- mlhxueli
-
双曲线的渐近线方程是什么?
双曲线的渐近线方程为:y = ±(1/a)x
双曲线的渐近线方程是什么?
双曲线渐近线方程公式:方程:y=±(b/a)x(当焦点在x轴上),y=±(a/b)x (焦点在y轴上)或令双曲线标准方程 x^2/a^2-y^2/b^2 =1中的1为零即得渐近线方程。双曲线x^2/a^2-y^2/b^2 =1的简单几何性质:1、范围:|x|≥a,y∈R。2、对称性:双曲线的对称性与椭圆完全相同,关于x轴、y轴及原点中心对称。3、顶点:两个顶点A1(-a,0),A2(a,0),两顶点间的线段为实轴,长为2a,虚轴长为2b,且c^2=a^2+b^2,与椭圆不同。渐近线特点:无限接近,但不可以相交。分为垂直渐近线、水平渐近线和斜渐近线,当曲线上一点M沿曲线无限远离原点时,如果M到一条直线的距离无限趋近于零,那么这条直线称为这条曲线的渐近线。需要注意的是:并不是所有的曲线都有渐近线,渐近线反映了某些曲线在无限延伸时的变化情况。根据渐近线的位置,可将渐近线分为三类:水平渐近线、垂直渐近线、斜渐近线。y=k/x(k≠0)是反比例函数,其图象关于原点对称,x=0,y=0为其渐近线方程。当焦点在x轴上时 双曲线渐近线的方程是y=[+(-)b/a]x。当焦点在y轴上时 双曲线渐近线的方程是y=[+(-)a/b]x。2023-07-16 22:13:081
双曲线的渐近线方程公式是什么?
双曲线的渐近线公式:y=±(b/a)x。双曲线渐近线方程,是一种几何图形的算法,这种主要解决实际中建筑物在建筑的时候的一些数据的处理。渐近线的主要特点:无限接近,但不可以相交。分为铅直渐近线、水平渐近线和斜渐近线。是一种根据实际的生活需求研究出的一种算法。一般的,双曲线(希腊语“u1f51περβολu03ae”,字面意思是“超过”或“超出”)是定义为平面交截直角圆锥面的两半的一类圆锥曲线。它还可以定义为与两个固定的点(叫做焦点)的距离差是常数的点的轨迹。这个固定的距离差是a的两倍,这里的a是从双曲线的中心到双曲线最近的分支的顶点的距离。a还叫做双曲线的实半轴。几何性质(1)范围:|x|≥a,y∈R。(2)对称性:双曲线的对称性与椭圆完全相同,关于x轴、y轴及原点中心对称。(3)顶点:两个顶点A1(-a,0),A2(a,0),两顶点间的线段为实轴,长为2a,虚轴长为2b,且c2=a2+b2。与椭圆不同。(4)渐近线:双曲线特有的性质,方程y=±(b/a)x(当焦点在x轴上),y=±(a/b)x (焦点在y轴上)或令双曲线。2023-07-16 22:13:241
已知双曲线方程,如何求渐近线?
双曲线的渐近线取决于a和b的比值,当焦点在x轴上时,双曲线渐近线的方程是y=±(b/a)x 当焦点在y轴上时,双曲线渐近线的方程是y=(±a/b)x 所以给出了双曲线的方程就可以唯一确定渐近线。所以已知双曲线是求得渐近线的充分条件。而只给出渐近线的方程不能求双曲线的方程。因为无法根据渐近线方程判断出焦点在x轴或y轴,就无法得知渐近线的斜率是(b/a)还是(a/b),所以只给出渐近线的方程不能求双曲线的方程。故已知双曲线是求得渐近线的非必要条件。综上所述,已知双曲线是求得渐近线的充分非必要条件。如果觉得有帮助请采纳为最佳答案哦~2023-07-16 22:15:241
双曲线的渐近线怎么求?
利用点到直线距离公式焦点(c,0)取一条渐近线y=b/ax变成一般式bx-ay=0距离=|bc-a*0|/√(a^2+b^2)=bc/c=b距离就是半虚轴=b扩展资料:双曲线的每个分支具有从双曲线的中心进一步延伸的更直(较低曲率)的两个臂。对角线对面的手臂,一个从每个分支,倾向于一个共同的线。所以有两个渐近线,其交点位于双曲线的对称中心,这可以被认为是每个分支反射以形成另一个分支的镜像点。在曲线{displaystylef(x)=1/x}f(x)=1/x的情况下,渐近线是两个坐标轴。2023-07-16 22:15:401
怎么判断一条直线是不是双曲线的渐近线
垂直渐近线:一般的垂直线是 x=k,如果当 x 趋近于某数 b 时,y 会趋近于无限大或负无限大时,那 x=b 就是垂直渐近线,一般来说大部份是让分母为 0 时。并不是所有曲线都有渐近线,渐近线反映了某些曲线在无限延伸时的变化情况。根据渐近线的位置,可将渐近线分为三类:水平渐近线、垂直渐近线、斜渐近线。扩展资料:与x^2/a^2-y^2/b^2=1渐近线相同的双曲线的方程,有无数条(且焦点可能在x轴或y轴上);与x^2/a^2-y^2/b^2=1渐近线相同的双曲线可设为x^2/a^2-y^2/b^2=N,进行求解。因为双曲线上的点M到直线的距离MQ<MN;当MN无限趋近于0时,MQ也无限趋近于0。所以按照定义,直线是该双曲线的渐近线。同理,双曲线也是该直线的渐近线。2023-07-16 22:16:041
双曲线的渐近线方程怎么求
2023-07-16 22:16:192
已知双曲线的渐近线如何设方程?
