单栏"分析"——“降维”——“因子分析”,在变量框里分别选入变量,记住将因子得分保存为新的变量.方差分析的步骤:分析——一般线性模型——单变量,将因变量选入“因变量"框内,将自变量选入”固定因子“框内,点确定.回归分析:分析——回归.选择线性或曲线模型.
2023-06-09 17:37:282

请教关于spss多元方差分析的结果如何分析?请各位指导!

一下子问了这么多问题啊多因素方差分析,一般分析以下内容:1、各因素间是否有差异,主要看“主体间效应的检验表”中的F和P2、同一个因素不同水平情况是否有差异,主要看“性别”、“年级”的多重检验中的t和P
2023-06-09 17:37:541

spss多因素方差分析步骤

“营养素”选入固定因子框点击右边“模型”按钮统计操作:如下图,设置显著性水平,开始分析、建立数据文件变量视图、“营养素”均选入右边框中再选择两两比较的方法,点击“继续”按钮回到“单变量”主界面点击“选项”按钮勾选“统计描述”及“方差齐性检验”,在“构建项”下拉菜单中选择“主效应”把左边框中区组和营养素均选入右边框中其余选项取默认值就行,营养素号用1-3表示2,Duncan为常用的三种方法,“区组”、统计菜单选择,点击“继续”按钮:1:分析->:模型对话框”点击“设定”单选按钮,进入下面对话框将右边框中“区组”:建立3个变量;一般线性模型->单变量点击进入“单变量”对话框将“体重”选入“因变量”框,LSD,如下图数据视图,回到“单变量”主界面点击下方“确定”按钮、S-N-K。3:区组号用1-8表示,进入“单变量,点击“继续”按钮,回到“单变量”界面点击“两项比较”按钮
2023-06-09 17:38:191

如何用spss做多因素方差分析

“营养素”选入固定因子框点击右边“模型”按钮统计操作:如下图,设置显著性水平,开始分析、建立数据文件变量视图、“营养素”均选入右边框中再选择两两比较的方法,点击“继续”按钮回到“单变量”主界面点击“选项”按钮勾选“统计描述”及“方差齐性检验”,在“构建项”下拉菜单中选择“主效应”把左边框中区组和营养素均选入右边框中其余选项取默认值就行,营养素号用1-3表示2,Duncan为常用的三种方法,“区组”、统计菜单选择,点击“继续”按钮:1:分析->:模型对话框”点击“设定”单选按钮,进入下面对话框将右边框中“区组”:建立3个变量;一般线性模型->单变量点击进入“单变量”对话框将“体重”选入“因变量”框,LSD,如下图数据视图,回到“单变量”主界面点击下方“确定”按钮、S-N-K。3:区组号用1-8表示,进入“单变量,点击“继续”按钮,回到“单变量”界面点击“两项比较”按钮
2023-06-09 17:38:292

如何用SPSS进行多因素方差分析

设置因变量: 在左边变量列表中选“历期”,用向右拉按钮选入到“Dependent Variable:”框中。设置因素变量: 在左边变量列表中选“a”和“b”变量,用向右拉按钮移到“Fixed Factor(s):”框中。可以选择多个因素变量。由于内存容量的限制,选择的因素水平组合数(单元数)应该尽量少。设置随机因素变量: 在左边变量列表中选“重复”变量,用向右拉按钮移到“到Random Factor(s)”框中。可以选择多个随机变量。设置协变量:如果需要去除某个变量对因素变量的影响,可将这个变量移到“Covariate(s)”框中。
2023-06-09 17:38:371

如何用SPSS进行多因素方差分析

确定你的因变量是一个因变量还是多个因变量,如果是一个因变量,则用上面那个单元方差分析(univarite),如果是多个因变量,则使用第二个多元方差分析(multivariate)。进去之后,分别将 因变量、自变量、协变量移入对应对话框之后,其他的可以全部默认 点确定就能出来一般所需的结果了
2023-06-09 17:38:501

如何用SPSS进行多因素方差分析

统计操作:1、建立数据文件变量视图:建立3个变量,如下图数据视图:如下图:区组号用1-8表示,营养素号用1-3表示2、统计菜单选择:分析 -> 一般线性模型 -> 单变量点击进入“单变量”对话框将“体重”选入“因变量”框,“区组”、“营养素”选入固定因子框点击右边“模型”按钮,进入“单变量:模型对话框”点击“设定”单选按钮,在“构建项”下拉菜单中选择“主效应”把左边框中区组和营养素均选入右边框中其余选项取默认值就行,点击“继续”按钮,回到“单变量”界面点击“两项比较”按钮,进入下面对话框将右边框中“区组”、“营养素”均选入右边框中再选择两两比较的方法,LSD、S-N-K,Duncan为常用的三种方法,点击“继续”按钮回到“单变量”主界面点击“选项”按钮勾选“统计描述”及“方差齐性检验”,设置显著性水平,点击“继续”按钮,回到“单变量”主界面点击下方“确定”按钮,开始分析。3、结果解读
2023-06-09 17:39:061

多个自变量多个因变量怎么做逐步回归分析?

