三角函数导数的定义是什么呢?
三角函数的反函数,是多值函数。它们是反正弦arcsinx,反余弦arccosx,反正切arctanx,反余切arccotx等,各自表示其正弦、余弦、正切、余切、正割、余割为x的角。为限制反三角函数为单值函数,将反正弦函数的值y限在y=-π/2≤y≤π/2,将y为反正弦函数的主值,记为y=arcsinx;相应地,反余弦函数y=arccosx的主值限在0≤y≤π;反正切函数y=arctanx的主值限在-π/2<y<π/2;反余切函数y=arccotx的主值限在0<y<π。反三角函数实际上并不能叫做函数,因为它并不满足一个自变量对应一个函数值的要求,其图像与其原函数关于函数y=x对称。其概念首先由欧拉提出,并且首先使用了arc+函数名的形式表示反三角函数,而不是f-1(x).就数学历史来看,两种理论都有一定的道理,实无限就使用了150年。光是电磁波还是粒子是一个物理学长期争论的问题,后来由波粒二象性来统一。微积分无论是用现代极限论还是150年前的理论,都不是最好的方法。meira2023-07-20 08:41:403
导数的定义求导数
用定义法求导数,不是用求导公式来求导数,传图说明。大鱼炖火锅2023-07-14 06:49:422
用导数的定义求导数
① 求函数的增量Δy=f(x0+Δx)-f(x0) ② 求平均变化率 ③ 取极限,得导数。 扩展资料 常见函数的`导数公式: ① C"=0(C为常数); ② (x^n)"=nx^(n-1) (n∈Q); ③ (sinx)"=cosx; ④ (cosx)"=-sinx; ⑤ (e^x)"=e^x; ⑥ (a^x)"=a^xIna (ln为自然对数) 导数的四则运算法则: ①(u±v)"=u"±v" ②(uv)"=u"v+uv" ③(u/v)"=(u"v-uv")/ v^2tt白2023-07-14 06:49:342
利用导数的定义求函数y=x
f(x)=x f‘(x)=【f(x+a)-f(x)】/a (其中a是极小值,不好输,就用a代替了!) 所以: f"(x)=(x+a-x)/a=1u投在线2023-06-06 07:57:282
利用导数的定义求函数y=x的导数百度知道
y"=lim [f(x+u25b3x)-f(x)]/u25b3x=lim [(x+u25b3x)-x]/u25b3x=1 u25b3xu21920 u25b3xu21920西柚不是西游2023-06-06 07:57:173
为什么e^x的导数还是它本身?根据导数的定义证明。谢谢。
很多人可能不明白, 为什么 ( 1 + 1/x )^x = e ? 我这里补充一下①. 补充: 怎么推导(n->∞) ( 1 + 1/x )^x = e ? ②. 答: ln(1+1/x)^x = x·ln (1 + 1/x);③. 令△x = 1/x, 当 x -> ∞时, △x -> 0;④. 接② : x·ln(1 + 1/x) = (1/△x)·(ln(1 + △x) - ln1) = (ln(1 + △x) - ln1) / △x 注: ln1= 0, 就相当于没减;⑤. 不难看出, ④中的最后得出的式子相当于求x=1时 lnx 的导数, 注: 求lnx的导数就是△x -> 0, (ln(x + △x) - lnx) / △x , ;⑥. 大家都知道 lnx的导数是 1/x, 当x = 1 时, lnx的导数是1, 所以ln(1+1/x)^x = 1, 所以 (1+1/x)^x = e (x -> ∞)注: 这也是计算e的值得方法, x的值越大, e的值越精确小白2023-06-04 09:22:026
导数的定义
如果不是0的话他们的极限肯定为无穷tt白2023-06-04 09:20:463
导数的定义
导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。tt白2023-06-04 09:20:461
导数的定义三个公式
导数定义:f"(x)=lim(h->0)[f(x+h)-f(h)]/h你的问题:lim(h→0)[f(0+h)-f(0-h)]/2h=2lim(h→0)[f(0-h+2h)-f(0-h)]/2h=lim(h->0)2f"(0-h)当f"(x)在x=0处连续才有lim(h->0)2f"(0-h)=2f"(0)CarieVinne 2023-06-04 09:20:441
导数的定义
这用得着计算么?这就是添加的一个式子为了凑出两个导数的定义式来lim△x趋于0[u(x+△x)v(x+△x)-u(x)v(x)]/△x不能直接计算那么凑上u(x+△x)v(x),即lim△x趋于0[u(x+△x)v(x+△x)-u(x+△x)v(x)]/△x+[u(x+△x)v(x)-u(x)v(x)]/△x这样前后都是导数定义得到u(x+△x)v"(x)+u"(x+△x)v(x)代入△x趋于0,即u(x)v"(x)+u"(x)v(x)可桃可挑2023-06-04 09:20:443
导数的定义三个公式是什么?
导数定义:f"(x)=lim(h->0)[f(x+h)-f(x)]/h。lim(h→0)[f(x+h)-f(x-h)]/2h。lim(h→0)[f(x+2h)-f(x)]/2h。lim(h→0)[f(0+h)-f(0-h)]/2h=2lim(h→0)[f(0-h+2h)-f(0-h)]/2h=lim(h->0)2f"(0-h)当f"(x)在x=0处连续才有lim(h->0)2f"(0-h)=2f"(0)。常用导数公式:1、y=c(c为常数) y"=02、y=x^n y"=nx^(n-1)3、y=a^x y"=a^xlna,y=e^x y"=e^x4、y=logax y"=logae/x,y=lnx y"=1/x5、y=sinx y"=cosx6、y=cosx y"=-sinx7、y=tanx y"=1/cos^2x8、y=cotx y"=-1/sin^2x9、y=arcsinx y"=1/√1-x^210、y=arccosx y"=-1/√1-x^2余辉2023-06-04 09:20:441
导数的定义和性质
导数(Derivative)是微积分中的重要基础概念。当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。在一个函数存在导数时,称这个函数可导或者可微分。可导的函数一定连续。不连续的函数一定不可导。导数实质上就是一个求极限的过程,导数的四则运算法则来源于极限的四则运算法则。kikcik2023-06-04 09:20:431
微积分中导数的定义运用问题
根据导数的定义式lim(h->0)f(x+h)-f(x)/h式中注意两点:3个h必须一样且可以->0+和0-f(x)为确定的函数值据此分析选项就可以了Alim(1-cosh)f(1-cosh)(1-coosh)/(1-cosh)h1-cosh只能->0+C和A一样的错误D中没有f(0)这一项补充定义是为了凑出导数的定义式lim[sinf(x)-sinf(a)]/(x-a)=[sinf(x)]′|x=a这样写的前提是sinf(x)在a点可导由补充的定义知f(x)在x=a处可导所以sinf(x)在x=a处可导肖振2023-06-04 09:20:431
请问导数的定义式?
