汉邦问答 / 问答 / 问答详情

样本自协方差函数怎么求

2023-06-12 06:58:06
tt白

cov(x,y)=EXY-EX*EY

协方差的定义,EX为随机变量X的数学期望,同理,EXY是XY的数学期望,挺麻烦的,建议你看一下概率论cov(x,y)=EXY-EX*EY

协方差的定义,EX为随机变量X的数学期望,同理,EXY是XY的数学期望,挺麻烦的,建议你看一下概率论

举例:

Xi 1.1 1.9 3

Yi 5.0 10.4 14.6

E(X) = (1.1+1.9+3)/3=2

E(Y) = (5.0+10.4+14.6)/3=10

E(XY)=(1.1×5.0+1.9×10.4+3×14.6)/3=23.02

Cov(X,Y)=E(XY)-E(X)E(Y)=23.02-2×10=3.02

此外:还可以计算:D(X)=E(X^2)-E^2(X)=(1.1^2+1.9^2+3^2)/3 - 4=4.60-4=0.6 σx=0.77

D(Y)=E(Y^2)-E^2(Y)=(5^2+10.4^2+14.6^2)/3-100=15.44 σy=3.93

X,Y的相关系数:

r(X,Y)=Cov(X,Y)/(σxσy)=3.02/(0.77×3.93) = 0.9979

表明这组数据X,Y之间相关性很好!

扩展资料:

协方差(Covariance)在概率论和统计学中用于衡量两个变量的总体误差。而方差是协方差的一种特殊情况,即当两个变量是相同的情况。

协方差表示的是两个变量的总体的误差,这与只表示一个变量误差的方差不同。 如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值,另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值。

如果两个变量的变化趋势相反,即其中一个大于自身的期望值,另外一个却小于自身的期望值,那么两个变量之间的协方差就是负值。

若两个随机变量X和Y相互独立,则E[(X-E(X))(Y-E(Y))]=0,因而若上述数学期望不为零,则X和Y必不是相互独立的,亦即它们之间存在着一定的关系。

协方差与方差之间有如下关系:

D(X+Y)=D(X)+D(Y)+2Cov(X,Y)

D(X-Y)=D(X)+D(Y)-2Cov(X,Y)

协方差与期望值有如下关系:

Cov(X,Y)=E(XY)-E(X)E(Y)。

协方差的性质:

(1)Cov(X,Y)=Cov(Y,X);

(2)Cov(aX,bY)=abCov(X,Y),(a,b是常数);

(3)Cov(X1+X2,Y)=Cov(X1,Y)+Cov(X2,Y)。

由协方差定义,可以看出Cov(X,X)=D(X),Cov(Y,Y)=D(Y)。

协方差作为描述X和Y相关程度的量,在同一物理量纲之下有一定的作用,但同样的两个量采用不同的量纲使它们的协方差在数值上表现出很大的差异。为此引入如下概念:

定义

称为随机变量X和Y的(Pearson)相关系数。

方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的平均数。在许多实际问题中,研究方差即偏离程度有着重要意义。

方差是衡量源数据和期望值相差的度量值。

方差在统计描述和概率分布中各有不同的定义,并有不同的公式。

在统计描述中,方差用来计算每一个变量(观察值)与总体均数之间的差异。为避免出现离均差总和为零,离均差平方和受样本含量的影响,统计学采用平均离均差平方和来描述变量的变异程度。总体方差计算公式:

为总体方差,

为变量,

为总体均值,

为总体例数。

实际工作中,总体均数难以得到时,应用样本统计量代替总体参数,经校正后,样本方差计算公式:S^2= ∑(X-

) ^2 / (n-1)

S^2为样本方差,X为变量,

为样本均值,n为样本例数。

两个变量协方差的计算公式

相关系数r的计算公式如图:其中Cov(X,Y)为X与Y的协方差,Var[X]为X的方差,Var[Y]为Y的方差。扩展资料:相关系数有一个明显的缺点,即它接近于1的程度与数据组数n相关,这容易给人一种假象。因为,当n较小时,相关系数的波动较大,对有些样本相关系数的绝对值易接近于1。当n较大时,相关系数的绝对值容易偏小。特别是当n=2时,相关系数的绝对值总为1。因此在样本容量n较小时,我们仅凭相关系数较大就判定变量x与y之间有密切的线性关系是不妥当的。参考资料来源:百度百科-相关系数
2023-06-11 18:50:521

怎么求两个随机变量的协方差

cov(x,y)=EXY-EX*EY协方差的定义,EX为随机变量X的数学期望,同理,EXY是XY的数学期望,挺麻烦的,建议你看一下概率论cov(x,y)=EXY-EX*EY举例:Xi 1.1 1.9 3Yi 5.0 10.4 14.6E(X) = (1.1+1.9+3)/3=2E(Y) = (5.0+10.4+14.6)/3=10E(XY)=(1.1×5.0+1.9×10.4+3×14.6)/3=23.02 Cov(X,Y)=E(XY)-E(X)E(Y)=23.02-2×10=3.02  此外:还可以计算:D(X)=E(X^2)-E^2(X)=(1.1^2+1.9^2+3^2)/3 - 4=4.60-4=0.6 σx=0.77D(Y)=E(Y^2)-E^2(Y)=(5^2+10.4^2+14.6^2)/3-100=15.44 σy=3.93X,Y的相关系数:r(X,Y)=Cov(X,Y)/(σxσy)=3.02/(0.77×3.93) = 0.9979 表明这组数据X,Y之间相关性很好。扩展资料协方差(Covariance)在概率论和统计学中用于衡量两个变量的总体误差。而方差是协方差的一种特殊情况,即当两个变量是相同的情况。协方差表示的是两个变量的总体的误差,这与只表示一个变量误差的方差不同。 如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值,另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值。 如果两个变量的变化趋势相反,即其中一个大于自身的期望值,另外一个却小于自身的期望值,那么两个变量之间的协方差就是负值。期望值分别为E[X]与E[Y]的两个实随机变量X与Y之间的协方差Cov(X,Y)定义为:从直观上来看,协方差表示的是两个变量总体误差的期望。如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值时另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值;如果两个变量的变化趋势相反,即其中一个变量大于自身的期望值时另外一个却小于自身的期望值,那么两个变量之间的协方差就是负值。如果X与Y是统计独立的,那么二者之间的协方差就是0,因为两个独立的随机变量满足E[XY]=E[X]E[Y]。但是,反过来并不成立。即如果X与Y的协方差为0,二者并不一定是统计独立的。协方差Cov(X,Y)的度量单位是X的协方差乘以Y的协方差。而取决于协方差的相关性,是一个衡量线性独立的无量纲的数。协方差为0的两个随机变量称为是不相关的。参考资料:百度百科协方差
2023-06-11 18:51:041

两个变量的协方差为二阶混合中心矩吗?