这个做多元线性回归好了,其实是二元线性回归,自变量2个A和B,因变量C。一元线性回归方程y=ax+b,系数a>0,y与x正相关,x高时,y高,x低时,y低,a<0相反。二元线性回归方程是y=ax1+bx2+c,x1,x2对应本题的A、B变量。如果系数a,b都是正的,那么就是A高B高时,C也会高。如果系数是负值,那么就A高B高时,C会低。如果系数a为正,b为负,那么A高,B低,C会高,但A低B高,效应相减,C的高低就难确定了。同理A为负,B为正的情况。操作步骤:分析-回归-线性,C为因变量,A,B为自变量,如果anova表的P值小于0.05,回归方法成立,可以按以上步骤进行。如果大于0.05,说明线性模型不成立,那就需要考虑非线性模型进行相关分析啦,道理一样。
2023-06-09 17:39:121

spss多因素方差分析中为什么不能按确定

spss分析确定没反应的原因是:1.下载的是盗版的spss程序。2.是电脑存在问题。只需在官方进行下载即可解决。在进行统计工作中,有时候需要对某一变量或多个变量进行重复数据分析,这时候就需要使用到重复测量方差分析方法,今天小编就来和大家分享一下,SPSS重复测量方差分析怎么做,SPSS重复测量方差分析结果解读的相关内容。一、SPSS重复测量方差分析怎么做1.启动SPSS软件,将分析数据导入到软件中,点击“分析”-“一般线性模型”-“重复测量”。图1:重复测量2.在“重复测量定义因子”窗口,受试者内因子名填写为“时点”,“级别数”的数值填写为“4”,点击“添加”按钮对其进行添加,同时,测量名称填写为“平均成绩”,点击“添加”按钮,再点击“定义”按钮,进入“重复测量”窗口。图2:定义因子3.在“重复测量”窗口,将模考平均成绩1月到4月转移到受试者内变量中,年级转移到受试者间因子中。图3:变量转移4.点击“选项”,在“选项”窗口,勾选中描述统计,返回“重复测量窗口”点击“确定”按钮即可得到分析结果。图4:选项设置二、SPSS重复测量方差分析结果解读上文对案例数据进行了重复测量方差分析,并得到了分析结果,下面,就对其结果进行解读分析。1.从主体间因子和主体内因子两张分析结果列表中,可以看到本次主要对一年级到三年级4个时间点的平均成绩进行了数据走势分析。图5:主体间因子和主体内因子分析结果2.在描述统计分析列表中给出了一年级到三年级平均成绩的平均值和标准差。图6:描述统计分析结果3.在Mauchly球形度检验分析列表中,其显著性是0.504是大于0.05,所以这里主要查看主体内效应检验分析结果。图7:Mauchly球形度检验分析结果4.在主体内效应检验分析列表中时点的显著性都不行同,这时主要看“格林豪斯-盖斯勒”的显著性,很明显其显著性数值大于0.05,所以一年级到三年级四个时点的平均成绩波动不是很大,而在时点*年级这的“格林豪斯-盖斯勒”显著性也是大于0.05,所以时点和年级基本没有交互性。图8:主体内效应检验分析结果上文所述就是SPSS重复测量方差分析结果的解读。总结:通过上文,小编详细讲解了SPSS重复测量方差分析怎么做,SPSS重复测量方差分析结果解读,希望通过上文所述能够帮助到有需要的小伙伴。作者:子楠标签:上一篇:SPSS数据重构—将选定变量重组为个案下一篇:SPSS多因素方差分析怎么输数据 SPSS多因素方差分析结果解读读者也喜欢这些内容:spss显著性分析是什么意思 spss显著性分析怎么做显著性检验是先对总体数据做出一个大致的预估,接着使用样本容量的数据信息来判断这个假设是否合理,也就是判断假设情况与实际
2023-06-09 17:39:331