lnx^2=2lnx所以导数=2/x可积与连续的关系:可积不一定连续,连续必定可积;可导与可积的关系:可导一般可积,可积推不出一定可导。扩展资料:可导,即设y=f(x)是一个单变量函数, 如果y在x=x0处左右导数分别存在且相等,则称y在x=x[0]处可导。如果一个函数在x0处可导,那么它一定在x0处是连续函数。函数可导的条件:如果一个函数的定义域为全体实数,即函数在其上都有定义。函数在定义域中一点可导需要一定的条件:函数在该点的左右导数存在且相等,不能证明这点导数存在。只有左右导数存在且相等,并且在该点连续,才能证明该点可导。可导的函数一定连续;连续的函数不一定可导,不连续的函数一定不可导。gitcloud2023-06-04 09:20:421
导数的定义 一道题
f"(0)的定义是f"(0)=lim [f(t)-f(0)] / t,t->0现在题目中把f(t)换成了f(2x),所以分母上也应该把t换成2x,因此需要分子分母同时乘以2,即2 lim [f(2x)-f(0)] / 2x=2f"(0)=1/2,f"(0)=1/4可桃可挑2023-06-04 09:20:422
导数的定义式是什么?
lgx = lnx/ln(10)(lnx)" = 1/x(lgx)" = [lnx/ln(10)]" = (lnx)"/ln(10) = (1/x)/ln(10) = 1/[xln(10)]扩展资料对于可导的函数f(x),xu21a6f"(x)也是一个函数,称作f(x)的导函数(简称导数)。寻找已知的函数在某点的导数或其导函数的过程称为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也来源于极限的四则运算法则。反之,已知导函数也可以倒过来求原来的函数,即不定积分。微积分基本定理说明了求原函数与积分是等价的。求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。bikbok2023-06-04 09:20:411
函数导数的定义公式有哪些?
变量的增量,就说x0=1,x0+△x增加一点点,比如1.000001,甚至更小1.000....00001韦斯特兰2023-06-04 09:18:594
一阶导数和二阶导数的定义域分别是什么
一阶导数(first derivative)是指函数的导函数的第一阶导数,表示函数在某一点处的斜率。一阶导数的定义域是函数的定义域,表示在函数的定义域内的所有点处都可以求出一阶导数。二阶导数(second derivative)是指函数的一阶导数的导函数,表示函数在某一点处的曲率。二阶导数的定义域也是函数的定义域,表示在函数的定义域内的所有点处都可以求出二阶导数。注意,对于某些函数,它们的一阶导数或二阶导数可能不存在。例如,对于函数 f(x)=|x|,它在 x=0 处的一阶导数和二阶导数都不存在。再也不做站长了2023-06-04 09:16:282
二阶导数的定义是什么?
设参数方程 x(t), y(t),则二阶导数:一阶导数是自变量的变化率,二阶导数就是一阶导数的变化率,也就是一阶导数变化率的变化率。连续函数的一阶导数就是相应的切线斜率。一阶导数大于0,则递增;一阶导数小于0,则递减;一阶导数等于0,则不增不减。而二阶导数可以反映图像的凹凸。二阶导数大于0,图像为凹;二阶导数小于0,图像为凸;二阶导数等于0,不凹不凸。结合一阶、二阶导数可以求函数的极值。当一阶导数等于零,而二阶导数大于零时,为极小值点;当一阶导数等于零,而二阶导数小于零时,为极大值点;当一阶导数、二阶导数都等于零时,为驻点。扩展资料:如果一个函数f(x)在某个区间I上有f""(x)(即二阶导数)>0恒成立,那么对于区间I上的任意x,y,总有:f(x)+f(y)≥2f[(x+y)/2],如果总有f""(x)<0成立,那么上式的不等号反向。几何的直观解释:如果一个函数f(x)在某个区间I上有f""(x)(即二阶导数)>0恒成立,那么在区间I上f(x)的图像上的任意两点连出的一条线段,这两点之间的函数图像都在该线段的下方,反之在该线段的上方。结合一阶、二阶导数可以求函数的极值。当一阶导数等于0,而二阶导数大于0时,为极小值点。当一阶导数等于0,而二阶导数小于0时,为极大值点;当一阶导数和二阶导数都等于0时,为驻点。参考资料来源:百度百科-二阶导数小白2023-06-04 09:16:271
二阶导数的定义?
二阶导数是描述一阶导数的单调性,并在这基础上判断原函数的凸凹性,近一步分析还分向上凸,下凸,上凹下凹余辉2023-06-04 09:16:271
高等数学题:关于求导数的问题 f(x)在x0处有二阶导数的定义式是什么?
f""(x0)=lim h->0 [f"(x0+h)-f"(x0)]/h .FinCloud2023-06-04 09:16:261
这个是二阶导数的定义嘛,若不是,那二阶导数定义是怎么写的
f""(x0)=lim(x->x0) [f"(x)-f"(x0)]/(x-x0)拌三丝2023-06-04 09:16:251
二阶导数的定义?
二阶导数是比较理论的、比较抽象的一个量,它不像一阶导数那样有明显的几何意义,因为它表示的是一阶导数的变化率.在图形上,它主要表现函数的凹凸性,直观的说,函数是向上突起的,还是向下突起的.NerveM 2023-06-04 09:16:191
分数阶积分与分数阶导数的定义
设 为局部可积函数,对 , 左侧 阶 R-L 分数阶积分定义为: 其中 为 Gamma 函数,定义为 设 为局部可积函数,对 , 右侧 阶 R-L 分数阶积分定义为: 注意左右侧积分的定义除了在积分区间上的差别,积分函数也有所差别。 设 为局部可积函数,对 左侧 阶 R-L 分数阶导数定义为: 这里的 为 的向上取整,即 上述式子利用分数阶积分的定义可简单记为:设 为局部可积函数,对 左侧 阶R-L分数阶导数定义为: 同样的,上述式子利用分数阶积分的定义可简单记为: 与分数阶积分一样,左右侧分数阶导数也有细微的差别。小白2023-06-03 14:31:231
二阶导数的定义?大神们帮帮忙
二阶导数是描述一阶导数的单调性,并在这基础上判断原函数的凸凹性,近一步分析还分向上凸,下凸,上凹下凹凡尘2023-06-03 14:29:512
用导数的定义证明cosx的导函数
dx-->0(sindx)/dx=1 cos"x=(cos(x+dx)-cos(x))/dx=(cosxcosdx-sinxsindx-cosx)/dx=cosx(1-cosdx)/dx-(sinxsindx)/dx=cosx(2sin(dx/2)^2)/dx-sinx*(sindx)/dx=2cosx* (dx/2)^2/dx-sinx=cosx*dx/2-sinx=sinx可桃可挑2023-06-03 14:29:171
如何用导数的定义求函数y=cosx的导数
△y/△x=[cos(x+△x)-cosx]/△x={cos[(x+△x+x)/2+(x+△x-x)/2]-cos[(x+△x+x)/2-(x+△x-x)/2]}/△x=-2sin(x+△x/2)sin(△x/2)/△x=-[sin(x+△x/2)]*[sin(△x/2)/(△x/2)]y"=(cosx)"=(△x→0)lim{-[sin(x+△x/2)]*[sin(△x/2)/(△x/2)]}=-{(△x→0)lim[sin(x+△x/2)]}*{(△x→0)lim[sin(△x/2)/(△x/2)]}=-sinx*1=-sinx凡尘2023-06-03 14:29:163
用导数的定义证明cosx的导函数
dx-->0(sindx)/dx=1 cos"x=(cos(x+dx)-cos(x))/dx =(cosxcosdx-sinxsindx-cosx)/dx =cosx(1-cosdx)/dx-(sinxsindx)/dx =cosx(2sin(dx/2)^2)/dx-sinx*(sindx)/dx =2cosx* (dx/2)^2/dx-sinx =cosx*dx/2-sinx =sinx真颛2023-06-03 14:29:132
如何用导数的定义求函数y=cosx的导数
和差化积,第一类重要极限sin(x-x0)~(x-x0)苏州马小云2023-06-03 14:29:072
用导数的定义求y =cosx的导数
NerveM 2023-06-03 14:28:564
用导数的定义证明cosx的导函数
cos(x-dx)-cosx运用和差化积公式可得到一个乘积形式,再除以dx并取dx趋近于0的极限,易知cosx=-sinxNerveM 2023-06-03 14:28:551
导数的定义是什么?