x2/a2-y2/2a2=正负12023-07-16 22:16:583
双曲线渐近线的夹角
双曲线的2条渐近线的夹角的正切=b/a,所以先求出这个夹角的正切或者:你将图象画出来,之后看看一条渐进线与某一条坐标轴的夹角,2倍就可以了,注意不要大于180度,这样问题你就会懂了!2023-07-16 22:17:272
双曲线有几条渐近线?
对于双曲线,a为原点到与x轴交点,c为原点到与焦点的距离,a^2+b^2=c^2,渐近线与x轴,还有过双曲线与x轴交点,并垂直于x轴的直线,组成的一个直角三角形的条边分别对应a、b、c。把平面内与两个定点F1,F2的距离的差的绝对值等于一个常数(常数为2a,小于|F1F2|)的轨迹称为双曲线;平面内到两定点的距离差的绝对值为定长的点的轨迹叫做双曲线),即:│|PF1|-|PF2│|=2a。取值范围│x│≥a(焦点在x轴上)或者│y│≥a(焦点在y轴上)。对称性关于坐标轴和原点对称,其中关于原点成中心对称。顶点A(-a,0),A"(a,0)。同时AA"叫做双曲线的实轴且│AA"│=2a。B(0,-b),B"(0,b)。同时BB"叫做双曲线的虚轴且│BB"│=2b。F1(-c,0)或(0,-c),F2(c,0)或(0,c)。F1为双曲线的左焦点,F2为双曲线的右焦点且│F1F2│=2c对实轴、虚轴、焦点有:a2+b2=c22023-07-16 22:17:471
双曲线渐近线方程是什么?
渐近线方程就是把双曲线化成标准形式,然后将方程右边的一改为零,ok。这是求法,至于它的定义可以参考书本了2023-07-16 22:18:063
已知双曲线的渐近线求斜率
那么简单的问题,由渐进线方程可得b/a=1/2,推出c平方/a平方=5/4,所以离心率为根号5/2,给我评好啊2023-07-16 22:18:181
双曲线的两条渐近线夹角怎么求。比如这个
利用两直线的夹角公式计算2023-07-16 22:18:301
如果两条双曲线 有共同渐近线 那说明了什么?
形状相同2023-07-16 22:18:402
双曲线顶点到渐近线的距离,有公式吗?
以焦点在x轴的双曲线为例以一条渐近线y=bx/a即x/a-y/b=0 右顶点为研究对象 顶点到渐近线的距离为d=a-bu02c62/a(距离公式必修二)顶点到准线距的准线直接用坐标相减为d=a-bu02c62/a附准线方程为x=bu02c62/a2023-07-16 22:18:491
双曲线中怎么求双曲线上的点到渐进线的距离
先求出双曲线,再用点到真线的距离公式求距离2023-07-16 22:19:032
双曲线的渐近线方程?
双曲线渐近线方程,是一种几何图形的算法,这种主要解决实际中建筑物在建筑的时候的一些数据的处理。双曲线的主要特点:无限接近,但不可以相交。分为铅直渐近线、水平渐近线和斜渐近线。是一种根据实际的生活需求研究出的一种算法。对于x^2/a^2 - y^2/b^2 = 1 渐进线为y=+- b/a反之y^2/a^2 - x^2/b^2 = 1 渐进线为y=+- a/b2023-07-16 22:19:171
双曲线的渐近线永远交于原点吗
对2023-07-16 22:20:183
双曲线渐近线方程,准线
准线:焦点在x轴上准线的方程就是x=土a^2/c焦点在y轴上准线方程是Y=土a^2/c都是土a^2/c 离心率:c/a 渐近线:焦点在X轴上:y=士b/ax;焦点在y轴上:y=士a/bx谢谢采纳2023-07-16 22:21:021
如何求双曲线渐近线方程?
如何求双曲线渐近线方程?求双曲线渐近线的方程可以通过将双曲线的方程展开为幂级数的形式,再对其进行求极限来解决。给出一般双曲线的方程:$$frac{x^2}{a^2}-frac{y^2}{b^2}=1$$将上式展开为幂级数的形式,$$frac{x^2}{a^2}=1 frac{y^2}{b^2}$$之后,将右侧的y作用变量求极限,得到:$$lim_{y o infty}frac{1}{2}left(frac{2x}{a^2} frac{y^2}{b^2} ight)=1$$故双曲线渐近线方程为:$$frac{2x}{a^2} frac{y^2}{b^2}=2$$2023-07-16 22:21:142
已知双曲线,渐近线求法
如果焦点在x轴上y=+1b/ax如果在y轴y=+-a/bx2023-07-16 22:21:582
两双曲线有相同的渐近线是什么意思?