两个变量的协方差是二阶混合中心矩。中心矩:对于正整数k,E(X)存在,E[|X-E(X)|)]<∞,则称E{[X-E(X)]}为随机变量X的k阶中心矩。X的方差是X的二阶中心矩,即D(X)=E{[X-E(X)]}。设X,Y为随机变量,E{[X-E(X)][Y-E(Y)]}存在,则称之为X与Y的k+p阶混合中心矩。协方差Cov(X,Y)是X和Y的二阶混合中心矩。
2023-06-11 18:51:341

如何证明协方差为零的两个随机变量并不独立

如果两个变量的协方差为正, 那么两个变量的变化趋势一致,即一个变量如果变大,那么这个变量也会变大。如果协方差为负,那么两个变量的变化趋势想反。如果为0,说明两个变量不相关。协方差虽然在一定程度上能够反映了X和Y相关间的联系,但它还是受X与Y量纲的影响。所以再计算X与Y的协方差之前,先对X与Y进行标准化变换。扩展资料:注意事项:比如有100个样本,每个样本10个属性,那么计算得到的协方差矩阵一定是10*10的,而不是100*100的,这个一定要注意。协方差矩阵主要是为了分析属性与属性之间的相关性,而非样本与样本之间的相关性。利用协方差矩阵可以测量性别与剩下三个属性的相关程度,计算值为负值,比如胡子和岁数的协方差值计算为负,那么说明呈负相关,胡子越少,越年轻。如果为正值,比如皱纹和岁数的协方差矩阵为正值,那么呈正相关,即皱纹越多越年轻。参考资料来源:百度百科-协方差参考资料来源:百度百科-随机变量
2023-06-11 18:51:421

方差、标准差、协方差、残差分别如何定义?用什么符号?有何区别?

以上特征值均用于数据统计,一般而言,统计只能针对有限的样本进行统计,故以下描述均基于样本统计。假设样本为xi,i=1...n,E(x)为样本的算术平均值残差vi=xi-E(x);残差的个数与样本中数据的数量n相等方差s^2=∑vi^2 /(n-1)标准差s为方差的平方根假设另外一个样本为yi,i=1...n,E(x)为样本的算术平均值协方差s(x,y)=∑vi*yi /(n-1)协方差用于衡量两个变量之间的关系,当两个变量完全独立,且样本数足够大时,协方差为零。方差是协方差的特殊形式,即s(x,x)=s(x)。
2023-06-11 18:52:443

协方差函数在空间数据插值中的作用

1、两个随机变量的混合中心矩,变异函数为两个随机变量的方差的一半作为因变量的函数,直接理解为协方差函数即方差期望公式。2、是用于衡量两个变量的总体误差,协方差的一种特殊情况是方差,即当两个变量是相同的情况。3、是从质量因子的角度探讨因素不同水平对实验指标影响的差异,质量因子是可以人为控制的。回归分析是从数量因子的角度出发,通过建立回归方程来研究实验指标与一个或几个因子之间的数量关系,但大多数情况下,数量因子是不可以人为加以控制的。
2023-06-11 18:52:501

协方差矩阵、矩阵求逆的实际意义

1、协方差矩阵中的每一个元素是表示的随机向量X的不同分量之间的协方差,而不是不同样本之间的协方差,如元素Cij就是反映的随机变量Xi,Xj的协方差.2、协方差是反映的变量之间的二阶统计特性,如果随机向量的不同分量之间的相关性很小,则所得的协方差矩阵几乎是一个对角矩阵.对于一些特殊的应用场合,为了使随机向量的长度较小,可以采用主成分分析的方法,使变换之后的变量的协方差矩阵完全是一个对角矩阵,之后就可以舍弃一些能量较小的分量了(对角线上的元素反映的是方差,也就是交流能量).特别是在模式识别领域,当模式向量的维数过高时会影响识别系统的泛化性能,经常需要做这样的处理.3、必须注意的是,这里所得到的式(5)和式(6)给出的只是随机向量协方差矩阵真实值的一个估计(即由所测的样本的值来表示的,随着样本取值的不同会发生变化),故而所得的协方差矩阵是依赖于采样样本的,并且样本的数目越多,样本在总体中的覆盖面越广,则所得的协方差矩阵越可靠.4、如同协方差和相关系数的关系一样,我们有时为了能够更直观地知道随机向量的不同分量之间的相关性究竟有多大,还会引入相关系数矩阵.在概率论和统计学中,相关或称相关系数或关联系数,显示两个随机变量之间线性关系的强度和方向.在统计学中,相关的意义是用来衡量两个变量相对于其相互独立的距离.在这个广义的定义下,有许多根据数据特点而定义的用来衡量数据相关的系数.对于不同数据特点,可以使用不同的系数.最常用的是皮尔逊积差相关系数.其定义是两个变量协方差除以两个变量的标准差(方差).皮尔逊积差系数 数学特征 其中,E是数学期望,cov表示协方差.因为μX=E(X),σX2=E(X2) E2(X),同样地,对于Y,可以写成 当两个变量的标准差都不为零,相关系数才有定义.从柯西—施瓦茨不等式可知,相关系数不超过1.当两个变量的线性关系增强时,相关系数趋于1或-1.当一个变量增加而另一变量也增加时,相关系数大于0.当一个变量的增加而另一变量减少时,相关系数小于0.当两个变量独立时,相关系数为0.但反之并不成立.这是因为相关系数仅仅反映了两个变量之间是否线性相关.比如说,X是区间[-1,1]上的一个均匀分布的随机变量.Y=X2.那么Y是完全由X确定.因此Y和X是不独立的.但是相关系数为0.或者说他们是不相关的.当Y和X服从联合正态分布时,其相互独立和不相关是等价的.当一个或两个变量带有测量误差时,他们的相关性就受到削弱,这时,“反衰减”性(disattenuation)是一个更准确的系数.
2023-06-11 18:52:581

怎么求两个变量间的相关系数?

d(x+y)=d(x)+d(y)+2cov(xy)主要是通过D(X+Y)与D(X-Y)之间的关系推导出来的;解答如下:首先:D(X+Y)=D(X)+D(Y)+2Cov(X,Y)D(X-Y)=D(X)+D(Y)-2Cov(X,Y)其次:Cov(X,Y)=E(XY)-E(X)E(Y)。协方差的性质:Cov(X,Y)=Cov(Y,X);Cov(aX,bY)=abCov(X,Y),(a,b是常数);Cov(X1+X2,Y)=Cov(X1,Y)+Cov(X2,Y)。Cov(X,X)=D(X),Cov(Y,Y)=D(Y)。扩展资料:1、协方差作为描述X和Y相关程度的量,在同一物理量纲之下有一定的作用,但同样的两个量采用不同的量纲使它们的协方差在数值上表现出很大的差异。为此引入如下概念:定义称为随机变量X和Y的(Pearson)相关系数。若ρXY=0,则称X与Y不线性相关。即ρXY=0的充分必要条件是Cov(X,Y)=0,亦即不相关和协方差为零是等价的。2、设ρXY是随机变量X和Y的相关系数,则有∣ρXY∣≤1;∣ρXY∣=1充分必要条件为P{Y=aX+b}=1,(a,b为常数,a≠0)3、设X和Y是随机变量,若E(X^k),k=1,2,...存在,则称它为X的k阶原点矩,简称k阶矩。若E{[X-E(X)]k},k=1,2,...存在,则称它为X的k阶中心矩。若E{(X^k)(Y^p)},k、p=1,2,...存在,则称它为X和Y的k+p阶混合原点矩。若E{[X-E(X)]^k[Y-E(Y)]^l },k、l=1,2,...存在,则称它为X和Y的k+l阶混合中心矩。
2023-06-11 18:53:251