协方差分析单变量和多变量的区别 spss

现代统计学1.因子分析(Factor Analysis) 因子分析的基本目的就是用少数几个因子去描述许多指标或因素之间的联系,即将相关比较密切的几个变量归在同一类中,每一类变量就成为一个因子(之所以称其为因子,是因为它是不可观测的,即不是具体的变量),以较少的几个因子反映原资料的大部分信息。 运用这种研究技术,我们可以方便地找出影响消费者购买、消费以及满意度的主要因素是哪些,以及它们的影响力(权重)运用这种研究技术,我们还可以为市场细分做前期分析。 2.主成分分析 主成分分析主要是作为一种探索性的技术,在分析者进行多元数据分析之前,用主成分分析来分析数据,让自己对数据有一个大致的了解是非常重要的。主成分分析一般很少单独使用:a,了解数据。(screening the data),b,和cluster analysis一起使用,c,和判别分析一起使用,比如当变量很多,个案数不多,直接使用判别分析可能无解,这时候可以使用主成份发对变量简化。(reduce dimensionality)d,在多元回归中,主成分分析可以帮助判断是否存在共线性(条件指数),还可以用来处理共线性。 ******************************************************************************************************************主成分分析和因子分析的区别1、因子分析中是把变量表示成各因子的线性组合,而主成分分析中则是把主成分表示成个变量的线性组合。 2、主成分分析的重点在于解释个变量的总方差,而因子分析则把重点放在解释各变量之间的协方差。 3、主成分分析中不需要有假设(assumptions),因子分析则需要一些假设。因子分析的假设包括:各个共同因子之间不相关,特殊因子(specific factor)之间也不相关,共同因子和特殊因子之间也不相关。 4、主成分分析中,当给定的协方差矩阵或者相关矩阵的特征值是唯一的时候,的主成分一般是独特的;而因子分析中因子不是独特的,可以旋转得到不同的因子。 5、在因子分析中,因子个数需要分析者指定(spss根据一定的条件自动设定,只要是特征值大于1的因子进入分析),而指定的因子数量不同而结果不同。在主成分分析中,成分的数量是一定的,一般有几个变量就有几个主成分。 和主成分分析相比,由于因子分析可以使用旋转技术帮助解释因子,在解释方面更加有优势。大致说来,当需要寻找潜在的因子,并对这些因子进行解释的时候,更加倾向于使用因子分析,并且借助旋转技术帮助更好解释。而如果想把现有的变量变成少数几个新的变量(新的变量几乎带有原来所有变量的信息)来进入后续的分析,则可以使用主成分分析。当然,这中情况也可以使用因子得分做到。所以这中区分不是绝对的。 总得来说,主成分分析主要是作为一种探索性的技术,在分析者进行多元数据分析之前,用主成分分析来分析数据,让自己对数据有一个大致的了解是非常重要的。主成分分析一般很少单独使用:a,了解数据。(screening the data),b,和cluster analysis一起使用,c,和判别分析一起使用,比如当变量很多,个案数不多,直接使用判别分析可能无解,这时候可以使用主成份发对变量简化。(reduce dimensionality)d,在多元回归中,主成分分析可以帮助判断是否存在共线性(条件指数),还可以用来处理共线性。 在算法上,主成分分析和因子分析很类似,不过,在因子分析中所采用的协方差矩阵的对角元素不在是变量的方差,而是和变量对应的共同度(变量方差中被各因子所解释的部分)。 ******************************************************************************************************************3.聚类分析(Cluster Analysis) 聚类分析是直接比较各事物之间的性质,将性质相近的归为一类,将性质差别较大的归入不同的类的分析技术 。 在市场研究领域,聚类分析主要应用方面是帮助我们寻找目标消费群体,运用这项研究技术,我们可以划分出产品的细分市场,并且可以描述出各细分市场的人群特征,以便于客户可以有针对性的对目标消费群体施加影响,合理地开展工作。4.判别分析(Discriminatory Analysis) 判别分析(Discriminatory Analysis)的任务是根据已掌握的1批分类明确的样品,建立较好的判别函数,使产生错判的事例最少,进而对给定的1个新样品,判断它来自哪个总体。 根据资料的性质,分为定性资料的判别分析和定量资料的判别分析;采用不同的判别准则,又有费歇、贝叶斯、距离等判别方法。 费歇(FISHER)判别思想是投影,使多维问题简化为一维问题来处理。选择一个适当的投影轴,使所有的样品点都投影到这个轴上得到一个投影值。对这个投影轴的方向的要求是:使每一类内的投影值所形成的类内离差尽可能小,而不同类间的投影值所形成的类间离差尽可能大。 贝叶斯(BAYES)判别思想是根据先验概率求出后验概率,并依据后验概率分布作出统计推断。所谓先验概率,就是用概率来描述人们事先对所研究的对象的认识的程度;所谓后验概率,就是根据具体资料、先验概率、特定的判别规则所计算出来的概率。它是对先验概率修正后的结果。 距离判别思想是根据各样品与各母体之间的距离远近作出判别。即根据资料建立关于各母体的距离判别函数式,将各样品数据逐一代入计算,得出各样品与各母体之间的距离值,判样品属于距离值最小的那个母体。5.对应分析(Correspondence Analysis) 对应分析是一种用来研究变量与变量之间联系紧密程度的研究技术。 运用这种研究技术,我们可以获取有关消费者对产品品牌定位方面的图形,从而帮助您及时调整营销策略,以便使产品品牌在消费者中能树立起正确的形象。 这种研究技术还可以用于检验广告或市场推广活动的效果,我们可以通过对比广告播出前或市场推广活动前与广告播出后或市场推广活动后消费者对产品的不同认知图来看出广告或市场推广活动是否成功的向消费者传达了需要传达的信息。6.典型相关分析 典型相关分析是分析两组随机变量间线性密切程度的统计方法,是两变量间线性相关分析的拓广。各组随机变量中既可有定量随机变量,也可有定性随机变量(分析时须F6说明为定性变量)。本法还可以用于分析高维列联表各边际变量的线性关系。******************************************************************************************************************注意:1.严格地说,一个典型相关系数描述的只是一对典型变量之间的相关,而不是两个变量组之间的相关。而各对典型变量之间构成的多维典型相关才共同揭示了两个观测变量组之间的相关形式。2.典型相关模型的基本假设和数据要求 要求两组变量之间为线性关系,即每对典型变量之间为线性关系; 每个典型变量与本组所有观测变量的关系也是线性关系。如果不是线性关系,可先线性化:如经济水平和收入水平与其他一些社会发展水之间并不是线性关系,可先取对数。即log经济水平,log收入水平。3.典型相关模型的基本假设和数据要求 所有观测变量为定量数据。同时也可将定性数据按照一定形式设为虚拟变量后,再放入典型相关模型中进行分析。 ******************************************************************************************************************7.