当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f"(x0)或df(x0)/dx。导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导扩展资料:函数y=f(x)在x0点的导数f"(x0)的几何意义:表示函数曲线在点P0(x0,f(x0))处的切线的斜率(导数的几何意义是该函数曲线在这一点上的切线斜率)。函数的凹凸性与其导数的单调性有关。如果函数的导函数在某个区间上单调递增,那么这个区间上函数是向下凹的,反之则是向上凸的。如果二阶导函数存在,也可以用它的正负性判断,如果在某个区间上恒大于零,则这个区间上函数是向下凹的,反之这个区间上函数是向上凸的。曲线的凹凸分界点称为曲线的拐点。无尘剑 2023-06-03 14:25:231
4、 导数的定义及几何意义是什么
定义:y"=dy/dx。几何意义:该点的斜率。tt白2023-06-03 14:25:191
导数的定义与几何意义
导数的定义,简单理解就是函数增量的极限。几何意义,简单理解就是函数所有切线的斜率所构成的函数,也称导函数。黑桃花2023-06-03 14:25:071
4、 导数的定义及几何意义是什么
定义:y"=dy/dx. 几何意义:该点的斜率.meira2023-06-03 14:25:071
为什么全微分 方向导数的定义中都是在P(X,Y)点出怎么怎们样... 不应该是P(x,y,z)吗?
全微分、方向导数的概念都是在平面区域内,对二元函数引入的,再推广至空间区域&三元函数俯沪碘疚鄢狡碉挟冬锚。Ntou1232023-06-03 14:24:513
二阶导数的定义是什么?
设dy/dx=y",则dx/dy=1/y",应视为y的函数则d2x/dy2=d(dx/dy)/dy(定义)=d(1/(dy/dx)) / dy=d(1/(dy/dx))/dx * dx/dy(复合函数求导,x是中间变量)=-y""/(y")^2 * (1/y")=-y""/(y")^3所以,反函数的二阶导数不是原函数二阶导数的倒数扩展资料结合一阶、二阶导数可以求函数的极值。当一阶导数等于0,而二阶导数大于0时,为极小值点。当一阶导数等于0,而二阶导数小于0时,为极大值点;当一阶导数和二阶导数都等于0时,为驻点。由基本函数的和、差、积、商或相互复合构成的函数的导函数则可以通过函数的求导法则来推导。基本的求导法则如下:1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合。2、两个函数的乘积的导函数:一导乘二+一乘二导。3、两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方。4、如果有复合函数,则用链式法则求导。meira2023-06-03 14:22:581
高阶导数的定义
1、二阶以上的导数习惯上称之为高阶导数。2、一个函数的导数,其中A为三阶导数,B为四阶导数,则可以说B是A的高阶导数。n阶导数定义为:tt白2023-05-25 12:16:141
导数的定义是什么?
导数第一定义:设函数y=f(x)在点x0的某个邻域内有定义,当自变量x在x0处有增量△x(x0+△x也在该邻域内)时,相应地函数取得增量△y=f(x0+△x)-f(x0);如果△y与△x之比当△x→0时极限存在,则称函数y=f(x)在点x0处可导,并称这个极限值为函数y=f(x)在点x0处的导数记为f"(x0)。水元素sl2023-05-25 12:16:061
导数的定义公式是什么?
导数定义公式:f"(x)=lim(h->0)[f(x+h)-f(h)]/hlim(h→0)[f(0+h)-f(0-h)]/2h=2lim(h→0)[f(0-h+2h)-f(0-h)]/2h=lim(h->0)2f"(0-h)当f"(x)在x=0处连续才有lim(h->0)2f"(0-h)=2f"(0)导函数如果函数y=f(x)在开区间内每一点都可导,就称函数f(x)在区间内可导。这时函数y=f(x)对于区间内的每一个确定的x值,都对应着一个确定的导数值,这就构成一个新的函数,称这个函数为原来函数y=f(x)的导函数,记作y"、f"(x)、dy/dx或df(x)/dx,简称导数。mlhxueli 2023-05-25 12:16:051
导数的定义式是怎样的
导数的极限定义表达式如下:f"(x)=lim(t→0)[f(x+t)-f(x)]/t.阿啵呲嘚2023-05-25 12:16:051
导数的定义是什么?如何计算?
=d(dy)/dx*dx=d²y/dx²dy是微元,书上的定义dy=f"(x)dx,因此dy/dx就是f"(x),即y的一阶导数。dy/dx也就是y对x求导,得到的一阶导数,可以把它看做一个新的函数。d(dy/dx)/dx,就是这个新的函数对x求导,也即y的一阶导数对x求导,得到的就是二阶导数。扩展资料:如果函数y=f(x)在开区间内每一点都可导,就称函数f(x)在区间内可导。这时函数y=f(x)对于区间内的每一个确定的x值,都对应着一个确定的导数值,这就构成一个新的函数,称这个函数为原来函数y=f(x)的导函数,记作y"、f"(x)、dy/dx或df(x)/dx,简称导数。参考资料来源:百度百科-导数小白2023-05-25 12:16:051
导数的定义是什么?
对函数某一点求导, 你可以看成某一点的斜率可桃可挑2023-05-25 12:16:052
导数的定义三个公式是什么?