如何用sas计算两个变量的协方差

可以做相关分析(统计之星工作室)
2023-06-11 18:53:402

协方差怎样计算

1.在概率论和统计学中,协方差用于衡量两个变量的总体误差。COV(X,Y)=E[(X-E(X))(Y-E(Y))]自协方差在统计学中,特定时间序列或者连续信号Xt的自协方差是信号与其经过时间平移的信号之间的协方差。如果序列的每个状态都有一个平均数E[Xt]=μt,那么自协方差为其中E是期望值运算符。如果Xt是二阶平稳过程,那么有更加常见的定义:其中k是信号移动的量值,通常称为延时。如果用方差σ^2进行归一化处理,那么自协方差就变成了自相关系数R(k),即有些学科中自协方差术语等同于自相关。自协方差函数是描述随机信号X(t)在任意两个不同时刻t1,t2,的取值之间的二阶混合中心矩,用来描述X(t)在两个时刻取值的起伏变化(相对与均值)的相关程度,也称为中心化的自相关函数。
2023-06-11 18:53:461

如何求两个随机变量之间的相关系数?

你好,请采纳!cov(x,y)=EXY-EX*EY协方差的定义,EX为随机变量X的数学期望,同理,EXY是XY的数学期望,挺麻烦的,建议你看一下概率论cov(x,y)=EXY-EX*EY协方差的定义,EX为随机变量X的数学期望,同理,EXY是XY的数学期望,挺麻烦的,建议你看一下概率论举例:Xi 1.1 1.9 3Yi 5.0 10.4 14.6E(X) = (1.1+1.9+3)/3=2E(Y) = (5.0+10.4+14.6)/3=10E(XY)=(1.1×5.0+1.9×10.4+3×14.6)/3=23.02Cov(X,Y)=E(XY)-E(X)E(Y)=23.02-2×10=3.02此外:还可以计算:D(X)=E(X^2)-E^2(X)=(1.1^2+1.9^2+3^2)/3 - 4=4.60-4=0.6 σx=0.77D(Y)=E(Y^2)-E^2(Y)=(5^2+10.4^2+14.6^2)/3-100=15.44 σy=3.93X,Y的相关系数:r(X,Y)=Cov(X,Y)/(σxσy)=3.02/(0.77×3.93) = 0.9979表明这组数据X,Y之间相关性很好!
2023-06-11 18:53:531

协方差与方差计算关系

1、期望收益率计算公式HPR=(期末价格 -期初价格+现金股息)/期初价格例:A股票过去三年的收益率为3%、5%、4%,B股票在下一年有30%的概率收益率为10%,40%的概率收益率为5%,另30%的概率收益率为8%。计算A、B两只股票下一年的预期收益率。解:A股票的预期收益率 =(3%+5%+4%)/3u2002= 4%u2002B股票的预期收益率u2002=10%×30%+5%×40%+8%×30% = 7.4%2、方差计算公式例:求43,45,44,42,41,43的方差。解:平均数=(43+45+44+42+41+43)/6=43S^2=【(43-43)^2+(45-43)^2+(44-43)^2+(42-43)^2+(41-43)^2+(43-43)^2】/6=(0+4+1+1+4+0)/6=10/63、协方差计算公式例:Xi 1.1 1.9 3,Yi 5.0 10.4 14.6解:E(X) = (1.1+1.9+3)/3=2E(Y) = (5.0+10.4+14.6)/3=10E(XY)=(1.1×5.0+1.9×10.4+3×14.6)/3=23.02Cov(X,Y)=E(XY)-E(X)E(Y)=23.02-2×10=3.024、相关系数计算公式解:由上面的解题可求X、Y的相关系数为r(X,Y)=Cov(X,Y)/(σxσy)=3.02/(0.77×3.93) = 0.9979表明这组数据X,Y之间相关性很好!扩展资料:1、期望收益率,又称为持有期收益率(HPR)指投资者持有一种理财产品或投资组合期望在下一个时期所能获得的收益率。期望收益率是投资者在投资时期望获得的报酬率,收益率就是未来现金流折算成现值的折现率,换句话说,期望收益率是投资者将预期能获得的未来现金流折现成一个现在能获得的金额的折现率。。2、方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的平均数。3、协方差(Covariance)在概率论和统计学中用于衡量两个变量的总体误差。而方差是协方差的一种特殊情况,即当两个变量是相同的情况。协方差表示的是两个变量的总体的误差,这与只表示一个变量误差的方差不同。4、相关系数是最早由统计学家卡尔·皮尔逊设计的统计指标,是研究变量之间线性相关程度的量,一般用字母 r 表示。由于研究对象的不同,相关系数有多种定义方式,较为常用的是皮尔逊相关系数。
2023-06-11 18:54:122

两个非独立随机变量乘积的协方差怎么求?

首先你的定义要弄懂,协方差永远是相对于至少两个以上变量的,比如cov(x,y)。如果你见过cov(x)只是cov(x,x)的缩写,cox(x)=cov(x,x)=D(x)因此没有"xy乘积的协方差"这个东西,要有的话意思也是cov(xy,xy)即D(xy)
2023-06-11 18:54:192

用R语言怎么计算两个连续变量的协方差

从数据集 mtcars 中创建一个包含字段 “mpg”,“hp” 和 “am” 的数据帧。在这里,我们以“mpg”作为响应变量,“hp”作为预测变量以及 “am” 作为分类变量。input <- mtcars[,c("am","mpg","hp")]print(head(input))
2023-06-11 18:54:281

二维度有两个变量 X Y,协方差计算出来是一个值,还是一个矩阵?

一般来说,协方差cov(X,Y)是一个数值。如果把两个变量写成向量形式Z=(X,Y)^T,则Var(Z)是协方差矩阵(2阶方阵,主对角元是方差,另外两个元素相等,是cov(X,Y))。
2023-06-11 18:54:511

协方差的公式是什么? 有什么性质?

定义1:变量xk和xl如果均取n个样本,则它们的协方差定义为 ,这里 分别表示两变量系列的平均值。协方差可记为两个变量距平向量的内积,它反映两气象要素异常关系的平均状况。 定义2:度量两个随机变量协同变化程度的方差。协方差分析是建立在方差分析和回归分析基础之上的一种统计分析方法。 E[(X-E(X))(Y-E(Y))]称为随机变量X和Y的协方差,记作COV(X,Y),即COV(X,Y)=E[(X-E(X))(Y-E(Y))]。 协方差与方差之间有如下关系: D(X+Y)=D(X)+D(Y)+2COV(X,Y) D(X-Y)=D(X)+D(Y)-2COV(X,Y) 因此,COV(X,Y)=E(XY)-E(X)E(Y)。协方差的性质:(1)COV(X,Y)=COV(Y,X); (2)COV(aX,bY)=abCOV(X,Y),(a,b是常数); (3)COV(X1+X2,Y)=COV(X1,Y)+COV(X2,Y)。 由协方差定义,可以看出COV(X,X)=D(X),COV(Y,Y)=D(Y)。
2023-06-11 18:54:592