多维尺度分析(Multi-dimension Analysis) 多维尺度分析(Multi-dimension Analysis) 是市场研究的一种有力手段,它可以通过低维空间(通常是二维空间)展示多个研究对象(比如品牌)之间的联系,利用平面距离来反映研究对象之间的相似程度。由于多维尺度分析法通常是基于研究对象之间的相似性(距离)的,只要获得了两个研究对象之间的距离矩阵,我们就可以通过相应统计软件做出他们的相似性知觉图。 在实际应用中,距离矩阵的获得主要有两种方法:一种是采用直接的相似性评价,先所有评价对象进行两两组合,然后要求被访者所有的这些组合间进行直接相似性评价,这种方法我们称之为直接评价法;另一种为间接评价法,由研究人员根据事先经验,找出影响人们评价研究对象相似性的主要属性,然后对每个研究对象,让被访者对这些属性进行逐一评价,最后将所有属性作为多维空间的坐标,通过距离变换计算对象之间的距离。****************************************************************************************************************** 多维尺度分析的主要思路是利用对被访者对研究对象的分组,来反映被访者对研究对象相似性的感知,这种方法具有一定直观合理性。同时该方法实施方便,调查中被访者负担较小,很容易得到理解接受。当然,该方法的不足之处是牺牲了个体距离矩阵,由于每个被访者个体的距离矩阵只包含1与0两种取值,相对较为粗糙,个体距离矩阵的分析显得比较勉强。但这一点是完全可以接受的,因为对大多数研究而言,我们并不需要知道每一个体的空间知觉图。************************************************************************************************************************************************************************************************************************************ 多元统计分析是统计学中内容十分丰富、应用范围极为广泛的一个分支。在自然科学和社会科学的许多学科中,研究者都有可能需要分析处理有多个变量的数据的问题。能否从表面上看起来杂乱无章的数据中发现和提炼出规律性的结论,不仅对所研究的专业领域要有很好的训练,而且要掌握必要的统计分析工具。对实际领域中的研究者和高等院校的研究生来说,要学习掌握多元统计分析的各种模型和方法,手头有一本好的、有长久价值的参考书是非常必要的。这样一本书应该满足以下条件:首先,它应该是“浅入深出”的,也就是说,既可供初学者入门,又能使有较深基础的人受益。其次,它应该是既侧重于应用,又兼顾必要的推理论证,使学习者既能学到“如何”做,而且在一定程度上了解“为什么”这样做。最后,它应该是内涵丰富、全面的,不仅要基本包括各种在实际中常用的多元统计分析方法,而且还要对现代统计学的最新思想和进展有所介绍、交代。************************************************************************************************************************************************************************************************************************************因子分析 主成分分析通过线性组合将原变量综合成几个主成分,用较少的综合指标来代替原来较多的指标(变量)。在多变量分析中,某些变量间往往存在相关性。是什么原因使变量间有关联呢?是否存在不能直接观测到的、但影响可观测变量变化的公共因子?因子分析(Factor Analysis)就是寻找这些公共因子的模型分析方法,它是在主成分的基础上构筑若干意义较为明确的公因子,以它们为框架分解原变量,以此考察原变量间的联系与区别。 例如,随着年龄的增长,儿童的身高、体重会随着变化,具有一定的相关性,身高和体重之间为何会有相关性呢?因为存在着一个同时支配或影响着身高与体重的生长因子。那么,我们能否通过对多个变量的相关系数矩阵的研究,找出同时影响或支配所有变量的共性因子呢?因子分析就是从大量的数据中“由表及里”、“去粗取精”,寻找影响或支配变量的多变量统计方法。 可以说,因子分析是主成分分析的推广,也是一种把多个变量化为少数几个综合变量的多变量分析方法,其目的是用有限个不可观测的隐变量来解释原始变量之间的相关关系。 因子分析主要用于:1、减少分析变量个数;2、通过对变量间相关关系探测,将原始变量进行分类。即将相关性高的变量分为一组,用共性因子代替该组变量。 1. 因子分析模型 因子分析法是从研究变量内部相关的依赖关系出发,把一些具有错综复杂关系的变量归结为少数几个综合因子的一种多变量统计分析方法。它的基本思想是将观测变量进行分类,将相关性较高,即联系比较紧密的分在同一类中,而不同类变量之间的相关性则较低,那么每一类变量实际上就代表了一个基本结构,即公共因子。对于所研究的问题就是试图用最少个数的不可测的所谓公共因子的线性函数与特殊因子之和来描述原来观测的每一分量。 因子分析模型描述如下: (1)X = (x1,x2,…,xp)¢是可观测随机向量,均值向量E(X)=0,协方差阵Cov(X)=∑,且协方差阵∑与相关矩阵R相等(只要将变量标准化即可实现)。(2)F = (F1,F2,…,Fm)¢ (m<p)是不可测的向量,其均值向量E(F)=0,协方差矩阵Cov(F) =I,即向量的各分量是相互独立的。(3)e = (e1,e2,…,ep)¢与F相互独立,且E(e)=0, e的协方差阵∑是对角阵,即各分量e之间是相互独立的,则模型: x1 = a11F1+ a12F2 +…+a1mFm + e1 x2 = a21F1+a22F2 +…+a2mFm + e2 ……… xp = ap1F1+ ap2F2 +…+apmFm + ep 称为因子分析模型,由于该模型是针对变量进行的,各因子又是正交的,所以也称为R型正交因子模型。 其矩阵形式为: x =AF + e . 其中: x=,A=,F=,e= 这里,(1)m £ p; (2)Cov(F,e)=0,即F和e是不相关的; (3)D(F) = Im ,即F1,F2,…,Fm不相关且方差均为1; D(e)=,即e1,e2,…,ep不相关,且方差不同。 我们把F称为X的公共因子或潜因子,矩阵A称为因子载荷矩阵,e 称为X的特殊因子。 A = (aij),aij为因子载荷。数学上可以证明,因子载荷aij就是第i变量与第j因子的相关系数,反映了第i变量在第j因子上的重要性。2. 模型的统计意义 模型中F1,F2,…,Fm叫做主因子或公共因子,它们是在各个原观测变量的表达式中都共同出现的因子,是相互独立的不可观测的理论变量。公共因子的含义,必须结合具体问题的实际意义而定。e1,e2,…,ep叫做特殊因子,是向量x的分量xi(i=1,2,…,p)所特有的因子,各特殊因子之间以及特殊因子与所有公共因子之间都是相互独立的。模型中载荷矩阵A中的元素(aij)是为因子载荷。因子载荷aij是xi与Fj的协方差,也是xi与Fj的相关系数,它表示xi依赖Fj的程度。