斜率相同2023-07-16 22:22:143
双曲线的渐近线方程公式是?
当焦点在x轴上双曲线渐近线的方程是y=[+(-)b/a]x 当焦点在y轴双曲线渐近线的方程是y=[+(-)a/b]x2023-07-16 22:22:522
双曲线渐近线公式是什么?
y=±(b/a)x(当焦点在x轴上),y=±(a/b)x (焦点在y轴上)(a:双曲线的实半轴,b是虚半轴。长)几何性质:(1)范围:|x|≥a,y∈R。(2)对称性:双曲线的对称性与椭圆完全相同,关于x轴、y轴及原点中心对称。(3)顶点:两个顶点A1(-a,0),A2(a,0),两顶点间的线段为实轴,长为2a,虚轴长为2b,且c2=a2+b2。与椭圆不同。(4)渐近线:双曲线特有的性质,方程y=±(b/a)x(当焦点在x轴上),y=±(a/b)x (焦点在y轴上)或令双曲线。渐近线特点:无限接近,但不可以相交。分为垂直渐近线、水平渐近线和斜渐近线。当曲线上一点M沿曲线无限远离原点时,如果M到一条直线的距离无限趋近于零,那么这条直线称为这条曲线的渐近线。需要注意的是:并不是所有的曲线都有渐近线,渐近线反映了某些曲线在无限延伸时的变化情况。根据渐近线的位置,可将渐近线分为三类:水平渐近线、垂直渐近线、斜渐近线。y=k/x(k≠0)是反比例函数,其图象关于原点对称,x=0,y=0为其渐近线方程。当焦点在x轴上时 双曲线渐近线的方程是y=[+(-)b/a]x。当焦点在y轴上时 双曲线渐近线的方程是y=[+(-)a/b]x。2023-07-16 22:23:411
双曲线渐近线是什么
渐近线定义为如果曲线上的一点沿着趋于无穷远时,该点与某条直线的距离趋于零,则称此条直线为曲线的渐近线。双曲线渐近线方程,是一种几何图形的算法,这种主要解决实际中建筑物在建筑的时候的一些数据的处理。2023-07-16 22:25:221
为什么双曲线的渐近线是双曲线呢?
双曲线的渐近线取决于a和b的比值,当焦点在x轴上时,双曲线渐近线的方程是y=±(b/a)x 当焦点在y轴上时,双曲线渐近线的方程是y=(±a/b)x 所以给出了双曲线的方程就可以唯一确定渐近线。所以已知双曲线是求得渐近线的充分条件。而只给出渐近线的方程不能求双曲线的方程。因为无法根据渐近线方程判断出焦点在x轴或y轴,就无法得知渐近线的斜率是(b/a)还是(a/b),所以只给出渐近线的方程不能求双曲线的方程。故已知双曲线是求得渐近线的非必要条件。综上所述,已知双曲线是求得渐近线的充分非必要条件。如果觉得有帮助请采纳为最佳答案哦~2023-07-16 22:26:161
双曲线有哪几条渐近线?在X, Y两个坐标轴上的分别怎样表示?双曲线有几条渐近线?在X, Y两个
双曲线 x^2/a^2 - y^2/b^2 = 1 有两条条渐近线 y = ±(b/a)x双曲线 xy = c 有两条条渐近线是坐标轴, x = 0, y = 02023-07-16 22:26:431
双曲线渐近线的方程是什么?
双曲线渐近线方程公式:方程:y=±(b/a)x(当焦点在x轴上),y=±(a/b)x (焦点在y轴上)或令双曲线标准方程 x^2/a^2-y^2/b^2 =1中的1为零即得渐近线方程。双曲线x^2/a^2-y^2/b^2 =1的简单几何性质:1、范围:|x|≥a,y∈R。2、对称性:双曲线的对称性与椭圆完全相同,关于x轴、y轴及原点中心对称。3、顶点:两个顶点A1(-a,0),A2(a,0),两顶点间的线段为实轴,长为2a,虚轴长为2b,且c^2=a^2+b^2,与椭圆不同。渐近线特点:无限接近,但不可以相交。分为垂直渐近线、水平渐近线和斜渐近线,当曲线上一点M沿曲线无限远离原点时,如果M到一条直线的距离无限趋近于零,那么这条直线称为这条曲线的渐近线。需要注意的是:并不是所有的曲线都有渐近线,渐近线反映了某些曲线在无限延伸时的变化情况。根据渐近线的位置,可将渐近线分为三类:水平渐近线、垂直渐近线、斜渐近线。y=k/x(k≠0)是反比例函数,其图象关于原点对称,x=0,y=0为其渐近线方程。当焦点在x轴上时 双曲线渐近线的方程是y=[+(-)b/a]x。当焦点在y轴上时 双曲线渐近线的方程是y=[+(-)a/b]x。2023-07-16 22:27:181
双曲线的渐近线方程式
