对称矩阵

对称矩阵与可逆矩阵的关系 请详细分析.

对称矩阵是元素以对角线为对称轴对应相等的矩阵. 可逆矩阵是 给定一个n阶方阵A,若存在一n阶方阵B使得AB=BA=In,其中 In 为 n 阶单位矩阵,则称 A 是可逆的,且 B 是 A 的逆阵,记作 A^ˉ1
肖振2023-05-20 08:56:531

什么是对称矩阵,有什么性质?

如果A^T=A,那么(C^TAC)^T=C^TAC,所以和一个对称阵合同的矩阵一定也是对称阵。把一个m×n矩阵的行,列互换得到的n×m矩阵,称为A的转置矩阵,记为A"或AT。 矩阵转置的运算律(即性质):1、(A")"=A2、(A+B)"=A"+B"3、(kA)"=kA"(k为实数)4、(AB)"=B"A"若矩阵A满足条件A=A",则称A为对称矩阵。由定义知对称矩阵一定是方阵,而且位于主对角线对称位置上的元素必对应相等,即aij=aji对任意i,j都成立。扩展资料对称矩阵的基本性质:1、每个实方形矩阵都可写作两个实对称矩阵的积,每个复方形矩阵都可写作两个复对称矩阵的积。2、若对称矩阵A的每个元素均为实数,A是Symmetric矩阵。3、一个矩阵同时为对称矩阵及斜对称矩阵当且仅当所有元素都是零的时候成立。4、如果X是对称矩阵,那么对于任意的矩阵A,AXAT也是对称矩阵。5、n阶实对称矩阵,是n维欧式空间V(R)的对称变换在单位正交基下所对应的矩阵。
gitcloud2023-05-20 08:56:521

什么是对称矩阵?

就一个对称矩阵来说的话,它的一个对称性这方面要求特别高,然后它的4周要能够进行合理的对齐,就是来简单的来说的话,他要进行一个简单对齐,然后每一边都有一个相应的,所以说他基本上是2的倍数。
苏萦2023-05-20 08:56:525

对称矩阵的定义是什么?

A的转置等于A的矩阵就叫转置矩阵。
FinCloud2023-05-20 08:56:523

什么是对称矩阵?

对称矩阵的性质是:1、对于任何方形矩阵X,X+XT是对称矩阵。2.、为方形矩阵是A为对称矩阵的必要条件。3、对角矩阵都是对称矩阵。4、两个对称矩阵的积是对称矩阵,当且仅当两者的乘法可交换。两个实对称矩阵乘法可交换当且仅当两者的特征空间相同。5、用<,>表示RN上的内积。n×n的实矩阵A是对称的。6、任何方形矩阵X,如果它的元素属于一个特征值不为2的域(例如实数),可以用刚好一种方法写成一个对称矩阵和一个斜对称矩阵之和。实对称矩阵的性质是:1、实对称矩阵A的不同特征值对应的特征向量是正交的(网易笔试题曾考过)。2、实对称矩阵A的特征值都是实数,特征向量都是实向量。3、n阶实对称矩阵A必可对角化,且相似对角阵上的元素即为矩阵本身特征值。4、若λ0具有k重特征值 必有k个线性无关的特征向量,或者说必有秩r(λ0E-A)=n-k,其中E为单位矩阵。
铁血嘟嘟2023-05-20 08:56:521

对称矩阵的定义?

定义:如果有n阶矩阵A,其各个元素都为实数,矩阵A的转置等于其本身(A^T= A) ,则称A为实对称矩阵。B^T=(A^5-4A^3+E)^T=(A^5)^T-(4A^3)^T+E^T=(A^T)^5-4(A^T)^3+E=A^5-4A^3+E=B.∴B^T=B,仍为对称阵。其中运用了转置的基本运算公式①(AB)^T=B^T·A^T ②(kA)^T=k·A^T ③(A+B)^T=A^T+B^T
人类地板流精华2023-05-20 08:56:521