协方差与相关系数

如下,在测量5个肝细胞gene x 转录本表达情况的基础上,同时也测量这5个肝细胞gene y转录本表达量。对来自同一细胞(sample)的两个数据进行配对,利用其在X轴(green)和Y轴(red)上的数据在二维平面组成一个新的点(蓝色的点)并用直线对其进行拟合。 1)如果斜率为正,gene x与gene y在细胞中表达成正相关。gene x表达水平随gene Y表达水平的增加而增加。利用拟合的直线,可以根据gene x的表达量预测gene y表达水平,也可以基于gene y的表达量预测gene x的表达水平。 2)如果斜率为负,Gene x与gene y的表达呈现负相关趋势。较低的gene x表达水平对应较高的gene y表达水平,较高的gene x水平对应较低的gene y表达水平。注意!!!协方差本身并不容易被阐释,它不能告诉我们相关性直线的斜率(陡峭或平坦),也不能告诉我们样本是否靠近相关性直线,它仅仅告诉我们两变量之间的相关性直线的斜率是正还是负。 「协方差对数据的scale敏感,使其不能揭示数据间的相关性程度。」协方差值并不能告诉我们关系强弱,只能告诉我们是正/负相关。 协方差值的具体大小没有意义 协方差值对数据的波动(方差)较为敏感 当数据波动变大后,数据的协方差也会变大,但是我们想用一个不会受数据波动影响的系数来反映数据之间的相关性。那么最简单的办法就是把这个波动给去除掉就好,我们可以通过除以数据的SD(波动程度值)来去除,这样就得到了我们的pearson相关系数的计算公式: 为什么要除以SD:假设有一组数据 X1:1,2,3,4,5 Y1:1,2,3,4,5 根据协方差公式,可以计算出两个变量的协方差为2,SD分别为√2,√2 根据pearson相关系数的计算公式:相关系数为1 现在将X1,Y1同时扩大2倍 X1:2,4,6,8,10 Y1:2,4,6,8,10 根据协方差公式,可以计算出两个变量的协方差为8,SD分别为2√2,2√2 根据pearson相关系数的计算公式:相关系数为1 可以看出,当数据扩大2倍的是时候,协方差与标准差都发生了变化,但相关系数并没有发生改变。「(左图)强相关」:如果基于gene x的表达量能够无偏差地预测gene y的表达量,说明二者之间有很强的联系; 「(右图)弱相关」:如果基于gene x的表达量不能较准确地预测gene y的表达量,说明二者之间仅有较弱的联系。 以上涉及的是直线相关,相关系数的取值为【-1,1】: 散点完全在同一条直线上,预测的准确性最高,相关系数的正负号表示相关性的正负。若x与y是同向变化,相关系数等于1,为完全正相关;若x与y是反向变化,相关系数等于-1,为完全负相关。 散点不完全在同一直线上,沿直线分布越集中,相关系数越接近1,预测准确性逐渐增加。相反,沿直线分布越分散,相关系数越接近0,预测的准确性逐渐减弱。1.r 的取值范围在 [0,1] |r|>=0.8:高度相关 0.5<=|r|<0.8:中度相关 0.3<=|r|<0.5:低度相关 |r|<0.3:不相关 2.r 具有对称性,x与y的相关性系数和y与x的相关性系数相等 3.r 的数值与x和y的原点及尺度无关 4.r 仅仅表示线性关系的度量,不能用于非线性关系。例如,当r=0时只能表示两个变量之间没有线性相关关系,但是它们之间可能存着非线性相关关系 皮尔森相关性系数对数据是有比较高的要求的: 第一, 实验数据通常假设是成对的来自于正态分布的总体。为啥通常会假设为正态分布呢?因为我们在求皮尔森相关性系数以后,通常还会用t检验之类的方法来进行皮尔森相关性系数检验,而 t检验是基于数据呈正态分布的假设的。 第二, 实验数据之间的差距不能太大,或者说皮尔森相关性系数受异常值的影响比较大。比如刚才心跳与跑步的例子,万一这个人的心脏不太好,跑到一定速度后承受不了,突发心脏病,那这时候我们会测到一个偏离正常值的心跳(过快或者过慢,甚至为0),如果我们把这个值也放进去进行相关性分析,它的存在会大大干扰计算的结果的。 第三,两个变量之间是线性关系,都是连续数据。 「相同点」:二者符号的正负代表两变量变化趋势是同向还是反向; 「差异点」:相关系数的取值与数据的scale无关,不论数据的多少,只要数据完全在同一条直线上(陡峭或者平缓),相关系数就为1或者-1;而协方差取值对数据的scale敏感。这个原因使得协方差本身的意义难以阐释。皮尔森相关性系数是协方差与标准差的比值。 假设我们有一组数据,每一列代表一个样本,每一行代表一个基因在不同样本中的表达量 斯皮尔曼相关性系数,通常也叫斯皮尔曼秩相关系数,这是一种无参数(与分布无关)检验方法,要求数据具有同升或同降变化趋势,但明显不具有线性相关关系。 “秩”,可以理解成就是一种顺序或者排序,那么它就是根据原始数据的排序位置进行求解,这种表征形式就没有了求皮尔森相关性系数时那些限制。 也就是说,我们不用管X和Y这两个变量具体的值到底差了多少,只需要算一下它们每个值所处的排列位置的差值,就可以求出相关性系数了。 另外,即使出现异常值,由于异常值的秩次通常不会有明显的变化(比如过大或者过小,那要么排第一,要么排最后),所以对斯皮尔曼相关性系数的影响也非常小! 用“秩”的概念,一方面可以解决异常值的问题,但是有好就有坏,这在另外一方面,也说明,这种方法的检验效力没有pearson相关系数强,因为它忽略了相关性的具体大小,而只保留了大小关系。
2023-06-11 18:55:061

不相互独立的两个随机变量的协方差怎么求

2023-06-11 18:55:152

协方差cov(X,X)是不是就等于X的方差?为什么?

XY独立,那么E(XY)=E(X)E(Y),于是baiCOV(XY)=E[(X-E(X))(Y-E(Y))]=E(XY)-E(X)E(Y)=0。至于为什么XY独立E(XY)=E(X)E(Y),这是因为XY的两个分布pxy(xy)=px(x)py(y)。协方差是两个变量的总体误差,它不同于一个变量误差的方差。如果两个变量具有相同的趋势,即一个大于其期望值,另一个大于其期望值,则两个变量之间的协方差为正。如果两个变量的变化方向相反,即一个大于其期望值,另一个小于其期望值,则两个变量之间的协方差为负。扩展资料:如果两个变量有相同的趋势,即如果其中一个大于它的期望值另一个也大于它的期望值,那么两个变量之间的协方差将会是正的;如果两个变量的变化方向相反,即一个大于其期望值,另一个小于其期望值,则两个变量之间的协方差为负。如果X和Y是统计独立的,那么它们之间的协方差为0,因为这两个独立的随机变量满足E[XY]=E[X]E[Y]。但事实并非如此。如果X和Y的协方差是0,它们不一定是统计独立的。协方差(X,Y)的协方差等于(X)的协方差乘以(Y)的协方差根据协方差的不同,它是一个无量纲的数字它度量的是线性无关。参考资料来源:百度百科-协方差
2023-06-11 18:55:472

对于两个实数随机变量X 与Y,其协方差是否存在以下关系: 〖cov〗^2 (X,Y)=cov (X^2 )*cov(Y^2 )