双曲线的渐近线方程式是什么?尚不了解的考生看过来,下面由我为你精心准备了“双曲线的渐近线方程式”,持续关注本站将可以持续获取更多的考试资讯! 双曲线渐近线的方程式 渐近线定义为如果曲线上的一点沿着趋于无穷远时,该点与某条zhi直线的距离趋于零,则称此条直线为曲线的渐近线。双曲线渐近线方程,是一种几何图形的算法,这种主要解决实际中建筑物在建筑的时候的一些数据的处理。 双曲线渐近线方程,是一种几何图形的算法,这种主要解决实际中建筑物在建筑的时候的一些数据的处理。双曲线的主要特点:无限接近,但不可以相交。分为铅直渐近线、水平渐近线和斜渐近线。是一种根据实际的生活需求研究出的一种算法。 y=±(b/a)x(当焦点在x轴上),y=±(a/b)x (焦点在y轴上) (1)范围:|x|≥a,y∈R. (2)对称性:双曲线的对称性与椭圆完全相同,关于x轴、y轴及原点中心对称. (3)顶点:两个顶点A1(-a,0),A2(a,0),两顶点间的线段为实轴,长为2a,虚轴长为2b,且c2=a2+b2.与椭圆不同. (4)渐近线:双曲线特有的性质,方程y=±(b/a)x(当焦点在x轴上),y=±(a/b)x (焦点在y轴上)或令双曲线 x^2/a^2-y^2/b^2 =1中的1为零即得渐近线方程. (5)离心率e>1,随着e的增大,双曲线张口逐渐变得开阔. (6)等轴双曲线(等边双曲线):x^2-y^2=C其中C≠0,它的离心率e=c/a=√2 (7)共轭双曲线:方程 x^2/a^2-y^2/b^2=1与x^2/a^2-y^2/b^2=-1 表示的双曲线共轭,有共同的渐近线和相等的焦距,但需注重方程的表达形式.2023-07-16 22:27:311
双曲线的渐近线公式是什么?
双曲线渐近线方程公式:方程:y=±(b/a)x(当焦点在x轴上),y=±(a/b)x (焦点在y轴上)或令双曲线标准方程 x^2/a^2-y^2/b^2 =1中的1为零即得渐近线方程。扩展资料:渐近线特点:无限接近,但不可以相交。分为垂直渐近线、水平渐近线和斜渐近线。当曲线上一点M沿曲线无限远离原点时,如果M到一条直线的距离无限趋近于零,那么这条直线称为这条曲线的渐近线。需要注意的是:并不是所有的曲线都有渐近线,渐近线反映了某些曲线在无限延伸时的变化情况。根据渐近线的位置,可将渐近线分为三类:水平渐近线、垂直渐近线、斜渐近线。y=k/x(k≠0)是反比例函数,其图象关于原点对称,x=0,y=0为其渐近线方程当焦点在x轴上时 双曲线渐近线的方程是y=[+(-)b/a]x当焦点在y轴上时 双曲线渐近线的方程是y=[+(-)a/b]x参考资料:百度百科-双曲线渐近线方程2023-07-16 22:28:361
双曲线渐近线方程公式是什么?
双曲线渐近线方程公式:方程:y=±(b/a)x(当焦点在x轴上),y=±(a/b)x (焦点在y轴上)或令双曲线标准方程 x^2/a^2-y^2/b^2 =1中的1为零即得渐近线方程。双曲线x^2/a^2-y^2/b^2 =1的简单几何性质:1、范围:|x|≥a,y∈R。2、对称性:双曲线的对称性与椭圆完全相同,关于x轴、y轴及原点中心对称。3、顶点:两个顶点A1(-a,0),A2(a,0),两顶点间的线段为实轴,长为2a,虚轴长为2b,且c^2=a^2+b^2,与椭圆不同。渐近线特点:无限接近,但不可以相交。分为垂直渐近线、水平渐近线和斜渐近线,当曲线上一点M沿曲线无限远离原点时,如果M到一条直线的距离无限趋近于零,那么这条直线称为这条曲线的渐近线。需要注意的是:并不是所有的曲线都有渐近线,渐近线反映了某些曲线在无限延伸时的变化情况。根据渐近线的位置,可将渐近线分为三类:水平渐近线、垂直渐近线、斜渐近线。y=k/x(k≠0)是反比例函数,其图象关于原点对称,x=0,y=0为其渐近线方程。当焦点在x轴上时 双曲线渐近线的方程是y=[+(-)b/a]x。当焦点在y轴上时 双曲线渐近线的方程是y=[+(-)a/b]x。2023-07-16 22:29:271
已知双曲线的渐近线,求双曲线的方程。
双曲线的渐近线取决于a和b的比值,当焦点在x轴上时,双曲线渐近线的方程是y=±(b/a)x 当焦点在y轴上时,双曲线渐近线的方程是y=(±a/b)x 所以给出了双曲线的方程就可以唯一确定渐近线。所以已知双曲线是求得渐近线的充分条件。而只给出渐近线的方程不能求双曲线的方程。因为无法根据渐近线方程判断出焦点在x轴或y轴,就无法得知渐近线的斜率是(b/a)还是(a/b),所以只给出渐近线的方程不能求双曲线的方程。故已知双曲线是求得渐近线的非必要条件。综上所述,已知双曲线是求得渐近线的充分非必要条件。如果觉得有帮助请采纳为最佳答案哦~2023-07-16 22:29:511
双曲线的三种渐近线的关系是什么?