什么是对称矩阵有哪些特性

  对称矩阵是元素以主对角线为对称轴对应相等的矩阵。那么你对对称矩阵了解多少呢?以下是由我整理关于什么是对称矩阵的内容,希望大家喜欢!  什么是对称矩阵   元素以主对角线为对称轴对应相等的矩阵。1855年,埃米特(C.Hermite,1822-1901年)证明了别的数学家发现的一些矩阵类的特征根的特殊性质,如现在称为埃米特矩阵的特征根性质等。后来,克莱伯施(A.Clebsch,1831-1872年)、布克海姆(A.Buchheim)等证明了对称矩阵的特征根性质。泰伯(H.Taber)引入矩阵的迹的概念并给出了一些有关的结论。   对称矩阵的特性   1.对于任何方形矩阵X,X+XT是对称矩阵。   2.A为方形矩阵是A为对称矩阵的必要条件。   3.对角矩阵都是对称矩阵。   两个对称矩阵的积是对称矩阵,当且仅当两者的乘法可交换。两个实对称矩阵乘法可交换当且仅当两者的特征空间相同。   用<,>表示上的内积。n×n的实矩阵A是对称的,当且仅当对于所有X, Y∈ ,( A(x) , Y )=( X, A(Y))。 【1】   任何方形矩阵X,如果它的元素属于一个特征值不为2的域(例如实数),可以用刚好一种 方法 写成一个对称矩阵和一个斜对称矩阵之和:X=1/2(X+XT)+1/2(X-XT)   每个实方形矩阵都可写作两个实对称矩阵的积,每个复方形矩阵都可写作两个复对称矩阵的积。   若对称矩阵A的每个元素均为实数,A是Hermite矩阵。   一个矩阵同时为对称矩阵及斜对称矩阵当且仅当所有元素都是零。   如果X是对称矩阵,那么AXAT也是对称矩阵.   n阶实对称矩阵,是n维欧式空间V(R)的对称变换在单位正交基下所对应的矩阵。   所谓对称变换,即对任意α、 β∈V,都有(σ(α),β)=(α,σ(β))。投影变换和镜像变换都是对称变换。   数据结构中的对称矩阵   1.对称矩阵   (1)对称矩阵   在一个n阶方阵A中,若元素满足下述性质:   aij=aji0≤i,j≤n-1   则称A为对称矩阵。   (2)对称矩阵的压缩存储   对称矩阵中的元素关于主对角线对称,故只要存储矩阵中上三角或下三角中的元素,让每两个对称的元素共享一个存储空间。这样,能节约近一半的存储空间。   ①按"行优先顺序"存储主对角线(包括对角线)以下的元素   即按a00,a10,a11,……,an-1,0,an-1,1…,an-1,n-1次序存放在一个向量sa[0..n(n+1)/2-1]中(下三角矩阵中,元素总数为n(n+1)/2)。   其中:   sa[0]=a00,   sa[1]=a10,   ……,   sa[n(n+1)/2-1]=an-1,n-1   ②元素aij的存放位置   aij元素前有i行(从第0行到第i-1行),一共有:   1+2+…+i=i×(i+1)/2个元素;   在第i行上,aij之前恰有j个元素(即ai0,ai1,…,ai,j-1),因此有:   sa[i×(i+1)/2+j]=aij   ③aij和sa[k]之间的对应关系:   若i≥j,k=i×(i+1)/2+j0≤k<n(n+1)/2   若i<j,k=j×(j+1)/2+i0≤k<n(n+1)/2   令I=max(i,j),J=min(i,j),则k和i,j的对应关系可统一为:   k=i×(i+1)/2+j0≤k<n(n+1)/2   (3)对称矩阵的地址计算公式   LOC(aij)=LOC(sa[k])   =LOC(sa[0])+k×d=LOC(sa[0])+[I×(I+1)/2+J]×d   通过下标变换公式,能立即找到矩阵元素aij在其压缩存储表示sa中的对应位置k。因此是随机存取结构。   【例】a21和a12均存储在sa[4]中,这是因为
kikcik2023-05-20 08:56:521

对称矩阵有哪些性质?

对称矩阵的性质如下1.对于任何方形矩阵X,X+XT是对称矩阵。2.A为方形矩阵是A为对称矩阵的必要条件。3.对角矩阵都是对称矩阵。两个对称矩阵的积是对称矩阵,当且仅当两者的乘法可交换。两个实对称矩阵乘法可交换当且仅当两者的特征空间相同。用<,>表示Rn上的内积。的实矩阵A是对称的,当且仅当对于所有,。任何方形矩阵X,如果它的元素属于一个特征值不为2的域(例如实数),可以用刚好一种方法写成一个对称矩阵和一个斜对称矩阵之和:X=1/2(X+XT)+1/2(X-XT)每个实方形矩阵都可写作两个实对称矩阵的积,每个复方形矩阵都可写作两个复对称矩阵的积。若对称矩阵A的每个元素均为实数,A是Hermite矩阵。一个矩阵同时为对称矩阵及斜对称矩阵当且仅当所有元素都是零。如果X是对称矩阵,那么AXAT也是对称矩阵.n阶实对称矩阵,是n维欧式空间V(R)的对称变换在单位正交基下所对应的矩阵。所谓对称变换,即对任意α、 β∈V,都有(σ(α),β)=(α,σ(β))。投影变换和镜像变换都是对称变换。
苏州马小云2023-05-20 08:56:522

什么是对称矩阵?