你的cov(X^2)是cov(X,X)吧?根据协方差的定义公式cov(X,Y)=E[X-E(X)][Y-E(Y)],所以cov(X,X)=E[X-E(X)][X-E(X)]==E[X-E(X)]^2=var(X)。同事可证cov(Y,Y)=var(Y)
2023-06-11 18:56:091

请问怎么计算协方差和相关系数啊?

x与y的相关系数可以通过公式Cov(X,Y)/根号(Var[X]*Var[Y]),其中Cov(X,Y)为X与Y的协方差,Var[X]为X的方差,Var[Y]为Y的方差。x与y的相关系数:1、当相关系数为0时,X和Y两变量无关系。2、当X的值增大(减小),Y值增大(减小),两个变量为正相关,相关系数在0.00与1.00之间。3、当X的值增大(减小),Y值减小(增大),两个变量为负相关,相关系数在-1.00与0.00之间。相关系数的绝对值越大,相关性越强,相关系数越接近于1或-1,相关度越强,相关系数越接近于0,相关度越弱。
2023-06-11 18:56:161

方差 标准差 协方差 有什么区别

方差是各个数据与其算术平均数的离差平方和的平均数标准差是各数据偏离平均数的距离的平均数,它是离均差平方和平均后的方根协方差用于衡量两个变量的总体误差
2023-06-11 18:56:292

协方差的定义?

定义 E[(X-E(X))(Y-E(Y))]称为随机变量X和Y的协方差,记作COV(X,Y),即COV(X,Y)=E[(X-E(X))(Y-E(Y))]。注意 E[(X-E(X))(Y-E(Y))]= E(XY)-E(X)E(Y) 。一:举例(1)Xi 1.1 1.9 3Yi 5.0 10.4 14.6E(X) = (1.1+1.9+3)/3=2E(Y) = (5.0+10.4+14.6)/3=10E(XY)=(1.1×5.0+1.9×10.4+3×14.6)/3=23.02Cov(X,Y)=E(XY)-E(X)E(Y)=23.02-2×10=3.02。二:(1)协方差表示的是两个变量的总体的误差,这与只表示一个变量误差的方差不同。 如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值,另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值。(2) 如果两个变量的变化趋势相反,即其中一个大于自身的期望值,另外一个却小于自身的期望值,那么两个变量之间的协方差就是负值。(3)如果X与Y是统计独立的,那么二者之间的协方差就是0,因为两个独立的随机变量满足E[XY]=E[X]E[Y]。(4)反过来并不成立。即如果X与Y的协方差为0,二者并不一定是统计独立的。(5)协方差Cov(X,Y)的度量单位是X的协方差乘以Y的协方差。而取决于协方差的相关性,是一个衡量线性独立的无量纲的数。协方差为0的两个随机变量称为是不相关的。三:性质若两个随机变量X和Y相互独立,则E[(X-E(X))(Y-E(Y))]=0,因而若上述数学期望不为零,则X和Y必不是相互独立的,亦即它们之间存在着一定的关系。协方差与方差之间有如下关系D(X+Y)=D(X)+D(Y)+2Cov(X,Y)D(X-Y)=D(X)+D(Y)-2Cov(X,Y)协方差与期望值有如下关系:Cov(X,Y)=E(XY)-E(X)E(Y)。
2023-06-11 18:57:011

协方差为什么可以表示出两变量之间的相关程度?

简单分析一下,详情如图所示
2023-06-11 18:57:252

知道两个变量的方差,如何求它们的协方差?

如果你还知道它们的相关系数r,那么协方差=r*2次根号下方差*2次根号下另一个方差
2023-06-11 18:58:303

请教:怎么求n个变量两两间的协方差

随机变量X,Y协方差cov(X,Y)=ρ*√D(X)√D(Y),其中ρ是X,Y的相关系数,D(X),D(Y)是X,Y的方差.或者还可以由定义式来求:cov(X,Y)=E[(X-EX)(Y-EY)]=EXY-EXEY,其中E是数学期望.
2023-06-11 18:58:451

如何通过一个协方差函数求另一个

在概率论和统计学中,协方差用于衡量两个变量的总体误差。2.期望值分别为E(X) = μ 与 E(Y) = ν 的两个实数随机变量X与Y之间的协方差定义为:COV(X,Y)=E[(X-E(X))(Y-E(Y))]等价计算式为COV(X,Y)=E(XY)-E(X)E(Y)
2023-06-11 18:59:031

如何计算二维分布的协方差系数?

如果有联合分布律的话,E(XY)=(X1)* (Y1)*(P1)+ (X2)*( Y2)*(P2)+…以此联合分布表为例:扩展资料:若两个随机变量X和Y相互独立,则E[(X-E(X))(Y-E(Y))]=0,因而若上述数学期望不为零,则X和Y必不是相互独立的,亦即它们之间存在着一定的关系。协方差与方差之间有如下关系:D(X+Y)=D(X)+D(Y)+2Cov(X,Y)D(X-Y)=D(X)+D(Y)-2Cov(X,Y)协方差与期望值有如下关系:Cov(X,Y)=E(XY)-E(X)E(Y)。协方差的性质:(1)Cov(X,Y)=Cov(Y,X);(2)Cov(aX,bY)=abCov(X,Y),(a,b是常数);(3)Cov(X1+X2,Y)=Cov(X1,Y)+Cov(X2,Y)。由协方差定义,可以看出Cov(X,X)=D(X),Cov(Y,Y)=D(Y)。
2023-06-11 18:59:101

数学高手在哪里?协方差与相关系数之间有什么关系?它们对二维随机变量的反映有什么不同?希望解释的准确

摘要:协方差Cov(X,Y)是描述二维随机变量两个分量间相互关联程度的一个特征数,如果将协方差相应标准化变量就得到相关系数Corr(X,Y)。从而可以引进相关系数Corr(X,Y)去刻画二维随机变量两个分量间相互关联程度。且事实表明,相关系数明显被广泛应用。本文的目的在于从协方差与相关系数的关系的角度去探讨协方差与相关系数的优缺点,并具体介绍协方差和相关系数这两个描述二维随机变量间相关性的特征数。 关键字:协方差Cov(X,Y) 相关系数Corr(X,Y) 相互关联程度1 协方差、相关系数的定义及性质设(X ,Y)是一个二维随机变量,若E{ [ X-E(X) ] [ Y-E(Y) ] }存在,则称此数学期望为X与Y的协方差,并记为Cov(X,Y)=E{ [ X-E(X) ] [ Y-E(Y) ] },特别有Cov(X,X)=Var(X)。从协方差的定义可以看出,它是X的偏差“X-E(X) ”与Y的偏差“Y-E(Y)”的乘积的数学期望。由于偏差可正可负,故协方差也可正可负,也可为零,其具体表现如下:·当Cov(X,Y)>0时,称X与Y正相关,这时两个偏差 [ X-E(X) ] 与[ Y-E(Y) ] 同时增加或同时减少,由于E(X)与E(Y)都是常数,故等价于X与Y同时增加或同时减少,这就是正相关的含义。
2023-06-11 18:59:291