三种渐近线公式是:1、水平渐近线:x→+∞或-∞时,y→c,y=c就是f(x)的水平渐近线;比如y=0是y=e^x的水平渐近线。2、铅直渐近线:x→a时,y→+∞或-∞,x=a就是f(x)的铅直平渐近线;比如x=0是y=1/x的铅直渐近线。3、斜渐近线:当x→∞时,y/x极限为某一常数k,则y=kx+b为斜渐近线。相关结论1.与x^2/a^2-y^2/b^2=1渐近线相同的双曲线的方程,有无数条(且焦点可能在x轴或y轴上)。2.与x^2/a^2-y^2/b^2=1渐近线相同的双曲线可设为x^2/a^2-y^2/b^2=N,进行求解。3.x^2/a^2-y^2/b^2=1的渐近线方程为b/a*x=y。4.y^2/a^2-x^2/b^2=1的渐近线方程为 a/b*x=y。2023-07-16 22:30:411
双曲线的焦点到渐近线的距离为什么是b
简单计算一下,详情如图所示2023-07-16 22:30:502
双曲线的渐近线公式是如何推出来的?
双曲线:x^2/a^2 - y^2/b^2 = 1方程两边同时除以x^2得:1/a^2 - y^2/(b^2*x^2) = 1/x^2两边同时乘以b^2并移项:y^2/x^2 = b^2/a^2 - b^2/x^2当x,y都远离坐标原点时, b^2/x^2趋向于0,则(y/x)^2趋向于(b/a)^2渐近线斜率就是b/a或-b/a2023-07-16 22:31:141
双曲线顶点到渐近线的距离公式
双曲线顶点到渐近线的距离公式:d=a-bu02c62/a。渐近线是指:曲线上一点M沿曲线无限远离原点或无限接近间断点时,如果M到一条直线的距离无限趋近于零,那么这条直线称为这条曲线的渐近线。可分为垂直渐近线、水平渐近线和斜渐近线。一般的,双曲线是定义为平面交截直角圆锥面的两半的一类圆锥曲线。它还可以定义为与两个固定的点(叫做焦点)的距离差是常数的点的轨迹。这个固定的距离差是a的两倍,这里的a是从双曲线的中心到双曲线最近的分支的顶点的距离。a还叫做双曲线的实半轴。焦点位于贯穿轴上,它们的中间点叫做中心,中心一般位于原点处。2023-07-16 22:31:311
双曲线的渐进线一定垂直吗
等轴双曲线的两条渐近线互相垂直垂直渐近线:一般的垂直线是 x=k,如果当 x 趋近于某数 b 时,y 会趋近于无限大或负无限大时,那 x=b 就是垂直渐近线,一般来说大部份是让分母为 0 时2023-07-16 22:31:381
双曲线有几条渐近线?
对于双曲线,a为原点到与x轴交点,c为原点到与焦点的距离,a^2+b^2=c^2,渐近线与x轴,还有过双曲线与x轴交点,并垂直于x轴的直线,组成的一个直角三角形的条边分别对应a、b、c。把平面内与两个定点F1,F2的距离的差的绝对值等于一个常数(常数为2a,小于|F1F2|)的轨迹称为双曲线;平面内到两定点的距离差的绝对值为定长的点的轨迹叫做双曲线),即:│|PF1|-|PF2│|=2a。取值范围│x│≥a(焦点在x轴上)或者│y│≥a(焦点在y轴上)。对称性关于坐标轴和原点对称,其中关于原点成中心对称。顶点A(-a,0),A"(a,0)。同时AA"叫做双曲线的实轴且│AA"│=2a。B(0,-b),B"(0,b)。同时BB"叫做双曲线的虚轴且│BB"│=2b。F1(-c,0)或(0,-c),F2(c,0)或(0,c)。F1为双曲线的左焦点,F2为双曲线的右焦点且│F1F2│=2c对实轴、虚轴、焦点有:a2+b2=c22023-07-16 22:31:441
双曲线有渐近线吗?
垂直渐近线:一般的垂直线是 x=k,如果当 x 趋近于某数 b 时,y 会趋近于无限大或负无限大时,那 x=b 就是垂直渐近线,一般来说大部份是让分母为 0 时。并不是所有曲线都有渐近线,渐近线反映了某些曲线在无限延伸时的变化情况。根据渐近线的位置,可将渐近线分为三类:水平渐近线、垂直渐近线、斜渐近线。扩展资料:与x^2/a^2-y^2/b^2=1渐近线相同的双曲线的方程,有无数条(且焦点可能在x轴或y轴上);与x^2/a^2-y^2/b^2=1渐近线相同的双曲线可设为x^2/a^2-y^2/b^2=N,进行求解。因为双曲线上的点M到直线的距离MQ<MN;当MN无限趋近于0时,MQ也无限趋近于0。所以按照定义,直线是该双曲线的渐近线。同理,双曲线也是该直线的渐近线。2023-07-16 22:32:101
双曲线渐近线方程的几何性质
1.双曲线 x^2/a^2-y^2/b^2 =1的简单几何性质(1)范围:|x|≥a,y∈R.(2)对称性:双曲线的对称性与椭圆完全相同,关于x轴、y轴及原点中心对称.(3)顶点:两个顶点A1(-a,0),A2(a,0),两顶点间的线段为实轴,长为2a,虚轴长为2b,且c^2=a^2+b^2.与椭圆不同.(4)渐近线:双曲线特有的性质方程:y=±(b/a)x(当焦点在x轴上),y=±(a/b)x (焦点在y轴上)或令双曲线标准方程 x^2/a^2-y^2/b^2 =1中的1为零即得渐近线方程.(5)离心率e>1,随着e的增大,双曲线张口逐渐变得开阔.(6)等轴双曲线(等边双曲线):x2-y2=a2(a≠0),它的渐近线方程为y=±b/a*x,离心率e=c/a=√2 (7)共轭双曲线:方程 x^2/a^2-y^2/b^2=1与x^2/a^2-y^2/b^2=-1 表示的双曲线共轭,有共同的渐近线和相等的焦距,但需注重方程的表达形式.2023-07-16 22:32:531
如何求双曲线的渐近线方程?