如果有n阶矩阵A,其各个元素都为实数,且aij=aji(转置为其本身),则称A为实对称矩阵。  性质1.实对称矩阵A的不同特征值所对应的特征向量是正交的。   2.实对称矩阵A的特征值都是实数,特征向量都是实向量。
FinCloud2023-05-20 08:56:521

对称矩阵是什么意思

如果有n阶矩阵A,其各个元素都为实数,且aij=aji(转置为其本身),则称A为实对称矩阵。  性质1.实对称矩阵A的不同特征值所对应的特征向量是正交的。   2.实对称矩阵A的特征值都是实数,特征向量都是实向量。
可桃可挑2023-05-20 08:56:521

什么叫对称矩阵

问题一:对称矩阵的定义是什么? A的转置等于A的矩阵就叫转置矩阵。 问题二:什么叫对称矩阵 【定义】 元素以主对角线为对称轴对应相等的矩阵 【特性】 1.对于任何方形矩阵X,X+XT是对称矩阵。 2.A为方形矩阵是A为对称矩阵的必要条件。 3.对角矩阵都是对称矩阵。 两个对称矩阵的积是对称矩阵,当且仅当两者的乘法可交换。两个实对称矩阵乘法可交换当且仅当两者的特征空间相同。 用表示上的内积。n×n的实矩阵A是对称的,当且仅当对于所有X, Y∈ ,( A(x) , Y )=( X, A(Y))。[2] 任何方形矩阵X,如果它的元素属于一个特征值不为2的域(例如实数),可以用刚好一种方法写成一个对称矩阵和一个斜对称矩阵之和:X=1/2(X+XT)+1/2(X-XT) 每个实方形矩阵都可写作两个实对称矩阵的积,每个复方形矩阵都可写作两个复对称矩阵的积。 若对称矩阵A的每个元素均为实数,A是Hermite矩阵。 一个矩阵同时为对称矩阵及斜对称矩阵当且仅当所有元素都是零。 如果X是对称矩阵,那么AXAT也是对称矩阵. n阶实对称矩阵,是n维欧式空间V(R)的对称变换在单位正交基下所对应的矩阵。 所谓对称变换,即对任意α、 β∈V,都有(σ(α),β)=(α,σ(β))。投影变换和镜像变换都是对称变换。 问题三:什么是对称矩阵什么是实对称矩阵 线性代数里的内容,即矩阵A的转置等于其本身的矩阵(AT = A) 性质:(1)A的特征值为实数,且其特征向量为实向量(2)A的不同特征值对应的特征向量必定正交(3)A一定有n个线性无关的特征向量,从而A相似于对角矩阵
苏州马小云2023-05-20 08:56:521

什么叫对称矩阵 怎么理解对称矩阵

1、对称矩阵(SymmetricMatrices)是指以主对角线为对称轴,各元素对应相等的矩阵。在线性代数中,对称矩阵是一个方形矩阵,其转置矩阵和自身相等。 2、1855年,埃米特(C.Hermite,1822-1901年)证明了别的数学家发现的一些矩阵类的特征根的特殊性质,如称为埃米特矩阵的特征根性质等。后来,克莱伯施(A.Clebsch,1831-1872年)、布克海姆(A.Buchheim)等证明了对称矩阵的特征根性质。泰伯(H.Taber)引入矩阵的迹的概念并给出了一些有关的结论。
九万里风9 2023-05-20 08:56:521

对称矩阵有什么性质

对称矩阵(Symmetric Matrices)是指元素以主对角线为对称轴对应相等的矩阵。在线性代数中,对称矩阵是一个方形矩阵,其转置矩阵和自身相等。1855年,埃米特(C.Hermite,1822-1901年)证明了别的数学家发现的一些矩阵类的特征根的特殊性质,如现在称为埃米特矩阵的特征根性质等。后来,克莱伯施(A.Clebsch,1831-1872年)、布克海姆(A.Buchheim)等证明了对称矩阵的特征根性质。泰伯(H.Taber)引入矩阵的迹的概念并给出了一些有关的结论。
左迁2023-05-20 08:56:521

什么是实对称矩阵?

如果有n阶矩阵A,其矩阵的元素都为实数,且矩阵A的转置等于其本身(aij=aji)(i,j为元素的脚标),则称A为实对称矩阵。扩展资料1.实对称矩阵A的不同特征值对应的特征向量是正交的。2.实对称矩阵A的特征值都是实数,特征向量都是实向量。3、在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。4、矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。[2]在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。 矩阵的运算是数值分析领域的重要问题。参考资料实对称矩阵_百度百科
韦斯特兰2023-05-20 08:56:521

为什么埃尔米特对称矩阵的行列式是实数?

比较显然的看法是因为Hermite矩阵所有特征值都是实数...虽然用特征值看行列式好像杀鸡用牛刀了, 不过Hermite矩阵的谱分解确实比较重要
北境漫步2023-05-20 08:56:021
 首页 上一页  1 2 3