可将aij看作第i个变量在第j公共因子上的权,aij的绝对值越大(|aij|£1),表明xi与Fj的相依程度越大,或称公共因子Fj对于xi的载荷量越大。为了得到因子分析结果的经济解释,因子载荷矩阵A中有两个统计量十分重要,即变量共同度和公共因子的方差贡献。 因子载荷矩阵A中第i行元素之平方和记为hi2,称为变量xi的共同度。它是全部公共因子对xi的方差所做出的贡献,反映了全部公共因子对变量xi的影响。hi2大表明x的第i个分量xi对于F的每一分量F1,F2,…,Fm的共同依赖程度大。 将因子载荷矩阵A的第j列( j =1,2,…,m)的各元素的平方和记为gj2,称为公共因子Fj对x的方差贡献。gj2就表示第j个公共因子Fj对于x的每一分量xi(i=1,2,…,p)所提供方差的总和,它是衡量公共因子相对重要性的指标。gj2越大,表明公共因子Fj对x的贡献越大,或者说对x的影响和作用就越大。如果将因子载荷矩阵A的所有gj2 ( j =1,2,…,m)都计算出来,使其按照大小排序,就可以依此提炼出最有影响力的公共因子。3. 因子旋转 建立因子分析模型的目的不仅是找出主因子,更重要的是知道每个主因子的意义,以便对实际问题进行分析。如果求出主因子解后,各个主因子的典型代表变量不很突出,还需要进行因子旋转,通过适当的旋转得到比较满意的主因子。 旋转的方法有很多,正交旋转(orthogonal rotation)和斜交旋转(oblique rotation)是因子旋转的两类方法。最常用的方法是最大方差正交旋转法(Varimax)。进行因子旋转,就是要使因子载荷矩阵中因子载荷的平方值向0和1两个方向分化,使大的载荷更大,小的载荷更小。因子旋转过程中,如果因子对应轴相互正交,则称为正交旋转;如果因子对应轴相互间不是正交的,则称为斜交旋转。常用的斜交旋转方法有Promax法等。4.因子得分 因子分析模型建立后,还有一个重要的作用是应用因子分析模型去评价每个样品在整个模型中的地位,即进行综合评价。例如地区经济发展的因子分析模型建立后,我们希望知道每个地区经济发展的情况,把区域经济划分归类,哪些地区发展较快,哪些中等发达,哪些较慢等。这时需要将公共因子用变量的线性组合来表示,也即由地区经济的各项指标值来估计它的因子得分。 设公共因子F由变量x表示的线性组合为: Fj = uj1 xj1+ uj2 xj2+…+ujpxjp j=1,2,…,m 该式称为因子得分函数,由它来计算每个样品的公共因子得分。若取m=2,则将每个样品的p个变量代入上式即可算出每个样品的因子得分F1和F2,并将其在平面上做因子得分散点图,进而对样品进行分类或对原始数据进行更深入的研究。 但因子得分函数中方程的个数m小于变量的个数p,所以并不能精确计算出因子得分,只能对因子得分进行估计。估计因子得分的方法较多,常用的有回归估计法,Bartlett估计法,Thomson估计法。(1)回归估计法 F = X b = X (X ¢X)-1A¢ = XR-1A¢ (这里R为相关阵,且R = X ¢X )。(2)Bartlett估计法 Bartlett估计因子得分可由最小二乘法或极大似然法导出。 F = [(W-1/2A)¢ W-1/2A]-1(W-1/2A)¢ W-1/2X = (A¢W-1A)-1A¢W-1X(3)Thomson估计法 在回归估计法中,实际上是忽略特殊因子的作用,取R = X ¢X,若考虑特殊因子的作,此时R = X ¢X+W,于是有: F = XR-1A¢ = X (X ¢X+W)-1A¢ 这就是Thomson估计的因子得分,使用矩阵求逆算法(参考线性代数文献)可以将其转换为: F = XR-1A¢ = X (I+A¢W-1A)-1W-1A¢5. 因子分析的步骤 因子分析的核心问题有两个:一是如何构造因子变量;二是如何对因子变量进行命名解释。因此,因子分析的基本步骤和解决思路就是围绕这两个核心问题展开的。(i)因子分析常常有以下四个基本步骤:(1)确认待分析的原变量是否适合作因子分析。(2)构造因子变量。(3)利用旋转方法使因子变量更具有可解释性。(4)计算因子变量得分。(ii)因子分析的计算过程:(1)将原始数据标准化,以消除变量间在数量级和量纲上的不同。(2)求标准化数据的相关矩阵;(3)求相关矩阵的特征值和特征向量;(4)计算方差贡献率与累积方差贡献率; (5)确定因子: 设F1,F2,…, Fp为p个因子,其中前m个因子包含的数据信息总量(即其累积贡献率)不低于80%时,可取前m个因子来反映原评价指标; (6)因子旋转: 若所得的m个因子无法确定或其实际意义不是很明显,这时需将因子进行旋转以获得较为明显的实际含义。(7)用原指标的线性组合来求各因子得分: 采用回归估计法,Bartlett估计法或Thomson估计法计算因子得分。(8)综合得分 以各因子的方差贡献率为权,由各因子的线性组合得到综合评价指标函数。 F = (w1F1+w2F2+…+wmFm)/(w1+w2+…+wm ) 此处wi为旋转前或旋转后因子的方差贡献率。(9)得分排序:利用综合得分可以得到得分名次。 ************************************************************************************************************************************************************************************************************************************ 在采用多元统计分析技术进行数据处理、建立宏观或微观系统模型时,需要研究以下几个方面的问题:· 简化系统结构,探讨系统内核。可采用主成分分析、因子分析、对应分析等方法,在众多因素中找出各个变量最佳的子集合,从子集合所包含的信息描述多变量的系统结果及各个因子对系统的影响。“从树木看森林”,抓住主要矛盾,把握主要矛盾的主要方面,舍弃次要因素,以简化系统的结构,认识系统的内核。· 构造预测模型,进行预报控制。在自然和社会科学领域的科研与生产中,探索多变量系统运动的客观规律及其与外部环境的关系,进行预测预报,以实现对系统的最优控制,是应用多元统计分析技术的主要目的。在多元分析中,用于预报控制的模型有两大类。一类是预测预报模型,通常采用多元线性回归或逐步回归分析、判别分析、双重筛选逐步回归分析等建模技术。另一类是描述性模型,通常采用聚类分析的建模技术。· 进行数值分类,构造分类模式。在多变量系统的分析中,往往需要将系统性质相似的事物或现象归为一类。以便找出它们之间的联系和内在规律性。过去许多研究多是按单因素进行定性处理,以致处理结果反映不出系统的总的特征。进行数值分类,构造分类模式一般采用聚类分析和判别分析技术。 如何选择适当的方法来解决实际问题,需要对问题进行综合考虑。对一个问题可以综合运用多种统计方法进行分析。例如一个预报模型的建立,可先根据有关生物学、生态学原理,确定理论模型和试验设计;根据试验结果,收集试验资料;对资料进行初步提炼;然后应用统计分析方法(如相关分析、逐步回归分析、主成分分析等)研究各个变量之间的相关性,选择最佳的变量子集合;在此基础上构造预报模型,最后对模型进行诊断和优化处理,并应用于生产实际。 ******************************************************************************************************************
2023-06-09 17:39:401