如何求双曲线的渐近线方程?双曲线的渐近线方程:设双曲线为:$frac{x^2}{a^2}-frac{y^2}{b^2}=1$ 则其渐近线方程为: $frac{x^2}{a^2} frac{y^2}{b^2}=1$2023-07-16 22:33:062
双曲线为什么有渐近线?
这是双曲线一个很有用的性质,熟练应用可以把一些问题化繁为简。请看下面两例。例 1. 如下图,已知双曲线 ,一条直线分别与双曲线及双曲2023-07-16 22:33:192
双曲线的渐近线公式是如何推出来的?
当焦点在x轴上时双曲线渐近线的方程是y=[+(-)b/a]x当焦点在y轴上时双曲线渐近线的方程是y=[+(-)a/b]x2023-07-16 22:33:282
双曲线和渐近线的关系,已知双曲线是求得渐近线的充分非必要条件?
双曲线的渐近线取决于a和b的比值,当焦点在x轴上时,双曲线渐近线的方程是y=±(b/a)x 当焦点在y轴上时,双曲线渐近线的方程是y=(±a/b)x 所以给出了双曲线的方程就可以唯一确定渐近线。所以已知双曲线是求得渐近线的充分条件。而只给出渐近线的方程不能求双曲线的方程。因为无法根据渐近线方程判断出焦点在x轴或y轴,就无法得知渐近线的斜率是(b/a)还是(a/b),所以只给出渐近线的方程不能求双曲线的方程。故已知双曲线是求得渐近线的非必要条件。综上所述,已知双曲线是求得渐近线的充分非必要条件。如果觉得有帮助请采纳为最佳答案哦~2023-07-16 22:33:371
双曲线的渐近线公式
双曲线的顶点到渐近线距离为2,焦点到渐近线距离为6,则双曲线的e=c/a=6/2=32023-07-16 22:35:011
双曲线渐近线推导
只要把标准方程中右边的1改为0,然后整理,开方可得。例求x^2/9-y^2/4=1,则由x^2/9-y^2/4=0,即y^2/4=x^2/9,得y=正负(2/3)x就是渐近线方程。2023-07-16 22:35:102
焦点在y轴上的双曲线的渐近线方程是什么?
对于焦点在y轴上的双曲线,它的渐近线有两条,一条是平行于x轴的水平渐近线,另一条是平行于y轴的垂直渐近线。1. 水平渐近线方程: 对于焦点在y轴上的双曲线,它的水平渐近线的方程是y = ±a,其中a是双曲线的长轴的一半。2. 垂直渐近线方程: 对于焦点在y轴上的双曲线,它的垂直渐近线的方程是x = 0,即y轴本身。需要注意的是,这些渐近线只是双曲线的近似特性,实际上,双曲线在其它部分可能会有曲线的部分。渐近线是在无限远处与双曲线趋于无限接近的直线。另外,如果你有特定双曲线方程的参数,如双曲线的焦点、长轴的长度等,我可以根据具体参数给出更准确的渐近线方程。2023-07-16 22:36:024
月落乌啼霜满天,下一句是什么?