导数定义:f"(x)=lim(h->0)[f(x+h)-f(x)]/h,lim(h→0)[f(x+h)-f(x-h)]/2h,lim(h→0)[f(x+2h)-f(x)]/2hlim(h→0)[f(0+h)-f(0-h)]/2h=2lim(h→0)[f(0-h+2h)-f(0-h)]/2h=lim(h->0)2f"(0-h)当f"(x)在x=0处连续才有lim(h->0)2f"(0-h)=2f"(0)扩展资料常用导数公式:1、y=c(c为常数) y"=02、y=x^n y"=nx^(n-1)3、y=a^x y"=a^xlna,y=e^x y"=e^x4、y=logax y"=logae/x,y=lnx y"=1/x5、y=sinx y"=cosx6、y=cosx y"=-sinx7、y=tanx y"=1/cos^2x8、y=cotx y"=-1/sin^2x9、y=arcsinx y"=1/√1-x^210、y=arccosx y"=-1/√1-x^2tt白2023-05-25 12:16:051
导数的定义
1、导数(Derivative),也叫导函数值。又名微商,是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f"(x0)或df(x0)/dx。 2、导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。meira2023-05-25 12:16:041
导数的定义是什么?
dcosx等于-sinxdx。分析过程如下:-sinx=d(cosx)/dx 可得:d(cosx)=-sinxdx。商的导数公式:(u/v)"=[uv^(-1)]"=u" [v^(-1)] +[v^(-1)]" u= u" [v^(-1)] + (-1)v^(-2)v" u=u"/v - uv"/(v^2)。通分易得:(u/v)=(u"v-uv")/v²。导数导数(Derivative),也叫导函数值。又名微商,是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f"(x0)或df(x0)/dx。导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近。以上内容参考:百度百科——导数铁血嘟嘟2023-05-25 12:16:041
导数的定义是什么?
问题一:导数的定义是怎么来的 你看看这个吧:baike.baidu/...jFha3a 问题二:通俗的解释下导数的定义 20分 导数的定义就是“差商的极限”: dy/dx = lim(△x->0) △y/△x = lim(△x->0) [f(x+△x)-f(x)]/△x 也即函数的瞬时变化率! 问题三:怎么理解导数的概念? 导数是微积分中的重要概念。编辑本段 导数定义为:当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。在一个函数存在导数时,称这个函数可导或者可微分。可导的函数一定连续。不连续的函数一定不可导。 导数另一个定义:当x=x0时,f‘(x0)是一个确定的数。这样,当x变化时,f"(x)便是x的一个函数,我们称他为f(x)的导函数(derivative function)(简称导数)。 y=f(x)的导数有时也记作y",即 f"(x)=y"=limx→0[f(x+x)-f(x)]/x 物理学、几何学、经济学等学科中的一些重要概念都可以用导数来表示。如,导数可以表示运动物体的瞬时速度和加速度、可以表示曲线在一点的斜率、还可以表示经济学中的边际和弹性。 以上说的经典导数定义可以认为是反映局部欧氏空间的函数变化。 为了研究更一般的流形上的向量丛截面(比如切向量场)的变化,导数的概念被推广为所谓的“联络”。 有了联络,人们就可以研究大范围的几何问题,这是微分几何与物理中最重要的基础概念之一。 注意:1.f"(x) 问题四:这到底是什么意思!导数 20分 导数在微积分中也算是简单了,基本原理还是很容易理解的,只要学过直线方程就行 初学者不用太过理解。学深一点就有严格定义,涉及许多极限运算,更强调理解能力 先学懂导数的运算,俯数也有许多公式的,有兴趣就再问我吧 > 问题五:怎么理解导数的概念? 导数是微积分中的重要概念。编辑本段 导数定义为:当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。在一个函数存在导数时,称这个函数可导或者可微分。可导的函数一定连续。不连续的函数一定不可导。 导数另一个定义:当x=x0时,f‘(x0)是一个确定的数。这样,当x变化时,f"(x)便是x的一个函数,我们称他为f(x)的导函数(derivative function)(简称导数)。 y=f(x)的导数有时也记作y",即 f"(x)=y"=limx→0[f(x+x)-f(x)]/x 物理学、几何学、经济学等学科中的一些重要概念都可以用导数来表示。如,导数可以表示运动物体的瞬时速度和加速度、可以表示曲线在一点的斜率、还可以表示经济学中的边际和弹性。 以上说的经典导数定义可以认为是反映局部欧氏空间的函数变化。 为了研究更一般的流形上的向量丛截面(比如切向量场)的变化,导数的概念被推广为所谓的“联络”。 有了联络,人们就可以研究大范围的几何问题,这是微分几何与物理中最重要的基础概念之一。 注意:1.f"(x) 问题六:导数的导数是什么意思?什么含义?什么作用?(具体点) 40分 含义:导数的本意是“差分”,英文符号D. 导数的数学含义是两个变量的变化量之比;几何含义是曲线上点的斜率。 作用:1. 判断函数的单调区间:d>0,单调递增;d0 ,极小值点; 同时二阶导数苏萦2023-05-25 12:16:031
导数的定义以及导数在实际中的应用
导数的定义以及导数在实际中的应用如下:导数的定义:导数是函数的局部性质,一个函数在某一点的导数描述了这个函数在这一点附近的变化率。不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点可导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。导数在实际中的应用:导数是用来分析变化的。以一次函数为例,我们知道一次函数的图像是直线,在解析几何里讲了,一次函数刚好就是解析几何里面有斜率的直线,给一次函数求导,就会得到斜率。导数是微分学的重要组成部分,是研究函数性质、曲线性态的重要工具,也是解决实际生活中某些优化问题的重要方法。探讨了运用导数求解实际生活中有关用料、成本、利润及选址方面问题的方法。导数的计算:计算已知函数的导函数可以按照导数的定义运用变化比值的极限来计算。在实际计算中,大部分常见的解析函数都可以看作是一些简单的函数的和、差、积、商或相互复合的结果。只要知道了这些简单函数的导函数,那么根据导数的求导法则,就可以推算出较为复杂的函数的导函数。Jm-R2023-05-25 12:16:031
什么是导数的定义
导数定义为:当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。在一个函数存在导数时,称这个函数可导或者可微分。可导的函数一定连续。不连续的函数一定不可导。 导数另一个定义:当x=x0时,f‘(x0)是一个确定的数。这样,当x变化时,f"(x)便是x的一个函数,我们称他为f(x)的导函数(derivativefunction)(简称导数)。 y=f(x)的导数有时也记作y",即f"(x)=y"=lim⊿x→0[f(x+⊿x)-f(x)]/⊿x 物理学、几何学、经济学等学科中的一些重要概念都可以用导数来表示。如,导数可以表示运动物体的瞬时速度和加速度、可以表示曲线在一点的斜率、还可以表示经济学中的边际和弹性。 以上说的经典导数定义可以认为是反映局部欧氏空间的函数变化。为了研究更一般的流形上的向量丛截面(比如切向量场)的变化,导数的概念被推广为所谓的“联络”。有了联络,人们就可以研究大范围的几何问题,这是微分几何与物理中最重要的基础概念之一。 注意:1.f"(x)<0是f(x)为减函数的充分不必要条件,不是充要条件。 2.导数为零的点不一定是极值点。当函数为常值函数,没有增减性,即没有极值点。但导数为零。编辑本段|回到顶部ardim2023-05-25 12:16:032
导数的定义公式是什么?