单因素多变量方差分析有什么意义?

单因素多变量方差分析适用于(两个)个因素、(两)个以上观测变量的检验。单因素方差分析是研究一个变量的多种水平对观测量的影响。比如研究施肥的多少对于庄稼生长的影响。单因素方差分析就是检测施肥多少这个单因素对于庄稼生长这应变量的影响。若方差分析显著,就表明存在影响,若不显著就表明没有影响。扩展资料:一、条件原理不同1、两因素方差分析:假定因素A和因素B的效应之间是相互独立的,不存在相互关系2、单因素方差分析:假定因素所处的状态称为水平,试验中只有一个因素改变。二、假设原理不同1、两因素方差分析:假定因素A和因素B的结合会产生出一种新的效应。例如,若假定不同地区的消费者对某种品牌有与其他地区消费者不同的特殊偏爱,这就是两个因素结合后产生的新效应,属于有交互作用的背景2、单因素方差分析:δi表示在水平Ai下总体的均值μi与总平均μ的差异,称其为因子A的第i个水平Ai的效应。三、影响不同1、两因素方差分析:通过分析研究中不同来源的变异对总变异的贡献大小,从而确定可控因素对研究结果影响力的大小。2、单因素方差分析:每个总体的方差σ2相同;从每个总体中抽取的样本。
2023-06-09 17:40:001

什么是单因素多变量方差分析?

单因素多变量方差分析适用于(两个)个因素、(两个)个以上观测变量的检验。试验中要考察的指标称为试验指标,影响试验指标的条件称为因素,因素所处的状态称为水平,若试验中只有一个因素改变则称为单因素试验,若有两个因素改变则称为双因素试验,若有多个因素改变则称为多因素试验。对试验数据进行分析,检验方差相等的多个正态总体均值是否相等,进而判断各因素对试验指标的影响是否显著,根据影响试验指标条件的个数可以区分为单因素方差分析、双因素方差分析和多因素方差分析。扩展资料因素可分为两类:一类是人们可以控制的(如原材料、设备、学历、专业等因素);另一类人们无法控制的(如员工素质与机遇等因素)。每个因素又有若干个状态可供选择,因素可供选择的每个状态称为该因素的水平。如果在一项试验中只有一个因素在改变,则称为单因素试验;如果多于一个因素在改变,则称为多因素试验。
2023-06-09 17:40:061

什么是单因素多变量方差分析?

单因素多变量方差分析适用于(两个)个因素、(两个)个以上观测变量的检验。试验中要考察的指标称为试验指标,影响试验指标的条件称为因素,因素所处的状态称为水平,若试验中只有一个因素改变则称为单因素试验,若有两个因素改变则称为双因素试验,若有多个因素改变则称为多因素试验。对试验数据进行分析,检验方差相等的多个正态总体均值是否相等,进而判断各因素对试验指标的影响是否显著,根据影响试验指标条件的个数可以区分为单因素方差分析、双因素方差分析和多因素方差分析。扩展资料因素可分为两类:一类是人们可以控制的(如原材料、设备、学历、专业等因素);另一类人们无法控制的(如员工素质与机遇等因素)。每个因素又有若干个状态可供选择,因素可供选择的每个状态称为该因素的水平。如果在一项试验中只有一个因素在改变,则称为单因素试验;如果多于一个因素在改变,则称为多因素试验。
2023-06-09 17:40:201

什么是单因素多变量方差分析?

单因素多变量方差分析适用于两个个因素、两个个以上观测变量的检验。单因子多变量方差分析适用于一个自变量两个以上因变量的检验,其中因变量为连续型变量,自变量为类别变量。在单变量方差分析中(univariate analysis of variance),只检验因变量各水平在单一因变量测量值平均数的差异,使用的检验方法为F检验,而多变量方差分析(multivariate analysis of variance,简称MANOVA)则同时检验K组间在两个以上因变量是否有显著差异。单因素方差分析试验中要考察的指标称为试验指标,影响试验指标的条件称为因素,因素所处的状态称为水平,若试验中只有一个因素改变则称为单因素试验,若有两个因素改变则称为双因素试验,若有多个因素改变则称为多因素试验。方差分析就是对试验数据进行分析,检验方差相等的多个正态总体均值是否相等,进而判断各因素对试验指标的影响是否显著,根据影响试验指标条件的个数可以区分为单因素方差分析、双因素方差分析和多因素方差分析。
2023-06-09 17:40:321

单因素多变量方差分析适用于什么样的实验?

单因素多变量方差分析适用于(两个)个因素、(两个)个以上观测变量的检验。单因素统计:单因素的盆栽试验;温室内、实验室内的实验等,应用该设计,若实验中获得的数据各处理重复数相等,采用重复数相等的单因素资料方差分析法分析,若实验中获得的数据各处理重复数不相等,则采用重复数不等的单因素资料方差分析法分析。扩展资料:在方差分析中,将要考察的对象的某种特征称为试验指标,影响试验指标的条件称为因素,因素可分为两类,一类是人们可以控制的(如原材料、设备、学历、专业等因素);另一类人们无法控制的(如员工素质与机遇等因素)。下面所讨论的因素都是指可控制因素。每个因素又有若干个状态可供选择,因素可供选择的每个状态称为该因素的水平。参考资料来源:百度百科-单因素方差分析
2023-06-09 17:40:451

单因素多变量方差分析适用于什么检验?