意思是:月亮已落下乌鸦啼叫寒气满天,江边枫树与船上渔火,难抵我独自傍愁而眠。姑苏城外那寂寞清静寒山古寺,半夜里敲响的钟声传到了我乘坐的客船。【出处】《枫桥夜泊》——唐代:张继月落乌啼霜满天,江枫渔火对愁眠。姑苏城外寒山寺,夜半钟声到客船。扩展资料1、《枫桥夜泊》创作背景天宝十四年一月爆发了安史之乱。因为当时江南政局比较安定,所以不少文士纷纷逃到今江苏、浙江一带避乱,其中也包括张继。一个秋天的夜晚,诗人泊舟苏州城外的枫桥。江南水乡秋夜幽美的景色,吸引着这位怀着旅愁的客子,使写下了这首意境清远的小诗。2、《枫桥夜泊》鉴赏诗的前幅布景密度很大,十四个字写了六种景象,后幅却特别疏朗,两句诗只写了一件事:卧闻山寺夜钟。诗人在枫桥夜泊中所得到的最鲜明深刻、最具诗意美的感觉印象,就是这寒山寺的夜半钟声。月落乌啼、霜天寒夜、江枫渔火、孤舟客子等景象,固然已从各方面显示出枫桥夜泊的特征,但还不足以尽传它的神韵。在暗夜中,人的听觉升居为对外界事物景象感受的首位。而静夜钟声,给予人的印象又特别强烈。这样,“夜半钟声”就不但衬托出了夜的静谧,而且揭示了夜的深永和清寥,而诗人卧听疏钟时的种种难以言传的感受也就尽在不言中了。2023-07-16 22:35:251
直接引语如果是疑问句,变成间接引语怎么变
1.一般疑问句时变为间接引语的方法:将直接引语变为由if 或 whether/ if 引导的宾语从句跟在引述动词之后:“Have you been there?” he asked.→He asked if I had been there.注:(1) 改为宾语从句的间接引语要用陈述句词序.(2) 若直接引语的引述动词为say,改成间接引语应将其改为asksay等:“Do you like it?” he said.→He asked if [whether] I liked it.2.特殊疑问句时变为间接引语的方法:将直接引语变为由“疑问词”引导的宾语从句跟在引述动词之后:He said,“Jim,when is the next train?” →He asked Jim when the next train was.注:改为宾语从句的间接引语要用陈述句词序.2023-07-16 22:35:271
英语中,间接引语变成直接引语,怎么变?
间接引语变成直接引语,首先理解意思,用自己的语言转述别人的话,不需要引号的叫做间接引语。直接引用别人的原话,两边用引号“ ”标出,叫做直接引语;举个简单的例子:直接:He said,“I am very sorry.” ——>间接He said that he was very sorry.简单来说就是这样了~~2023-07-16 22:35:182
直接引语变间接引语时变陈述句语序有什么秘诀
直接引语和间接引语详解,耐心看完哦!~引述或转述别人的话称为“引语”。直接引用别人的原话,两边用引号“ “标出,叫做直接引语;用自己的语言转述别人的话,不需要引号这叫做间接引语,实际上间接引语大都是宾语从句(其中由祈使句转换的间接引语除外,其转换后是不定式)。那么直接引语为陈述句、一般疑问句、特殊疑问句和祈使句,转换为间接引语时,句子的结构,人称、时态、时间状语和地点状语等都要有变化,如何变化呢? 1、人称的转变 1)直接引语中的第一人称,一般转换为第三人称,如: He said,“I am very sorry.” ——>He said that he was very sorry. 2)直接引语中的第二人称,如果原话是针对转述人说的,转换为第一人称,如: “You should be more careful next time,” my father told me.——> My father told me that I should be more careful the next time. 3)直接引语中的第二人称,如果原话是针对第三人称说的,转换成第三人称。如: She said to her son, “I"ll check your homework tonight.” ——> She said to her son that she would check his homework that night. 4)人称的转换包括人称代词、物主代词和名词性物主代词等,如: He asked me, “Will you go to the station with me to meet a friend of mine this afternoon?” ——> He asked me whether I would go to the station with him to meet a friend of his that afternoon. 总之,人称的转换不是固定的,具体情况,具体对待,要符合逻辑。 2、时态的转换 直接引语改为间接引语时,主句中的谓语动词如果是过去时,从句(即间接引语部分)的谓语动词在时态方面要作相应的变化,变成过去时范畴的各种时态(实际也是宾语从句的时态要求),变化如下: 直接引语 间接引语 直接引语 间接引语 一般现在时 一般过去时 一般过去时 过去完成时 现在进行时 过去进行时 过去完成时 过去完成时 现在完成时 过去完成时 过去进行时 过去进行时 一般将来时 过去将来时 例如: “I am very glad to visit your school”, she said. ——> She said she was very glad to visit our school. Tom said, “We are listening to the pop music.” ——> Tom said that they were listening to the pop music. Mother asked, “Have you finished your homework before you watch TV?” ——> Mother asked me whether I had finished my homework before I watched TV. He asked the conductor, “Where shall I get off to change to a No. 3 bus?” ——> He asked the conductor where he would get off to change to a No. 3 bus. “Why did she refuse to go there?” the teacher asked. ——> The teacher asked why she had refused to go there. Mother asked me, “Had you finished your homework before you watched TV?” ——> Mother asked me whether I had finished my homework before I watched TV. Tom said, “We were having a football match this time yesterday.” ——> Tom said that they were having a football match that time the day before. He said,“I haven"t heard from my parents these days.” ——> He said that he hadn"t heard from his parents those days. 3、直接引语变成间接引语时,从句时态无须改变的情况 1)当主句的谓语动词是一般现在时的时候,如: He always says, “I am tired out.” ——>He always says that he is tired out. 2)当主句的谓语动词是将来时的时候,如: He will say, “I"ll try my best to help you.” ——>He will say that he will try his best to help me. 3)当直接引语部分带有具体的过去时间状语时,如: He said, “I went to college in 1994.” ——>He told us that he went to college in 1994. 4)当直接引语中有以when, while引导的从句,表示过去的时间时,如: He said,“When I was a child, I usually played football after school.” ——> He said that when he was a child, he usually played football after school. 5)当直接引语是客观真理或自然现象时,如: Our teacher said to us, “Light travels faster than sound.” ——> Our teacher told us that light travels faster than sound. 6)当引语是谚语、格言时,如: He said,“Practice makes perfect.” ——>He said that practice makes perfect. 