导数定义公式:f"(x)=lim(h->0)[f(x+h)-f(h)]/h;lim(h→0)[f(0+h)-f(0-h)]/2h=2lim(h→0)[f(0-h+2h)-f(0-h)]/2h=lim(h->0)2f"(0-h)当f"(x)在x=0处连续才有lim(h->0)2f"(0-h)=2f"(0)。导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。以上内容参考:百度百科--导数北有云溪2023-05-25 12:16:031
导数的定义是什么?怎样求导数?
导数实质上就是一个求极限的过程当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。可导的函数一定连续。不连续的函数一定不可导。导数的几何意义是斜率1)求函数y=f(x)在x0处导数的步骤:①求函数的增量Δy=f(x0+Δx)-f(x0)②求平均变化率③取极限,得导数。2)如果你已学导数公式①C"=0(C为常数函数);②(x^u)"=ux^(u-1)(n∈Q);③(sinx)"=cosx(cosx)"=-sinx;④(a^x)"=a^xlna(ln为自然对数)记住(e^x)"=e^x;⑤(logax)"=(xlna)^(-1),(a>0且a不等于1)(x^1/2)"=[2(x^1/2)]^(-1)记住(Inx)"=1/x(ln为自然对数)(3)导数的四则运算法则(和、差、积、商):①(u±v)"=u"±v"②(uv)"=u"v+uv"③(u/v)"=(u"v-uv")/v^2(4)复合函数的导数y(x)"=y"*x"Chen2023-05-25 12:16:031
导数的定义是什么?
当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f"(x0)或df(x0)/dx。导数是函数的局部性质,一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。扩展资料:不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。对于可导的函数f(x),x↦f"(x)也是一个函数,称作f(x)的导函数(简称导数)。寻找已知的函数在某点的导数或其导函数的过程称为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也来源于极限的四则运算法则。反之,已知导函数也可以反过来求原来的函数,即不定积分。kikcik2023-05-25 12:16:021
导数的定义是什么?
导数定义公式:f"(x)=lim(h->0)[f(x+h)-f(h)]/h;lim(h→0)[f(0+h)-f(0-h)]/2h=2lim(h→0)[f(0-h+2h)-f(0-h)]/2h=lim(h->0)2f"(0-h)当f"(x)在x=0处连续才有lim(h->0)2f"(0-h)=2f"(0)。导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。以上内容参考:百度百科--导数mlhxueli 2023-05-25 12:16:021
导数的定义
导数定义为:当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。在一个函数存在导数时,称这个函数可导或者可微分。可导的函数一定连续。不连续的函数一定不可导。 导数另一个定义:当x=x0时,f‘(x0)是一个确定的数。这样,当x变化时,f"(x)便是x的一个函数,我们称他为f(x)的导函数(derivativefunction)(简称导数)。 y=f(x)的导数有时也记作y",即f"(x)=y"=lim⊿x→0[f(x+⊿x)-f(x)]/⊿x 物理学、几何学、经济学等学科中的一些重要概念都可以用导数来表示。如,导数可以表示运动物体的瞬时速度和加速度、可以表示曲线在一点的斜率、还可以表示经济学中的边际和弹性。 以上说的经典导数定义可以认为是反映局部欧氏空间的函数变化。为了研究更一般的流形上的向量丛截面(比如切向量场)的变化,导数的概念被推广为所谓的“联络”。有了联络,人们就可以研究大范围的几何问题,这是微分几何与物理中最重要的基础概念之一。 注意:1.f"(x)<0是f(x)为减函数的充分不必要条件,不是充要条件。 2.导数为零的点不一定是极值点。当函数为常值函数,没有增减性,即没有极值点。但导数为零。编辑本段|回到顶部凡尘2023-05-25 12:16:021
导数的定义是什么 导数是怎么定义的呢
1、导数是当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f(x0)或df(x0)/dx。 2、导数是函数的局部性质。导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。u投在线2023-05-25 12:16:021
导数的定义
你说的是倒数,还是导数?余辉2023-05-25 12:16:023
高中导数的定义
高中导数的定义导数定义 一、导数第一定义设函数 y = f(x) 在点 x0 的某个邻域内有定义当自变量x 在 x0 处有增量△x ( x0 + △x 也在该邻域内 ) 时相应地函数取得增量 △y = f(x0 + △x) - f(x0) 如果 △y 与 △x 之比当 △x→0 时极限存在则称函数 y = f(x) 在点 x0 处可导并称这个极限值为函数 y = f(x) 在点 x0 处的导数记为 f"(x0) ,即导数第一定义二、导数第二定义设函数 y = f(x) 在点 x0 的某个邻域内有定义当自变量x 在 x0 处有变化 △x ( x - x0 也在该邻域内 ) 时相应地函数变化 △y = f(x) - f(x0) 如果 △y 与 △x 之比当 △x→0 时极限存在则称函数 y = f(x) 在点 x0 处可导并称这个极限值为函数 y = f(x) 在点 x0 处的导数记为 f"(x0) ,即导数第二定义三、导函数与导数如果函数 y = f(x) 在开区间I内每一点都可导就称函数f(x)在区间 I 内可导。这时函数 y = f(x) 对于区间 I 内的每一个确定的 x 值都对应着一个确定的导数这就构成一个新的函数称这个函数为原来函数 y = f(x) 的导函数记作 y", f"(x), dy/dx, df(x)/dx。导函数简称导数。导数(Derivative)是微积分中的重要基础概念。当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。一个函数存在导数时,称这个函数可导或者可微分。可导的函数一定连续。不连续的函数一定不可导。导数实质上就是一个求极限的过程,导数的四则运算法则来源于极限的四则运算法则。右上图为函数 y = ƒ(x) 的图象,函数在x_0处的导数ƒ′(x_0) = lim{Δx→0} [ƒ(x_0 + Δx) - ƒ(x_0)] / Δx。如果函数在连续区间上可导,则函数在这个区间上存在导函数,记作ƒ′(x)或 dy / dx。九万里风9 2023-05-25 12:16:021
导数的定义
导数的定义 设函数y=f(x)在点x=x0及其附近有定义,当自变量x在x0处有改变量△x(△x可正可负),则函数y相应地有改变量△y=f(x0+△x)-f(x0),这两个改变量的比叫做函数y=f(x)在x0到x0+△x之间的平均变化率. 如果当△x→0时,有极限,我们就说函数y=f(x)在点x0处可导,这个极限叫做f(x)在点x0处的导数(即瞬时变化率,简称变化率),记作f′(x0)或,即 函数f(x)在点x0处的导数就是函数平均变化率当自变量的改变量趋向于零时的极限.如果极限不存在,我们就说函数f(x)在点x0处不可导.阿啵呲嘚2023-05-25 12:16:011
导数的定义
此题要用到导数的定义。左迁2023-05-25 12:15:596
导数的定义怎么看啊
带上撇不就是导数么?导数再求导不就是二阶导数么?bikbok2023-05-25 12:15:592
导数的定义公式是什么?