单因素多变量方差分析适用于(两个)个因素、(两个)个以上观测变量的检验。单因素统计:单因素的盆栽试验;温室内、实验室内的实验等,应用该设计,若实验中获得的数据各处理重复数相等,采用重复数相等的单因素资料方差分析法分析,若实验中获得的数据各处理重复数不相等,则采用重复数不等的单因素资料方差分析法分析。扩展资料:在方差分析中,将要考察的对象的某种特征称为试验指标,影响试验指标的条件称为因素,因素可分为两类,一类是人们可以控制的(如原材料、设备、学历、专业等因素);另一类人们无法控制的(如员工素质与机遇等因素)。下面所讨论的因素都是指可控制因素。每个因素又有若干个状态可供选择,因素可供选择的每个状态称为该因素的水平。参考资料来源:百度百科-单因素方差分析
2023-06-09 17:41:001

单因素多变量方差分析适用于()个因素、()个以上观测变量的检验?

单因素多变量方差分析适用于(两个)个因素、(两)个以上观测变量的检验。单因素方差分析是研究一个变量的多种水平对观测量的影响。比如研究施肥的多少对于庄稼生长的影响。单因素方差分析就是检测施肥多少这个单因素对于庄稼生长这应变量的影响。若方差分析显著,就表明存在影响,若不显著就表明没有影响。扩展资料:一、条件原理不同1、两因素方差分析:假定因素A和因素B的效应之间是相互独立的,不存在相互关系2、单因素方差分析:假定因素所处的状态称为水平,试验中只有一个因素改变。二、假设原理不同1、两因素方差分析:假定因素A和因素B的结合会产生出一种新的效应。例如,若假定不同地区的消费者对某种品牌有与其他地区消费者不同的特殊偏爱,这就是两个因素结合后产生的新效应,属于有交互作用的背景2、单因素方差分析:δi表示在水平Ai下总体的均值μi与总平均μ的差异,称其为因子A的第i个水平Ai的效应。三、影响不同1、两因素方差分析:通过分析研究中不同来源的变异对总变异的贡献大小,从而确定可控因素对研究结果影响力的大小。2、单因素方差分析:每个总体的方差σ2相同;从每个总体中抽取的样本。
2023-06-09 17:41:151

单因素多变量方差分析适用于()。

单因素多变量方差分析适用于(两个)个因素、(两个)个以上观测变量的检验。试验中要考察的指标称为试验指标,影响试验指标的条件称为因素,因素所处的状态称为水平,若试验中只有一个因素改变则称为单因素试验,若有两个因素改变则称为双因素试验,若有多个因素改变则称为多因素试验。对试验数据进行分析,检验方差相等的多个正态总体均值是否相等,进而判断各因素对试验指标的影响是否显著,根据影响试验指标条件的个数可以区分为单因素方差分析、双因素方差分析和多因素方差分析。扩展资料因素可分为两类:一类是人们可以控制的(如原材料、设备、学历、专业等因素);另一类人们无法控制的(如员工素质与机遇等因素)。每个因素又有若干个状态可供选择,因素可供选择的每个状态称为该因素的水平。如果在一项试验中只有一个因素在改变,则称为单因素试验;如果多于一个因素在改变,则称为多因素试验。
2023-06-09 17:41:351

单因素多变量方差分析适用于(…)?

多因素方差分析适用于可以分解为若干独立因素的多变量问题。
2023-06-09 17:41:492

单因素多变量方差分析适用于()。

单因素多变量方差分析适用于(两个)个因素、(两个)个以上观测变量的检验。试验中要考察的指标称为试验指标,影响试验指标的条件称为因素,因素所处的状态称为水平,若试验中只有一个因素改变则称为单因素试验,若有两个因素改变则称为双因素试验,若有多个因素改变则称为多因素试验。对试验数据进行分析,检验方差相等的多个正态总体均值是否相等,进而判断各因素对试验指标的影响是否显著,根据影响试验指标条件的个数可以区分为单因素方差分析、双因素方差分析和多因素方差分析。扩展资料因素可分为两类:一类是人们可以控制的(如原材料、设备、学历、专业等因素);另一类人们无法控制的(如员工素质与机遇等因素)。每个因素又有若干个状态可供选择,因素可供选择的每个状态称为该因素的水平。如果在一项试验中只有一个因素在改变,则称为单因素试验;如果多于一个因素在改变,则称为多因素试验。
2023-06-09 17:42:031

两变量多因素方差分析中,单因素指什么?

单因素多变量方差分析适用于(两个)个因素、(两)个以上观测变量的检验。单因素方差分析是研究一个变量的多种水平对观测量的影响。比如研究施肥的多少对于庄稼生长的影响。单因素方差分析就是检测施肥多少这个单因素对于庄稼生长这应变量的影响。若方差分析显著,就表明存在影响,若不显著就表明没有影响。扩展资料:一、条件原理不同1、两因素方差分析:假定因素A和因素B的效应之间是相互独立的,不存在相互关系2、单因素方差分析:假定因素所处的状态称为水平,试验中只有一个因素改变。二、假设原理不同1、两因素方差分析:假定因素A和因素B的结合会产生出一种新的效应。例如,若假定不同地区的消费者对某种品牌有与其他地区消费者不同的特殊偏爱,这就是两个因素结合后产生的新效应,属于有交互作用的背景2、单因素方差分析:δi表示在水平Ai下总体的均值μi与总平均μ的差异,称其为因子A的第i个水平Ai的效应。三、影响不同1、两因素方差分析:通过分析研究中不同来源的变异对总变异的贡献大小,从而确定可控因素对研究结果影响力的大小。2、单因素方差分析:每个总体的方差σ2相同;从每个总体中抽取的样本。
2023-06-09 17:42:201