7)当直接引语中有情态动词should, would, could, had better, would rather, might, must, ought to, used to, need时,如: 例如: The doctor said, “You"d better drink plenty of water.” ——> The doctor said I"d better drink plenty of water. He said, “She must be a teacher.”——> He said that she must be a teacher. He said, “She ought to have arrived her office by now.”——> He said that she ought to have arrived her office by then. The teacher said, “You needn"t hand in your compositions today.”——> The teacher said we needn"t/didn"t need to/didn"t have to hand in our compositions. She asked, “Must I take the medicine?”——> She asked if she had to take the medicine. 〔注〕:此处用had to代替must更好 8)此外转述中的变化要因实际情况而定,不能机械照搬,如果当地转述,here不必改为there, 动词come不必改为go,如果当天转述yesterday, tomorrow, this afternoon等均不必改变。如: Teacher: You may have the ball game this afternoon. Student : What did the teacher say, Monitor? Monitor: He said we might have the ball game this afternoon. 4、时间状语、地点状语及某些对比性的指示代词和动词变化 1)时间状语: 直接引语 间接引语 直接引语 间接引语 now then tomorrow the next(following)day today that day next week the next(following)week(month, year) yesterday the day before two days ago two days before last week (month, year) the week(month, year)before this week that week(month, year) 2)指示代词:these 变成those 3)地点状语:here变成there She said, “I won"t come here any more.”——> She said that she wouldn"t go there any more.. 4)动词:come变成go,bring变成take 5、直接引语变成间接引语,句子结构的变化 1)陈述句。用连词that引导,that在口语中常省略。主句的谓语动词可直用接引语中的said, 也可用told来代替,注意,可以说said that, said to sb. that, told sb. that,不可直接说told that, 如: He said, “I have been to the Great Wall.” ——>He said to us that he had been to the Great Wall. He said, “I"ll give you an examination next Monday.”——> He told us that he would give us an examination the next Monday.(不可说told that) 此外主句中的谓语还常有: repeat, whisper, answer, reply, explain, announce, declare, think等,又如: He said,“I"m late because of the heavy traffic.”——> He explained to us that he was late because of the heavy traffic. 如果间接引语是由that引导的两个或两个以上的并列从句,第一个连词可以省略,以后的连词一般不省略,以免混乱。 The doctor said, “You are not seriously ill, You will be better soon.”——> The doctor said(that)I was not seriously ill and that I would be better soon. 2)直接引语为一般疑问句,(也称是否疑问句,)间接引语用连词whether或if引导,原主句中谓语动词said要改为asked(me/him/us等),语序是陈述句的语序,这一点非常重要。 He said, “Do you have any difficulty with pronunciation?”——> He asked(me)whether/if I had any difficulty with my pronunciation. He said, “You are interested in English, aren"t you?”——> He asked whether I was interested in English. 3) 直接引语为选择疑问句,间接引语用whether…or…表达,而不用if…or…,也不用either…or…. 如: He asked, “Do you speak English or French?”——> He asked me whether I spoke English or French.. I asked, “Will you take bus or take train?”——> I asked him whether he would take bus or take train. 4)直接引语为特殊疑问句,改成间接引语时,原来的疑问词作为间接引语的连词,主句的谓语动词用ask(sb.)来表达,语序改为陈述句语序。如: He asked,“What"s your name?”——> He asked(me)what my name was. He asked us, “How many car factories have been built in your country?”——> He asked us how many car factories had been built in our country. 5)直接引语为祈使句时,改为间接引语,用带to的不定式表达,谓语动词常是ask, advise, tell, warn, order, request等。如ask sb. to do,(由肯定祈使句变成)ask sb. not to do(由否定祈使句转变),并且在不定式短语中的时间状语、地点状语、人称及时态都作相应的变化。如: He said,“Be seated, please.”——> He asked us to be seated. “Do be careful with your handwriting.” He said. ——> He told me to be careful with my handwriting. “Never come here again!” said the officer nearby. ——> The officer ordered the villagers never to go there again. “Don"t touch anything in the lab without permission,” the teacher said. ——> The teacher warned the students not to touch anything in the lab without permission. 6)有些含有“建议”——>、“劝告”——>的祈使句,可用suggest, insist, offer等动词转述,如: He said, “Let"s have a rest.”——> He suggested our having a rest. He said, “Let me help you.”——> He offered to help me. 7)当直接引语形式上是疑问句,有表示请求,建议意义时,可用ask sb. to do sth. /suggest doing/advise sb. to do sth. 等形式转述。如: “Would you mind opening the door?” he asked. ——>He asked me to open the door. “Why not going out for a walk?” he asked us. ——> He advised us to go out for a walk. 或He suggested we go out for a walk. 8)直接引语是感叹句时,变间接引语可用what或how引导,也可用that引导,如: She said, “What a lovely day it is!”——> She said what a lovely day it was. 或She said that it was a lovely day.2023-07-16 22:35:071