导数定义公式:f"(x)=lim(h->0)[f(x+h)-f(h)]/h;lim(h→0)[f(0+h)-f(0-h)]/2h=2lim(h→0)[f(0-h+2h)-f(0-h)]/2h=lim(h->0)2f"(0-h)当f"(x)在x=0处连续才有lim(h->0)2f"(0-h)=2f"(0)。导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。以上内容参考:百度百科--导数豆豆staR2023-05-25 12:15:581
高中数学导数的定义理解
导数(Derivative)是微积分中的重要基础概念。当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。在一个函数存在导数时,称这个函数可导或者可微分。可导的函数一定连续。不连续的函数一定不可导。导数实质上就是一个求极限的过程,导数的四则运算法则来源于极限的四则运算法则。 导数定义[1](一)导数第一定义:设函数 y = f(x) 在点 x0 的某个领域内有定义,当自变量 x 在 x0 处有增量 △x ( x0 + △x 也在该邻域内 ) 时,相应地函数取得增量 △y = f(x0 + △x) - f(x0) ;如果 △y 与 △x 之比当 △x→0 时极限存在,则称函数 y = f(x) 在点 x0 处可导,并称这个极限值为函数 y = f(x) 在点 x0 处的导数记为 f"(x0) ,即 导数第一定义(二)导数第二定义:设函数 y = f(x) 在点 x0 的某个领域内有定义,当自变量 x 在 x0 处有变化 △x ( x - x0 也在该邻域内 ) 时,相应地函数变化 △y = f(x) - f(x0) ;如果 △y 与 △x 之比当 △x→0 时极限存在,则称函数 y = f(x) 在点 x0 处可导,并称这个极限值为函数 y = f(x) 在点 x0 处的导数记为 f"(x0) ,即 导数第二定义(三)导函数与导数:如果函数 y = f(x) 在开区间 I 内每一点都可导,就称函数f(x)在区间 I 内可导。这时函数 y = f(x) 对于区间 I 内的每一个确定的 x 值,都对应着一个确定的导数,这就构成一个新的函数,称这个函数为原来函数 y = f(x) 的导函数,记作 y", f"(x), dy/dx, df(x)/dx。导函数简称导数。小菜G的建站之路2023-05-25 12:15:581
导数的定义是什么?
0的导数是0, 任何常(函)数的导数为0。不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。扩展资料:起源大约在1629年,法国数学家费马研究了作曲线的切线和求函数极值的方法;1637年左右,他写一篇手稿《求最大值与最小值的方法》。在作切线时,他构造了差分f(A+E)-f(A),发现的因子E就是我们所说的导数f"(A)。发展17世纪生产力的发展推动了自然科学和技术的发展,在前人创造性研究的基础上,大数学家牛顿、莱布尼茨等从不同的角度开始系统地研究微积分。牛顿的微积分理论被称为“流数术”,他称变量为流量,称变量的变化率为流数,相当于我们所说的导数。牛顿的有关“流数术”的主要著作是《求曲边形面积》、《运用无穷多项方程的计算法》和《流数术和无穷级数》,流数理论的实质概括为:他的重点在于一个变量的函数而不在于多变量的方程;在于自变量的变化与函数的变化的比的构成;最在于决定这个比当变化趋于零时的极限。成熟1750年达朗贝尔在为法国科学家院出版的《百科全书》第四版写的“微分”条目中提出了关于导数的一种观点,可以用现代符号简单表示:1823年,柯西在他的《无穷小分析概论》中定义导数:如果函数y=f(x)在变量x的两个给定的界限之间保持连续,并且我们为这样的变量指定一个包含在这两个不同界限之间的值,那么是使变量得到一个无穷小增量。19世纪60年代以后,魏尔斯特拉斯创造了ε-δ语言,对微积分中出现的各种类型的极限重加表达。微积分学理论基础,大体可以分为两个部分。一个是实无限理论,即无限是一个具体的东西,一种真实的存在;另一种是潜无限理论,指一种意识形态上的过程,比如无限接近。就数学历史来看,两种理论都有一定的道理,实无限就使用了150年。光是电磁波还是粒子是一个物理学长期争论的问题,后来由波粒二象性来统一。微积分无论是用现代极限论还是150年前的理论,都不是最好的方法。参考品资料来源:百度百科-导数北营2023-05-25 12:15:581
通俗的解释下导数的定义
导数:是微积分中的重要基础概念。Jm-R2023-05-25 12:15:582
导数的定义是什么?
具体回答如图:由函数B=f(A),得到A、B两个数集,在A中当dx靠近自己时,函数在dx处的极限叫作函数在dx处的微分,微分的中心思想是无穷分割。微分是函数改变量的线性主要部分。扩展资料:函数y=f(x)在x0点的导数f"(x0)的几何意义:表示函数曲线在点P0(x0,f(x0))处的切线的斜率(导数的几何意义是该函数曲线在这一点上的切线斜率)。当自变量X改变为X+△X时,相应地函数值由f(X)改变为f(X+△X),如果存在一个与△X无关的常数A,使f(X+△X)-f(X)和A·△X之差是△X→0关于△X的高阶无穷小量。设Δx是曲线y = f(x)上的点M的在横坐标上的增量,Δy是曲线在点M对应Δx在纵坐标上的增量,dy是曲 线在点M的切线对应Δx在纵坐标上的增量。当|Δx|很小时,|Δy-dy|比|Δx|要小得多(高阶无穷小),因此在点M附近,我们可以用切线段来近似代替曲线段。参考资料来源:百度百科——导数苏州马小云2023-05-25 12:15:571
导数的定义是什么?