如何用SPSS进行多因素方差分析

和单因素分析一样的操作
2023-06-09 17:42:292

spss中怎么做多自变量的方差分析

多因素方差分析菜单选择:分析 -> 一般线性模型 -> 单变量将研究变量选入“因变量”框,分组变量都选入固定因子框点击右边“模型”按钮,进入“单变量:模型对话框,点击“设定”单选按钮,设置“主效应”、“交互作用”其余选项取默认值就行,点击“继续”按钮,回到“单变量”界面,ok统计专业研究生工作室为您服务
2023-06-09 17:42:381

方差分析适用于什么情况?

单因素多变量方差分析适用于两个个因素、两个个以上观测变量的检验。单因子多变量方差分析适用于一个自变量两个以上因变量的检验,其中因变量为连续型变量,自变量为类别变量。在单变量方差分析中(univariate analysis of variance),只检验因变量各水平在单一因变量测量值平均数的差异,使用的检验方法为F检验,而多变量方差分析(multivariate analysis of variance,简称MANOVA)则同时检验K组间在两个以上因变量是否有显著差异。单因素方差分析试验中要考察的指标称为试验指标,影响试验指标的条件称为因素,因素所处的状态称为水平,若试验中只有一个因素改变则称为单因素试验,若有两个因素改变则称为双因素试验,若有多个因素改变则称为多因素试验。方差分析就是对试验数据进行分析,检验方差相等的多个正态总体均值是否相等,进而判断各因素对试验指标的影响是否显著,根据影响试验指标条件的个数可以区分为单因素方差分析、双因素方差分析和多因素方差分析。
2023-06-09 17:42:451

spss多因素方差分析步骤是怎么样?

多因素方差分析是对一个独立变量是否受一个或多个因素或变量影响而进行的方差分析。SPSS调用“Univariate”过程,检验不同水平组合之间因变量均数,由于受不同因素影响是否有差异的问题。在这个过程中可以分析每一个因素的作用,也可以分析因素之间的交互作用,以及分析协方差,以及各因素变量与协变量之间的交互作用。该过程要求因变量是从多元正态总体随机采样得来,且总体中各单元的方差相同。扩展资料:可以通过方差齐次性检验选择均值比较结果。因变量和协变量必须是数值型变量,协变量与因变量不彼此独立。因素变量是分类变量,可以是数值型也可以是长度不超过8的字符型变量。固定因素变量(Fixed Factor)是反应处理的因素;随机因素是随机地从总体中抽取的因素。参考资料来源:百度百科-多因素方差分析
2023-06-09 17:43:041

单因素方差分析与多元方差分析的区别

您是想问单因素方差分析与多元方差分析的区别是什么吗?单因素方差分析与多元方差分析的区别是:1、单因素方差分析就是检测施肥多少这个单因素对于庄稼生长这应变量的影响。若方差分析显著,就表明存在影响,若不显著就表明没有影响。2、多因素方差分析就是研究多个变量对于应变量的影响。结果也是一个一个分开的,比如研究施肥多少,和光照强度两个自变量对于庄稼生长的影响,结果算得是施肥多少对于庄稼生长是否存在影响,和光照强度对庄稼生长是否存在影响。
2023-06-09 17:43:311

如何用SPSS进行多因素方差分析?

多因素方差分析是对一个独立变量是否受一个或多个因素或变量影响而进行的方差分析。SPSS调用“Univariate”过程,检验不同水平组合之间因变量均数,由于受不同因素影响是否有差异的问题。在这个过程中可以分析每一个因素的作用,也可以分析因素之间的交互作用,以及分析协方差,以及各因素变量与协变量之间的交互作用。该过程要求因变量是从多元正态总体随机采样得来,且总体中各单元的方差相同。但也可以通过方差齐次性检验选择均值比较结果。因变量和协变量必须是数值型变量,协变量与因变量不彼此独立。因素变量是分类变量,可以是数值型也可以是长度不超过8的字符型变量。固定因素变量(Fixed Factor)是反应处理的因素;随机因素是随机地从总体中抽取的因素。[例子]研究不同温度与不同湿度对粘虫发育历期的影响,得试验数据如表5-7。分析不同温度和湿度对粘虫发育历期的影响是否存在着显著性差异。向左转|向右转1)准备分析数据在数据编辑窗口中输入数据。建立因变量历期“历期”变量,因素变量温度“A”,湿度为“B”变量,重复变量“重复”。然后输入对应的数值,如图5-6所示。或者打开已存在的数据文件“DATA5-2.SAV”。2)启动分析过程点击主菜单“Analyze”项,在下拉菜单中点击“General Linear Model”项,在右拉式菜单中点击“Univariate”项,系统打开单因变量多因素方差分析设置窗口如图5-7。向左转|向右转3)设置分析变量向左转|向右转4)选择分析模型在主对话框中单击“Model”按钮,打开“Univariate Model”对话框。见图5-8。在Specify Model栏中,指定分析模型类型。① Full Factorial选项此项为系统默认的模型类型。该项选择建立全模型。全模型包括所有因素变量的主效应和所有的交互效应。例如有三个因素变量,全模型包括三个因素变量的主效应、两两的交互效应和三个因素的交互效应。选择该项后无需进行进一步的操作,即可单击“Continue”按钮返回主对话框。此项是系统缺省项。向左转|向右转向左转|向右转向左转|向右转向左转|向右转向左转|向右转向左转|向右转向左转|向右转向左转|向右转向左转|向右转向左转|向右转向左转|向右转
2023-06-09 17:43:441