指数模型两个证券之间的协方差

一、首先要明白这2个的定义 1、相关系数是协方差与两个投资方案投资收益标准差之积的比值,其计算公式为:相关系数总是在-1到+1之间的范围内变动,-1代表完全负相关,+1代表完全正相关,0则表示不相关。 2、协方差是一个用于测量投资组合中某一具体投资项目相对于另一投资项目风险的统计指标。其计算公式为:当协方差为正值时,表示两种资产的收益率呈同方向变动;协方差为负值时,表示两种资产的收益率呈反方向变动。二、要辨清两者的关系 1、相关系数与协方差一定是在投资组合中出现的,只有组合才有相关系数和协方差。单个资产是没有相关系数和协方差之说的。 2、相关系数和协方差的变动方向是一致的,相关系数的负的,协方差一定是负的。 3、(1)协方差表示两种证劵之间共同变动的程度:相关系数是变量之间相关程度的指标根据协方差的公式可知,协方差与相关系数的正负号相同,但是协方差是相关系数和两证券的标准差的乘积,所以协方差表示两种证劵之间共同变动的程度。(2)相关系数是变量之间相关程度的指标,相关系数在0到1之间,表示两种报酬率的增长是同向的;相关系数在0到-1之间,表示两种报酬率的增长是反向的,所以说相关系数是变量之间相关程度的指标。总体来说,两项资产收益率的协方差,反映的是收益率之间共同变动的程度;而相关系数反映的是两项资产的收益率之间相对运动的状态。两项资产收益率的协方差等于两项资产的相关系数乘以各自的标准差。
2023-06-11 18:59:361

协方差反映的是什么数字特征?

两个不同参数之间的方差就是协方差 定义 E[(X-E(X))(Y-E(Y))]称为随机变量X和Y的协方差,记作COV(X,Y),即COV(X,Y)=E[(X-E(X))(Y-E(Y))]. 协方差为描述X和Y相关程度的量
2023-06-11 19:00:201

我想问一下协方差公式,什么是协方差

1、cov(x,y)=EXY-EX*EY。2、协方差的定义,EX为随机变量X的数学期望,同理,EXY是XY的数学期望,挺麻烦的,建议你看一下概率论cov(x,y)=EXY-EX*EY。3、协方差(Covariance)在概率论和统计学中用于衡量两个变量的总体误差。而方差是协方差的一种特殊情况,即当两个变量是相同的情况。4、协方差表示的是两个变量的总体的误差,这与只表示一个变量误差的方差不同。如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值,另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值。如果两个变量的变化趋势相反,即其中一个大于自身的期望值,另外一个却小于自身的期望值,那么两个变量之间的协方差就是负值。更多关于协方差公式,什么是协方差,进入:https://m.abcgonglue.com/ask/9a369a1615839195.html?zd查看更多内容
2023-06-11 19:00:281

两个随机变量的协方差cov=0,则ξ与η什么关系

摘要:协方差Cov(X,Y)是描述二维随机变量两个分量间相互关联程度的一个特征数,如果将协方差相应标准化变量就得到相关系数Corr(X,Y)。从而可以引进相关系数Corr(X,Y)去刻画二维随机变量两个分量间相互关联程度。且事实表明,相关系数明显被广泛应用。本文的目的在于从协方差与相关系数的关系的角度去探讨协方差与相关系数的优缺点,并具体介绍协方差和相关系数这两个描述二维随机变量间相关性的特征数。 关键字:协方差Cov(X,Y) 相关系数Corr(X,Y) 相互关联程度1 协方差、相关系数的定义及性质设(X ,Y)是一个二维随机变量,若E{ [ X-E(X) ] [ Y-E(Y) ] }存在,则称此数学期望为X与Y的协方差,并记为Cov(X,Y)=E{ [ X-E(X) ] [ Y-E(Y) ] },特别有Cov(X,X)=Var(X)。从协方差的定义可以看出,它是X的偏差“X-E(X) ”与Y的偏差“Y-E(Y)”的乘积的数学期望。由于偏差可正可负,故协方差也可正可负,也可为零,其具体表现如下:·当Cov(X,Y)>0时,称X与Y正相关,这时两个偏差 [ X-E(X) ] 与[ Y-E(Y) ] 同时增加或同时减少,由于E(X)与E(Y)都是常数,故等价于X与Y同时增加或同时减少,这就是正相关的含义。
2023-06-11 19:00:481

请问两个随机变量XY不独立,他们的协方差cov(X,Y)已知,请问怎么计算两者乘积的期望E(XY)?

cov(x,y)=E(x*y)-E(x)*E(y)E(x*y)=cov(x,y)+E(x)*E(y)
2023-06-11 19:00:563

协方差公式怎么求的?

协方差cov计算公式是:cov(x,y)=EXY-EX*EYEX为随机变量X的数学期望,同理,EXY是XY的数学期望,挺麻烦的,建议你看一下概率论cov(x,y)=EXY-EX*EY。协方差的定义,EX为随机变量X的数学期望,同理,EXY是XY的数学期望,挺麻烦的,建议你看一下概率论。扩展资料如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值时另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值;如果两个变量的变化趋势相反,即其中一个变量大于自身的期望值时另外一个却小于自身的期望值,那么两个变量之间的协方差就是负值。如果X与Y是统计独立的,那么二者之间的协方差就是0,因为两个独立的随机变量满足E[XY]=E[X]E[Y]。但是,反过来并不成立。即如果X与Y的协方差为0,二者并不一定是统计独立的。
2023-06-11 19:02:261

请问协方差公式,什么是协方差?

1、cov(x,y)=EXY-EX*EY。2、协方差的定义,EX为随机变量X的数学期望,同理,EXY是XY的数学期望,挺麻烦的,建议你看一下概率论cov(x,y)=EXY-EX*EY。3、协方差(Covariance)在概率论和统计学中用于衡量两个变量的总体误差。而方差是协方差的一种特殊情况,即当两个变量是相同的情况。4、协方差表示的是两个变量的总体的误差,这与只表示一个变量误差的方差不同。如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值,另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值。如果两个变量的变化趋势相反,即其中一个大于自身的期望值,另外一个却小于自身的期望值,那么两个变量之间的协方差就是负值。更多关于协方差公式,什么是协方差,进入:https://m.abcgonglue.com/ask/9a369a1615839195.html?zd查看更多内容
2023-06-11 19:02:341

协方差怎么算呀?