导数的定义:导数是函数的局部性质,一个函数在某一点的导数描述了这个函数在这一点附近的变化率。不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点可导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。导数是用来分析变化的。以一次函数为例,我们知道一次函数的图像是直线,在解析几何里讲了,一次函数刚好就是解析几何里面有斜率的直线,给一次函数求导,就会得到斜率。导数的计算计算已知函数的导函数可以按照导数的定义运用变化比值的极限来计算。在实际计算中,大部分常见的解析函数都可以看作是一些简单的函数的和、差、积、商或相互复合的结果。只要知道了这些简单函数的导函数,那么根据导数的求导法则,就可以推算出较为复杂的函数的导函数。真颛2023-05-25 12:15:571
导数的定义_导数的定义式
导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。以下是我分享给大家的关于导数的定义以及导数的定义式,希望能给大家带来帮助! 导数的定义: 如果函数f(x)在(a,b)中每一点处都可导,则称f(x)在(a,b)上可导,则可建立f(x)的导函数,简称导数,记为f"(x) 如果f(x)在(a,b)内可导,且在区间端点a处的右导数和端点b处的左导数都存在,则称f(x)在闭区间[a,b]上可导,f"(x)为区间[a,b]上的导函数,简称导数。 导数的定义式: 1、应用 如果一个函数f(x)在某个区间I上有f""(x)(即二阶导数)>0恒成立,那么对于区间I上的任意x,y,总有: f(x)+f(y)≥2f[(x+y)/2],如果总有f""(x)<0成立,那么上式的不等号反向。 2、意义 (1)斜线斜率变化的速度 (2)函数的凹凸性。 二阶导数是比较理论的、比较抽象的一个量,它不像一阶导数那样有明显的几何意义,因为它表示的是一阶导数的变化率。在图形上,它主要表现函数的凹凸性,直观的说,函数是向上突起的,还是向下突起的。 几何的直观解释:如果如果一个函数f(x)在某个区间I上有f""(x)(即二阶导数)>0恒成立,那么在区间I上f(x)的图象上的任意两点连出的一条线段,这两点之间的函数图象都在该线段的下方,反之在该线段的上方。 导数的分类: 一、基本函数的导函数 C"=0(C为常数) (x^n)"=nx^(n-1) (n∈R) (sinx)"=cosx (cosx)"=-sinx (e^x)"=e^x (a^x)"=(a^x)*lna(a>0且a≠1) [logax)]" = 1/x*(logae)(a>0且a≠1) [lnx]"= 1/x 二、和差积商函数的导函数 [f(x) + g(x)]" = f"(x) + g"(x) [f(x) - g(x)]" = f"(x) - g"(x) [f(x)g(x)]" = f"(x)g(x) + f(x)g"(x) [f(x)/g(x)]" = [f"(x)g(x) - f(x)g"(x)] / [g(x)^2] 三、复合函数的导函数 设 y=u(t) ,t=v(x),则 y"(x) = u"(t)v"(x) = u"[v(x)] v"(x) 例 :y = t^2 ,t = sinx ,则y"(x) = 2t * cosx = 2sinx*cosx = sin2x一般定义 设函数在点x。的某个邻域内有定义,当自变量在处取得增量Δx(点仍在该邻域内)时,相应地函数取得增量Δy;如果Δy与Δx之比当Δx→0时的极限存在,则称函数在点处可导,并称这个极限为函数在点x。处的导数,记为,即,也可记作f′(x)〡x=x.,或f′(x.)。 若将一点扩展成函数()在其定义域包含的某开区间内每一个点,那么函数()在开区间内可导,这时对于内每一个确定的值,都对应着()的一个确定的导数,如此一来每一个导数就构成了一个新的函数,这个函数称作原函数()的导函数,记作:"或者f′(x)。 导函数的定义表达式为: 值得注意的是,导数是一个数,是指函数()在点0处导函数的函数值。但通常也可以说导函数为导数,其区别仅在于一个点还是连续的点。 几何意义 1.代表函数上某一点在该点处切线的斜率。 如右图所示,设0为曲线上的一个定点,为曲线上的一个动点。当沿曲线逐渐趋向于点0时,并且割线0的极限位置0存在,则称0为曲线在0处的切线。 若曲线为一函数 = ()的图像,那么割线0的斜率为: 当0处的切线0,即0的极限位置存在时,此时,,则0的斜率tanα为: 上式与一般定义中的导数定义是完全相同,则"(0) = tanα,故导数的几何意义即曲线 = ()在点0(0,(0))处切线的斜率。 看过"导数的定义_导数的定义式"的人还关注了: 1. 高中数学常用导数公式 2. 高二数学导数知识点 3. 高中导数公式大全 4. 数学导数公式证明大全 5. 数学高考必考题型归纳善士六合2023-05-25 12:15:571
导数的定义是什么?
由基本的求导公式可以知道y=lnx,那么y"=1/x,如果由定义推导的话,(lnx)"=lim(dx->0) ln(x+dx) -lnx / dx=lim(dx->0) ln(1+dx /x) / dxdx/x趋于0,那么ln(1+dx /x)等价于dx /x所以lim(dx->0) ln(1+dx /x) / dx=lim(dx->0) (dx /x) / dx=1/x即y=lnx的导数是y"= 1/x对于可导的函数f(x),x↦f"(x)也是一个函数,称作f(x)的导函数(简称导数)。寻找已知的函数在某点的导数或其导函数的过程称为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也来源于极限的四则运算法则。反之,已知导函数也可以倒过来求原来的函数,即不定积分。不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。扩展资料:如果函数y=f(x)在开区间内每一点都可导,就称函数f(x)在区间内可导。这时函数y=f(x)对于区间内的每一个确定的x值,都对应着一个确定的导数值,这就构成一个新的函数,称这个函数为原来函数y=f(x)的导函数,记作y"、f"(x)、dy/dx或df(x)/dx,简称导数。导数是微积分的一个重要的支柱。牛顿及莱布尼茨对此做出了贡献。函数y=f(x)在x0点的导数f"(x0)的几何意义:表示函数曲线在点P0(x0,f(x0))处的切线的斜率(导数的几何意义是该函数曲线在这一点上的切线斜率)。由基本函数的和、差、积、商或相互复合构成的函数的导函数则可以通过函数的求导法则来推导。基本的求导法则如下:1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合(即①式)。2、两个函数的乘积的导函数:一导乘二+一乘二导(即②式)。3、两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方(即③式)。4、如果有复合函数,则用链式法则求导。参考资料:百度百科——导数meira2023-05-25 12:15:571
导数的定义
希望写的比较清楚LuckySXyd2023-05-25 12:15:575
导数的定义是什么?
24个基本求导公式可以分成三类。第一类是导数的定义公式,即差商的极限。再用这个公式推出17个基本初等函数的求导公式,这就是第二类。最后一类是导数的四则运算法则和复合函数的导数法则以及反函数的导数法则,利用这些公式就可以推出所有可导的初等函数的导数。1、f"(x)=lim(h->0)[(f(x+h)-f(x))/h].即函数差与自变量差的商在自变量差趋于0时的极限,就是导数的定义。兄敏其它所有基本求导公式都是由这个公式引出来的。包括幂函数、指数函数、对数函数、三角函数和反三角函数。2、f(x)=a的导数,f"(x)=0,a为常数.即常数的导数等于0;这个导数其实是一个塌宽特殊的幂函数的导数。就是当幂函羡衫枝数的指数等于1的时候的导数。可以根据幂函数的求导公式求得。3、f(x)=x^n的导数,f"(x)=nx^(n-1),n为正整数.即系数为1的单项式的导数,以指数为系数,指数减1为指数.这是幂函数的指数为正整数的求导公式。黑桃花2023-05-25 12:15:571
导数的定义是什么?