您好,你的问题,我之前好像也遇到过,以下是我原来的解决思路和方法,希望能帮助到你,若有错误,还望见谅!展开全部1、列联系数,简称c系数,主要用于大于2×2列联表的情况。当列联表中的两个变量相互独立时,系数c=0,但它不可能大于1,这一点从式(9.7)中也可以反映出来。c系数的特点是,其可能的最大值依赖于列联表的行数和列数,且随着R和C的增大而增大。例如,当两个变量完全相关时,对于2×2表,c=0.7071;对于3×3表,c=0.8165;而对于4×4表,c=0.87。2、协方差,在概率论和统计学中用于衡量两个变量的总体误差。而方差是协方差的一种特殊情况,即当两个变量是相同的情况。协方差表示的是两个变量的总体的误差,这与只表示一个变量误差的方差不同。 如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值,另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值。 3、Cramer V系数,是线性代数中一个关于求解线性方程组的定理。它适用于变量和方程数目相等的线性方程组,是瑞士数学家克莱姆(1704-1752)于1750年,在他的《线性代数分析导言》中发表的。其实莱布尼兹〔1693〕,以及马克劳林〔1748〕亦知道这个法则,但他们的记法不如克莱姆。对于多于两个或三个方程的系统,克莱姆的规则在计算上非常低效;与具有多项式时间复杂度的消除方法相比,其渐近的复杂度为O(n·n!)。非常感谢您的耐心观看,如有帮助请采纳,祝生活愉快!谢谢!
2023-06-11 19:02:431

如何证明协方差为零的两个随机变量并不独立

不是一回事.协方差为0则不相关独立一定不相关,但是不相关不一定独立.a为0到2pi上的随机值,x=cosa,y=sina,则x和y的协方差为0,但是x,y两者不独立.
2023-06-11 19:03:042

d(x+y)协方差的系数怎么取

一. 协方差A. 定义协方差用于衡量两个变量的总体误差,方差是协方差的一种特殊情况,即当两个变量是相同的情况D(X)=Cov(X,Y)。期望值分别为E(X),E(Y)的两个实数随机变量X与Y之间的协方差定义为: Cov(X,Y) = E((X-E[X])(Y-E[Y])) = E(XY) - 2E(X)E(Y) + E(X)E(Y) = E(XY) - E(X)E(Y) (1) 如果X与Y是统计独立的,那么两者之间的协方差为0,因为两个独立的随机变量满足E(XY)=E(X)E(Y)。 但是,如果协方差为0,二者并不一定是统计独立的!协方差为0的两个随机变量称为是不相关的。于两个正态随机变量,协方差为0和两个正态随机变量相互独立是充要条件。B. 性质方协差与方差之间有如下关系: D(X+Y) = D(X)+D(Y)+2*Cov(X,Y); D(X-Y) = D(X)+D(Y)-2*Cov(X,Y); D(X) = Cov(X,X) = E(X^2) - E(X)E(X); =>E(X^2) = D(X)+E(X)E(X); 协方差性质: Cov(X,Y) = Cov(Y,X); Cov(aX,bY) = abCov(X,Y); Cov(X1+X2,Y) = Cov(X1,Y)+Cov(X2,Y);二. 相关系数A. 定义 协方差作为描述X和Y相关程度的量,在同一物理量纲之下有一定的作用,但是同样的两个量采用不同的量纲使它们的协方差在数值上表现出很大的差异。为此引入相关系数来研究变量之间线性相关程度的量。我们可以通过求Cov(X,Y)来求得相关系数。
2023-06-11 19:03:271

协方差计算公式 公式讲解

1、公式:cov(x,y)=EXY-EX*EY 协方差的定义,EX为随机变量X的数学期望,同理,EXY是XY的数学期望。 2、协方差(Covariance)在概率论和统计学中用于衡量两个变量的总体误差。而方差是协方差的一种特殊情况,即当两个变量是相同的情况。 3、协方差表示的是两个变量的总体的误差,这与只表示一个变量误差的方差不同。 如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值,另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值。
2023-06-11 19:03:431

协方差怎么算cov(x, y)= EXY- EX* EYE?

协方差cov计算公式是:cov(x,y)=EXY-EX*EYEX为随机变量X的数学期望,同理,EXY是XY的数学期望,挺麻烦的,建议你看一下概率论cov(x,y)=EXY-EX*EY。协方差的定义,EX为随机变量X的数学期望,同理,EXY是XY的数学期望,挺麻烦的,建议你看一下概率论。扩展资料如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值时另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值;如果两个变量的变化趋势相反,即其中一个变量大于自身的期望值时另外一个却小于自身的期望值,那么两个变量之间的协方差就是负值。如果X与Y是统计独立的,那么二者之间的协方差就是0,因为两个独立的随机变量满足E[XY]=E[X]E[Y]。但是,反过来并不成立。即如果X与Y的协方差为0,二者并不一定是统计独立的。
2023-06-11 19:03:521

根据“精神”的不同意思造句。;(1)表现出来的活力。(2)活跃;有生气。

精神小伙。野小叶。
2023-06-11 19:03:377

怎么写我的心愿的作文

我的心愿的作文的写法如下:1、你瞧,一车车的垃圾朝空地上运,马路上,街道旁,房前屋后,到处是“白色的装饰品。”还不时地发出阵阵恶臭。2、生毕亏命之源——水的身旁,作文网《作文我的心愿》。哇,水的颜色都变了。有的是淡黑色,有的是黄色,还有的是浓绿色等等,各俱其态。水面上还飘着塑料袋之类的东西,真显得更加“别致”。河道两旁插着一根根的管子,还不住地往外溢彩色的物质。3、森林中,草地上,只听见一阵阵地树倒声和一声声的羊叫声,燃含山成了秃山,连一棵小树苗都没了,草地成了沙漠,不断地吞食着大地上的一草一本。可人类还不醒悟,还在砍,还在放牧,还在污染……4、我的一个心愿就手段神是要人类保护环境,让大自然变得更加美好。比如,蓝天万里无云,清澈透明,与大海彼此映衬,形成了一道蓝色的隽秀的美景,真是上下天光,水天相接。5、远处,青山如黛,绿玉般的嫩芽在枝头攒聚。树叶上粒粒露水,在阳光的映射下,折射出人的光华。6、一弯溪水向前缓缓流动,与它的伙伴们汇聚,形成了一条白练挂在山腰。金色的阳光洒在上面,犹如大自然下起了一场金雨……大自然开始孕育着人类。我的心愿就是让“绿色”围绕在我们身边,让世界变得更美丽,我希望我的这个心愿能够实现。
2023-06-11 19:03:461

五年级《我的心愿》这篇作文

2023-06-11 19:04:084

精神抖擞造句有哪些

1、迎国庆队列演习时,大家都非常认真。步伐整齐,气宇轩昂,精神抖擞,昂首挺胸,神采飞扬,每个动作都充满了自信。2、队列比赛时,各个班级的代表队入场,步伐整齐、口号洪亮、动作有力、精神抖擞,神采飞扬,每个动作都充满了自信。3、60周年国庆阅兵式上,各个阅兵方阵的战士们个个步伐整齐,步子有力,人人精神抖擞地通过天安门广场。4、迎国庆队列演习时,大家都非常认真。步伐整齐,气宇轩昂,精神抖擞,昂首挺胸,神采飞扬,每个动作都充满了自信。5、受阅的队伍步伐整齐,威武雄壮。6、看,我国运动健儿英姿飒爽,步伐整齐。7、体操比赛开始了,我们班的队步伐整齐划一、精神抖擞的进场了,同学们个个昂首挺胸,威风凛凛。8、他们跟面前各位一样,都是步伐整齐、朝气蓬勃,充分表现出纪律部队的干劲及团队精神。9、体操比赛开始了,我们班的队伍步伐整齐划一、精神抖擞的进场了,同学们个个昂首挺胸,威风凛凛。10、全连步伐整齐地通过了检阅台。11、三人随着郑成功回营帐路上,看到郑成功的士兵步伐整齐、口号洪亮、动作有力、精神抖擞,一副强兵猛将的模样。12、一队兵士肩扛长戈走过来,目不旁视,步伐整齐。13、脚下步伐整齐划一,锋利的刀尖在阳光的照射下,刀山剑林一般散发出嗜血的光芒。14、一声冲锋令下,抗日战士人人精神抖擞,决心打一场痛快的大胜仗。15、这个连的战士个个年轻力壮,精神抖擞,操练起来杀声震天。16、华北油田的钻井工人们,不怕天寒地冻,个个精神抖擞地战斗在自己的岗位上。17、军训中,同学们在操场上精神抖擞,斗志昂扬,步调一致,喊声震天,全场观众以雷鸣般的掌声给予鼓励。
2023-06-11 19:04:151

如何写我的心愿作文

我的心愿作文写作如下:人生的旅途充满了风景和坎坷,而我的心愿却是简单而纯粹的。它不需要太多的物质财富,只需要一颗安宁、平和的心,一份快乐、健康的身体,和一份实现自己梦想的勇气和决心。首先,我的心愿是拥有一颗平静的心。随着社会节奏的加快,我们常常会被繁琐的琐事和日常生活中的烦恼所困扰,心情也会变得不稳定起伏。而我希望自己能够拥有一颗安宁、平和的心,不被烦恼和痛苦所困扰。这样我才能够更加专注地生活和学习,更好地享受生命中的美好瞬间。我希望自己可以从内心感受到平和与喜悦,带着这份心态去面对生活中的挑战和困难。同时,我的心愿也是拥有一个快乐、健康的身体。人生是一段漫长的旅途,而健康的身体是前进的保障。我希望自己能够有足够的体力和健康的身体,去追求自己的理想和梦想。我希望自己可以有足够的耐力和精力,去完成自己想做的事情,从而得到更多的成就感和快乐。我的心愿也是我人生旅途的指南,它引导我追求内心真正的欲望,追寻生命中真正的意义。在我不断追求心愿的过程中,我也在不断地学习成长,变得更加坚强和自信。我相信,只要我们坚持自己的信仰和追求,我们一定能够实现自己的梦想,迎接更加美好的未来。
2023-06-11 19:04:161

我的心愿 作文600字 自己写的

终于放学了,经过了一天的学习,我拖着沉重的身子走在回家的路上,刚一到家我就像一滩烂泥似的趴在了地上,用撒娇的口气叫着:“妈妈,我回来了,饭怎么还没好?”听见我的呼唤声,妈妈就飞似的跑了过来,拎起了我那沉重的书包,把我从地上拉了起来:“哟,身上凉冰冰的,外面很冷吧,你先去做作业,我给你冲杯牛奶暖暖身子。”我极不情愿地从地上爬了起来,提过书包进了书房。这时妈妈端着一杯暖烘烘的牛奶向我走了过来,小心翼翼的递给了我。然后轻轻的用手抚摸着我的头,笑盈盈的说:“妈妈学校才举行了期中考试,妈妈今天才放学就赶回了家,看把我儿子饿的。”妈妈的话像一股暖流涌遍了我的全身,但有一点却使我纳闷:妈妈的手怎么和冰一样凉?她的手刚刚还端过暖烘烘的牛奶的。我想着想着不禁皱起了眉头看了看她那双瘦骨嶙峋的手,哟,手被冻的通红通红的。我刹那间头脑中浮现出了几缕思绪:妈妈的心一边系着她的学生,一边系着她的儿子。早上,她披着星星去上班,带着月亮回家。忙完了工作又忙家务。双休妈妈好不容易可以休息一下,电话是一个又一个,全是学生在学习上有困难,向她询问。有的甚至找上了门,但妈妈总不厌其烦的给他们讲解,有时还留他们吃饭。天天晚上她回家后,又是拖地,又是洗衣,每当我功课做到很晚之时她还会给我冲上一杯牛奶、削一个水果、做一顿夜宵。因此她患上了一种职业病——颈椎病。我却很少关心过她。从今晚开始,我天天要为她揉揉背,捂捂手,这个心愿已在我心中发芽了,我还会让它开花,结果!
2023-06-11 19:03:292

用精神的两种意思造句

弄精神的解释伤神, 费心 思。《朱子语类》卷六三:“ 程子 又谓会不得时,只是弄精神,何也?曰:言实未会得,而扬眉瞬目,自以为会也。弄精神,亦本是禅语。”《 水浒传 》第七回:“在世 为人 保七旬,何劳日夜弄精神。” 词语分解 弄的解释 弄 ò 玩耍,把玩:摆弄。 玩弄 。弄臣(帝王所 亲近 狎昵的臣子)。弄潮儿。 戏弄 。弄瓦(“瓦”是原始的纺锤,古代把它给女孩子玩,意为生女儿)。弄璋(“璋”是一种玉器,古代把它给男孩子玩。意为生 儿子 )。 做, 精神的解释 ∶指意识、 思维 、神志等 精神 为之。;;汉; 王充《论衡;订鬼篇》 又俱用精神。精神复旧。;;《 聊斋 志异;促织》 ∶指内容的实质 所在 ;主要的 意义 译者没有体会原文的精神 ∶ 活力 ;精力精神饱满 ∶ 活跃 ;有生
2023-06-11 19:03:271

我的心愿作文?

心愿作文如下:每当流星滑过的时候,我们就会许下自己的心愿,有人许下的心愿是成为一位医生,有的人许下的心愿则是成为科学家,也有人许下的心愿是成为总理等。而在这多如牛毛的愿望中,我最想实现的心愿是我妈妈的身体能健康又强壮,明年的工作不要那么辛苦。我的妈妈是一位上班族,每天除了要上班以外还要照顾我们,所以常常可以看到她的黑眼圈,和她疲劳的模样,所以妈妈你一定要顾好自己的身体。要是有一天你病倒了,那谁会煮好吃的饭给我吃;谁会煮一桌色香味俱全的好菜来给我吃;又有谁会在我生病时无微不至的照顾我;而又有谁会陪我谈天说笑等,所以妈妈我真难以想像你不在我身边的时候。以前我总是认为妈妈的身体是如钢铁般的强韧,可是近年来我发现妈妈越来越虚弱,不管是什么流行性感冒,她都一定会被传染,每天晚上只要一听到妈妈的咳嗽声,我就会担心的睡不着觉,所以妈妈你一定要照顾好自己的身体,不要因为过度忙于工作而生病。为了让妈妈的身体更健康,所以每天一回家,我们全家人就会从家里骑到小湖,我和姐姐骑在前面,而爸爸、妈妈骑在后面,一边骑一边谈情说爱,沿途的风景美不胜收,我们沿着观景步道骑到小湖,这时夕阳已经掉入大海的嘴巴里了,全家人都满头大汗,借由运动让身体里的所有废气和废物随着汗水流出体外,再坐在观景石上欣赏这一片美景,那这是一举两得啊。每当流星从天上滑过的时候,我们应该双手合十,许下自己的心愿,让自己的心愿成真,也让妈妈的身体更健康更强壮,每天煮好吃的菜给我吃,当我心情不好的时候陪我谈天说笑,在我生病时无微不至的照顾我,陪着我成长。
2023-06-11 19:03:041

怎么用精神抖擞造句?

呵呵呵呵呵呵呵呵呵呵嗒
2023-06-11 19:03:026