如果方程F(x,y)=0能确定y是x的函数,那么称这种方式表示的函数是隐函数。有些隐函数可以表示成显函数,叫做隐函数显化,但也有些隐函数是不能显化的,比如e^y+xy=1。若欲求z = f(x,y)的导数,那么可以将原隐函数通过移项化为f(x,y,z) = 0的形式,然后通过(式中F"y,F"x分别表示y和x对z的偏导数)来求解。扩展资料:对于一个已经确定存在且可导的情况下,我们可以用复合函数求导的链式法则来进行求导。在方程左右两边都对x进行求导,由于y其实是x的一个函数,所以可以直接得到带有 y" 的一个方程,然后化简得到 y" 的表达式。适合原方程的一个点的邻近范围内,在函数F(x,y)连续可微的前提下,什么样的附加条件能使得原方程确定一个惟一的函数y=(x),不仅单值连续,而且连续可微,其导数由完全确定。隐函数存在定理就用于断定就是这样的一个条件,不仅必要,而且充分。苏州马小云2023-05-25 12:15:571
怎样理解导数的定义?
24个基本求导公式如下:1、C"=0(C为常数)。2、(xAn)"=nxA(n——1)。3、(sinx)"=cosx。4、(cosx)"=——sinx。5、(Inx)"=1/x。6、(enx)"=enx。7、 (logaX)"=1/(xlna)。8、 (anx)"=(anx)*ina。9、(u±V)"=u"±V"。10、 (uv)"=u"v+uv"。11、 (u/v)"=(u"v——uv")/v。12、 f(g(x))"=(f(u))"(g(x))"u=g(x)。导函数:如果函数f(x)在(a,b)中每一点处都可导,则称f(x)在(a,b)上可导,则可建立f(x)的导函数,简称导数,记为f"(x)。如果f(x)在(a,b)内可导,且在区间端点a处的右导数和端点b处的左导数都存在,则称f(x)在闭区间【a,b】上可导,f"(x)为区间【a,b】上的导函数,简称导数。条件:如果一个函数的定义域为全体实数,即函数在上都有定义,那么该函数是在定义域上处处可导是否定的。函数在定义域中一点可导需要一定的条件是:函数在该点的左右两侧导数都存在且相等。这实际上是按照极限存在的一个充要条件(极限存在它的左右极限存在且相等)推导而来。NerveM 2023-05-22 18:14:281
导数的定义是什么
问题一:导数的定义是怎么来的 你看看这个吧:baike.baidu/...jFha3a 问题二:通俗的解释下导数的定义 20分 导数的定义就是“差商的极限”: dy/dx = lim(△x->0) △y/△x = lim(△x->0) [f(x+△x)-f(x)]/△x 也即函数的瞬时变化率! 问题三:怎么理解导数的概念? 导数是微积分中的重要概念。编辑本段 导数定义为:当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。在一个函数存在导数时,称这个函数可导或者可微分。可导的函数一定连续。不连续的函数一定不可导。 导数另一个定义:当x=x0时,f‘(x0)是一个确定的数。这样,当x变化时,f"(x)便是x的一个函数,我们称他为f(x)的导函数(derivative function)(简称导数)。 y=f(x)的导数有时也记作y",即 f"(x)=y"=lim�Sx→0[f(x+�Sx)-f(x)]/�Sx 物理学、几何学、经济学等学科中的一些重要概念都可以用导数来表示。如,导数可以表示运动物体的瞬时速度和加速度、可以表示曲线在一点的斜率、还可以表示经济学中的边际和弹性。 以上说的经典导数定义可以认为是反映局部欧氏空间的函数变化。 为了研究更一般的流形上的向量丛截面(比如切向量场)的变化,导数的概念被推广为所谓的“联络”。 有了联络,人们就可以研究大范围的几何问题,这是微分几何与物理中最重要的基础概念之一。 注意:1.f"(x) 问题四:这到底是什么意思!导数 20分 导数在微积分中也算是简单了,基本原理还是很容易理解的,只要学过直线方程就行 初学者不用太过理解。学深一点就有严格定义,涉及许多极限运算,更强调理解能力 先学懂导数的运算,俯数也有许多公式的,有兴趣就再问我吧 > 问题五:怎么理解导数的概念? 导数是微积分中的重要概念。编辑本段 导数定义为:当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。在一个函数存在导数时,称这个函数可导或者可微分。可导的函数一定连续。不连续的函数一定不可导。 导数另一个定义:当x=x0时,f‘(x0)是一个确定的数。这样,当x变化时,f"(x)便是x的一个函数,我们称他为f(x)的导函数(derivative function)(简称导数)。 y=f(x)的导数有时也记作y",即 f"(x)=y"=lim�Sx→0[f(x+�Sx)-f(x)]/�Sx 物理学、几何学、经济学等学科中的一些重要概念都可以用导数来表示。如,导数可以表示运动物体的瞬时速度和加速度、可以表示曲线在一点的斜率、还可以表示经济学中的边际和弹性。 以上说的经典导数定义可以认为是反映局部欧氏空间的函数变化。 为了研究更一般的流形上的向量丛截面(比如切向量场)的变化,导数的概念被推广为所谓的“联络”。 有了联络,人们就可以研究大范围的几何问题,这是微分几何与物理中最重要的基础概念之一。 注意:1.f"(x) 问题六:导数的导数是什么意思?什么含义?什么作用?(具体点) 40分 含义:导数的本意是“差分”,英文符号D. 导数的数学含义是两个变量的变化量之比;几何含义是曲线上点的斜率。 作用:1. 判断函数的单调区间:d>0,单调递增;d0 ,极小值点; 同时二阶导数meira2023-05-22 18:14:271
导数的定义是什么?怎样求导数?
高数书上有明确的定义和推导过程瑞瑞爱吃桃2023-05-22 18:14:272
导数的定义是什么?
导数是当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f"(x0)或df(x0)/dx。导数是函数的局部性质。导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。扩展资料:导数的求导法则:1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合。2、两个函数的乘积的导函数:一导乘二+一乘二导。3、两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方。4、如果有复合函数,则用链式法则求导。参考资料来源:百度百科-导数左迁2023-05-22 18:14:251
二阶导数的意义 什么是二阶导数?二阶导数的定义及用法和它的实际意义(要详细的解答!)
简单来说,一阶导数是自变量的变化率,二阶导数就是一阶导数的变化率,也就是一阶导数变化率的变化率.连续函数的一阶导数就是相应的切线斜率.一阶导数大于0,则递增;一阶倒数小于0,则递减;一阶导数等于0,则不增不减.而二阶导数可以反映图象的凹凸.二阶导数大于0,图象为凹;二阶导数小于0,图象为凸;二阶导数等于0,不凹不凸.结合一阶、二阶导数可以求函数的极值.当一阶导数等于零,而二阶导数大于零时,为极小值点;当一阶导数等于零,而二阶导数小于零时,为极大值点;当一阶导数、二阶导数都等于零时,为驻点.拌三丝2023-05-20 17:38:101
二阶导数的定义是什么?
dy方比dx的平方理解:dy/dx表示1阶导数;d²y/dx²表示二阶导数。dy就是在y方向趋于零的线段,dx就是在x方向趋于零的线段。d²y/d²x,只是表示二阶导数,相当于dy的导数,再对x求导。二阶导数是一阶导数的导数,从原理上,它表示一阶导数的变化率;从图形上看,它反映的是函数图像的凹凸性。导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。kikcik2023-05-20 17:38:091